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Resumen

La ecuación Ginzburg-Landau compleja en su forma cúbica describe una amplia
gama de fenómenos para muchos sistemas de la f́ısica y presenta muchas estructuras
coherentes estables entre sus soluciones. De ah́ı que se haya estudiado intensamente
a lo largo de los años y que sea un laboratorio ideal para aprender sobre los esquemas
de integración temporal. Desde el punto de vista numérico se pueden utilizar méto-
dos pseudoespectrales para resolver la discretización espacial, hay que resolverlo con
variable compleja y se pueden utilizar métodos espećıficos para la integración tem-
poral como la Exponential Time Differencing o Integrating Factor Methods gracias
a la presencia de términos lineales y no lineales integrables. El objetivo de esta tesis
es comparar algunos de estos métodos analizando su orden y eficiencia. Para ello,
se han programado los diferentes esquemas en Fortran y se han validado sus resul-
tados mediante una pila de casos de prueba. A continuación, utilizando uno de ellos
como referencia y calculando la solución de una prueba con un paso de tiempo muy
pequeño, se han comparado los demás. Entre otros resultados, se ha constatado la
buena convergencia de los métodos de orden superior o la mejor velocidad de los
métodos que integran anaĺıticamente parte de la ecuación o que necesitan menos
transformadas de Fourier.

Abstract

The Complex Ginzburg-Landau Equation in its cubic form describes a wide range of
phenomena for many different systems in physics and presents many stable coherent
structures within its solutions. Hence, it has been intensively studied over the years
and it is an ideal laboratory to learn about time integration schemes. From the
numerical point of view; pseudo-spectral methods can be used to solve the spatial
discretization, it needs to be solved with complex variables and specific time inte-
gration methods like Exponential Time Differencing or Integrating Factor Methods
can be used thanks to the presence of integrable linear and nonlinear terms. The
purpose of this thesis is to compare some of these methods analysing their order
and efficiency. For this purpose, the different schemes have been programmed in
Fortran and their results validated using a stack of test cases. Then, using one as
a reference and calculating the solution to a test with a very small time step, the
others were compared. Among other results, it has been found the good convergence
of the higher order methods or the better speed of the methods that analytically
integrate part of the equation or need less Fourier transforms.
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Chapter 1

Introduction

1.1 The Complex Ginzburg-Landau Equation

The Complex Ginzburg-Landau Equation (CGLE) in its cubic form has appeared
over the years to model a big amount of physical systems in many different branches
of physics. It can describe a wide range of phenomena and presents many stable
coherent structures within its solutions. Among the systems where this equation
becomes important it can be found hydrodynamic flows (Poiseuille flow), flames,
reaction-diffusion systems, electro-convection in liquid crystals, chemical reactions
or strings in field theory. Some phenomena that can be described with this model
are superconductivity, superfluidity, Bose-Einstein condensation, nonlinear waves or
second order phase transitions.

The CGLE is usually enclosed in the classification of pattern-forming systems
due to the rich bunch of coherent structures and patterns that are found among
their solutions. Patterns can be found in spatial extended dynamical systems like
for example reaction-diffusion systems (RDS, see appendix A.2). For these systems
the model includes transport and linear/nonlinear (or both) interactions, but not
advection. They are usually seen as conservation laws in several branches of Physics
like chemistry, thermodynamics, fluid mechanics, etc. Then, the field variable (u)
under study take the meaning of concentration of chemical species, temperature,
pressure, etc.

It was J.T. Stuart and J. Watson in 1960 who obtained the CGLE when studying
the behaviour of Poiseuille and Couette flows, [15] and [19]. However, it is not in
the scope of this work to understand the models that leads to a CGLE in Physics.
Hence, instead of presenting the analysis from the governing equations (for example
the Navier-Stokes equation) to the CGLE describing a specific phenomenon, this

1



2 CHAPTER 1. INTRODUCTION

work begins with the equation itself in its standard and parameterless form.

The equation in its more general form is usually written as:

∂A

∂t
= c2∇2A+ c1A− c3|A|2A (1.1)

A(x, y, z, t) in this expression is a complex function of time and space and plays
the role of an amplitude. The parameters c1, c2, c3 ∈ C are the linear growth coeffi-
cient, the amplitude diffusivity and the nonlinear interaction coefficient respectively.
Finally, ∇2 = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
for the three dimensional case. It is common to reduce

to unity the real parts of the coefficients c1, c2, c3 by rescaling A, ~x and t. In addition,
a transformation like A→ Aeiφt (see appendix A.3) allows to discard the imaginary
part of c1, finally obtaining the standard form:

∂A

∂t
= (1 + iα)∇2A+ A− (1 + iβ)|A|2A (1.2)

In this equation α, β ∈ R are known as linear and nonlinear diffusivity. This
work is focused on the one dimensional CGLE, for different values of the parameters
and the initial condition and with periodic boundary conditions:

∂A(x, t)

∂t
= (1 + iα)

∂2A(x, t)

∂x2
+ A(x, t)− (1 + iβ)|A(x, t)|2A(x, t) (1.3)

The CGLE is usually explained as an amplitude (or modulational) equation.
Actually, the Real Ginzburg-Landau Equation (RGLE), immediately obtained from
CGLE by doing α, β = 0, was first derived as a long-wave amplitude equation in the
context of convection for binary mixtures and convection in heated motionless flu-
ids. In the context of waves, amplitude equations describe the evolution of the wave
amplitude and the modulation on an spatial scale. More specifically, the CGLE
describes an slow modulation in both space and time for isotropic spatially ex-
tended systems near the threshold of a long-wavelength supercritical oscillatory
instability (supercritical Hopf bifurcation) [18].

The appendix A delves into needed concepts to thresh this description of the
CGLE. It is usually described as a generalization of the normal form of a Hopf
bifurcation for spatially extended systems. Notice that the Hopf bifurcation treated
in the appendix A.1 lives only in time, however, a pattern-formation dynamical
system needs to exist both in space and time.
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The modulation over time and space is defined as slow modulation since the
amplitude evolves in a scale much bigger than the oscillation period of the solutions
for both independent variables. To complete the description of the CGLE we need
to delve into the idea of a finite wavelength instability. For our dynamical system,
which is spatially extended, the solution can be decomposed in Fourier modes like
e−iΩt+ikx. These modes can be expressed as:

e−iΩt+ikx = e−i<(Ω)t+=(Ω)t+ikx

so =(Ω) < 0, the real part of the exponent, decides the growth rate of each specific
mode. When the parameter µ, causing the supercritical oscillatory instability (see
appendix A.1), is negative, all these modes are decaying (negative growth rate,
=(Ω) < 0). However, for µ = 0 there is a wave number kc whose growth rate
becomes 0 and for µ > 0 a narrow band around kc presents a positive growth rate
[7]. For a supercritical bifurcation the non linearities above the bifurcation manifold
have small amplitude and then we can expect a finite wavelength, close to 2π

kc
.

1.2 Numerical Treatment

Exactly like the rich behaviour that the CGLE presents in terms of coherent struc-
tures and solutions, the numerical methods used to solve it are also varied. It
is common to treat the spatial derivatives of the CGLE equation with one of the
following methods: finite differences, pseudo-spectral Fourier methods or with the
Chebyshev-Tau spectral method [5].

In this work, the Fourier pseudo-spectral method is used taking advantage of
the fact that all problems to be solved have periodic boundary conditions (among
others). These methods are ideal when the solution is smooth and regular. With
them, part of the equation is solved in the Fourier space while the rest is solved
in the spatial domain, the Discrete Fourier Transform (DFT) and Inverse Discrete
Fourier Transform (IFT) are used to switch between both spaces. We will focus on
the one dimensional case for spatial domains of different sizes (L = 100 or L = 200)
centered in x = 0.

{
dÂ
dt

=
(
1−

(
k 2π

L

)2
(1 + iα)

)
Â−F [(1 + iβ)|A|2A] k ∈

[
−N

2
, N

2
− 1
)
, t > 0

Â(k, 0) = Â0(k)
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As can be checked in the expression above, the linear term of the CGLE in the

Fourier space scales with
(
k 2π

L

)2
which can be a problem for high wave numbers or

said in other words, when we use a high frequencies spectrum (modes varying in
really small times). A stiff behaviour appears due to the small time scale needed for
explicit methods to solve the linear part, in contrast with the scale needed for the
nonlinear terms.

However, several alternatives appear to solve this issue. On one side, Integrator
Factor Methods are used to integrate analytically the linear part of the equation,
automatically alleviating the stiffness behaviour:

dÂe−qt

dt
= −e−qtF

[
(1 + iβ)|A|2A

]
Together with this, Exponential Differencing Methods (ETD) are used to solve

the exact integration of this equation and then only approximate an integral in the
nonlinear terms. For a given nonlinear evolution equation like:

du

dt
= Lu+N (u, t) = qu+N (u, t)

the following exact expression is used as origin for the different ETD methods:

un+1 = une
q∆t + eq∆t

∫ ∆t

0

e−qτN (u(tn + τ), tn + τ)dτ

Finally, Splitting methods (Fractional Step methods or Split-Step methods) are
also treated in this work. These methods become a good alternative when the right
hand side of our system of ODEs can be split into integrable pieces [3]. For the
CGLE, both the linear and the nonlinear term are integrable analytically. They
are based on the idea of separating a single time step into different substeps and
integrate the system by considering different compositions of the linear and nonlinear
terms interchangeably.



Chapter 2

Test Cases

This chapter aims to present the test cases used to validate the code developed
to solve the CGLE. The Fortran program is shown and explained in the appendix
B and the theoretical foundations of the solvers used are explained in chapter 3.
The following test cases are obtained from [7], the same parameters, conditions and
time integration method are imitated in order to reproduce the same results. Seven
simulations are performed:

� 2 with the aim of finding planar waves, the simplest solution of the CGLE,

� 2 related to the search of disordered states (chaos),

� 2 presenting an intermediate state between planar waves and a chaotic be-
haviour and

� 1 looking for other coherent structures like holes and shocks.

For the CGLE, to recover the physical field (u) close to the threshold from our
complex amplitude (A), the following relation is used:

u = A(x, t)e−iΩct+ikcx + A∗(x, t)eiΩct−ikcx + higher harmonics

or for the real case:

u = A(x, t)eikcx + A∗(x, t)e−ikcx + higher harmonics

5
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where the higher harmonics term are proportional to e2ikcx and kc denotes the
wave number of the mode whose growth rate becomes positive for µ > 0 (see figure
2.1). Notice that this expression indicates that the dynamics of the patterns to be
obtained are separated into:

� A fast wave that grows in time but is stationary in space when our parameter
is µ > 0 and for the real case (eikcx). This same component for the complex
equation is referred to a travelling wave (e−iΩct+ikcx). In both cases this fast
component is ruled by the critical mode, kc.

� An slowly varying amplitude in space and time that acts as an envelope for
the fast component (A(x, t)).

� Higher harmonics.

Figure 2.1: In this diagram, obtained from [18], the behaviour of the growth rate according
to the variation of the parameter that generates the bifurcation is shown.

The main difference between the real and the complex case of the Ginzburg-
Landau equation appears in the critical mode, the one that becomes unstable when
µ = 0. For the real case the resulting wave is stationary in space while for the
complex dynamics we have a travelling wave. The RGLE allows a band of stationary
solutions, periodic in space, likeA(x, t) = a0e

iqx with q2 = 1−a20 called phase winding
solutions. These stationary waves present a wave number above or below (but near)
the critical for q > 0 and q < 0:

u = a0e
iqxeikcx + a0e

−iqxe−ikcx + higher harmonics

u = a0e
i(kc+q)x + a0e

−i(kc+q)x + higher harmonics
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For the complex case the phase winding solutions are also allowed. However,
now the band of solutions are travelling waves A(x, t) = a0e

iqx+iωt. If we introduce
these solutions in our CGLE we find:

a0e
iqx+iωt(iω) = (1 + iα)a0e

iqx+iωt(iq)2 + a0e
iqx+iωt − (1 + iβ)a20a0e

iqx+iωt

which, separating real and imaginary parts and assuming ω ∈ R, leads to:

q2 = 1− a20 ω = −αq2 − a20β

If we recover our physical field from the amplitude solution we find:

u = a0e
iqx+iωte−iΩct+ikcx + a0e

−iqx−iωteiΩct−ikcx + higher harmonics

u = a0e
−i(Ωc−ω)t+i(kc+q)x + a0e

i(Ωc−ω)t−i(kc+q)x + higher harmonics

and hence, ω measures the difference between the pattern frequency and the
critical frequency and also indicates that the pattern frequency is depending on the
wave number (q) and the pattern amplitude (a0). This proves that α rules the linear
dispersion and β rules the nonlinear dispersion.

As it is explained in [18], our CGLE is expressed in a frame that moves with the
so called group velocity: vgr = ∂ω/∂k which is generally distinct from 0. When we
want to study if the instability is convective or absolute and we want the equation
to be expressed in a fixed frame of reference, an additional term is included in the
left hand side of the equation: vgr∂A/∂x = ∂ω/∂k · ∂A/∂x.
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2.1 Planar waves

We’ve just seen that periodic travelling waves are some simple solutions of the CGLE.
In this section we review the basics around the stability of these solutions following
the same process as in [7]. Let’s define ã± as small amplitude perturbations, λ ∈ C
and let’s find solutions of the form:

A =
(
a0 + ã+e

ikx+λt + ã−e
−ikx+λ∗t

)
eiqx+iωt

By introducing this solution in the CGLE and expanding the resulting equation
for λ around k ∼ 0 the following expression is obtained:

λ = −2iq(α− β)k −
[
1 + αβ − 2q2(1 + β2)

a20

]
k2 +O(k3)

Since we need the real part of the growth rate (λ) to be negative to have stable
solutions in the long wave-length scale and q, α, β, k, a0 ∈ R, we need that the
following condition holds:

1 + αβ − 2q2(1 + β2)

a20
> 0

or, using the relation between the amplitude a0 and the wave number q, we can
say:

q2 <

1+αβ
2(1+β2)

1 + 1+αβ
2(1+β2)

=
1 + αβ

2β2 + 3 + αβ

Analysing what happens for q = 0 or |q| << 0 we find the so-called Benjamin-
Feir-Newell criterion:

1 + αβ > 0 or αβ > −1

and for the case α = β we have the Eckhaus condition: q2 < 1/3. As a conclusion,
all the periodic solutions are Benjamin-Feir unstable when αβ < −1. In the figure
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2.2 obtained from [18] we can see how the stability is related to the values of q, α
and β. The instability region is located within the dashed lines while the region that
admits planar wave solutions is located within the solid line.

For the RGLE (or for α, β small) and for a given value µ > 0 generating the
instability, our planar waves are only stable for |q| << 0. Said in other words, only
the solutions with a total wave length closer to the critical are stable. By making
the product αβ higher (in absolute value), when αβ ≤ −1, all the region with planar
wave solutions becomes unstable.

Figure 2.2: In this diagram, obtained from [18], the stability for the RGLE (α = β = 0)
and CGLE is shown depending on the values of µ and q. The region within the solid line
admits planar waves and the region within the dashed line present stable planar waves.

The waves described until now differ in several properties from the waves that
can be obtained as solutions of the linear wave equation like ∂2U/dt2 = ∆U . For
linear waves the frequency does not depend on the amplitude of the wave and the
amplitude does not depend on the wave number q. As we have seen, for the nonlinear
waves obtained with the CGLE, the frequency ω is a function of amplitude and the
amplitude a0 depends on the wave number. In addition, the linear waves dissipate
energy and lose amplitude but the nonlinear waves are consuming energy and do
not decay. Finally, the linear waves do not interact between each other while for
nonlinear waves we find shocks and collisions.

The first two simulations presented in [7], which we are using as test cases, find
plane waves with two different initial conditions. To do that it chooses α, β such
that there are a stable range of wave numbers q: α = 1, β = 2. With these values
we have αβ > −1 and we can expect stable solutions for q2 < 3/13.
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2.1.1 Test Case 1: Planar waves stable regime

By using an initial condition of small noise (±0.01 ± 0.01i) around A = 0 + 0i the
CGLE quickly converges to the expected planar waves (see figure 2.3). Since α, β
ensures that we are in the stable regime and the noise is small enough, the solution
does not diverge. Actually, |A| quickly converges to a constant value while <(A)
and =(A) present the planar waves.

1 + αβ = 3 > 0

Notice that all the tests made include periodic boundary conditions so the equa-
tion can be transformed to the Fourier space. The solver used for these simulations
is the so-called Exponential Time-stepping 2 (ETD2).

2.1.2 Test Case 2: Planar waves unstable regime

To reproduce the Benjamin-Feir instability we can force the equation to start with
an unstable wave as initial state. Notice that for the given same parameters used in
the previous case, the unstable regime is obtained for:

q >

√
1 + αβ

2β2 + 3 + αβ
' 0.480

so let’s use an initial condition with a wave number of q = 20π
L

= 0.6283 > 0.480.
The results show in the first place that the initial wave travels in space (see figure
2.4) until it mutates into a new plane wave with a stable wave number and generating
in the change defects called phase singularities (A = 0). Notice that the solution for
t = 100 has a wave number of around q = 32π

L
= 0.1885 (being in the stable region).
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Test Case 1

(α, β) (1, 2)

Spatial domain x ∈ [−50, 50]

Grid points Nl = 512

Final time and timestep tf = 100, h = 0.05

Initial condition noise: (±0.01± 0.01i)

Solver used Pseudospectral method + ETD2

Figure 2.3: Space-time plots for a) <(A), b) =(A), c) Initial condition and final result and
d) |A| for Test Case 1.
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Test Case 2

(α, β) (1, 2)

Spatial domain x ∈ [−50, 50]

Grid points Nl = 512

Final time and timestep tf = 100, h = 0.05

Initial condition
√
1−

(
20π
L

)
ei

(
20π
L

)
x + noise

Solver used Pseudospectral method + ETD2

Figure 2.4: Space-time plots for a) <(A), b) =(A), c) Initial condition and final result and
d) |A| for Test Case 2.
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2.2 Spatio-temporal chaos

2.2.1 Test Case 3: Phase turbulence

When the Benjamin-Feir-Newell criterion is violated (with q ' 0) and for the proper
initial condition, a spatio-temporal chaotic state appears. This can happen for any
non zero spatially constant initial condition like for example the one used in the
following case tests (A0 = 1 + noise). In this case we are using α = 2, β = −1:

1 + αβ = −1 < 0

The first state encountered is phase chaos, this appears when the Benjamin-
Feir-Newell line is crossed (above BF line plane waves are unstable) coming from
the non chaotic region in the parameter space (see figure 2.5). Here, |A| remains
saturated, never reaches 0, and typically stays in values around 0.7 − 0.9. The
solutions obtained (see figure 2.6) show that the phase of the solution for different
times presents a turbulence regime.

Figure 2.5: This diagram obtained form [12] shows the different regions in the parameter
space that can be found in the 1D CGLE.

2.2.2 Test Case 4: Defect turbulence regime

In this spatio-temporal chaos, the same initial conditions can generate the so-called
defect chaos when we make β smaller. Notice that in figure 2.5 we have crossed
to the Defect Turbulence region with for example α = 2, β = −2. This region is
characterised by defects where |A| = 0 (see figure 2.7).
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Test Case 3

(α, β) (2,−1)

Spatial domain x ∈ [−100, 100]

Grid points Nl = 512

Final time and timestep tf = 500, h = 0.05

Initial condition 1 + noise

Solver used Pseudospectral method + ETD2

Figure 2.6: Space-time plots for a) <(A), b) =(A), c) Initial condition and final result and
d) |A| for Test Case 3.
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Test Case 4

(α, β) (2,−2)

Spatial domain x ∈ [−100, 100]

Grid points Nl = 512

Final time and timestep tf = 100, h = 0.05

Initial condition 1 + noise

Solver used Pseudospectral method + ETD2

Figure 2.7: Space-time plots for a) <(A), b) =(A), c) Initial condition and final result and
d) |A| for Test Case 4.
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2.3 Intermittency regime

2.3.1 Test Case 5: plane waves + localized structures

The spatio-temporal intermittency regime is characterised by the coexistence of the
stable planar waves with defect chaos. In order to obtain this regime, the initial
condition includes localised pulses of amplitude preventing the equation to form only
planar waves. As a result, after a transient period, localized structures (|A| ∼ 0)
separate patches of planar waves (constant |A|).

In this first case with (α = 0.5, β = −1.5, right side of the region of spatio-
temporal intermittency in figure 2.5) the moving localised structures are related
to Nozaki-Bekki holes. These coherent structures in the form of sinks can be found
analytically and they are characterised by a dip in |A| moving at constant speed and
generating planar waves on both sides but with different wave numbers (qr 6= ql).
The behaviour is as follows: if the phase gradient of the hole spreads out the hole
disappears but if the phase gradient becomes stronger, then a phase slip happens
and two or more localised structures appears (see figure 2.9).

2.3.2 Test Case 6: turbulence + stationary shock-hole structures

In this second intermittency case simulated the parameters used are α = 0, β = −4.
With β decreasing we are nearer the turbulence region. Now, few stable planar
waves coexist with arrangements of stationary holes and shocks that are separated
by turbulence regions. Shocks appear naturally when two or more holes coexist
creating the arrangements of these structures (see figure 2.8).

(a) Two shocks and holes. (b) Arrangement os shocks and holes

Figure 2.8: A figure with two subfigures
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Test Case 5

(α, β) (0.5,−1.5)

Spatial domain x ∈ [−100, 100]

Grid points Nl = 512

Final time and timestep tf = 100, h = 0.05

Initial condition sech ((x+ 10)2) + 0.8sech ((x− 30)2) + noise

Solver used Pseudospectral method + ETD2

Figure 2.9: Space-time plots for a) <(A), b) =(A), c) Initial condition and final result and
d) |A| for Test Case 5.
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Test Case 6

(α, β) (0,−4)

Spatial domain x ∈ [−100, 100]

Grid points Nl = 512

Final time and timestep tf = 100, h = 0.05

Initial condition sech
(
(x+ L

4
)2
)
+ 0.8sech

(
(x− L

4
)2
)
+ noise

Solver used Pseudospectral method + ETD2

Figure 2.10: Space-time plots for a) <(A), b) =(A), c) Initial condition and final result
and d) |A| for Test Case 6.
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2.4 Coherent structures

2.4.1 Test Case 7: Moving hole - shock pair

For this test, with parameters α = 0, β = 1.5, we find two examples of the already
mentioned Nozaki-Bekki holes, which are a kind of coherent structure (like planar
waves). In this case the equation is outside the chaotic region so we expect to find
planar waves together with the holes. In general, coherent structures are character-
ized by presenting regular patterns which are connected by interfaces. For the one
dimensional case these structures can be found with the general form:

A(x, t) = a(x− νt)eiφ(x−νt)−iωt

where a, φ are real functions. If this solution is introduced in the CGLE, a system
of three ODEs is obtained. In general, there are no exact analytical description for
a sink (shock) that connects two travelling waves with arbitrary wave numbers,
however, the so-called Nozaki-Bekki holes have an analytical expression but they
are referred to a specific selection of the wave numbers of both sides waves.

Test Case 7

(α, β) (0, 1.5)

Spatial domain x ∈ [−100, 100]

Grid points Nl = 512

Final time and timestep tf = 500, h = 0.05

Initial condition noise: (±0.01± 0.01i)

Solver used Pseudospectral method + ETD2
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Figure 2.11: Space-time plots for a) <(A), b) =(A), c) Initial condition and final result
and d) |A| for Test Case 7.



Chapter 3

Numerical treatment

This chapter aims to give the theoretical framework of the different methods used
to solve the time integration of the CGLE. The problem to solve is:


∂A
∂t

= (1 + iα)∂
2A

∂x2 + A− (1 + iβ)|A|2A, x ∈
[
−L

2
, L
2

)
, t > 0

A(x, 0) = A0(x)

A(−L
2
, t) = A(L

2
, t), ∂A

∂x
(−L

2
, t) = ∂A

∂x
(L
2
, t)

with A = A(x, t) ∈ C, α, β ∈ R and | · | the modulus of a complex magnitude.

3.1 Spatial discretization

Taking advantage of the periodic boundary conditions, the spatial derivatives in
this problem are suitable to be addressed with pseudo-spectral methods. With an
spectral approach, the solution A(x, t) would be expanded in an infinite sequence
of orthogonal functions (basis functions) that, from the numerical point of view,
we later have to truncate. This set of basis functions could be for example sines
or cosines (expansion in Fourier series). We then need a fast convergence of the
expansion so the truncated series approximate properly our solution function (spec-
tral precision). However, in the pseudo-spectral approach, part of our equation is
solved pointwise in the spatial domain (nonlinear term) and part in the frequency
domain (space derivatives). In our case, the pseudo-spectral approach is performed
by means of Fourier transforms.

21
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With our numerical approximation we expect to find our solution A(x, t) in a
discrete and bounded grid. Hence, both the spatial and the frequency domain, are
discrete and bounded (see figure 3.1), and the discrete Fourier Transform (DFT) is
the suitable tool for this analysis [16]. It is clear that:

xj =
2πj

N
for j = 0, ..., N − 1

and

h =
2π

N

Figure 3.1: Discrete and bounded spatial and frequency (wave number) domains used in
the DFT (obtained from [16]).

Let’s obtain the DFT from the Discrete Fourier series [10], which for a given
function u(x), is the interpolant:

IN(u) =

k=N
2
−1∑

k=−N
2

ũke
ikx

now let’s force this interpolant to pass through our equispaced N grid points (see
figure 3.1), called collocation points (xj, u(xj)):

u(xj) =

k=N
2
−1∑

k=−N
2

ũke
ikxj for j = 0, ..., N − 1

This linear system of equations can be inverted to find the N coefficients ũk
depending on the collocation points. Similar to inverting the matrix we can multiply
this equation by e−ikxj and sum for j = 0, ..., N − 1 obtaining (uj = u(xj)):
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ũk =
1

N

j=N−1∑
j=0

uje
−ikxj for k = −N

2
, ...,

N

2
− 1

While this equation is the DFT, the previous allows us to recover the original
discrete function u(xj) once we have the frequency components ũk and is called the
Inverse Discrete Fourier Transform (IFT). Some notes has to be mentioned for these
expressions of the DFT-IFT:

1. In general, both uj and ũk are complex and N is an even integer quantity (for
odd N the expressions differ).

2. The DFT can also be seen as an approximation of the expressions that gives
the coefficients of a Fourier series for a periodic function:

ũk =
1

2π

∫ 2π

0

u(x)e−ikxdx

when the trapezoidal rule is used to evaluate the integral.

3. For this analysis we’ve obtained the expression of the DFT which is normalized
with the number of grid points 1/N . Different expressions for the same purpose
can be obtained (1/

√
N normalization, positive exponent, etc.). However, with

this expression the frequency components obtained can be used as coefficients
for the continuous Fourier series.

4. Notice that the precaution of using square-integrable measurable functions or
square-summable grid functions are needed for the Fourier transform and semi-
discrete Fourier transform. However, for the DFT, with the correspondent
norm:

‖u‖ =

h N
2
−1∑

j=−N
2

|uj|2
2

we are sure that any N -periodic function on the grid {xj} is going to be
square-summable on {xj} (since the sum is finite).

The previous expression for the DFT is developed for a fundamental spatial
domain [−π, π). Translations of this interval do not affect it but lengths different
than 2π needs from a scale factor. For our CGLE equation, since the spatial domain
has not necessarily length 2π, we would need this scale factor [17], however, another
option is to transform the equation to the domain [−π, π). For a given domain
x ∈

[
−L

2
, L
2

)
, we can define:



24 CHAPTER 3. NUMERICAL TREATMENT

x̂ =
2π

L
x

and redefine our problem as:


∂A
∂t

= (1 + iα)∂
2A

∂x̂2

(
2π
L

)2
+ A− (1 + iβ)|A|2A, x ∈ [−π, π) , t > 0

A(x̂, 0) = A0(x̂)

A(−π, t) = A(π, t), ∂A
∂x̂
(−π, t) = ∂A

∂x̂
(π, t)

Finally, in the Fourier space, our problem can be written as:

{
dÂ
dt

=
(
1−

(
k 2π

L

)2
(1 + iα)

)
Â−F [(1 + iβ)|A|2A] k ∈

[
−N

2
, N

2
− 1
)
, t > 0

Â(k, 0) = Â0(k)

Notice that we have converted the problem in a system of ODEs (with each
component a frequency in the Fourier space) in time that can be treated as a Cauchy
problem (or initial value problem).

3.2 Time integration

The initial value problems or Cauchy problems are evolution problems in the sense
that, given an initial state, a numerical scheme is used to find the state in the next
instant. Hence, from a given initial condition, the solution of the system of ODEs is
obtained in discrete points of the independent variable. Normally, the independent
variable is the time, however, it is not mandatory and some boundary value problems
can be also stated as Cauchy problems.

Our start point to find the numerical schemes for the time integration is the
following system of dimension s of first order ODEs (in general higher order equa-
tions/systems can be written as first order systems):

du(t)

dt
= F (u, t) with u(t0) = u0
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where u(t), u0 ∈ Cs, F : Cs × R → Cs. Notice that this equation is called
autonomous when F = F (u), which means that the function F does not depend
explicitly on time. To obtain the solution the discretization is normally based on
finding an approximation to both the function F (u, t) and du(t)

dt
[9]. Hence, the

problem is reduced to a system of difference equations like:

G(un+1, un, ..., un+1−p) = 0

with initial conditions and where p is the number of steps involved and uj = cj

(for j = 0, ..., p − 1) are constants used to start the process. The value un is the
approximation to u(t) for t = tn so, in order to solve the problem, we need to find
un+1 based on the previous values un for all n ≥ p. We are normally interested in
finding the order q of a numerical scheme since this let us ensure that the global error
En = u(tn) − un of our solution in a specific time can be bounded in the following
way:

En = O(∆tq)

for ∆t closely enough to 0. Notice that this global error is expressed as the
difference between the exact solution of the equation and our approximation so our
solution is closer to the exact value in the same order than ∆tq. Finally, it is common
to denote F n the values F (un, tn) and ∆tn = tn+1 − tn.

The temporal schemes are usually categorised into different groups. For example
a scheme is called multistep when the value in the instant un+1 is obtained from p
previous steps ((uj, F j)) or single step when only one previous state is needed to
determine it. They are called explicit when we can clear the value of un+1 in the
expression of G(un+1, un, ..., un+1−p) and write:

un+1 = f(un, ..., un+1−p)

or implicit when this is not possible and we have to solve a system of s nonlinear
equations for each time step. Another interesting classification is made if the tempo-
ral scheme comes from a numerical integration or from a numerical differentiation.
For the first case we can integrate the system of ODEs to obtain:

un+1 = un +

∫ tn+1

tn

F (u, t)dt (3.1)
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and find the value of the integral by means of an interpolant or extrapolant
polynomial of the function F . For the second case the interpolant polynomial is
found for the function u(t) using the instants u0, u1, ..., un+k, it is derived and forced
to accomplish with our system of ODEs in the instant tn+k:

(
du(t)

dt

)
n+k

= F (un+k, tn+k) (3.2)

For our CGLE we are going to start using three well known schemes: Explicit
Euler, second and fourth order Runge-Kutta. The three of them are single step
and explicit schemes (simpler to implement than implicit schemes). However, the
Runge-Kutta schemes are known as multistage methods since for each time step, e
intermediate stages are considered between tn and tn+1 to find un+1.

The explicit Euler, the simplest scheme, can be obtained by assuming that F (u, t)
is constant between tn and tn+1. Hence, we can evaluate the integral in the equation
3.1 as (tn+1 − tn)F

n resulting in the first-order method:

un+1 = un + (tn+1 − tn)F
n

Runge-Kutta schemes of e stages can be written with the general expression:

un+1 = un +∆t
e∑

i=1

biki

where:

ki = F (un +∆t
e∑

j=1

aijkj, tn + ci∆t) for i = 1, ..., e

and aij, ci and bi are specific constant for each numerical scheme. In these meth-
ods the function F (u, t) needs to be evaluated in the intermediate points between
[tn, tn+1], to do that we need an estimation of u(t) in the points since we do not
know its real value. Once these stages are known, by integrating in 3.1 we obtain
the value un+1.
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The two stages and second-order method Runge-Kutta 2 can be built by esti-
mating the values of F (u, t) in the stages tn and tn+1. For tn we already have the
estimation for un from the previous step, so we can write:

k1 = F (un, tn)

For the estimation of un+1 an explicit Euler can be used:

k2 = F (un +∆tnk1, tn +∆tn)

With these values we can build the interpolant polynomial for F (u, t) which,
after being integrated, builds the scheme:

un+1 = un +
∆tn
2

(k1 + k2)

A fourth order Runge-Kutta scheme follows the expression:

un+1 = un +
∆tn
6

(k1 + 2k2 + 2k3 + k4)

with


k1 = F (un, tn)

k2 = F (un + 1/2∆tnk1, tn + 1/2∆tn)

k3 = F (un + 1/2∆tnk2, tn + 1/2∆tn)

k4 = F (un∆tnk3, tn +∆tn)

With no need of more manipulations in the equation or knowledge, we could
already integrate in time the CGLE (code subroutine CGLE). The solution can
be obtained just by calling:

F (Â, t) =

(
1−

(
k
2π

L

)2

(1 + iα)

)
Â−F

[
(1 + iβ)|A|2A

]
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and using any of the described schemes for the vector of amplitudes Â in the
Fourier space:

{
dÂ
dt

= F (Â, t) k ∈
[
−N

2
, N

2
− 1
)
, t > 0

Â(k, 0) = Â0(k)

However, the method of Integrating Factor Method (IFM) can be also used
with the CGLE. It consists on transforming the equation so that its linear part
is solved analytically. Let’s consider the variable change ϕ = Âe−qt with q(k) =(
1−

(
k 2π

L

)2
(1 + iα)

)
:

dϕ

dt
=
dÂ

dt
e−qt + Âe−qt(−q)

and let’s multiply our CGLE by e−qt:

e−qt

(
dÂ

dt
− qÂ

)
= −e−qtF

[
(1 + iβ)|A|2A

]

dϕ

dt
= −e−qtF

[
(1 + iβ)|A|2A

]
= F (ϕ, t)

Again, now any of the described schemes could be used over the vector ϕ in the
Fourier space (code subroutine CGLE_IFM_Gral). Notice that several changes
of variables are needed with this approach (dividing and multiplying by e−qt). In-
stead of that, let’s manipulate more the equation assuming that we want to use a
Explicit Euler method (the same can be done for other explicit schemes). Let’s inte-
grate in time the previous equation assuming that−e−qtF [(1 + iβ)|A|2A] is constant
in the interval:

Ân+1e
−qtn+1 = Âne

−qtn −∆tne
−qtnF

[
(1 + iβ)|An|2An

]
which, multiplying by eqtn+1 , leads to (code subroutine CGLE_IFM_Euler):

Ân+1 = eq∆tn
(
Ân −∆tnF

[
(1 + iβ)|An|2An

])
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It is common when solving Partial Differential Equations (PDEs) with spectral
and pseudo-spectral methods that the systems of ODEs are stiff [4]. This happens
because these equations involves time-dependent Fourier coefficients where a mode
n-th, for large n, scales as O(n−m) with m the order of the highest spatial derivative.

Let’s take our CGLE equation for example, the term
(
k 2π

L

)2
scales as O(k2) since

we have a second derivative. The time scale for that wave number scales as k−2

and, when we have high frequencies (k ∼ 256) the evolution is happening in really
short times. It is usually the linear term the responsible for this stiffness behaviour.
The Exponential Time Differencing (ETD) methods born to solve this issue by
performing an exact integration for the equation followed by an approximation of
an integral related to the nonlinear term.

Let’s obtain first the generic methods ETD1 and ETD2 and then apply them to
the CGLE. For a given nonlinear evolution equation like:

du

dt
= Lu+N (u, t) = qu+N (u, t)

with u = u(k, t), u(k, 0) = u0(k) and denoting L and N the linear and nonlinear
operators. We can multiply it by the integrating factor e−qt and integrate from tn
to tn+1:

∫ tn+1

tn

d (ue−qt)

dt
dt =

∫ tn+1

tn

e−qtN (u, t)dt

un+1e
−qtn+1 = une

−qtn +

∫ tn+1

tn

e−qtN (u, t)dt

Multiplying by eqtn+1 and defining τ = t− tn:

un+1 = une
q∆tn + eq∆tn

∫ ∆tn

0

e−qτN (u(tn + τ), tn + τ)dτ

This is an exact result and the variations of the ETD method are obtained by
approximating the integral. Assuming that N (u, t) = N (un, tn) is constant in the
whole time interval (N = Nn +O(∆t)) we find the ETD1 method:

un+1 = une
q∆tn + eq∆tn

(
−1

q

)
Nn

(
e−q∆tn − 1

)
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un+1 = une
q∆tn +Nn

(
eq∆tn − 1

q

)

When we use a higher order approximation for N , let’s say:

N = Nn + τ
Nn −Nn−1

∆tn
+O(∆t2)

and using
∫
τe−qτ dτ = − e−qτ (qτ+1)

q2
+ C:

un+1 = une
q∆tn + eq∆tn

[(
−1

q

)
Nn

(
e−q∆tn − 1

)
+

+

(
Nn −Nn−1

∆tn

)(
−1

q2

)(
e−q∆tn(1 + q∆tn)− 1

)] (3.3)

the result is the so-called ETD2:

un+1 = une
q∆tn +

Nn

∆tnq2
(
eq∆tn (∆tnq + 1)− 2∆tnq − 1

)
+

Nn−1

∆tnq2
(
1 + q∆tn − eq∆tn

)
For our equation it is immediate to write the expressions for both the ETD1 and

ETD2 (codes subroutine CGLE_ETD1 and subroutine CGLE_ETD2) respec-
tively:

Ân+1 = Âne
q∆tn −F

[
(1 + iβ)|An|2An

](eq∆tn − 1

q

)
(3.4)

Ân+1 = Âne
q∆tn − F [(1 + iβ)|An|2An]

∆tnq2
(
eq∆tn (∆tnq + 1)− 2∆tnq − 1

)
−

− F [(1 + iβ)|An−1|2An−1]

∆tnq2
(
1 + q∆tn − eq∆tn

) (3.5)

Notice that the first step for the scheme ETD2 must be done with a different
method since it needs two previous steps to solve Ân+1 and we only count with
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the initial condition in one instant of time. ETD1 is being used for this purpose
in the program developed. It is also interesting to remark that both schemes, for
|q| → 0 converge to other methods. While ETD2 converges to a second-order Adams-
Bashforth method, the method ETD1 converge to the explicit Euler (or forward
Euler) when no integrating factor is used, we can prove it by expanding eq∆tn for
|q| → 0:

un+1 = un
(
1 + q∆tn +O

(
(q∆t)2

))
+Nn

(
1 + q∆tn +O ((q∆t)2)− 1

q

)
'

' un +∆tn (unq +Nn)

(3.6)

A precaution that must be taken with these methods is related to the low values

of q(k) =
(
1−

(
k 2π

L

)2
(1 + iα)

)
since both schemes are divided by this value.

The last kind of schemes treated in this work are the splitting methods. More
specifically the first-order method Lie-Trotter and the second-order method Strang
Splitting are implemented. These methods appear as a natural response to equations
(or systems of equations) with different terms representing different physics. This
could be the example of the Navier-Stokes equations or Reaction-Diffusion PDEs like
the CGLE. As we have seen, the two terms in our CGLE equation (already expressed
in the Fourier space) represent two phenomena that occur in different time scales.
As a result, a stiff problem is encountered, splitting methods can be used to speed
up the calculation. A splitting method allows to use different numerical methods
for different processes, for example manipulating a nonlinear term separated from a
linear one. Hence, the integration can be optimized under some conditions.

Let’s first get a basic idea of how they work. Imagine that we have a system of
ODEs:

du

dt
= f0(u) + f1(u)

with both f0 and f1 linear functions (fi = Liu). We can then write our solution
as:

u(t) = u0e
(L1+L2)t

On a single time step, the integration can be expressed as:
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un+1 = une
(L1+L2)∆t = une

L1∆teL2∆t

Then, the time step could be solved with the following two steps:

u∗ = une
L1∆t

un+1 = u∗eL2∆t

The order of the steps does not matter. While this method is exact for both
functions being linear, when the functions are nonlinear this method is giving a first
order approximation to our solution. To give a formal description of this method
let’s consider the following ODEs system as initial value problem [3]:

du

dt
= f(u) with u0 = u(0) ∈ CD

where f : CD → CD and D is the dimension of the system. We assume that
this function f can be decomposed in a sum of functions f =

∑m
i=1 f

[i](u) with
f [i] : CD → CD and such that:

du

dt
= f [i](u) with u0 = u(0) ∈ CD and i = 1, ...,m

can be integrated exactly or, in case that it is integrated approximately, they have
to involve an improvement with respect to the integration of the complete equation,
whether in terms of efficiency, speed, stability, etc. It is specially interesting in the
case of the CGLE since the component functions can be integrated analytically.

Let’s call u(∆t) = ϕ
[i]
∆t(u0) to the solution of the i-th equation along one time

step of size ∆t. Then, the composition of the m solutions (χ∆t) provides a first-order
approximation to the exact solution (called ϕ∆t(u0)):

χ∆t = ϕ
[m]
∆t ◦ ... ◦ ϕ

[2]
∆t ◦ ϕ

[1]
∆t

Let’s use this method with our CGLE already expressed in the Fourier space
(equation 3.1). We split it in the following two equations (linear and nonlinear

terms) using q =
(
1−

(
k 2π

L

)2
(1 + iα)

)
:
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dÂ

dt
= qÂ

dÂ

dt
= −F

[
(1 + iβ)|A|2A

]
The exact solution for the equation 3.2 is obtained as:

Â(k, t) = Â0(k)eq(k)t = ϕ
[L]
∆t

However, the integration for the nonlinear term can be done in the spatial domain
instead on the Fourier space:

∂A

dt
= −(1 + iβ)|A|2A

By calling M(x, t) = |A(x, t)|2 = A(x, t)A∗(x, t) we can say:

∂M(x, t)

∂t
=
∂A(x, t)

∂t
A∗(x, t) + A(x, t)

∂A∗(x, t)

∂t
=

= −(1 + iβ)|A|2AA∗ − A(1− iβ)|A|2A∗ = −|A|2|A|2 − |A|2|A|2 = −M2

By integrating ∂M
∂t

= −M2 we obtain:

M(x, t) =
M0(x)

1 + 2M0(x)t

and hence we can write the equation 3.2 as:

∂A

dt
= −(1 + iβ)M(x, t)A

and integrate to obtain:
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A(x, t) = A0(x)e
−(1+iβ)

∫ t
0 M(s)ds = A0(x)e

− 1+iβ
2

log(1+2M0(x)t) = ϕ
[N ]
∆t

Now we can use the simplest splitting method to solve our problem, the first-
order scheme known as Lie-Trotter scheme (or its adjoint, see code subroutine
CGLE_SSLT):

ψ∆t = ϕ
[L]
∆t ◦ ϕ

[N ]
∆t ψ∗

∆t = ϕ
[N ]
∆t ◦ ϕ

[L]
∆t

or the second order scheme known as Strang splitting:

S∆t = ψ∆t
2
◦ ψ∗

∆t
2
= ϕ

[L]
∆t
2

◦ ϕ[N ]
∆t ◦ ϕ

[L]
∆t
2

which admits the version (code subroutine CGLE_Strang):

S∆t = ψ∗
∆t
2
◦ ψ∆t

2
= ϕ

[N ]
∆t
2

◦ ϕ[L]
∆t ◦ ϕ

[N ]
∆t
2



Chapter 4

Methods comparison

To compare all the methods explained in the previous chapter, the test case number
5 (intermittency regime with planar waves and localised structures) was chosen. The
way to do it is by running a simulation with one specific method using a extremely
small time step and use its results as “exact” solution. Then, compare the conver-
gence of the rest of methods to these results and also the convergence related to the
CPU time or the number of DFTs performed in the computation. For this initial
simulation the method ETD2 (second order) was chosen in the beginning since it is
the method used for the test cases [7]. However, the results obtained with a fourth
order Runge-Kutta scheme did not seem to converge in comparison with ETD2,
staying almost constant for a big range of time steps (h).

Therefore, the RK4 method was finally chosen to be used as a basis for com-
parison. The following table summarises the parameters used for all the following
simulations and the values h and N for the base simulation:

Test Case 5

(α, β) (0.5,−1.5)

Spatial domain x ∈ [−100, 100]

Grid points Nl = 512

Final time and timestep tf = 100, h = 0.0001, N = 1000000

Initial condition sech ((x+ 10)2) + 0.8sech ((x− 30)2) + noise

Solver used RK4

It is interesting to remark the big difference between the simulation made with
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a really small time step and the results considered in the chapter 2. In the more
accurate simulation the evolution of the right branch of localised structures changes
and actually disappears for advanced times (see figure 4.1).

Figure 4.1: Results for the test case 5 obtained with a small time step in order to compare
simulations with the different methods.

To compute the error for the different methods the last instant of time is used
(t = 100). The Euclidean norm over the amplitude vector (A(x, t)) in the physical
space is used as error measure. By calling z = A(x, 10) for the base simulation and
ẑ = A(x, 10) for the rest, the norm is computed as:

E = z − ẑ

‖E‖ =

√√√√ 512∑
i=1

EiEi.

The figure 4.2 shows this error depending on the number of points used for the
time discretization and using logarithmic scales in both axes. The time step and the
number of instants of time are related by

tf
h
= 100

h
= N . In this figure, the slope of

each line shows the order of the method: first order for Splitting Lie Trotter, second
order for RK2, Strang Splitting and ETD2 and fourth order for RK4. Other first
order simulations were performed using methods like IFM Euler or ETD1, however,
the error for these methods were quite big compared to the base simulation and



37

hence, the results were not considered as representative. Although the error seemed
to decrease for smaller h, the computation times needed were increasing (up to hours
per test) what made difficult including more points in the plot.

Regarding the second and fourth order methods: RK4 is the one used for the
comparison, hence, its convergence behaves really good in the plot. However, its
slope seems to agree with a fourth order method. It has to be said that this method
(and RK2) failed ot give results for h bigger than 0.01 being maybe related to the
stiff behaviour associated to the linear part of the equation and the fact that is
being treated without integrating factor, hence needing from really small time steps
to solve the high frequencies. For the rest of methods they gave a result for h > 0.01
but with a big error.

The three second order methods seem to present a similar slope in their errors,
being the best the Strang method and the RK2. The SSLT method also presents
good error results (specially compared with the rest of other first order methods not
included) but its convergence to the base simulation is the correspondent to a first
order method. Here the advantages of the analytical integration of the linear (or
both linear and nonlinear) terms are can be seen; bigger values of h converge to the
solution although with a big value of error.

Figure 4.2: Error computing the test case (tf = 100) for different methods depending on
the inverse of the time step.

In order to compare the efficiency of each method two measures have been con-
sidered: the number of DFT’s and the CPU time needed to perform a simulation.
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The number of DFTs involved in a simulation is important since it needs from a big
amount of time compared to the rest of operations that are performed in each time
step. In this occasion is even more important since this solver is using the DFT
(O(N2

l ) operations with Nl the number of spatial points) instead of the Fast Fourier
Transform (FFT, O(Nl logNl) real operations).

Methods like RK4, that needs from 4 transforms in each step respectively, are
penalised when this metric is considered (see figures 4.3 and 4.4). On the contrary,
second order methods needs from less DFTs and less time in general and close the
gap to fourth order methods. In general, all the first order methods considered were
similar in this aspect since all of them need from the same amount of transforms
(one per step) and need a quite similar time to be computed. However, among
the second order methods, the Strang Splitting presents the best results, not only
because its error is smaller but because, being second order, only needs from one
transformation per step while the rest two transforms per step.

Figure 4.3: Error computing the test case (tf = 100) for different methods related to the
number of Fourier transforms needed and the inverse of the time step.
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Figure 4.4: Error computing the test case (tf = 100) for different methods related to the
CPU time needed to perform the calculations.
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Chapter 5

Conclusion

When the simulation to be performed has a high final time it can be essential to
reduce the computation time and here Splitting Methods can be the best alternative
among the options considered. The two methods tested ensure first and second
order with similar computation times between them and requiring both from only
one Direct Fourier Transform per time step. In this case, and being both simple
to program (even simpler than classical schemes), it seems that Strang Splitting
method would be a good option for the CGLE.

If there is enough computing processing power, or the final time is not so high
(only transients), higher order methods could be considered. However, it is better to
use methods that take advantage of the analytical integration that can be performed
over the linear term (at least) like Exponential Time Differencing methods so the
time step can be reduced as much as possible without increasing the error too much.
It must be said that the approaches of Runge-Kutta 2 and 4 failed to give the proper
solution for values of h bigger than 0.01 while the rest of the methods worked. This
could be related to the fact that in the basic approach of solving the equation without
exponential integrating factor, the equation presents a stiff behaviour, requiring a
really small time step to solve the linear part of the equation.

Finally, except the SSLT method, the rest of first order methods compared
present a big error and they are not efficient enough to be considered for high
simulation times since they would need a lot of hours to compute the result. An
alternative to make a better comparison could be choosing another simulation with
smaller tf , needing less computation times then, and use smaller time steps so the
convergence of the results can be checked for all the other first order methods.
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Appendix A

Notes about the equation

A.1 Notes about Hopf bifurcations for ODEs

Let’s cover here some ideas behind the concept of Hopf bifurcation. Given a general
autonomous dynamical system written as a system of ordinary differential equations
(ODEs):

dui
dt

= fi(u)

the dependent variables are usually ordered in the state array u and the compo-
nents of the vector-function fi are in general nonlinear functions. Notice that the
state array can be seen as a vector in the phase space, in this phase space every state
of the system (every combination of values for ui) is mapped into a unique spatial
location. To do that, one orthogonal axis in the phase space is used for each degree
of freedom of the system.

The solutions u = us of f(u) = 0 represent the fixed points (or critical points)
of the system. For these solutions of the system of ODEs (called stationary states)
and assuming that the solution is unique there (f Lipschitz continuous function of
u), the system stays indefinitely in the same state.

Trying to give a intuitive description of the concept of stability instead of a
formal definition, we can think of fixed points in terms of how the system behaves
in a neighbourhood of these points. If the initial state of a system is close to a
fixed point and the trajectory of the solution stays close to the fixed point, then this
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fixed point is stable and it is behaving as an attractor. When at least one trajectory
starting close to the fixed point moves away from the it, then it is unstable and is
behaving as a repeller.

Mathematically, the derivatives of f with respect to u are used to characterised
the stability of the fixed points. While f ′(u) < 0 (f ′(u) > 0) is a sufficient condition
to ensure the stability (unstability) of the fixed point in a one dimensional dynamical
system, we can find both stable and unstable systems with f ′(u) = 0, hence, these
are not necessary conditions. For higher dimensional systems a linear approximation
of the vector function f around the fixed point can be used. Depending on the
eigenvalues of the Jacobian f ′(u) the behaviour of the system in the neighbourhood
of a fixed point can be characterised.

If a perturbation δu is introduced to our system in the fixed point us:

u̇s + ˙δu = f(us + δu)

we can use a Taylor expansion to linearise the equation:

u̇s + δu̇ = f(us) + f ′(us)δu+ f ′′(us)
δu2

2!
+ . . .

since u̇s = f(us) = 0 we can say:

δu̇ = J(us)δu+ higher order terms

where J(us) denotes the Jacobian matrix of f(u) in the fixed point (constant ma-
trix). Hence, now we are working with a linear differential equation whose solution
can be expressed as a superposition of complex exponentials with the eigenvalues of
the Jacobian eλt in the exponent. Then, the eigenvalues of this Jacobian determine
how the system behaves locally, near the fixed points. Right now we are interested in
two conditions:when an eigenvalue have <(λ) > 0 the fixed point is unstable and if
two eigenvalues are complex conjugate (=(λ) 6= 0) the system presents an oscillatory
behaviour.

It has been said that the phase diagram can be used to represent the state of
the system. This diagram takes on special importance when the equation depends
on a parameter, specially with scalar autonomous dynamical systems:
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du

dt
= f(u;µ)

Notice how in this case, when the parameter changes, the behaviour of the system
also changes. Normally we can find quantitative changes but for some values of
the parameter qualitative changes can also appear. Some fixed points can appear
or disappear, change their behaviour from attractors to repellers or viceversa, etc.
Two autonomous equations are qualitatively equivalent if they have the same number
of critical points, of the same type and ordered in the same way along the phase
diagram [6]. When a qualitative change occurs, for example for a value µ = µ0,
it is said that the equation du

dt
= f(u;µ) has a bifurcation. These bifurcations are

usually studied using a p-dimensional parametric spaces. Here, the boundary where
the system changes its behaviour is called bifurcation manifold and it has a p − 1
dimension in the p-dimensional space.

Several types of bifurcation exist depending on the change in the behaviour of
the equation. CGL equations are intimately related to Hopf bifurcations. With
this type (usually grouped into the local bifurcations) a periodic solution appears
or disappears together with the stability change. In Hopf bifurcations a given fixed
point, which is initially stable, loses stability due to the cross of a pair of complex
conjugate eigenvalues of the imaginary axis. Hence, they are always related to
eigenvalues with zero real part. Said in other words, they typically occur when the
pair of eigenvalues of the linearised system becomes purely imaginary. Notice then
that Hopf bifurcations occur in systems with two or more dimensions or, as we’ll
see, with complex systems.

Autonomous dynamical systems can present limit cycles within their trajectories.
A limit cycle is an isolated closed trajectory that corresponds to a periodic (but non-
constant) solution. It has the property that at least one trajectory generates a spiral
into it for t → ∞ or comes from it with a spiral shape (t → −∞). When a Hopf
bifurcation appears in a system (of supercritical kind), the stable fixed point for
a given value of the parameter becomes a small-amplitude limit cycle when the
parameter crosses the boundaries.

For the CGLE we are interested in the supercritical Hopf bifurcations, those
where the first Lyapunov coefficient is negative. To delve into this let’s present
first the normal form of a Hopf bifurcation. Notice that for a given 2 dimensional
autonomous system in the variables u, v, the normal form can be obtained by using
a complex variable z = u + iv, hence converting the system into a complex one
dimensional equation:
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du

dt
= f(u, v;µ)

dv

dt
= g(u, v;µ)

After a transformation of the system into a complex equation in the variable z
the normal form is obtained:

dz

dt
= z(µ+ i) + b|z|2z

where b, z ∈ C and µ ∈ R is the parameter which generates the bifurcation.
For b = α + iβ, α is known as first Lyapunov coefficient and it decides the type of
Hopf bifurcation that is generated. With α < 0, supercritical Hopf bifurcation, a
stable fixed point (µ < 0) becomes unstable and a stable limit cycle appears when µ
becomes positive as the figure A.1 indicates [13]. We are not covering here the case
α > 0, subcritical Hopf bifurcation.

Figure A.1: In this diagram, obtained fromWikipedia, the phase diagram of both variables
(or parts of the complex variable z) are represented before and after crossing the bifurcation
manifold. Dark blue lines represent stable points, dashed blue lines unstable points and
red lines the possible trajectories. The third diagram shows how the stable fixed point
becomes an unstable fixed point while an stable limit cycle appears.

By using:

z = reiθ

let’s write the normal form of the supercritical Hopf bifurcation using polar
coordinates:
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dz

dt
=
dr

dt
eiθ + reiθi

dθ

dt
= reiθ(µ+ i) + br2reiθ

dr

dt
+ ri

dθ

dt
= r(µ+ i) + (α + iβ)r2r

and separating into real and imaginary part for ω = 1 + βr2:

dr

dt
= r(µ+ αr2)

dθ

dt
= 1 + βr2 = ω

When α < 0, the cycle limit is given by z(t) = reiωt with r =
√

−µ/α since:

dr

dt
= r(µ+ αr2) = 0

dθ

dt
= ω = constant



48 APPENDIX A. NOTES ABOUT THE EQUATION

A.2 Notes about Reaction-Diffusion systems (RDS)

A general expression for these systems is [14]:

γ
∂u

∂t
= −∇ · j+ f(u)

where f represents the production rate (generally nonlinear and including pa-
rameters), γ is a capacitance factor and j is the flux. Notice that the model includes
transport and linear/nonlinear (or both) interactions, but not advection. They are
usually seen as conservation laws in several branches of Physics like chemistry, ther-
modynamics, fluid mechanics, etc. Then, the field variable (u) under study take
the meaning of concentration of chemical species, temperature, pressure, etc. It is
common to model fluxes with gradients of these field variables (u), for example:

j = −D∇u

where D is interpreted as a diffusivity.

Some examples of pattern-forming systems are modelled through the cubic reaction-
diffusion equation (gene propagation):

∂u

∂t
= ∇2u+ u(1− u2)

or the Burgers equation (fluid mechanics, nonlinear acoustics):

∂u

∂t
= ∇2u+ |∇u|2

the already mentioned RGLE (where α, β = 0 in CGLE):

∂u

∂t
= ∇2u+ u(1− |u|2)

or the Nonlinear Schrödinger Equation (NLS, where α, β → ∞ in CGLE):
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i
∂u

∂t
= ∇2u+ u(1− |u|2)

Notice that the first one is second order in the spatial derivatives and third order
in u, similarly to the CGLE, the RGLE or the NLS. These equations, like the CGLE,
are characterised by requiring spatial isotropy and a symmetry to transformations
of u. For the cubic reaction-diffusion equation for example, the symmetry is found
in the inversion of u [14]. The CGLE is invariant under a global change of gauge
(among others), which means, invariant under a multiplication by eiΦ. It is common
to write RDS equations parameterless, rescaled and with the signs already chosen
to ensure stability against small perturbations.

An example of these equations that can be found in hydrodynamics would be
something like [1]:

τ(∂tÃ− ~vg · ∇̃Ã) = ε(1 + ia)Ã+ ξ2(1 + ib)∆̃Ã− g(1 + ic)|Ã|2Ã

After some assumptions and transformations like Ã = (ε/g)1/2Aexp(−i(εa/τ)t̃),
t̃ = (τ/ε)t or ~̃x− ~vg t̃ = (ξ/ε1/2)~x, the following expression is obtained:

∂A

∂t
= (1 + iα)∇2A+ A− (1 + iβ)|A|2A

In a general situation the real parts of the coefficients of the Laplacian, linear
and nonlinear terms can be reduced to unity. In addition, a transformation like
u→ ueiφt allows to discard the imaginary part of the coefficient of the linear term.

A.3 Notes about the CGLE

Apart from the gauge invariance already mentioned (which is an invariance on space
and time) there are other symmetries in the CGLE [2]. We can find another trans-
lation invariance due to the fact that it is an autonomous equation for both space
and time (no explicit dependence of these variables). In addition, the system is
isotropic (symmetry under rotations) and allows a symmetry for spatial reflections
(x→ −x). Finally, the parameter space also allows an inversion with no changes in
the equation (α, β,A→ −α,−β,A∗).
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The variational treatment for this equation is possible when α = β, contrary to
the RGLE where it is always possible. For the CGLE, a rotating frame transforma-
tion is used (A→ Aeiαt) so:

∂A

∂t
→ ∂A

∂t
e−iαt − e−iαtAiα

and

(1 + iα)∇2A+ A− (1 + iβ)|A|2A→ (1 + iα)(∇2A− |A|2A)e−iαt + Ae−iαt

Hence, the equation can be written as:

∂A

∂t
− Aiα = (1 + iα)(∇2A− |A|2A) + A

or

∂A

∂t
= (1 + iα)(∇2A− |A|2A+ A)

This equation can be obtained through variation of a functional that acts as
a global Lyapunov functional or complex generalized free energy [1]. Just as an
example, for the real case the Lyapunov functional (dV/dt < 0) can be expressed
as:

V =

∫ (∣∣∣∣∂A∂x
∣∣∣∣2 − |A|2 + 1

2
|A|4

)
dx

so our RGLE can be written as:

∂A

∂t
= − δV

δA∗
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Fortran Program
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B.1 MAIN Program

The following code is the starting point of the project. Here only the solver to be
used is decided and called. All the equation parameters, solver parameters and
some constants are defined inside the module Complex_Ginzburg_Landau.

program MAIN

use Complex_Ginzburg_Landau

implicit none

!-------------------------------------------------------
! Select here the solver for the CGLE:
! dA/dt = (1+ia) d2A/dx2 + A - (1+ib) |A|^2 A
! Eq. parameters and Initial Condition inside the module
! Periodic Boundary Conditions
!-------------------------------------------------------

!call CGLE
!call CGLE_IFM_Gral
!call CGLE_IFM_Euler
!call CGLE_ETD1
call CGLE_ETD2
!call CGLE_ETD4KR
!call CGLE_SSLT
!call CGLE_Strang

!Base for comparison
!call CGLE_ETD2_MOD

end program

Listing B.1: MAIN.f90
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B.2 Spatial discretization

The implementation of the Direct Fourier Transform (DFT) and its inverse (IFT)
are stored in the module Discrete_Fourier. Notice that the normalization
1
N

is used for the direct transform ([11] and [8]). Also, the indexes of the vectors
involved (U(x) and C(k)) have physical sense, then C(−256) means the Fourier
mode with wave number k = −256.

function DFT(N, U) result(C)
integer, intent(in) :: N
complex, intent(in) :: U(0:N-1)
complex :: C(-N/2:N/2-1)

integer :: k, j
complex :: S

do k = -N/2, N/2-1
S = 0
do j=0, N-1

S = S + U(j) * exp( -2*PI*II * j * k/real(N) )
end do
C(k) = S / N

end do

end function

Listing B.2: Discrete_Fourier.f90

function IFT(N, C) result(U)
integer, intent(in) :: N
complex, intent(in) :: C(-N/2:N/2-1)
complex :: U(0:N-1)

integer :: k, j
complex :: S

!write(*,*) "C = ", C

do j = 0, N-1
S = 0
do k=-N/2, N/2-1

S = S + C(k) * exp( 2*PI*II * j * k/real(N) )
end do
U(j) = S

end do
!write(*,*) "U = ", U

end function

Listing B.3: Discrete_Fourier.f90
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B.3 Module Complex_Ginzburg_Landau

The following code shows the header of the main module. Here all the parameters
are declared so the solvers located below use this declaration to find the solution.
In the following page, the general structure for a solver is shown. For some solvers
a general structure is encapsulated in the module Cauchy_Problem so the most
common schemes can be used with no need of coding them each time. For more
specific schemes, they are written in a loop inside the specific subroutine.

module Complex_Ginzburg_Landau

use Cauchy_Problem
use Temporal_Schemes
use plots
use Discrete_Fourier

implicit none

private
public :: CGLE, &

CGLE_IFM_Gral, &
CGLE_IFM_Euler, &
CGLE_ETD1, &
CGLE_ETD2, &
CGLE_ETD4KR, &
CGLE_SSLT, &
CGLE_Strang, &

CGLE_ETD2_MOD

real, parameter :: PI = 4 * atan(1d0)
complex, parameter :: II = (0, 1)
!Equation parameters
real, parameter :: alpha = .5, beta = -1.5
!Options for InitCond: "Noise", "NoisyWave",
!"NoisyConstant", "Intermittency1", "Intermittency2"
character(len=14) :: InitCond = "Intermittency1"
!Solver parameters
real :: t0 = 0, tf = 100, h
real :: x0 = -100, xf = 100, L
integer, parameter :: N = 2000, Nl = 512 !Nl must be even

contains

Listing B.4: Header of the module Complex_Ginzburg_Landau.f90
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Essentially, each solver of the following are performing the same tasks: declar-
ing the length of the interval, building the time domain and the spatial discretiza-
tion, build the initial condition and its Fourier transform, solving the equation and
transforming this solution to the physical space. For the rest of solvers only the
code that is specific for the solver is shown.

subroutine CGLE

integer :: i, k
!real :: Time(0:N), x(0:Nl-1)
!complex :: Ahat(0:N,0:Nl-1), A(0:N,0:Nl-1)
real, allocatable :: Time(:), x(:)
complex, allocatable :: Ahat(:,:), A(:,:)

allocate( Time(0:N), x(0:Nl-1), Ahat(0:N,0:Nl-1), A(0:N,0:Nl-1) )

L = xf - x0
Time = [ (t0 + (tf - t0 ) * i / (1d0 * N), i=0, N ) ]
x = [ (x0 + (xf - x0) * i / (1d0 * Nl), i=0, Nl-1 ) ]

call Choose_A0( InitCond, A(0,:), Nl, x, L )
Ahat(0,:) = DFT( Nl, A(0,:) )

call Cauchy_ProblemS( Time_Domain = Time, &
Differential_operator = F, &
Solution = Ahat, &
Scheme = Runge_Kutta4 )

do i = 0, N
A(i,:) = IFT( Nl, Ahat(i,:) )

enddo

call CGLE_PLOT( x, Time, A, N, Nl )

contains

function F( Ahat, t ) !dU/dt = F(U,t)
complex :: Ahat(:)
real :: t
complex :: F(size(Ahat))

integer :: Nl, k
complex, allocatable :: A(:)

Nl = size(Ahat)
allocate( A(0:Nl-1) )

A = IFT( Nl, Ahat )
F = [(1 - (k*(2*PI)/L)**2 * (1,alpha), k = -Nl/2, Nl/2-1)]*Ahat &

- DFT( Nl, (1,beta) * abs(A)**2 * A )

end function

end subroutine

Listing B.5: Solver CGLE in Complex_Ginzburg_Landau.f90
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!Solver CGLE_IFM_Gral
call Cauchy_ProblemS( Time_Domain = Time, &

Differential_operator = F, &
Solution = Phi, &
Scheme = Runge_Kutta4 )

do i = 0, N
Ahat(i,:) = Phi(i,:)/exp(-q * Time(i))
A(i,:) = IFT( Nl, Ahat(i,:) )

enddo

call CGLE_PLOT( x, Time, A, N, Nl )

contains

function F( Phi, t )
complex :: Phi(:)
real :: t
complex :: F(size(Phi))

integer :: Nl, k
complex, allocatable :: q(:), A(:)

Nl = size(Phi)
allocate( q(-Nl/2:Nl/2-1), A(0:Nl-1) )

q = [(1 - (k*(2*PI)/L)**2 * (1,alpha), k = -Nl/2, Nl/2-1)]
A = IFT( Nl, Phi/exp(-q * t) )
F = - DFT( Nl, (1,beta) * abs(A)**2 * A ) * exp(-q * t)

end function

end subroutine

Listing B.6: Solver CGLE_IFM_Gral in Complex_Ginzburg_Landau.f90
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do i = 0, N-1 !Solver CGLE_IFM_Euler
Ahat(i+1,:) = exp(q * h)*(Ahat(i,:) + &

h * F(Ahat(i,:), Time(i)))

if (mod(i,1000)==0) then; write(*,*) "Steps = ", i; endif
enddo

do i = 0, N
A(i,:) = IFT( Nl, Ahat(i,:) )

enddo

call CGLE_PLOT( x, Time, A, N, Nl )

contains

function F( Ahat, t ) result(Nhat)
complex :: Ahat(:)
real :: t !not needed, autonomous eq.
complex :: Nhat(size(Ahat))

integer :: Nl
complex, allocatable :: A(:)

Nl = size(Ahat)
allocate( A(0:Nl-1) )

A = IFT( Nl, Ahat )
Nhat = -DFT( Nl, (1,beta) * abs(A)**2 * A )

end function

end subroutine

Listing B.7: Solver CGLE_IFM_Euler in Complex_Ginzburg_Landau.f90
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do i = 0, N-1 !Solver CGLE_ETD1
Ahat(i+1,:) = exp(q * h) * Ahat(i,:) + &

F( Ahat(i,:), Time(i) )*( exp(q * h) - 1 )/q

if (mod(i,1000)==0) then; write(*,*) "Steps = ", i; endif
enddo

do i = 0, N
A(i,:) = IFT( Nl, Ahat(i,:) )

enddo

call CGLE_PLOT( x, Time, A, N, Nl )

contains

function F( Ahat, t ) result(Nhat)
complex :: Ahat(:)
real :: t !not needed, autonomous eq.
complex :: Nhat(size(Ahat))

integer :: Nl
complex, allocatable :: A(:)

Nl = size(Ahat)
allocate( A(0:Nl-1) )

A = IFT( Nl, Ahat )
Nhat = -DFT( Nl, (1,beta) * abs(A)**2 * A )

end function

end subroutine

Listing B.8: Solver CGLE_ETD1 in Complex_Ginzburg_Landau.f90
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!Solver ETD2: first step with ETD1
Ahat(1,:) = exp(q * h) * Ahat(0,:) + &

F( Ahat(0,:), Time(0) )*( exp(q * h) - 1 )/q
do i = 1, N-1

Ahat(i+1,:) = Ahat(i,:)*exp(q * h) + &
F( Ahat(i,:), Time(i) ) * &
( (1+h*q)*exp(q*h) - 1 - 2*h*q )/(h*q*q)&
+ F( Ahat(i-1,:), Time(i-1) ) * &
( -exp(q*h) + 1 + h*q )/(h*q*q)

if (mod(i,1000)==0) then; write(*,*) "Steps = ", i; endif

enddo

do i = 0, N
A(i,:) = IFT( Nl, Ahat(i,:) )

enddo

call CGLE_PLOT( x, Time, A, N, Nl )

contains

function F( Ahat, t ) result(Nhat)
complex :: Ahat(:)
real :: t !not needed, autonomous eq.
complex :: Nhat(size(Ahat))

integer :: Nl
complex, allocatable :: A(:)

Nl = size(Ahat)
allocate( A(0:Nl-1) )

A = IFT( Nl, Ahat )
Nhat = -DFT( Nl, (1,beta) * abs(A)**2 * A )

end function

end subroutine

Listing B.9: Solver CGLE_ETD2 in Complex_Ginzburg_Landau.f90
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!Solver ETD4RK
do i = 0, N-1

an = Ahat(i,:)*exp(qh/2) + (exp(qh/2)-1)*F(Ahat(i,:), Time(i))/q
bn = Ahat(i,:)*exp(qh/2) + (exp(qh/2)-1)*F(an, Time(i)+h/2)/q
cn = an*exp(qh/2) + (exp(qh/2)-1)*(2*F(bn, Time(i)+h/2) - &

F(Ahat(i,:), Time(i)))/q

Ahat(i+1,:) = Ahat(i,:)*exp(qh) + 1/(h**2*q*q*q) * &
( F( Ahat(i,:), Time(i) ) * (-4-qh+exp(qh)*(4-3*qh+qh*qh)) &
+ 2*(F(an,Time(i)+h/2)+F(bn,Time(i)+h/2))*(2+qh+exp(qh)*(-2+qh))&
+ F(cn,Time(i)+h)*(-4-3*qh-qh*qh+exp(qh)*(4-qh)) )

if (mod(i,1000)==0) then; write(*,*) "Steps = ", i; endif

enddo

do i = 0, N
A(i,:) = IFT( Nl, Ahat(i,:) )

enddo

call CGLE_PLOT( x, Time, A, N, Nl )

contains

function F( Ahat, t ) result(Nhat)
complex :: Ahat(:)
real :: t !not needed, autonomous eq.
complex :: Nhat(size(Ahat))

integer :: Nl
complex, allocatable :: A(:)

Nl = size(Ahat)
allocate( A(0:Nl-1) )

A = IFT( Nl, Ahat )
Nhat = -DFT( Nl, (1,beta) * abs(A)**2 * A )

end function

end subroutine

Listing B.10: Solver CGLE_ETDRK4 in Complex_Ginzburg_Landau.f90



B.3. MODULE COMPLEX_GINZBURG_LANDAU 61

!Solver Splitting LT
do i = 0, N-1

A(i+1,:) = IFT(Nl, Lterm( DFT(Nl, Nterm( A(i,:), h )), h ))
if (mod(i,1000)==0) then; write(*,*) "Steps = ", i; endif

enddo

call CGLE_PLOT( x, Time, A, N, Nl )

contains

function Nterm( A, t ) result(N)
complex :: A(:)
real :: t
complex :: N(size(A))

N = A * exp( -(1,beta)/2 * log( 1 + 2*abs(A)**2 * t ) )

end function

function Lterm( Ahat, t ) result(L)
complex :: Ahat(:)
real :: t
complex :: L(size(Ahat))

L = Ahat * exp( q * t )

end function

end subroutine

Listing B.11: Splitting Lie Trotter in Complex_Ginzburg_Landau.f90
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!Solver Strang Splitting
do i = 0, N-1
A(i+1,:) = &
Nterm( IFT(Nl, Lterm( DFT(Nl, Nterm( A(i,:), h/2 )), h )), h/2 )

if (mod(i,1000)==0) then; write(*,*) "Steps = ", i; endif
enddo

call CGLE_PLOT( x, Time, A, N, Nl )

contains

function Nterm( A, t ) result(N)
complex :: A(:)
real :: t
complex :: N(size(A))

N = A * exp( -(1,beta)/2 * log( 1 + 2*abs(A)**2 * t ) )

end function

function Lterm( Ahat, t ) result(L)
complex :: Ahat(:)
real :: t
complex :: L(size(Ahat))

L = Ahat * exp( q * t )

end function

end subroutine

Listing B.12: Strang Splitting in Complex_Ginzburg_Landau.f90
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B.4 Module Cauchy_Problem

This subroutine integrates the Cauchy problem for three different explicit schemes:
Forward Euler, Runge-Kutta 2 and Runge-Kutta 4. It makes use of the module
Temporal_Schemes where these schemes are coded in its more general form.
Hence, any Cauchy Problem can be integrated automatically just by declaring the
vector function and choosing a method.

subroutine Cauchy_ProblemS( Time_Domain, Differential_operator, &
Solution, Scheme )

real, intent(in) :: Time_Domain(:)
procedure (ODES) :: Differential_operator ! F(U,t)
complex, intent(out) :: Solution(:,:)
!Scheme: ExplicitEuler, Runge_Kutta2, Runge_Kutta4
procedure (Temporal_Scheme) :: Scheme

real :: start, finish, t1, t2
integer :: i, N_steps, ierr

call cpu_time(start)
N_steps = size(Time_Domain) - 1
do i = 1, N_steps

t1 = Time_Domain(i); t2 = Time_Domain(i+1);

call Scheme( Differential_operator, t1, t2, &
Solution(i,:), Solution(i+1,:) )

if (mod(i,1000)==0) then; write(*,*) "Steps = ", i; endif

enddo
call cpu_time(finish)

write(*,’("Cauchy_Problem, CPU Time=",f6.3," seconds.")’) finish
- start

write(*,*)

end subroutine

Listing B.13: Cauchy_Problem.f90
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B.5 Module Temporal_Schemes

module Temporal_Schemes

use ODE_Interface

implicit none

private
public :: ExplicitEuler, &

Runge_Kutta2, &
Runge_Kutta4

!-------------------------------------------------------
! U^{n+1} = G( U^n... U^{n-1+p}, F^n... F^{n-1+p}, dt )
! F(U, t) in the system of ODEs dU/dt = F(U, t)
! t1 and t2: initial and final times
! U1 and U2: vectors for the initial and final state
!-------------------------------------------------------

contains

subroutine ExplicitEuler(F, t1, t2, U1, U2 )
procedure (ODES) :: F

real, intent(in) :: t1, t2
complex, intent(in) :: U1(:)
complex, intent(out) :: U2(:)

real :: t, dt

dt = t2 - t1
t = t1
U2 = U1 + dt * F(U1, t)

end subroutine ExplicitEuler

Listing B.14: Temporal_Schemes.f90
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subroutine Runge_Kutta2(F, t1, t2, U1, U2 )
procedure (ODES) :: F

real, intent(in) :: t1, t2
complex, intent(in) :: U1(:)
complex, intent(out) :: U2(:)

real :: t, dt
real,save :: t_old
integer :: N
complex, save, allocatable :: k1(:), k2(:)

if (.not.allocated(k1)) then
N = size(U1)
allocate( k1(N), k2(N) )

elseif (t1 < t_old) then
N = size(U1)
deallocate( k1, k2 )
allocate( k1(N), k2(N) )

endif

dt = t2-t1; t = t1

k1 = F( U1, t )
k2 = F( U1 + dt * k1, t + dt )

U2 = U1 + dt * ( k1 + k2 )/2
t_old = t2

end subroutine

subroutine Runge_Kutta4( F, t1, t2, U1, U2 )
procedure (ODES) :: F
real, intent(in) :: t1, t2
complex, intent(in) :: U1(:)
complex, intent(out) :: U2(:)

real :: t, dt
complex :: k1(size(U1)), k2(size(U1)), k3(size(U1)), k4(size(U1))

dt = t2-t1; t = t1

k1 = F( U1, t)
k2 = F( U1 + dt * k1/2, t + dt/2 )
k3 = F( U1 + dt * k2/2, t + dt/2 )
k4 = F( U1 + dt * k3, t + dt )

U2 = U1 + dt * ( k1 + 2*k2 + 2*k3 + k4 )/6

end subroutine Runge_Kutta4

Listing B.15: Temporal_Schemes.f90
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B.6 Initial Conditions

The general subroutine Choose_A0 is used to encapsulate the initialization of the
initial condition for each solver. According to the variable InitCond declared
at the beginning of the module it initialises A(0,:) by calling to the different
functions needed for the test cases presented in the chapter 2.

subroutine Choose_A0( InitCond, A0, Nl, x, L )
character(len=14), intent(in) :: InitCond
integer, intent(in) :: Nl
complex, intent(out) :: A0(0:Nl-1)
real, intent(in) :: L, x(0:Nl-1)

if (InitCond == "Noise") then
A0(:) = A0_Noise( Nl, ampli = 1e-2 )

else if (InitCond == "NoisyWave") then
A0(:) = A0_NoisyWave( x, L, Nl, ampli = 1e-2 )

else if (InitCond == "NoisyConstant") then
A0(:) = A0_NoisyConstant( C = 1., Nl = Nl, ampli = 1e-2 )

else if (InitCond == "Intermittency1") then
A0(:) = A0_Intermittency1( x, Nl, ampli = 1e-2 )

else if (InitCond == "Intermittency2") then
A0(:) = A0_Intermittency2( x, L, Nl, ampli = 1e-2 )

else
write(*,*) "Initial Condition not implemented"
stop

end if

end subroutine

!-------------------------------------------------------
! Pseudo-random complex noise: (noise + i*noise)
! in Nl points centered in 0 with an amplitude of +-ampli
!-------------------------------------------------------
function A0_Noise( Nl, ampli ) result(A0)

integer :: Nl
! amplitud of the noise around A = 0
real :: ampli
complex :: A0(0:Nl-1)

real :: re_noise(0:Nl-1), im_noise(0:Nl-1)
integer :: nseed
integer, allocatable :: seed(:)
complex :: noise(0:Nl-1)

call random_seed( size = nseed ); allocate( seed(nseed) )
seed = 123456789
call random_seed( put = seed ); deallocate(seed)

call random_number( re_noise ); call random_number( im_noise )
noise = ampli * (2*cmplx( re_noise, im_noise ) - (1,1))

A0 = noise

end function

Listing B.16: Complex_Ginzburg_Landau.f90
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The function A0_noise, which generates the noise for all the initial conditions,
is also encapsulated and, in order to reproduce the same test case every time, the
seed for the pseudo-random generator is always the same. By changing this seed
the noise generated will change. Notice that the same noise is used for all the
initial conditions.

!--------------------- wave and noise ------------------
! wave sqrt(1-(20*PI/L)^2) * e^(i(20PI/L)*x) + noise
!-------------------------------------------------------
function A0_NoisyWave( x, L, Nl, ampli ) result(A0)

integer :: Nl
real :: x(0:Nl-1), L, ampli
complex :: A0(0:Nl-1)

A0 = sqrt( 1 - (20*PI/L)**2 ) * exp( II*(20*PI/L)*x ) + &
A0_Noise( Nl, ampli )

end function

!-------------------------------------------------------
! Constant + noise
!-------------------------------------------------------
function A0_NoisyConstant( C, Nl, ampli ) result(A0)

integer :: Nl
real :: C, ampli
complex :: A0(0:Nl-1)

A0 = C + A0_Noise( Nl, ampli )

end function

!-------------------------------------------------------
! Sech((x+10)^2) + 0.8 Sech((x-30)^2) + noise
!-------------------------------------------------------
function A0_Intermittency1( x, Nl, ampli ) result(A0)

integer :: Nl
real :: x(0:Nl-1), ampli
complex :: A0(0:Nl-1)

A0 = 1./cosh( (x+10)**2 ) + 0.8/cosh( (x-30)**2 ) + &
A0_Noise( Nl, ampli )

end function

!-------------------------------------------------------
! Sech((x+L/4)^2) + 0.8 Sech((x-L/4)^2) + noise
!-------------------------------------------------------
function A0_Intermittency2( x, L, Nl, ampli ) result(A0)

integer :: Nl
real :: x(0:Nl-1), L, ampli
complex :: A0(0:Nl-1)

A0 = 1./cosh( (x+L/4)**2 ) + 0.8/cosh( (x-L/4)**2 ) + &
A0_Noise( Nl, ampli )

end function A0_Intermittency2

Listing B.17: Complex_Ginzburg_Landau.f90
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