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and Cristóbal Bertoglio1,∗

1 Bernoulli Institute, University of Groningen, The Netherlands
2 Department for Fluid Dynamics, Technical University of Berlin, Germany

E-mail: c.a.bertoglio@rug.nl

Received 14 January 2022, revised 10 June 2022
Accepted for publication 22 July 2022
Published 11 August 2022

Abstract
Parameter estimation in blood flow models from measured velocity data—as
e.g. velocity-encoded MRI—is a key step for patient-specific hemodynamic
analysis. However, velocity encoding suffers from competing noise and alias-
ing artifacts, which negatively impact the parameter estimation results. The aim
of this work is to propose a new inverse problem formulation capable of tack-
ling aliased and noisy velocity MRI measurements in parameter estimation in
flows. The formulation is based on a modification of the quadratic cost func-
tion for velocity measurements. This allows for a correct parameter estimation
when they have influence on the whole measurement domain, in spite of aliasing
artifacts. The new inverse problem can be solved numerically using any stan-
dard solver, and we show how a popular sequential approach can be applied.
Numerical results in an aortic flow show robust parameter estimation for veloc-
ity encoding ranges until 30% of the maximal velocity of the problem, while the
standard inverse problem fails already for any encoding velocity smaller than
the true one. Moreover, the parameter estimation results are even improved for
reduced velocity encoding ranges when using the new cost function. The pre-
sented approach allows therefore for great flexibility in personalization of blood
flows models from MRI data commonly encountered in the clinical context.

Keywords: blood flows modeling, phase-contrast MRI, velocity aliasing,
Windkessel model, Kalman filtering
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1. Introduction

In blood flows, the personalization of spatially distributed (i.e. 3D) models is a key step
in performing predictive patient-specific simulations. Such a step relies on the formula-
tion and numerical solution of inverse problems using clinical data, namely medical images
for measuring both anatomy and function of the vasculature. However, full-scale hemody-
namics simulations of the complete vasculature will remain unfeasible for the foreseeable
future [1]. Therefore, detailed 3D computations are restricted to particular regions of inter-
est of the cardiovascular system and have to be carried out within truncated computational
domains.

Lumped parameter models (LPM) can efficiently deliver realistic boundary conditions,
accounting for the effects of the omitted parts of the vascular system. LPMs group the spatially
distributed vascular system into so-called ‘0D’ compartments, over which the conservation
laws are averaged to obtain ordinary differential equations (ODE) modeling the flow rate and
the average pressure.

The most popular 0D model choice is the three-element Windkessel model, which con-
tains as physical parameters the vessel compliance, the distal resistance and the proximal
resistance [2].

In the context of 3D–0D coupled models, the personalization typically relies on estimat-
ing those 0D model parameters at each outlet boundary of the 3D model from velocity (and
eventually pressure) data using non-linear least-squares approaches solved via variational [3]
or sequential [4, 5] methods.

The gold standard for distributed blood flow velocity measurements in the clinical context
is phase-contrast magnetic resonance imaging (PC-MRI) [6, 7]. However, PC-MRI presents
important artifacts, noise and velocity aliasing being the most important ones. When person-
alizing the models with such data, not taking these artifacts into account can lead to important
inaccuracies in the blood flow model personalization.

MRI applies sequences of spatially and temporally varying magnetic vector fields, inducing
a magnetic response from the sample, i.e., a magnetization vector in which the spatial location
is encoded. The anatomical images are created from the norm of the magnetization vector,
which depends on the type of tissue being imaged (blood, muscle, bone, air, etc). The phase
of the magnetization vector can encode the blood velocity by properly choosing the magnetic
gradients using [8, 9].

However, the phase can only be measured in the half-open interval [−π, π) and phase wraps
(abrupt jumps of ±2π) occur if the encoded phase exceeds those limits. The velocity limit—or
venc—is fixed by the scanner operator before the measurement. Unfortunately, selecting a
large venc leads to poor quality images since—for a given signal-to-noise-ratio (SNR) in
the magnitude image—the ‘velocity-to-noise-ratio’ (VNR) is inversely proportional to the
venc.

While unwrapping methods have been reported, they also perturbe the velocity measure-
ments [10–12] possibly leading to faulty parameter estimations.

Therefore, in this work we introduce a new but straightforward inverse problem formulation
in order to effectively account for aliased velocity data. This is accomplished by a general-
ization of the cost function using the fact that phase-contrast problem accounts for multiple
periodic solutions. This new formulation is naturally derived from the phase-contrast problem
with the complex MRI signal as input.

The remainder of this paper is structured as follows. In section 2 we introduce the math-
ematical model (3D–0D problem), including the 3D–0D coupling scheme formulation and
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numerical results. In section 3 the measurement model is detailed, and examples of aliased
and noisy measurements are presented. We also include unwrapping approaches that serve to
partially remove aliasing artifacts. Then, in section 4 the standard and new inverse problem
formulations are introduced, and numerical results shown. Finally, section 5 gives some
conclusions.

2. The forward problem

2.1. The mathematical model

Let Ω ⊂ R3 be a domain standing for the lumen of the vessel, represented in figure 1, with its
boundary ∂Ω sub-divided as follows:

∂Ω = Γin ∪ Γw ∪
(
∪K
�=1Γ�

)
,

where Γin is the inlet boundary (proximal to the heart), Γw the arterial wall and Γ1, . . . ,ΓK

the K outlet boundaries. We consider then in this domain the incompressible Navier–Stokes
equation for the velocity u(x, t) ∈ R

3 and pressure p(x, t) ∈ R:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂u

∂t
+ ρ(u · ∇)u− μΔu+∇p = 0 in Ω× [0, T]

∇ · u = 0 in Ω× [0, T]

u = uinlet on Γin × [0, T]

u = 0 on Γw × [0, T]

μ
∂u

∂n
− pn = −P�(t)n on Γ� × [0, T], � = 1, . . . , K,

(1)

where ρ is the density and μ the dynamic viscosity of the fluid and P�(t) is given by the three-
element Windkessel model [2]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P� = Rp,� Q� + π�

Q� =

∫
Γ�

u · n

Cd,�
dπ�

dt
+

π�

Rd,�
= Q�.

(2)

In this model, Rp,� and Rd,� represent the resistance of the vasculature proximal and distal to Γ�,
respectively, and Cd,� the compliance of the distal vessels. n is the exterior normal vector of ∂Ω.
Note that substituting the first equation of (2) into the third leads to the classical formulation of
the model with a single equation coupling P, Q and its time-derivatives. The initial conditions
u(x, 0), π1(0), . . . , πK(0) are also given.

The other boundary conditions are set as follows. At Γin a pulsatile plug flow was imposed
setting the velocity to be:

uinlet = −U f (t) n,

3
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Figure 1. 3D aortic model geometry coupled with Windkessel models.

where U is a constant amplitude and f (t) is a given waveform defined as:

f (t) =

⎧⎪⎨
⎪⎩

sin
(πt

T

)
if t � T

π

T
(t − T)e−κ(t−T) if Tc > t > T

.

Here, T is the opening-time of the valve, Tc the total duration of the cardiac cycle and 1/κ
represents the typical time for the closing of the valve.

The Windkessel constants were tuned by hand in order to have a standard physiolog-
ical flow regime to achieve approximately 70%/30% split in the peak flow rate between
the descending aorta and supra-aortic branches [13, 14]. For the numerical values of these
constants, the physical parameters of the fluid and the constants of the Windkessel models see
table 1.

2.2. A modified semi-implicit 3D–0D coupling scheme

For the spatial discretization, let beΩh the representation of the vessel domain by a certain mesh
supplied by a suitable triangulation with a the level of refinement h. We consider the Sobolev
subspace: H1

Y (Ωh) = {w ∈ H1(Ωh) : w = 0 on Y ⊂ ∂Ω}. Additionally, considering continu-
ous Lagrange finite elements we can define the following spaces for the velocity u and the
pressure p, respectively:

VY,h = [P1(Ωh)]3 ∩ [H1
Y(Ωh)]3 , Qh = P1(Ωh) ∩ H1(Ωh). (3)

For the time discretization, and for the purpose of computational efficiency, we solve
problem (1) using a Chorin–Temam scheme with a backward Euler scheme for the time
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Table 1. Physical parameters and numerical values of the three-element Windkessel
parameters for every outlet.

Parameter Value

ρ (gr · cm3) 1.2
μ (P) 0.035
U (cm · s−1) 75
Tc (s) 0.80
T (s) 0.36
κ (s−1) 70

Γ1 Γ2 Γ3 Γ4

Rp (dyn · s · cm−5) 480 520 520 200
Rd (dyn · s · cm−5) 7200 11 520 11 520 4800
C (dyn−1 · cm5) 4 × 10−4 3 × 10−4 3 × 10−4 4 × 10−4

derivative. In simple terms, the full equation is split into sequential sub-problems, see [15]
for a review. The first sub-problem solves for the so-called tentative velocity, which takes into
account the first equation in problem (1) but taking the pressure gradient explicit in time, hence
not strictly enforcing the incompressibility. The second sub-problem solves for the pressure
from the tentative velocity. The final step computes a corrected velocity using the gradient
pressure, enforcing (global) mass conservation.

Problem (2) is discretized using a backward Euler approximation:{
πn
� = α�π

n−1
� + β�Q

n
� ,

Pn
� = γ�Q

n
� + α�π

n−1
� ,

(4)

with α� = Rd,�Cd,�/(Rd,�Cd,� + τ ), β� = Rd,�(1 − α�) and γ� = Rp,� + β�.
The coupling between the 3D and 0D models depends on the choice of Q� in the right-hand-

side of (4), namely, if Q� is computed from the tentative or corrected velocity field [16]. Using
the tentative velocity leads to an explicit algorithm where all quantities used in equation (4)
are known at the moment of the pressure projection step where P� is used. Using the cor-
rected velocity leads to an implicit coupling of the Windkessel and the pressure projection
problem since the flow rate Q� is also an unknown at this step. Hence this approach is termed
as semi-implicit.

Even though the explicit approach is the most straightforward to implement, it is the semi-
implicit strategy that can be proven as unconditionally stable. For more details of these two
strategies see [16]. Unconditional stability is crucial in inverse problems—and in particu-
lar in Kalman filtering—since the physical parameters of the model are varied during the
computation.

However, the original semi-implicit Chorin–Temam strategy has some implementation dif-
ficulties requiring constraining the solution spaces of the pressure to be constant on the outlets,
possibly making its implementation difficult depending on the features of the code in use [16].
To avoid such constraints, in this work we present a modified version, see algorithm 1. There,
we only penalize the pressure’s tangent derivative (third term in equation (6)) and then we
couple the 3D and 0D models using the outlet’s average pressure.

The modified scheme can also be analyzed in terms of its time stability applying the analysis
for the original semi-implicit method from [16] straightforwardly. Hence, this leads also to an
unconditionally stable method.
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Algorithm 1. Fractional step algorithm with a modified semi-implicit Windkessel model
coupling.

Given the initial conditions u0 = u(0) ∈ VΓw,h and π0
1 , . . . ,π0

N ∈ R, perform for n > 0, with tn = nτ :
1. Viscous step: find the tentative velocity ũn ∈ VΓw,h such that:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũn
Γin

= uinlet(t
n)

ρ

τ
(ũn,v)Ωh + ρ(un−1 · ∇ũn,v)Ωh +

ρ

2
((∇ · un−1)ũn,v)Ωh + (δun−1 · ∇ũn,un−1 · ∇v)Ωh

+2μ(ε(ũn), ε(v))Ωh +
∑K

�=1

ρ

2
|un−1 · n|−(ũn,v)Γ�

=
ρ

τ
(un−1,v)Ωh

(5)

for all v ∈ VΓin∪Γw,h, and |x|− denoting the negative part of x.
2. Projection-Windkessel step: compute Q̃n =

∫
Γ�
ũn · n. Find pn ∈ Qh such that:

τ
ρ (∇pn,∇q)Ωh +

∑K
�=1

pn
Γ�

qΓ�
γ�

+ ε
∑K

�=1(T (∇pn),

T (∇q))Γ�
=

∑K
�=1

(
Q̃n +

α�π
n−1
�
γ�

)
qΓ�

− (∇ · ũn, q)Ωh , (6)

for all q ∈ Qh and with (·)Γ�
= 1

Area(Γ�)

∫
Γ�

(·)ds and T (f ) = f − (f · n)n.

3. Velocity correction step: find un ∈ [L2(Ωh)]3 such that:

(un,v)Ωh =
(
ũn − τ

ρ∇pn,v
)
Ωh

for all v ∈ [L2(Ωh)]3

4. Update-Windkessel step: set Pn
� = pn

γ� and compute πn
� ∈ R as:

πn
� =

(
α� − α�β�

γ�

)
πn−1
� + β�

γ�
Pn
� , � = 1, . . . , K

Note also that at the viscous step (equation (1)) several convection-related stabilizations are
also added, as backflow [17], Temam and streamline-diffusion (i.e. SUPG stabilization with
the formula for the stabilization parameter δ taken from [18]).

Note that at the projection step of algorithm 1, the non-local terms at each outlet
can be incorporated into the sparse representation of the Laplacian. In order to do that,
we use a low rank update of the form M = A + VDV′, where A ∈ RN×N is the matrix of the
discrete Laplacian, V ∈ RN×K is the pressure boundary support defined by the term pn

Γ�
(see

second step of algorithm 1) and D ∈ RK×K a diagonal matrix containing weights for the K
Windkessel outlets. In our implementation, the matrix M is never explicitly formed, the low
rank update being directly handled the update handled directly by the GMRES solver of the
PETSc library.

2.3. Reference numerical solution

The initial conditions were set as u0 = 0 and π0
� = 85 mm Hg for � = 1, . . . , K. The values of

π0
� corresponds to approximately the periodic state of the 3D–0D system.

Concerning the numerical setup, we solve the fractional step system using the algorithm 1.
The computational domain corresponds to an aorta with a coarctation in the descending
part, with a total streamwise length of 11.2 cm and meshed with 2752 064 tetrahedrons and
510 755 vertices. The time step is set as τ = 0.001 s with a total run time of 0.8 s. The ε param-
eter for the pressure gradient penalization at every outlet was set to 20, chosen as the smallest
possible value such that the results appear to be visually insensitive to ε.

Figure 2 shows the results for the velocity field at peak systole, the flow rates and pressures
at the inlet and outlet boundaries.
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Figure 2. Velocity field and outlet pressures and flow rates obtained with algorithm 1
and parameters from section 2.3.

3. The measurements

3.1. Phase-contrast and aliasing in a nutshell

Let us denote by utrue the velocity field at a point in space and time. In PC-MRI, the transverse
(complex) magnetization signal is given by the model:

Mu
meas = C exp

(
i(φ0 + πutrue/venc)

)
+ εu (7)

with φ0 the so-called background phase which depends on, among other quantities, spatial
inhomogeneities of magnetic gradients, and C corresponds to the magnitude (typical showing
tissue variations and therefore use for anatomical imaging). As usually assumed in MRI [19],
εu ∈ C is set to be a zero-mean Gaussian measurement noise. The only quantity known a priori
is the velocity encoding value or venc, which is set by the MRI scanner operator determining
the shape of the motion encoding gradients.

Since φ0 is unknown, in order to recover an estimate of utrue from magnetization measure-
ments, PC-MRI involves an additional measurement. This is typically done by turning off the
motion encoding gradient leading to the model:

M0
meas = C exp

(
i(φ0)

)
+ ε0. (8)

7
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The velocity is then estimated from the resulting division of the magnetizations by:

umeas =
∠
(
Mu

meas/M0
meas

)
π

venc (9)

with ∠ denoting the phase of the complex number to which it is applied.
For a high signal-to-noise ratio (SNR) in the magnetization measurements, it can be shown

that the velocity-to-noise ratio of umeas can be written as [19]:

VNR =
π√
2

SNR
venc

the choice of the venc parameter being crucial for controlling the VNR. However, the venc
defines the range at which velocity data can be encoded: the phase can only be measured in the
interval [−π, π). Therefore, velocity aliasing occurs when |venc| < |utrue|, i.e. the estimated
velocity will be utrue − 2 j · venc instead of utrue, with j ∈ Z depending on how much smaller
|venc| is with respect to |utrue|.

Note that this is a localized artifact—i.e. specific to some voxels and time instants—since
utrue varies in space and time, while the venc does not. Therefore, velocity unwrapping algo-
rithms have been developed by assuming that the true velocity field is smooth in space
[10, 20, 21], time [11, 22] or both [12, 23]. Nevertheless, the unwrapped image appears dis-
torted for realistic VNRs, and specially when the aliased regions are large or include multiple
wraps (i.e. when | j| > 1).

Alternatively, voxelwise motion reconstructions using dual-encoding strategies have been
proposed in PC-MRI which are based on unwrapping low venc data by exploiting high venc
data [24–26]. Those methods are performed at each voxel and time instant independently and
therefore they do not assume or enforce smoothness of the velocity-encoded phase field. Such
approaches have, however, the cost of additional measurements.

The practical consequence of the trade-off between VNR and aliasing is that the scan-
ner operator needs to select—by trial and error during the MRI scan—the value of venc to
maximize VNR and to avoid aliasing. This leads to increased patient’s examination time.

3.2. Measurement generation on the reference numerical solution

We simulated a PC-MRI acquisition on the update velocity solution u0, u1, . . . using
algorithm 1 and the physical parameter values in section 2.3 leading to the solution shown
in figure 2.

As the measurement domain ωH, a rectangular mesh of hexahedra was generated, covering
the completeΩh in that plane, with elements size 2 × 2 × 2 mm3. The original (i.e. simulation)
mesh Ωh and the slice mesh ωH are shown in figure 3.

Then, the velocity fields u0 · d, u1 · d, . . . were interpolated onto ωH using P1-Lagrange
interpolation, with d the foot-head direction. For the purpose of the inverse problem solu-
tion, let us denote the operator performing component-selection together with the interpolation
H : [H1(Ωh)]3 → Rm, with m the number of elements of ωH.

We also undersampled the velocity field in time to 0.03 s leading to NT = 28 measurements
per cardiac cycle.

Magnetization measurements, and subsequently (aliased) velocity measurements were cre-
ated using equations (7)–(9) on each velocity value of the spatio-temporally undersampled
velocities.

The reference phase was arbitrary set as: φ0 = 7.5 × 10−2 rad and constant for all nodes.
The noise in the magnetization was applied such that a SNR of 15 dB in the complex magneti-
zation was obtained. Moreover, three venc values as the 120%, 70% and 30% of the maximum

8
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Figure 3. Simulations and measurement meshes.

reference velocity were chosen, resulting in the values of 115, 67 and 28 cm s−1, respectively.
This leads to 0, 1 and 2 wraps in the velocity field, respectively.

The values of umeas for all measured spatial and time points are then grouped into a set of
arrays Zk ∈ R

m, k = 1, . . . , NT.
Figures 4(b)–(d) show umeas at peak systole for the different values of venc at the in-plane

resolution of 2 × 2 mm2. The reference slice is depicted in figure 4(a). As venc decreases
the velocity-to-noise ratio improves since the noise in the magnetization remains of the same
amplitude for all venc values. However, aliasing starts being visible, specially in zones with
higher velocities as in the coarctation and at the supra-aortic outlets.

Figures 4(h), (i) and (j) show histograms for each measurement set, computed from velocity
measurements at the initial time step. First, it can be seen that in spite of the nonlinear transfor-
mation from magnetization to velocity (see equation (9)), the noise in the velocity presents a
Gaussian distribution. Moreover, it can be confirmed that the standard deviation of the velocity
decreases with the venc.

3.3. Velocity unwrapping

Let us denote the true phase difference φ and the (possibly) wrapped phase difference
φw = (umeas/venc)π ∈ [−π, π) given by equation (9). The relationship between both can be
represented as

φ(x, t) = φw(x, t) + 2πn(x, t) (10)

where n(x, t) is an integer function describing the number of wraps at the spatio-temporal
position (x, t) since the venc is constant for the whole images but not the velocity.

Phase unwrapping can be performed in a number of different ways by assuming regularity
in the spatial [10, 20, 21] or the temporal dimension [11, 22, 27] or both [12, 23]. Here we will
apply temporal unwrapping since it has shown the best results in the measurement sets used in
this work.

Temporal phase unwrapping has first been introduced in [27]. This method assumes that
the velocity difference between two adjacent timeframes is less than venc, therefore relying on
that the phase only varies slowly in time or that the temporal resolution is high enough.

9



Inverse Problems 38 (2022) 095002 J Garay et al

Figure 4. umeas distributions for different venc values. (a) Reference slice. (b)–(d) Val-
ues of the velocity for different venc at time t = 0.36 s. (e)–(g) Unwrapped velocity
measurements at t = 0.36 s. (h)–(j) Histograms of the velocity at the initial timestep
within the whole aorta.

Given a time series of NT measured phase maps φw(x, t1), . . . ,φw(x, tNT ), the set of differ-
ential phase maps is computed as

Di(x, ti) = φw(x, ti) − φw(x, ti−1), i = 2, . . . , NT .

10
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According to the assumption, these differential maps do not contain any phase wraps of their
own. Therefore any absolute value greater than π has to be the result of a phase wrap occurring
in one of the phase maps.

To regain the ‘correct’ differential value, the differential phase maps are wrapped back into
the range [−π, π) by calculating

D∗
i (x) = Di(x) + 2πn(x, ti)

where n(x, ti) is an integer such that D∗
i (x) ∈ [−π, π). Once the wrap-free differential phase

maps have been computed, the unwrapped phase maps are calculated by integrating over the
differential maps, starting at a reference timeframe which does not contain any wrapped voxels.
For this reference frame a timeframe at beginning of diastole is selected, as it is the least likely
to have aliasing.

The unwrapped phase φuw with a reference phase image φw(x, tr) at time tr is then computed
as

φuw(x, t j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φw(x, tr) +
j∑

i=r+1

D∗
i (x) for j > r

φw(x, tr) −
r∑

i= j+1

D∗
i (x) for j < r

φw(x, tr) for j = r

.

Finally, the unwrapped velocity image is given by uuw(x, ti) = (φw(x, ti)/π)venc, i = 1, . . . , NT.
Figures 4(e)–(g) shows the results of the unwrapping algorithms applied at time 0.36 s

4. The inverse problem

4.1. Parameters to be estimated

We first justify the parameters chosen for the estimation from velocity measurements
Z1, . . . , ZN, which will remain the same for the cases with and without aliasing in the data.

It is well known in computational hemodynamics that the flow split is given by the ratios
of the total resistances between outlets. Also, in the absence of pressure measurements,
not all the resistances of the system can be determined uniquely from velocity measurements
only.

Moreover, the total resistance is dominated by the distal resistance for realistic values of
these parameters, i.e. Rp,� � Rd,�. Including additional parameters like the compliances Cd,�

would also require pressure measurements as presented e.g. in [5].
Hence, for the parameters to be estimated from the velocity measurements, we consider

in this work the amplitude velocity at the inlet, U, and the Windkessel distal resistances
Rd,1, . . . , Rd,K−1. The choice of fixing Rd,K is arbitrary, as it could have been any of the other
resistances.

4.2. The classical inverse problem from velocities

Let us summarize the set of parameters to be estimated as θ ∈ Rp. The parameter estimation
problem can be tackled using a Bayesian framework, i.e. to minimize the functional

θ̂ = arg min
θ

1
2
‖θ − θ0‖2

P−1
0

+
1

2σ2
z

NT∑
k=1

m∑
s=1

([Zk −H(uk
θ)]s)

2 (11)

11
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where uk
θ and θ are related through the forward model summarized in algorithm 1. The s index

denotes sum over all voxels being m the total number of them and [·]s denotes the element of the
vector corresponding to the sth voxel. Finally, θ0 is the initial guess for the parameters and P0

its covariance matrix, which are assumed given. The scalar σz > 0 corresponds to the standard
deviation of the measurement noise on Zk. However, this is generally an unknown quantity,
since it depends on the voxel size, venc and other MRI scan setup choices. But if we assume a
known initial condition—which of course does not depend on the uncertain parameters θ—σz

can be estimated by maximizing the likelihood of observing the measurements [28] at t0 given
u0 leading to

σ2
z ≈ 1

m

m∑
s=1

([Z0 −H(u0)]s)
2. (12)

In case that u0 = 0, σz becomes simply the standard deviation of the measurements at t0.

4.3. The new inverse problem accounting for aliasing

As introduced in section 3.1, let us start with a single velocity measurement, for instance at one
voxel of the image and one time instant. Assuming that the measurements Mu

meas are perturbed
with zero-mean Gaussian noise, the estimation of umeas without using equation (9) from the
beginning, can be formulated as the solution of a least-squares estimation problem:

arg min
u

J(u) (13)

with

J(u) ≡ 1
2σ2

M

(
R(Mu

meas) − |Mu
meas| cos

(
∠M0

meas + u
π

venc

))2

+
1

2σ2
M

(
I(Mu

meas) − |Mu
meas| sin

(
∠M0

meas + u
π

venc

))2

=
|Mu

meas|2
σ2

M

(
1 − cos

( π

venc
(umeas − u)

))
(14)

with σM > 0 denoting the standard deviation in the measurement of the magnetization com-
ponents. Note that to obtain formula (14) standard trigonometric identities were used.

Problem (13) has multiple solutions due to the periodicity of the cosine function, namely
the set

U = {umeas + 2 j · venc, j ∈ Z}

and hence formula (9) corresponds to the particular case j = 0. Figure 5 shows examples of the
functions J(u) for different values of utrue/venc, where those multiple solutions can be seen.

When |venc| < |utrue|, the un-aliased velocity value is still an element of the set U , and
therefore finding it requires either more information to find j and/or to restrict the search within
that set.

In [29, 30], the un-aliased values were found by including additional measurements with
different venc values.

In this work, we will however proceed by constraining the search by stating that the velocity
at each measurement point depends on the same parameter set θ, where dim θ � m. Specif-
ically, the measured (aliased) velocities are modeled by the reference solution detailed in the
previous section.

12
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Figure 5. Cost function J(u) for different values of venc.

Let us consider first a simple example: a Poiseuille solution for a flow in an infinite cylin-
drical pipe. Note that in this case, the velocity is modeled by us = θ · as, where as represents
an unitary parabola shape at the sth measured voxel and θ the actual amplitude of the velocity
profile. The parameter θ is then estimated by minimizing the next total function composed by
the sum of m cost functions:

arg min
θ

m∑
s=1

|Mu
meas, s|2
σ2

M

(
1 − cos

( π

venc
(umeas, s − θ · as)

))
. (15)

Note that functions with different frequencies π · a1/venc, . . . , π · am/venc are added, what
is depicted in figure 6 for the Poiseuille example. This leads to the true value of θ becoming
the global minimum and therefore, if starting a minimization procedure close enough, the true
parameter can be identified even in the case that aliasing is present.

In the general case for the fluid flow parameter estimation problem, we will formulate the
optimization problem as:

θ̂ = arg min
θ

1
2
‖θ − θ0‖2

P−1
0

+
1
σ2

M

N∑
k=1

m∑
s=1

|Ms(t k)|2
(

1 − cos
( π

venc
·
(
[Zk −H(uk

θ)]s

)))

(16)

with Zk the same (possibly aliased) velocity measurements vector as in the previous section
and |Ms(tk)| the magnetization module at the sth voxel and kth timestep. Again, uk

θ and θ are
related through the forward model summarized in algorithm 1.

Since σM depends also on the setup of the MRI scan, we assume that a perfectly known
initial condition leads to the estimate:

σ2
M ≈ 1

m

m∑
s=1

|M0
s |2

(
1 − cos

( π

venc
·
(
[Z0 −H(u0)]s

)))
. (17)
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Figure 6. Left: independent cost functions for two voxels and same venc. Right: com-
bined for all voxels in the Poseuille flow example.

It is worth noticing that by doing a second order Taylor expansion of expression (17) for
[Z0]s ≈ [H(u0)]s (e.g. in case of large venc) one obtains

σ2
M ≈ 1

m

m∑
s=1

|M0
s |2

π2

2venc2

(
[Z0 −H(u0)]s

)2

and comparing it with equation (12) and assuming |Mmeas, 1| ≈ . . . ≈ |Mmeas, m| ≡ |M̄|, it leads
to the relation:

σz ≈
√

2venc
π

σM|M̄|−1 (18)

which is well known in phase-contrast MRI [6] and is aligned with the description in
section 3.1.

Remark 1. Problem (16) is directly solvable with data that is already widely clinically
available since clinical scanners also output the magnitude images as their standard setup.

Remark 2. The formulation in problem (16) allows for a straightforward extension to mea-
surement sets with different venc values by generalizing the data fidelity term to:

1
σ2

M

G∑
g=1

NT ,g∑
kg=1

mg∑
sg=1

|Msg (tkg)|2
(

1 − cos

(
π

vencg
·
(

[Z
kg

g −Hg(uk
θ)]sg

)))

where the index g denotes the measurement—possibly with different spatio-temporal sam-
pling—data set g taken with velocity encoding vencg.

14
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Table 2. Estimated standard deviations for the measurements.

venc = 115 cm s−1 venc = 67 cm s−1 venc = 28 cm s−1

σz (cm s−1) 9.16 5.22 2.21
σM (A cm−1) 0.0180 0.0176 0.0181

Figure 7. Estimated parameters over time for the initial guess I.

4.4. The sequential parameter estimator

Problems (11) and (16) can be solved by any optimization method. In this work, we chose a
reduced-order unscented Kalman filter (ROUKF) [31], which has been successfully employed
in blood flow problems [5, 32–35] presenting a computationally tractable way to deal with
large time dependent PDE models as the one used here.

The ROUKF algorithm, detailed in appendix A, has three main steps:

(a) Sampling: for every time step tn, n > 0 a number of particles, i.e., a deterministic pertur-
bations of state and parameters is generated from the estimate at tn−1;

(b) Prediction: the forward solver is applied to each particle, so a new state at tn is generated
for each particle;

(c) Correction: an estimate of state and parameters is computed at tn by combining the
propagated particles and the measurements at tn.

Correctly defining the state of the discrete dynamical system under consideration is of great
importance in Kalman filtering. In the time-continuous case, it is evident that the state is
(u, π1, . . . , πK), i.e. the variables to which time derivatives are applied. In the time-discrete
case in algorithm 1 the discrete state at time step tn results in: (un, πn

1, . . . , πn
K). All the other

variables in the problem like ũn and pn are internal quantities of the algorithm and are uniquely
defined by the a given state.

15
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Figure 8. Estimated parameters over time for the initial guess II.

Figure 9. Final recovered resistances errors by each method for both initial guesses: I,
upper row, and II, bottom row.

In Kalman filtering, the correction step relies on the so called measurement error or inno-
vation Γn. In the case of problem (11), that is defined as [31]:

[Γn]s ≡ [Zn −H(un)]s. (19)

If a measurement Zn is not available at the simulation time step tn, then it is obtained by linear
interpolation from the closest time steps where measurements are available.

16
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Figure 10. Final recovered velocity amplitudes errors by each method for both initial
guesses.

In order to derive the innovation for problem (16) we will proceed as follows. Since
the innovation needs to be proportional to the derivative of the data-discrepancy term
in the cost function [36], we know that the dependency will be with a sine function. More-
over, since problems (11) and (16) are equivalent when the venc is large and the magni-
tude is constant over the voxels, we require equation (21d)5 (see appendix A) be the same
for both problems in that scenario. Therefore, using relation (18) and a second order Taylor
expansion for the functional in (16), we define the innovation for the Kalman filter in problem
(16) as:

[Γn]s ≡
1√
2
|Ms(tn)| sin

( π

venc
· ([Zn −H(un)]s)

)
. (20)

Last but not least, in order to ensure the positivity of the physical parameters to be optimized,
a reparametrization was performed as previously done in several works [5, 32–35]. Denoting
the physical parameters as β, the ROUKF is applied on θ such that β = 2θ.

4.5. Numerical experiments

We defined two sets of experiments starting from different initial guesses for the physical
parameters to estimate:

• Initial guess I: U = 40, (Rd,1, Rd,2, Rd,3) = (4000, 4000, 4000)
• Initial guess II: U = 250, (Rd,1, Rd,2, Rd,3) = (52 500, 52 500, 52 500)

Recall that the target values are U = 75, (Rd,1, Rd,2, Rd,3) = (7200, 11 520, 11 520) as
detailed in section 2.3. Here, the velocity amplitude U is in cm s−1 and the distal resistances
Rd,i are in (dyn · s)/cm5.

The weights for the parameters for the ROUKF were taken as follows. An initial standard
deviation of P0 = 0.5I was set for the reparametrized parameters. This corresponds to a prob-
ability of 95% that the true parameters lie within the range half and double of the initial guess.
On the other hand, for the measurements, assuming it at the initial time step mostly dominated
by noise, the initial measured velocity and magnetization were used for computing the initial
standard deviations σz and σM respectively, see table 2.

Figures 7 and 8 show the time evolution of the mean (thick line) and the standard deviation
(as the shaded region) of the distal resistance R3 and the inflow amplitude U during Kalman
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filtering for initial guesses for the parameters I and II, respectively, and for the different venc
values. The three methods are compared together: the classical formulation with both: normal
and unwrapped data (denoted as classical+ unw.), and the new formulation. Note that using the
classical cost function formulation, the estimation succeeds for the case with unaliased data but
fails as soon as aliasing appears. In contrast, for the new formulation the results remain robust
with respect to aliasing. Moreover, for the largest venc case results with both formulations are
very similar, which occurs by construction as mentioned above. Note also that when decreasing
the venc, the sensitivity over time of the reconstructed parameter is increased in the case of the
new functional. The results are robust to the choice of the initial guess, even when starting
with very large (unphysiological) values. Figures 9 and 10 show error bars with the mean and
standard deviation of the relative error for the reconstructed resistances and velocity amplitudes
by each method respectively. The errors were computed for 30 independent realizations of the
noise in the measurements. The results are not shown in cases with aliased data using the classic
method, due to the lack of convergence.

5. Conclusion

We proposed a new formulation for parameter estimation in fluid flow problems when the
measurements correspond to phase-contrast MRI (possibly) aliased and noisy velocities. The
formulation was derived directly from the model of the MRI magnetization. We also showed
how a popular sequential approach can be applied to solve the inverse problem.

Numerical results show correct estimation of boundary condition parameters for velocity
encoding ranges even at 30% of the maximal velocity of the problem and delivers more accu-
rate results than first unwrapping and then estimating the parameters using the standard cost
function. Therefore, the presented approach relaxes the requirements in clinical data when per-
sonalizing fluid flow models with no additional pre-processing steps when aliasing is present.

Future work should involve working with real MRI data. Although the concepts of this work
are applicable to that case, the main challenge to address there would be the fluid-structure
interaction effects. Specifically, an observation operator that accounts for domain mismatch
needs to be developed. This topic is however out of the scope of the present article and will be
considered in follow up research.
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Appendix A. The reduced-order unscented Kalman filter

Here we detail the ROUKF algorithm adapted from [31]. Let us first consider the notation
[Y(∗)] as the matrix with the column-wise collection of vectors Y (1),Y (2), . . . .

18



Inverse Problems 38 (2022) 095002 J Garay et al

Define the simplex sigma-points I(i), . . . , I(p+1) ∈ Rp given such that [I(∗)] ≡ [I(∗)
p ] ∈

Rp×(p+1) is computed recursively as [37, 38]

[I(∗)
1 ] =

[
− 1√

2α

1√
2α

]
, α =

1
p+ 1

,

and

[I(∗)
d ] =

⎡
⎢⎢⎢⎢⎣

0

[I∗d−1]
...
0

1√
αd(d + 1)

. . .
1√

αd(d + 1)
−d√

αd(d + 1)

⎤
⎥⎥⎥⎥⎦, 2 � d � p.

We denote by X̂−
n , X̂+

n ∈ Rr a priori (model prediction) and a posteriori (corrected by obser-
vations) estimates of the true state Xn ∈ Rr. In the semi-implicit coupled 3D–0D fractional
step algorithm 1, the state consists in the velocity field un and the Windkessel pressures πn

� .
Estimates of all unknown parameters are summarized by the corresponding a priori and a pos-
teriori vectors θ̂−n , θ̂+n ∈ Rp. The discretized forward model is written as Xn = An(Xn−1, θn−1),
An denoting the model operator.

For given values of the initial condition X̂+
0 = X0 ∈ Rr, the initial expected value of the

parameters θ̂+0 = θ0 ∈ Rp and its covariance matrix P0, perform

• Initialization: initialize the sensitivities as

Lθ0 =
√

P0 (Cholesky factor), LX
0 = 0 ∈ R

r×p, U0 = Pα ≡ α[I(∗)][I(∗)]ᵀ. (21a)

Then, for n > 0:
• Sampling: generate p+ 1 particles from the current state and parameter estimates, i.e. for

i = s1, . . . , p+ 1:

⎧⎨
⎩

X̂(i)
n−1 = X̂+

n−1 + LX
n−1Cᵀ

n−1I(i),

θ̂(i)
n−1 = θ̂+n−1 + Lθn−1Cᵀ

n−1I(i)
(21b)

with Cn−1 the Cholesky factor of U−1
n−1.

• Prediction: propagate each particle with the forward model and compute an a priori state
prediction:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X̂(i)
n = An(X̂(i)

n−1, θ̂(i)
n−1), θ̂(i)

n = θ̂(i)
n−1, i = 1, . . . , p+ 1

X̂−
n = Eα([X̂(∗)

n ]) ≡ α

p+1∑
i=1

X̂(i)
n

θ̂−n = Eα([θ̂(∗)
n ])

. (21c)

19



Inverse Problems 38 (2022) 095002 J Garay et al

• Correction: compute a posteriori estimates based on measurements for state and param-
eters, using definitions (19) or (20) for the ith particle innovation Γ(i)

n :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LX
n = α[X̂(∗)

n ][I(∗)]ᵀ

Lθn = α[θ̂(∗)
n ][I(∗)]ᵀ

LΓ
n = α[Γ(∗)

n ][I(∗)]ᵀ

Un = Pα + (LΓ
n )ᵀW−1

n LΓ
n , Pα = α[I(∗)][I(∗)]ᵀ

X̂+
n = X̂−

n − LX
nU−1

n

(
LΓ

n

)ᵀ
W−1

n Eα([Γ(∗)
n ])

θ̂+n = θ̂−n − LθnU−1
n

(
LΓ

n

)ᵀ
W−1

n Eα([Γ(∗)
n ])

(21d)

with Wn = σ2
z 𝟙 and Wn = σ2

M𝟙 for problems (11) and (16), respectively.
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