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Simultaneous Multi-View Object Recognition
and Grasping in Open-Ended Domains
Hamidreza Kasaei∗, Mohammadreza Kasaei, Georgios Tziafas, Sha Luo, Remo Sasso

Abstract—To aid humans in everyday tasks, robots need to
know which objects exist in the scene, where they are, and how
to grasp and manipulate them in different situations. Therefore,
object recognition and grasping are two key functionalities
for autonomous robots. Most state-of-the-art approaches treat
object recognition and grasping as two separate problems, even
though both use visual input. Furthermore, the knowledge of
the robot is fixed after the training phase. In such cases, if
the robot encounters new object categories, it must be retrained
to incorporate new information without catastrophic forgetting.
In order to resolve this problem, we propose a deep learning
architecture with an augmented memory capacity to handle
open-ended object recognition and grasping simultaneously. In
particular, our approach takes multi-views of an object as
input and jointly estimates pixel-wise grasp configuration as
well as a deep scale- and rotation-invariant representation as
output. The obtained representation is then used for open-ended
object recognition through a meta-active learning technique. We
demonstrate the ability of our approach to grasp never-seen-
before objects and to rapidly learn new object categories using
very few examples on-site in both simulation and real-world
settings. A video of these experiments is available online at:
https://youtu.be/n9SMpuEkOgk

Index Terms—Service robots, open-ended learning, active lear-
ning, object grasping, 3D object recognition

I. INTRODUCTION

THE necessity of using robots in human-centric environ-
ments has led to fast progress in the field of machine

learning, computer vision, and robotics [1] [2] [3]. To assist
humans in various daily tasks ( e.g., clear table), a robot
needs to know which kinds of objects exist in a scene, where
they are, and how to grasp and manipulate the target object.
Robots operating in such dynamic environments frequently
faces isolated never-seen-before objects or a pile of objects
(see Fig. 1). Therefore, they should be able to learn new object
categories on-site from very few training examples while
retaining their previous knowledge. Recent breakthroughs on
object perception and manipulation often use deep learning
techniques. While deep learning is a very powerful tool,
there are several limitations to using deep neural network in
open-ended domains. First, deep learning approaches are data-
hungry approaches as learning a new skill/concept usually
requires hundreds to thousands of sufficiently similar training
instances. Therefore, the training process is computationally
expensive and slow. Second, the model is trained once all data
has been gathered and its performance strongly dependents on
the quality and quantity of training data. Often, the learned

All authors are with Department of Artificial Intelligence, Bernoulli
Institute, University of Groningen, 9747 AG, The Netherlands.
∗Corresponding author: hamidreza.kasaei@rug.nl

Fig. 1. To accomplish various tasks successfully, (left) a robot must
understand which objects exist in the scene, where they are, and
where to move its gripper to pick up the target object. Our approach
allows robots to learn new object categories using very few instances
on-site. (right) The proposed approach also allows the robot to predict
stable grasp configurations for a diverse set of objects in highly
cluttered scenarios.

models do not generalize well to never-seen-before objects,
and training with limited data leads to poor performance.
Deep learning approaches are also prone to catastrophic for-
getting [4].

In this paper, we aim to address these limitations by making
robots capable of learning the category label of objects in an
open-ended manner through interaction with non-expert users.
In particular, the robot has the ability to ask users to label
some of the training instances in which it is unsure about. This
way, the robot is able to update its knowledge incrementally
rather than having to retrain from scratch when a new instance
is introduced or a new category is taught. Furthermore, apart
from robot self-learning, non-expert users could interactively
guide the robot by teaching new concepts, or by correcting
insufficient or erroneous concepts. We propose to study this
problem at the crossroad of deep learning and meta-active
learning. An overview of the proposed approach is shown in
Figure 2. We develop an external-memory equipped deep lear-
ning approach capable of producing grasp configuration and a
compact object representation for a given object. The obtained
representation is scale- and rotation-invariant, informative,
and stable, and designed with the objective of supporting
accurate 3D object recognition in open-ended domains. More
specifically, our approach combines the best of two worlds:
the ability to slowly learn an object-agnostic grasping and a
compact object representation function, via gradient descent,
and the ability to rapidly learn about new categories using
very few examples, via meta-active learning. Furthermore,
addressing object recondition and grasping is important for
real-time robotic applications, especially if there are resource
constraints. Our contributions are three-fold:

• We develop a deep learning architecture with an aug-
mented memory capacity to handle object grasping and
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Fig. 2. We propose a deep learning approach with an augmented memory capacity to handle multi-view object grasping and recognition
tasks simultaneously. First, multiple RGB-D views of a given object are generated from different perspective. All RGB views contributed
equally to open-ended object recognition, while the depth view with maximum entropy is used for grasping and encoding the geometrical
feature of the object. The depth view of the object is then fed to the grasp network to obtain a pixel-wise grasp configuration and a compact
representation. All RGB views of the object are passed into the Vision Transformer and fused together using a pooling function to form a
feature vector from RGB views of the object. The depth representation and the RGB representation are then concatenated to form a global
representation of the object. The obtained representation is finally used for the downstream open-ended learning task.

continual object recognition simultaneously.
• We develop a probabilistic learning method to handle 3D

object recognition in open-ended domains;
• To assess the effectiveness of proposed approach, we

perform extensive sets of experiments in both simulation
and real-robot settings. Our method enables a robot to
learn about new object category using, on average, less
than five instances per category and achieve 95% object
recognition accuracy and above 91% grasp success rate
on (highly) cluttered scenarios in both simulation and
real-robot experiments.

II. RELATED WORK

Although an in-depth review is beyond the scope of this
work, we discuss recent efforts in three main categories: object
grasping, object recognition, and active learning.

Object grasping – Earlier methods on object grasping
were mainly based on hand-crafted features [5]. In recent
studies much attention has been given to Convolutional Neural
Networks (CNN) [6] [7] [8] [9] [10] [11] [12] [13]. In
particular, CNNs have been applied successfully for empirical
object grasping methods. In such approaches, the grasps are
classified and ranked using a CNN, after which a robot
executes the highest-ranked grasp such as in [7]. One of the
biggest bottlenecks with recent deep learning-based object
grasping approaches is the execution time. Some of the deep-
learning-based approaches take a very long time to sample
and rank grasp candidates (e.g., [6] [7]), while others first

need to explore the environment to acquire a full model of
the scene and then generate point-wise 6D grasp configura-
tion (e.g., Volumetric Grasping Network (VGN) [11]. These
approaches mainly use in open-loop control scenarios and
are not suitable for closed-loop scenarios. Morrison et al. [8]
proposed the Generative Grasping CNN (GG-CNN), a small
neural network, which generates pixel-wise grasp configura-
tions for a given single-modal image (depth-only). Kumra et.
al., [11] developed GR-ConvNet, a large deep network that
generates pixel-wise grasp configurations using multi-modal
data. Contrary to our approach, VGN [12] and GG-CNN [8],
which only use depth data, GR-ConvNet combines color and
depth information.

Similar to our approach, GG-CNN is designed to be used
for real-time closed-loop control using visual feedback. Unlike
GG-CNN, our approach works in an eye-to-hand system,
where the robot considers an entire scene and not just a narrow
top-down view. Our approach generates a grasp map per object
while GG-CNN, GR-ConvNet, and DexNet generate a grasp
map per scene. Unlike our approach and VGN, GR-ConvNet
and GG-CNN both work in top-down camera settings and
mainly focused on solving 4DoF (x, y, z, φ) grasping, where
the gripper is forced to approach objects from above. A major
drawback of these approaches is inevitably restricted ways to
interact with objects.

Object recognition – Nowadays visual recognition systems
are often designed based on CNN, where the number of classes
is known in advance as prior information [14]. Although
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these approaches work well in static closed set environments,
they easily fail when facing an out-of-distribution instance
(e.g., fooling image) by predicting a “known” label with
high confidence [15], [16]. Some researchers tried to handle
this limitation by incorporating an “unknown” class [17].
Although these approaches can detect “unknown” objects to
some extent, they cannot learn about new categories due to
catastrophic forgetting (learning about new object categories
leads to forget previously learned categories) [4], [18]. In
general, deep learning approaches for 3D object recognition
can be categorized into three different categories depending
on their input. First, there are volume-based approaches [19],
[20], where the object is represented as a 3D voxel grid and
then fed to a CNN with 3D filter banks. Second, there are
pointset-based approaches [9], which work directly on the 3D
point clouds. The final category is view-based approaches,
which are used in this research. These approaches appear to
be most effective in 3D object recognition, as shown by [10],
[21] [22]. In such approaches, 2D images are extracted from
the 3D representation by projecting the object’s points onto
2D planes [22], [23]. H. Su et al., [23] developed a system
that learns to recognize 3D shapes from a collection of their
rendered views on 2D images, for which multiple view-wise
CNN features were used. Another approach, by [10], takes
multi-view images of an object as input and jointly estimates
its pose and object category label using a CNN. Our research
relates to these works as both use multi-view representations
of 3D objects to learn deep features. However, we trained an
autoencoder to generate a grasp map as well as a compact deep
representation for a given object. The learned deep features are
used for open-ended object category learning and recognition.
Unlike these approaches, the set of object categories to be
learned is not completely known in advance in our approach,
and the model does not know which additional objects it will
have to learn, which observations will be available, and when
they will be available to support the learning.

Active learning (AL) – In recent years, AL methods have
been gaining much attention to overcome the aforementioned
limitations [24]–[27], but few AL methods target the problem
of open-ended learning [28], [29]. In particular, most AL
approaches, first sample a subset of training examples from
a pool of unlabeled data using an acquisition function based
on either ’uncertainty’ measures (entropy, variance, and etc.)
or density/geometric similarly measures in feature space (i.e.,
sampling diverse instances by considering the similarities
among training data). An oracle is then asked to label the
selected samples. Finally, the model is incrementally trained or
re-trained from scratch to incorporate new information without
catastrophic interference. These approaches are incremental by
nature but not open-ended since the number of categories is
pre-defined and the main objective is to update the model
of known categories by finding minimally required training
examples to reach a certain classification accuracy. Moreover,
unlike these approaches, we formulate the AL to learn from
online robot’s observation and not from a set of training data.
More specifically, instead of selecting a set of instances that
represents the entire training dataset, we want to select a set
of training samples that best represents the novel classes. We

Fig. 3. (left) a cordless drill; (right) the partial point cloud of the object,
its local reference frame, bounding box, and three projected views of the
drill. In each projection, the darker area shows the image size for the object
representation task, and the lighter area represents the size of the image for
the object grasping task.

also update the model of known categories only when it is
necessary. This way, we mainly use our limited labeling budget
to learn about new object categories and update the model of
known classes when necessary.

III. OBJECT REPRESENTATION AND GRASP LEARNING

We formulate object representation and grasp synthesis as a
learning problem. In particular, we intend to learn a function
that receives a collection of rendered images of a 3D object as
input, and returns (i) a compact, scale- and rotation-invariant
representation, (ii) the best direction for approaching the target
object, and (iii) a grasp map representing per-pixel grasp
configuration for a selected view.

A. Generating Multi Views of 3D Objects

A point cloud consists of a set of points, pi : i ∈ {1, . . . , n},
where each point is described by its 3D coordinates [x, y, z].
To render 2D depth images from a 3D object, we set “vir-
tual” cameras around the target object, whose Z axes point
towards the centroid of the object. Towards this goal, we
first compute the geometric center of the object, which is
defined as the arithmetic mean position of all its points.
Afterwards, we construct a local reference frame for the
object by performing eigenvalue decomposition analysis on the
normalized covariance matrix, Σ, of the object, i.e., ΣV = EV,
where E = diag(e1, e2, e3) contains the descending sorted
eigenvalues, and V = (~v1, ~v2, ~v3) shows the eigenvectors. We
consider the first two largest eigenvectors, ~v1 and ~v2, as X and
Y axes respectively, and define the Z axis as the cross product
of ~v1×~v2. The object is then transformed to be placed in the
reference frame (see Fig. 3 right).

From each virtual camera pose, we map the point cloud
of the object into a depth image using the z-buffering and
orthogonal projection methods [30] regardless of how accu-
rate/complete the point cloud of the object is. In particular,
we first project the object to a square plane centered on the
camera’s center. Note that the size of the projection square
area, l× l, is an important factor for both object representation
and object grasping tasks. In the case of object representation,
we define the size of projection relative to the size of the
object for producing a scale-invariant object representation.
In particular, the size of the projection plane is defined as
lp × lp dimension, where lp is the largest side of axis-aligned
bounding box of the object. Since the grasp configurations
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depend on the pose and size of the target object, a view of the
object should not be scale-invariant. Therefore, we consider a
fixed size projection plane for grasping (lg×lg). In our setup, lg
parameter is set to 0.45m. The projection area is then divided
into k × k square bins, where each bin is considered a pixel.
An illustrative example of this procedure is provided in Fig. 3.

B. Virtual Viewpoint Setups

The number of views for each object is an important
parameter for both object grasping and object recognition.
Although viewpoint setup can be any arbitrary choice, we
consider three setups in this work: (left) orthographic projec-
tions, i.e., {vi}3i=1, (center) an orbit elevated by φ (similar to
MVCNN [23]), and (right) a sphere viewpoints setup, which is
similar to the previous setup but with multiple elevation levels.
The setup of orthographic projection has been explained in the
previous subsection. For the orbit viewpoint setup, we place
virtual cameras around the Z axis at intervals of α, elevated
by a fixed φ. Therefore, the number of views for a given
object is set to {vi}

V= 360
α

i=1 . In the case of sphere viewpoint
setup, instead of having a fix elevation, we placed virtual
cameras at multiple elevation levels, β, with the interval of
[−90◦, 90◦]. Therefore, we capture V = 360

α ×
180
β views for

a given object. We have optimized φ, α, and β parameters
to obtain a good balance between object recognition accuracy
and computation time (see section V-A). It should be noted
that object recognition treats all views equally important, while
object grasping ranks views based on visibility, reachability,
and collision-free metrics.

C. View Selection for Grasping

View selection is crucial to make a multi-view approach
computationally efficient. Although it is possible to pass all
the views of the object into the network and then execute the
grasp with a maximum score that is kinematically feasible
(Fig. 6 left), such approaches are computationally expensive.
In contrast, choosing a view that covers more of the target
object’s surface will not only reduce the computation time but
also increase the likelihood of grasping the object successfully.
Information theory provides a range of metrics (variance,
entropy, etc.) from which the expected information gain can
be calculated. Among these metrics, viewpoint entropy is a
good proxy for expected information gain [31]. In particular,
viewpoints that observe the area of high entropy are likely
to be more informative than those that observe low entropy
areas. Therefore, we formulate our view ranking procedure
using viewpoint entropy, which considers both the number
of occupied pixels and the pixels’ values. In particular, we
calculate the entropy of a normalized projection view, v, by
H(v) = −

∑k2

k=1 pk log2(pk), where pk is the normalized
value of pixel k, and

∑
k pk = 1. The view with highest

entropy is considered as the best view for grasping and then
fed to the network to predict pixel-wise grasp configuration
and encode the geometrical feature of the object. The gripper
approaches the object from an orthogonal direction to the
projection.

orthographic orbit elevated by φ sphere

Fig. 4. Illustration of three viewpoint setups used in this study. In all
cases, distances between cameras and the center of the target object
are constant and elevation levels are shown by colors.

D. Network Architecture

We intend to develop a small grasp network that maps an
input depth image to multiple outputs, including a compact
deep representation for encoding the geometrical feature of
the object for recognition purposes, and a set of images rep-
resenting pixel-wise antipodal grasp configurations, as we are
interested to use the network in real-time robotic applications
with limited resources. To encode the textural feature of the
object, we use a Vision Transformer (ViT) [32], pre-trained on
ImageNet-1k [33]. The RGB view of the object are indepen-
dently fed into the ViT, and the resulting features are fused
into a single vector representation using a pooling function.
The depth and the RGB representations are then concatenated
to form a single global representation for the given object.
The obtained representation is then used for downstream open-
ended object category learning and recognition task.

The grasp network receives a depth image with height H
and width W as input, X ∈ RH×W , and returns multiple
outputs including: (i) a reconstructed image X̂ , and (ii) a
pixel-wise grasp configuration map, G, which is represented
by rotation, width, and quality images (φ,W,Q) ∈ RH×W ,
i.e., fθ : X → Y , where Y = [G, X̂ ]. We have considered
the dense autoencoder and image reconstruction loss to force
the network to learn a compact deep representation in the
bottleneck layer in an unsupervised manner. The obtained
representation is used for object recognition purposes (i.e.,
meta learning, as we learn about new categories using the
output of other learning method). The overall architecture of
the network is depicted in Fig. 5. The encoder part of the
network is composed of an input layer followed by eight
convolutional layers, while the decoder part is composed of
seven deconvolutional layers. We use Rectified Linear Unit
(ReLU) as the activation function of all layers. Except for the
last deconvolution layer, we have added a batch normalization
layer after each convolution and deconvolution layers to sta-
bilize the learning process and reduce the number of training
epochs by keeping the mean and standard deviation of output
close to 0 and 1, respectively. We use the same padding in all
convolution and deconvolution layers to make the input and
output be of the same size. The output of the last convolution
layer is flattened and considered as the deep representation of
the object (see Fig. 2). The network is trained in an end-to-end
manner using the Huber loss (see the details in Sec. V-B).
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Fig. 5. The overall architecture of the proposed grasp network. The network
received a depth image as an input and produce a reconstructed view and a
pixel-wise grasp configuration as output. The size of image and number of
filters after applying convolution is represented as I × I × F. Moreover, the
strides is represented by s, we do not indicate the s = 1. The last layer of
encoder is flattened and considered as deep representation of the input image.

E. Grasp Execution

After obtaining the output of the network for a given input,
fθ(I) = G, the best grasp configuration, g*, is defined as
the one with maximum quality, and its coordinate shows
the center of grasp, i.e., (u, v) ← g* = argmaxQ G.
Additionally, the distance that the robot needs to travel within
the configuration space, as well as the pose of other objects in
the scene are considered to verify the feasibility of executing
the grasp. Additional constraints due to the kinematic chain of
a manipulator are beyond the scope of this work and can be
handled by trajectory optimization techniques. When a pile of
objects is involved, grasping from above has a clear advantage
(e.g., no collisions), but when there are isolated and cluttered
objects, it completely depends on the object’s position. Three
examples of grasping objects in different situations are shown
in Fig. 6

In this work, we represent the grasp point as a tuple,
g∗ = 〈(u, v), φi, wi, qi〉, where (u, v) represents the center of
grasp in virtual image coordinates, φi indicates the rotation of
the gripper around the depth axis, wi represents the necessary
width of the gripper, and the success probability of the grasp is
represented by qi ∈ [0, 1]. The depth value of the grasp point
is determined by the minimum depth value of its surrounding
neighbors within a distance of ∆. We set ∆ = 2.5cm based
on the size of the robot’s finger. Afterwards, we transform the
coordinates of the grasp point from the virtual view of the
object to the reference frame of the object and instruct the
robot to perform the grasp action.

Fig. 6. Examples of grasping objects in different situations: (left) predicted
grasp configurations for orthographic views of the object; (center) grasp
prediction for a clutter scene that are both kinematically feasible and collision
free; (right) the best grasp configuration for grasping a Colgate object in two
different situations.

IV. OPEN-ENDED OBJECT CATEGORY RECOGNITION

Most active learning methods do not perform well in open-
ended domains since they need to know the number of
categories in advance. In open-ended learning scenarios, the
number of classes is updated over time, based on the robot’s
observations, experiences, and interactions with human users.
In other words, instead of sampling and labeling the training
data in advance, we propose to iteratively and adaptively
choose which training instance should be labeled next. In this
study, we follow an active learning scenario by identifying
the need for teaching a new category or by letting the user
provides corrective feedback to learn the model as quickly
as possible (see Fig. 7). In particular, we provide three basic
actions for the user to either teach the robot about new
categories or correct the robot on errors by providing
feedback. These actions consist of the following: (i) ask: to
check the prediction accuracy of an object category model, (ii)
teach: to introduce a new object category using a set labeled
samples, and (iii) correct: to improve an object category model
using a new instance. The teach and correct actions lead the
robot to initialize a new class or to modify a known class
incrementally using a particular instance the current classifier
is the least certain about. In particular, we are interested in
learning a probabilistic model for each object category, C,
using very few labelled data, Lt = {x1, . . . , xnt}, where nt is
the number of seen instances until time t, and each instance,
x, is fed into the encoder network and represented as a d-
dimensional feature vector, [x1, . . . , xd] where

∑d
i xi = 1.

Therefore, we represent an object category as a tuple Ck =
〈 nk, ak, P(Ck), [P(x1|Ck), . . . ,P(xd|Ck)] 〉, where nk
represents the number of seen instances in category k and
ak is a vector of accumulator for category k. In particular,
aki is the probability accumulation of ith element of all
instances of category Ck and |a| = |x|. P(Ck) shows the prior
probability of category Ck (i.e., P(Ck) = nk/N , where N is
the number of seen instances in all categories). In this work,
we consider the probability of each element of feature vector
independently, regardless of any possible correlations with the
other elements. This way, the P(Ck) P(x|Ck) is equivalent
to the joint probability model. Therefore, the P(xi|Ck) can
be estimated based on the average probability of xi in the
category k:

P(xi|Ck) =

∑nk
n=1 xik
nk

=
aik
nk

(1)

In addition, a Laplace smoothing is used to avoid the zero
probability problem. Upon each teach/correct action, the prior
probabilities of all categories as well as the probabilities of xi
in the category k, P(xi|Ck), are updated incrementally. It is
worth to mention that Bayesian approaches are computational
efficient since the parameter of the model can be updated upon
a new data point is added. Moreover, they are memory efficient
as new training instances are used to update category models
and then forgotten immediately. We have considered a proba-
bilistic classifier to map the representation of a given object,
x∗, to a label, ft(x∗) = ŷi, through the maximum likelihood,
argmaxk P(Ck|x∗) = log P(Ck) +

∑d
i x

∗
i log P(xi|Ck).
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Fig. 7. Abstract architecture for interaction between the simulated user and the
robot: The simulated user utilizes the ”teach” action to teach the robot a new
object category; the ”ask” action is used to assess the robot’s performance
on previously learned categories, and the correct action is used to provide
corrective feedback when misclassification occurs.

V. EXPERIMENTAL RESULTS

We evaluated our approach in both simulation and real-robot
settings. Our setup consists of a Kinect camera, a Universal
Robot (UR5e) with a two fingered gripper (Robotiq 2F-140),
and a user interface. It should be noted that the pose of the
robot and the camera in the simulation are similar to the
real-robot setup (see Fig. 8 top-row). We used a set of 20
simulated objects, imported from the YCB dataset [34] and
Gazebo repository, and another set of 20 real daily-life objects
with different shapes, materials, sizes, texture, and weight (see
Fig. 8 lower-row). More specifically, the selected objects have
cubic, cylindrical, spheres, and special shapes and made out
of cartons, iron, fabric, and plastic. All the objects used in
real experiments were “novel” and were not involved in the
training procedure.

We used the same code and network in both real and
simulation experiments. Note that all tests were performed
with a PC running Ubuntu 18.04 with a 3.20 GHz Intel
Xeon(R) i7, and a Quadro P5000 NVIDIA.

Fig. 8. Our experimental setups: (top-left) simulation environment
in Gazebo; (top-right) real-robot setup. The pose of the robot and
the camera in the simulation are consistent with the real-robot setup.
(bottom-left) Objects used in simulation experiments; (bottom-right)
Objects used in real-robot experiments.

A. Multi-view Grasp Dataset Generation

In order to generate a synthetic dataset, we randomly spawn
an object in the workspace of the robot as shown in Fig. 9.
The robot then detects the object and extracts the multiple
views of the object. In order to obtain a ground truth grasp
configuration, we randomly sample grasp configurations for
each of the extracted view of the object. We then convert
each grasp configuration to 3D space and optimize the se-
lected grasp configuration using simulated annealing [35] by
iteratively updating the orientation and width of the gripper.
We compute a fitness value for the optimization process based
on three main factors: (i) the proportion of object’s points
that are between the gripper’s fingers relative to all object’s
points (coverage criteria); (ii) how stable the point is, which
is measured based on how well the normals of the fingers
overlap with the normals of the selected points between the
two fingers; and (iii) we also considered the distance of the
selected grasp point to the center of projected view. Examples
of generated grasp synthesis for different objects are depicted
in Fig. 9 (top-row).

Furthermore, to make sure that the obtained grasp con-
figuration is stable enough during manipulation phase, we
instruct the robot to place the object into the blue basket
(see Fig. 9 lower-row). To extend the size of dataset and
cover various objects with different shape and size, we formed
packed and pile of objects scenes using four to six objects
and generate grasp configurations for those scenes in addition
to generating grasp synthesis for isolated object scenario.
Using the described procedure, we generate a grasp dataset
of approximately one million positive grasp configuration and
discard those configurations that lead to a collision with the
object or the table (negative samples).

B. Ablation Study

We trained several networks with the proposed architecture
but different parameters including filter size, dropout rate,
number of units in fully connected layers, loss functions,
optimizer, and various learning rates, and batch size for 50
epochs each. We used our synthetic grasp dataset to train the
model. It should be noted that we augmented the data by
zooming, random cropping, and rotating functions to generate
approximately 5M grasp configurations. We trained the model
on 80% of data, and we kept 20% for validation. We reported
the obtained results based on the Intersection over Union (IoU)
metric. A grasp pose is considered as a valid grasp if the
intersection of the predicted grasp rectangle and the ground
truth rectangle is more than 25%, and the orientation difference
between predicted and ground truth grasp rectangles is less
than 30 degrees. We used Adam optimizer with a learning
rate of 0.001, Huber loss function (δ = 1.0), and the batch
size was set to 16. The final architecture is depicted in Fig. 5.

Furthermore, to study the effect of reconstruction loss
on performance of object grasping, we trained the network
wit and without reconstruction loss. We observed that the
network without reconstruction loss achieved slightly better
performance (89.51% vs. 89.24%). It is expected as by adding
the reconstruction loss, we force the representation to include
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Fig. 9. Multi-view grasp dataset generation: (top-row) Examples of
generated grasp synthesis for various objects; (lower-row) Sequence
of snapshots taken from one of the performed simulation experiments:
(left) we randomly place an object (e.g., juice box) in the workspace
of the robot; (center) The robot iteratively selects one of the extracted
views of the object to approach and grasp the object; (right) the
selected grasp synthesis is considered as a positive sample if the
robot could pick and place the object into the basket. We record
all positive samples and discard those configurations that lead to a
collision with the object or the table (negative samples).

information that might be redundant for the grasping task. To
encode the geometrical feature of the object for downstream
recognition task, we used the output of the encoder part of
the network, and discuss the effect of reconstruction loss on
object recognition in the next section.

C. Evaluations of Object Recognition

Two rounds of experiments were performed to evaluate the
proposed approach in offline and open-ended scenarios.

1) Offline evaluation: In this round of evaluation, a 10-fold
cross-validation protocol (train-then-test) is used to
assess the performance of the proposed approach. We used the
Restaurant Object Dataset [36], which contains 306 objects’
views organizing in 10 categories with significant intra-class
variations. Therefore, it is suitable for performing extensive
sets of experiments. Our approach has several parameters
that must be optimized to provide a good trade-off among
recognition performance, memory usage, and computation
time. The parameters are including: φ ∈ {30◦, 45◦, 60◦},
α ∈ {4, 8, . . . , 20}, β ∈ {3, 4, . . . , 7}, view_pooling ∈
{max, avg, appending}. The best results in terms of instance
accuracy, class accuracy, and average computation time were
found by running each possible permutation of the available
parameters for Orthographic, Orbit, and Sphere setups. To
measure the performance of object recognition we used both
instance accuracy (accmicro = #true predictions

#predictions ) and average
class accuracy (accmacro = 1

K

∑K
i=1 acci). Note that we

report average class accuracy to address class imbalance, since
instance accuracy is sensitive to class imbalance. In addition,
we evaluated the effect of various input modalities on object
recognition, including: depth-only, RGB-only (embedding of
ViT is used as object representation), and RGB-D (the con-
catenation of embedding layers of Grasp network and ViT is
considered as object representation). Refer to Table I for a
summary of the best results for each camera setup.

Depth-only: In this round of experiments, we fed the depth
views of the object into the encoder part of the Grasp network,
and considered the output of the embedding layer as the
feature vector. Results are reported in the depth-only part of
the Table I. By comparing all the results, we observed that the
best results obtained by the Orbit setup with 20 views, and
max pooling. We also visualized the confusion matrix for this
setup in Fig. 10. It is evident that most of the misclassification
happened between objects that were extremely similar to one
another (e.g., fork vs. spoon). This issue can be addressed
through a fine-grained object categorization [37], [38]. By
comparing all experiments, it is visible that Orbit (φ = 60◦)
and Sphere (α = 7, β = 4) setups achieved slightly better
instance and average class accuracies than Orthographic setup
(∼ 2%).

Another set of experiments was conducted with the network
without reconstruction loss to check the effect of recon-
struction loss on object recognition accuracy. Results are
depicted in Fig. 11. By comparing the obtained results, it is
visible that the reconstruction loss contributes significantly to
learning descriptive representation. In particular, in all view
setups, our network with reconstruction loss produced richer
representations that led to better performance. In the case
of Orthographic setup, both instance accuracy and average
class accuracy are significantly improved (approximately 20%
and 24%) by using reconstruction loss. Similarly, in the case
of Orbit and Sphere setups, the network with reconstruction
loss outperformed the network without reconstruction loss
concerning both instance accuracy and average class accuracy.
In addition, we observed that the performance of the network
without reconstruction loss increases as the number of views
increases. This can be due to the fact that various views may
activate different filters, and as a consequence, the obtained
representation involves diverse features of the object which
might improve the recognition performance.
RGB-only: In this round of experiments, we fed the RGB
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Fig. 11. The effect of reconstruction loss on object recognition performance
on Restaurant and Washington datasets. For a comprehensive evaluation, we
have evaluated all virtual camera setups (orthographic, orbit, and sphere).

views of the object into the ViT, and considered the output of
the global embedding layer as the representation of the object.
Results are reported in the RGB-only part of the Table I. Ex-
perimental results showed that the best recognition accuracies
achieved by Sphere camera-setup using 20 views distributed
around object as α = 5, β = 4. The second best result was
achieved by Orbit setup by considering 12 views of the object.
In particular, orbit setup achieved 0.9642 instance accuracy
and 0.9424 average class accuracy. Orthographic setup showed
slightly worse instance and average class accuracies, 0.9609
and 0.94, respectively.
RGB-D: To encode RGB-D views, we fed the best depth view
into the Grasp network, and passed the RGB view to the ViT
network. The obtained representations are then concatenated.
To form a global representation for the object, all the views of
the object are fused using a pooling function. The right part of
Table I summarizes the results for various camera setups and
RGB-D modality. By comparing all results it is clear that the
Sphere setup achieved the best recognition accuracies using
24 views. Interestingly, the orthographic setup achieved the
second best recognition accuracies and the best computation
time. In this round of experiments, orbit setup with 12 views
obtained the third place.

In the case of average computation time, the orthographic
setup outperformed orbit and sphere configurations with a
large margin (see Table II) regardless of input modality. This
result shows that the orthographic setup can be used in closed-
loop control (∼> 25Hz feedback) while orbit (∼> 5Hz
feedback) and sphere (∼> 2Hz feedback) are computationally
expensive for real-time applications. Therefore, we used the
orthographic camera setup with RGB-D input modality for
the real-robot experiments.

2) Open-ended evaluation: We adopted an open-ended
evaluation protocol that follows test-then-train
scheme [39] [40], to emulate the learning behaviour of
a robot over long periods of time. In particular, it would
be expected that the robot could be taught new categories

that are present in its surroundings. It would be corrected
on misclassifications it makes by a human user. Such
experiments might take a long time with a human user.
Therefore, we developed a simulated user to conduct
systematic, consistent, and reproducible experiments. The
simulated user can interact with the robot using teach, ask,
and correct actions. We connect the simulated user to the
largest publicly available 3D partial view object dataset [41]
that contains 51 object categories with 250, 000 views of 300
objects.

In this round of experiments, the robot will start with no
previous knowledge. The user teaches a category using three
randomly selected views. After that, the user repeatedly picks
unseen object views of the currently known categories and
tests the robot to see if it has learned the category. This is
done by asking the robot to identify new testing examples
of all previously learned categories. When the agent makes
a classification mistake, the user will provide feedback with
the correct category label. This causes the robot to adjust
its category model using the mistaken instance and also the
prior probabilities of all categories are updated. The user
estimates the recognition accuracy of the robot using a sliding
window over the last 3n iterations, where n is the number of
categories. If the classification accuracy exceeds a threshold,
τ = 0.75, a new category is introduced. If the robot can
not reach the classification threshold after 100 iterations since
the last category was taught , the user realized that the
robot is not able to learn more categories and terminates the
experiment (breakpoint). It is also possible that the robot learns
all categories before reaching the breakpoint, and hence, the
experiment is halted (reported as “lack of data” condition) [39]
[40].
Evaluation metrics: Since the order of introducing the cate-
gories may matter, we run ten experiments for each approach
and evaluate all approaches using five metrics as introduced
in [39] [40]: an average number of learned categories (ALC),
which shows how much the system is capable of learning;
the number of question/correction iterations (#QCI) needed
to learn those categories, and the average number of stored
instances per category (AIC), shows the amount of time and
memory needed for learning; Global Classification Accuracy
(GCA), representing the accuracy of agent computed based all
predictions, and the Average Protocol Accuracy (APA), which
represents the average accuracy of the agent over all sliding
windows of the protocol.
Results: We compared our approach with four state-of-the-art

TABLE I
SUMMARY OF OFFLINE EVALUATIONS FOR DIFFERENT INPUT MODALITY AND VARIOUS CAMERA SETUPS. THE BEST OF EACH

MODALITY IS HIGHLIGHTED IN BOLD, AND THE SECOND-BEST IS DENOTED BY ITALICIZED TEXT.

Camera setup Depth-only RGB-only RGB-D
Orthographic Orbit Sphere Orthographic Orbit Sphere Orthographic Orbit Sphere

#Views 3 20 28 3 12 20 3 12 24
Pooling Avg Max Max Max Max Max Max Max Max

Instance accuracy 0.9511 0.9674 0.9642 0.9609 0.9642 0.9674 0.9674 0.9511 0.9772
Avg. class accuracy 0.9366 0.9588 0.9406 0.9400 0.9424 0.9531 0.9588 0.9324 0.9611

Avg. computation time (s) 0.0167 0.1102 0.1540 0.0214 0.1574 0.2623 0.0381 0.2235 0.4470
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Fig. 12. System performance during the first simulated user experiment: (top) This graph shows the number of instances used to train the object categories’
model in orthographic, orbit, and sphere setups; (lower-left) Global classification accuracy as a function of number of learned category; (lower-right) Number
of learned categories as a function of question/correct iterations.

TABLE II
OPEN-ENDED EVALUATIONS. THE ARROW DEMONSTRATES IF BETTER

RESULTS ARE HIGHER OR LOWER FOR EACH METRIC.

Approaches #QCI↓ ALC↑ AIC↓ GCA↑ APA↑
BoW [42] 724.30 18.40 17.24 0.74 0.78

Open-Ended LDA [43] 572.10 12.50 12.43 0.73 0.79
Local-LDA [29] 872.10 32.30 11.58 0.77 0.81

GOOD [44] 1869.2 34.40 19.70 0.70 0.78
ours-Orthographic 1334.20 51.00 5.78 0.89 0.91

ours-Orbit 1329.40 51.00 5.76 0.89 0.91
ours-Sphere 1325.20 51.00 4.61 0.94 0.95

methods. The obtained results are summarized in Table II.
We also plot the performance of the proposed multi-view
approaches in the first open-ended experiment in Fig. 12. By
comparing all approaches, it is visible that sphere camera setup
outperformed orthographic and orbit configurations by a large
margin in all evaluation metrics. The same results achieved
when comparing our approach with the selected state-of-the-
art approaches. In particular, the agent with multi view setup
learned all existing categories in all experiments (ALC metric),
and the stopping condition was “lack of data”. This result
shows the potential for learning many more categories. The
robot with orthographic and orbit camera setups achieved
similar scalability by learning all 51 categories. The other se-
lected approaches, on average, learned less than 35 categories
and their performance drops aggressively when the number
of categories increases. It is also clear that the robot with
sphere setup, on average, stored fewer instances per category,
i.e., it required less than five instances per category while the
other approaches, on average, need at least 5.76 instances
per category (AIC). It should be noted that #QCI, GCA,
and APA metrics should be seen in light of the number of
learned categories. For instance, Open-Ended LDA achieved

the best #QCI, which is expected since it learned much fewer
categories than our approaches (i.e., 12.50). Hence, it can be
concluded that our approach with multi view setup could learn
all categories and outperformed all the selected approaches by
a large margin.

D. Grasp Evaluations

In this round of evaluation, we designed a pick and place
scenario in the context of a clear table task. At the beginning
of each experiment, we set the robot to a pre-defined setting,
and randomly place objects on the table. In these experiments,
the robot needs to learn, recognize, and detect the pose of the
basket as the placing pose, as well as the label and pose of
another object to be cleaned from the table. Towards this goal,
a user teaches the robot about the objects using a graphical
menu. Afterward, the robot infers a graspable pose of the target
object, picks it up, and puts it in the basket (see Fig. 1). We
performed this scenario not only to see whether the object slips
due to bad grasp or not, also to show the coupling between
grasping and recognition. We assess the performance of our
approach in three scenarios, including isolated cluttered, pile
of objects, and dense cluttered scenarios by measuring success
rate, i.e., #success

#attempts . In this round of experiments, a particular
grasp is considered a success if the object is inside the basket
at the end of the experiment.

1) Isolated cluttered scenario: Each simulated object was
tested in isolation 50 times, while each real-object was tested
5 times. Note that, to speed up the real-robot experiments, we
randomly placed four objects on the table to form a cluttered
scenario first, and then instruct the robot to clean the object
one by one (see Fig. 14 and 13). Therefore, the robot should
recognize all objects precisely, and move them into the basket.
In this round of experiments, we considered orthographic
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Fig. 13. Visualizing the best grasp configuration for 10 household objects. The green grippers show the predicted grasp configurations.

Fig. 14. The sequence of snapshots taken from one of the real-robot
experiments: we randomly place four objects in the workspace of the
robot. The robot should pick and place objects into the basket one
by one. In each iteration, the robot selects the nearest object to its
base, chooses the best view of the object to infer grasp points for
the object. To complete the task successfully, the robot executes pick
and place actions to place the object into the basket.

views to infer grasp configurations. These experiments can
therefore be used as a stand-in for assessing the impact of
view selection on grasping. We compared our approach against
five baselines, including: Grasp Pose Detection (GPD) [45]
(an analytical approach), DexNet [7], GG-CNN [8], GR-
ConvNet [11], and Morrison et al. [46]. In our experiments,
DexNet [7], GG-CNN [8], GR-ConvNet [11], and Morrison
et al. [46] have access to global projected top-down view of
the full scene, while our approach uses extracted views of the
object. The GPD method uses the partial point cloud of the
object as input. Results are summarized in Table III.

TABLE III
EVALUATION OF OBJECT GRASPING METHODS.

Method Type Success rate (%)
GPD sim 78.7 (787/1000)

GG-CNN sim 72.6 (726/1000)
Morrison et al. sim 77.1 (771/1000)

DexNet sim 79.4 (794/1000)
GR-ConvNet sim 81.4 (814/1000)

Ours (top-down) sim 80.1 (801/1000)
Ours (random) sim 52.8 (528/1000)

Our sim 91.8 (918/1000)
GPD real 81.0 (81/100)

GG-CNN real 78.0 (78/100)
Morrison et al. real 77.0 (77/100)

DexNet real 81.0 (81/100)
GR-ConvNet real 81.0 (81/100)

Ours (top-down) real 82.0 (82/100)
Ours (random) real 61.0 (61/100)

Our real 92.0 (92/100)

In the case of simulation isolated object experiments, the
proposed approach achieved a grasp success rate of 91.8%
(i.e., 918 success out of 1000 trials), and for real objects,
the success rate was 92% (92 success out of 100 attempts).
By comparing all approaches, it is clear that the proposed
approach significantly outperformed the selected approaches
in both simulation and real-robot experiments (see Table III).
More specifically, in the case of simulation experiments, the
proposed approach worked 13%, 19.2%, 14.7%, 12.4%, and
10.4% better than GPD, GGCNN, Morrison et al., DexNet,
and GR-ConvNet, respectively.

We found that the bulk of GGCNN, DexNet, and GR-
CovNet errors were mainly due to estimating the center of
the grasp point near the edge of an object. Therefore, as the
gripper closes, the object may be pushed out. It should be
emphasized that even very minor transformation errors might
exacerbate these issues and cause the robot not to be able
to grasp the target object. In contrast, since the proposed
approach computes grasp configuration in object’s reference
frame, such failures did not happen to our approach.

We also observed that the success rate for GPD, GGCNN,
Morrision et al., in simulation experiments, was less than 80%,
as they predict false positive grasp points and unsuccessfully
attempted those grasp configurations. Such predictions often
happened for small objects as it was not always possible to
infer more than one grasp synthesis for them. Other failures
were those brought on by insufficient friction, applying limited
force to the object, running into other objects, and predicting
unstable grasps synthesis.

Another interesting observation is that our approach with
top-down view performed slightly better than GGCNN, GPD,
Morrison et al., DexNet, in both simulation and real-robot
experiments. We hypothesis that such differences come from
this point that, since we placed several objects in the scene,
GGCNN and GPD could infer a tiny space between two
objects as a graspable area, leading to failures. In contrast,
our approach considered local top-down view of the object.
We also observed that, other failures were mainly happened
in grasping SodaCan, Colgate, Fork, and Toy. Investigating the
networks’ output reveals that the selected grasp point was in
an unstable area where the surrounding area was too small,
and therefore, the object slipped and fall during manipulation.
Regarding our approach with random view selection, collision
with the table, e.g. grasping a toppled soda-can from side,
was the main reason of failure. Furthermore, we noticed that
sometimes the robot was not able to find a kinematically
feasible grasp point from the randomly selected view or top-
down view.



11

Fig. 15. Object grasping in the highly cluttered scenario (> 15 objects): In this experiment, we make a pile of 15 objects in front of the robot
and instruct the robot to perform a clear table task. The robot should then detect the grasp syntheses and execute the best grasp configuration.
If the object is on the right side of the robot, the robot put the object into the right basket otherwise, the object is placed into the left basket
by the robot. This procedure is repeated until all objects get removed from the table or five consecutive failures happen.

We also observed that some of failures occurred when one
of the fingers of the gripper was tangent to the surface of
the target object, which led to pushing the object away. Other
failures were mainly due to inaccurate object’s bounding box,
collision between the object and the basket (happened for large
objects such as Pringles and JuiceBox). In the case of real-
robot experiments, in addition to mentioned points, we found
out some failures happened because of misclassification of the
target and/or basket objects. In particular, as the robot placed
more and more objects into the basket, the shape of the basket
object was changed resulting in misclassification.

Fig. 16. Qualitative results: (top-row) visualizing the top-three grasp
configurations on four simulated pile of objects; (lower-row) The
sequences of pick and place actions in two pile removal experiments.
In order to complete the task successfully, the robot should pick and
place all of the objects into the basket.

2) Pile scenario: We assess the performance of the pro-
posed object grasping approach in pile scenarios. In this round
of experiments, the robot knows in advance the pose of the
basket, and needs to infer grasp points for the pile of five
objects and put the objects into the basket one by one. An ex-
periment is continued until either all objects get removed from
the workspace, or three failures occurred consecutively. We
performed 10 real and 25 simulated pile removal experiments.
We visualized the top-three grasp predictions on four simulated
pile of objects in Fig. 16 (top-row). The sequence of pick and
place actions for two successful real experiments is shown
in Fig.16 (lower-row). Regarding the simulation experiments,
our approach could successfully removed 23 out of 25 pile
of objects achieving 0.92 pile removal. In the case of real-
robot experiments, the robot could successfully complete the
pile removal task in 9 out of 10 experiments, obtaining 0.90
pile removal. We observed that the unreachable object was
the underlying cause of the failure. In particular, when the
robot was interacting with the pile of objects, one of the
objects fell into a position that was not reachable by the
robot. As a consequence, the experiment terminated after three
consecutively failure attempts. Other reasons for failures were
applying limited force to the object, colliding with another
object, and predicting an unstable grasp.

3) Highly cluttered scenario: In this round of experiments,
we assess the performance of object grasping in highly clut-
tered scenario (> 15 objects) in the context of clear table task.
To accomplish this task successfully, the robot should detect
the grasp syntheses and execute the best grasp configuration.
If the object is on the right side of the robot, the robot uses its
right arm and put the object into the right basket; otherwise,
the object is placed into the left basket by the left arm of the
robot. This procedure is repeated until all objects get removed
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from the table or five consecutive failures happen. A sequence
snapshots showing the performance of the robot in such a
scenario is depicted in Fig. 15. It is worth to mention that,
since we calculate the grasp synthesis in the object’s reference
frame, our approach is independent of the camera pose.

In this round of evaluation, we performed 10 experiments.
The robot could successfully perform clear table task in 9 ex-
periments, and failed in one of the test. The underlying reason
was that after removing some of the objects from the table,
the spray object was situated next to the aluminum frame.
The robot then tried to grasp the spray object, but it grasped
both the object and the aluminum frame together, which
led to failure. Finally, the experiment terminated after five
consecutive failures happened. These experiments showed that
the proposed object-agnostic grasp network was able to predict
stable grasp configurations for novel objects including both
isolated and piles of objects. A video of these experiments is
available online at: https://youtu.be/n9SMpuEkOgk

VI. CONCLUSION

In this paper, we present a deep learning method to handle
object recognition and grasping simultaneously. Our approach
is especially suited for robots with limited resources. The
proposed approach allows robots to incrementally learn new
object categories and adapt to new environments by accumulat-
ing and conceptualizing experiments through interaction with
non-expert human-users. We trained the proposed network in
an end-to-end manner using a synthetic object dataset. As an
input, the network receives a depth image and generates a deep
representation encoding the geometrical feature of the object
as well as pixel-wise grasp configuration as output. We fed
the RGB views of the object into a ViT network to encode
the textural feature of the object. We then concatenated the
both RGB and depth feature vectors to form a global object
representation. The obtained representation is finally used for
open-ended object category learning and recognition through
a meta-active learning technique. To validate the performance
of our approach, we performed extensive sets of experiments
in both simulation and real-robot. Experimental results showed
that the overall object recognition and grasping performance
of the proposed approach is significantly better than the best
results obtained with the selected state-of-the-art approaches.
Furthermore, the proposed approach allows robots to robustly
interact with the environments in isolated object scenario,
cluttered scenes, and pile of objects. In the continuation of
this work, we would like to investigate the possibility of
involving affordance mask as another output of the network
for handling task-informed grasping (e.g., grasp the handle of
a knife instead of its blade).

REFERENCES

[1] J. Wang, R. Chakraborty, and X. Y. Stella, “Spatial transformer for
3d point clouds,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[2] C. Yu, J. Wang, C. Gao, G. Yu, C. Shen, and N. Sang, “Context prior
for scene segmentation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

[3] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: a large-
scale benchmark for general object grasping,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp. 11444–11453, 2020.

[4] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp. 3521–
3526, 2017.

[5] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—a survey,” IEEE Transactions on robotics, vol. 30, no. 2,
pp. 289–309, 2013.

[6] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no. 4-
5, pp. 705–724, 2015.

[7] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv preprint
arXiv:1703.09312, 2017.

[8] D. Morrison, P. Corke, and J. Leitner, “Closing the Loop for Robotic
Grasping: A Real-time, Generative Grasp Synthesis Approach,” in Proc.
of Robotics: Science and Systems (RSS), 2018.

[9] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks for
the recognition of 3D point cloud models,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 863–872, 2017.

[10] A. Kanezaki, Y. Matsushita, and Y. Nishida, “RotationNet: Joint object
categorization and pose estimation using multiviews from unsupervised
viewpoints,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5010–5019, 2018.

[11] S. Kumra, S. Joshi, and F. Sahin, “Antipodal robotic grasping using
generative residual convolutional neural network,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 9626–9633, 2020.

[12] M. Breyer, J. J. Chung, L. Ott, S. Roland, and N. Juan, “Volumetric
grasping network: Real-time 6 dof grasp detection in clutter,” in Con-
ference on Robot Learning, 2020.

[13] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational grasp
generation for object manipulation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2901–2910, 2019.

[14] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[15] A. Bendale and T. E. Boult, “Towards open set deep networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1563–1572, 2016.

[16] A. Subramanya, V. Pillai, and H. Pirsiavash, “Fooling network inter-
pretation in image classification,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2020–2029, 2019.

[17] Q. Da, Y. Yu, and Z.-H. Zhou, “Learning with augmented class by
exploiting unlabeled data,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 28, 2014.

[18] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open
set recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 36, no. 11, pp. 2317–2324, 2014.

[19] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 1912–1920, 2015.

[20] D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural net-
work for real-time object recognition,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 922–928,
IEEE, 2015.

[21] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view CNNs for object classification on 3D data,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5648–5656, 2016.

[22] B. Shi, S. Bai, Z. Zhou, and X. Bai, “Deeppano: Deep panoramic rep-
resentation for 3-d shape recognition,” IEEE Signal Processing Letters,
vol. 22, no. 12, pp. 2339–2343, 2015.

[23] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in Proceedings
of the IEEE international conference on computer vision, pp. 945–953,
2015.

[24] O. Sener and S. Savarese, “Active learning for convolutional neural
networks: A core-set approach,” arXiv preprint arXiv:1708.00489, 2017.

https://youtu.be/n9SMpuEkOgk


13

[25] U. Aggarwal, A. Popescu, and C. Hudelot, “Active learning for imbal-
anced datasets,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), March 2020.

[26] Y. Siddiqui, J. Valentin, and M. Niessner, “Viewal: Active learning with
viewpoint entropy for semantic segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[27] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data,” in International Conference on Machine Learning,
pp. 1183–1192, PMLR, 2017.

[28] S. H. o. Kasaei, “OrthographicNet: A deep transfer learning approach
for 3D object recognition in open-ended domains,” IEEE/ASME Trans-
actions on Mechatronics, pp. 1–1, 2020.
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in open-ended object recognition without explicit context information,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1–7, IEEE, 2018.

[41] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view RGB-D object dataset,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on, pp. 1817–1824, IEEE, 2011.

[42] S. H. Kasaei, M. Oliveira, G. H. Lim, L. S. Lopes, and A. M. Tomé,
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