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Abstract

Magycal Interactive is a software company that has produced a significant impact in

the Portuguese television sector. Magycal is Magycal Interactive’s cloud based server-side

framework that was developed to standardize common services (chats, polls, authentica-

tion) provided by applications such as Viva Ronaldo, Secret Story e SPORT TV Digital

Hub.

As popularity and success of each application increases, Magycal becomes more tech-

nically outdated. Its monolithic architecture, which previously allowed for easy devel-

opment is becoming a development bottleneck. Scaling the server is increasing in cost

as the platform grows, and developing updates and new features is more difficult since

services are becoming more tightly coupled with each release.

In this work, we propose an architectural shift for Magycal where we decouple services

for better scalability, development and deployment. After a study of existing architectural

options, we have concluded that the most suitable candidate architecture that meets

the demands of Magycal is the microservices architecture. To test our hypothesis and

determine the feasibility of the architectural change, we have selected a service of Magycal

that was implemented following a microservice-oriented design.

Our implementation was validated via API calls to ensure the modifications main-

tained correct behavior of the framework. The new service had its implementation bench-

marked and compared to the corresponded Magycal existing service. We concluded that

the changes to Magycal yield a more robust framework with reduced costs of maintaining,

development and deployment.

Keywords: cloud, monolithic applications, software architectures, microservices
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Resumo

A Magycal Interactive é uma empresa de software que produz um impacto significa-

tivo no setor televisivo português. Magycal é a plataforma servidor da empresa na cloud
desenvolvida para padronizar serviços comuns (canais de conversa, votações, autenti-

cação) fornecidos por aplicações como Viva Ronaldo, Secret Story e SPORT TV Digital

Hub.

À medida que a popularidade e o sucesso de cada aplicação aumenta, o Magycal torna-

se tecnicamente mais desatualizado. A sua arquitetura monolítica, que anteriormente

permitia desenvolvimento fácil, torna-se um problema. O custo de escalabilidade do

servidor está a aumentar à medida que a plataforma cresce, e o desenvolvimento de

atualizações e novos recursos é mais difícil, pois os serviços tornam-se mais fortemente

acoplados a cada nova versão.

Neste trabalho, propomos uma mudança de arquitetura para o Magycal, onde disso-

ciamos os serviços para melhor escalabilidade, desenvolvimento e deployment. Após um

estudo das opções arquiteturais existentes, concluímos que a arquitetura candidata mais

adequada às necessidades do Magycal é a arquitetura de microserviços. Para testar nossa

hipótese e determinar a viabilidade da mudança arquitetural, selecionamos um serviço

do Magycal que foi implementados seguindo um design orientado a microsserviços.

A nossa implementação foi validada com chamadas API para garantir que as modi-

ficações mantiveram o comportamento correto da estrutura. O novo serviço teve a sua

implementação medida e comparadas ao serviço existente no Magycal. Foi concluído que

as mudanças no Magycal produzem uma estrutura mais robusta, com custos reduzidos

de manutenção, desenvolvimento e implementação.

Palavras-chave: cloud, aplicações monolíticas, arquiteturas de software, microserviços
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1
Introduction

The journey of a thousand miles begins with one step. (Lao Tzu)

The thesis is a result of the cooperation between Faculdade de Ciências e Tecnologia da
Universidade Nova de Lisboa and the company Magycal Interactive.

This chapter introduces the context in which Magycal Interactive exists in the Por-

tuguese software industry and motivates the problem this thesis aim to solve as a result

of limitations in its server-side framework.

1.1 Context

Magycal Interactive is a growing company in the software industry. The company’s main

focus is the development of application aiming to produce significant impact in the Por-

tuguese television sector. The company has established multiple successful partnerships

to build applications such as Viva Ronaldo, Secret Story and SPORT TV Digital Hub.[44].

1.1.1 Business Context

“We are revolutionising the way people connect and interact with televi-

sion shows and live events.”

Magycal Interactive identified that television has evolved, and that broadcasts can and

should be customized to each spectator. They envisioned the replacement of the “same-

content-for-everyone” broadcast paradigm of old with new ways of watching, interacting

and social sharing. The first screen, term coined for identifying the broadcasting device,

can be augmented with a second screen. This second screen, usually an application in a

mobile device, allows users to interact in real-time with broadcasts such as a soccer game

or a TV show.

1



CHAPTER 1. INTRODUCTION

Viva Ronaldo [29] is an example of a second screen application. It was built around

the celebrity Cristiano Ronaldo providing a unique entertainment, gaming and social

following experience for his fans. It had a News Feed that integrated all of Ronaldo’s

social media activity and top fans’ posts, a Play section where fans could enter their

bets for the next match, and thematic events so fans could share photos and videos sup-

porting Ronaldo. Viva Ronaldo featured a second screen experience during Cristiano’s

matches, allowing fans to answer real-time polls, trivia questions, key moments about

what would happen next, and even predict that a goal was about to happen, all together

with thousands of other fans.

1.1.2 Magycal

“Thanks to Magycal, our world-class, fully scalable platform, we are cre-

ating a new paradigm of fan engagement to take your TV Show or Live Event

to the next level and generate extra revenue streams along the way. We craft

and deliver extraordinary second screen and social networking gamified ap-

plications to emotionally connect properties with massive target audiences of

fans and followers, powered by Magycal.”

Magycal (a portmanteau of the word magical + Generation Y, also known as the millen-

nial generation) is the cloud-based, server-side platform used by all Magycal Interactive’s

developed applications. It came to be during the development of the Viva Ronaldo appli-

cation (2012-2014). The idea was to group several services so that they could be reused

in multiple applications. This way, each new development could be more focused on

specific content and interaction. Also, it would reduce costs and produce added value for

the involved parties.

Before Magycal, each application required its own set of services to be developed from

ground up. Some of these services (e.g. authentication, social chats) would be duplicated

from other applications. Although feasible, this model increased costs, time for delivery

and chances of errors. A common set of services was identified and bundled together to

create the first version of Magycal. As new applications were being developed, Magycal

continued to be updated and upgraded.

Magycal is currently deployed on the cloud and subdivided into areas and modules.
The areas are called Analytics, User Experience+ (UX+) and User Interaction (UI). The

Analytics area contains services related to gathering data and personalizing user content

for a customized experience. The UX+ area provides extra functionality to engage users

and keep them connected as long as possible. The UI area is responsible for adding real-

time interaction between all users. Some of the modules that are relevant for the work

are depicted in the Figure 1.1. Others are omitted for confidentiality reasons.

The modules of the platform are pieced together into a single code base that provides

multiple features through a monolithic architecture. Figure 1.2 depicts a simplified

example of how Magycal interacts with some well known actors:

2



1.1. CONTEXT

Figure 1.1: Set of Magycal Modules

Stream Broadcasts a transmission to Tv and Magycal actors such as a soccer match or a

concert;

Tv Presents the Viewer with unaltered data from Stream provider;

Viewer Interacts with both the broadcast from the Tv and content from the App;

App Presents enhanced content based on the Tv’s current broadcast and Magycal’s pro-

cessing of the current broadcast;

Magycal Process Stream and send second screen content such as quizzes or a call to

action to the App.

The Stream actor starts the flow by broadcasting some content to Magycal(1a) and

TV(1b) actors. The Tv presents the content to the Viewer as it is ending one of the

alternatives flow(2b). Magycal distributes the stream(2a) so it can be processed by the

internal services independently to generate events(3a). Depending on the broadcast

content, some services can be more important than others. For example, during a soccer

match, several quizzes can request the Poll service while the Chat service is in standby

mode. All events generated by Magycal are funneled to the App(4a,5a) which is the

medium that allows Magycal to interact with the Viewer(6a,7a). Interactions can be both

ways since Magycal also feeds on data input by Viewers(8a,9a) during a broadcast to

create more events such as answers to quizzes and in-app messages.

Figure 1.2: Example of Magycal Flow

Stream

Video 
Analytics

Other 
Services

Magycal

In

Out

1b

1a

8a

5a

2b6a

7a

Poll

2a

4a

3a

9a

Magycal is a scalable plataform with core services that can be used by new applica-

tions. Magycal has two axis for scaling: vertical and horizontal. Figure 1.3 is a bird’s

3



CHAPTER 1. INTRODUCTION

eye view example of the application flow under heavy load based on the flow depicted

in figure 1.2. The vertical scaling axis is not represented in the figure but is a limited

resource. The represented horizontal scaling axis is used to extend even further Magycal’s

reach whenever the vertical scaling is not sufficient for the current application load.

Figure 1.2 shows how services are trapped under a single structure while figure 1.3

shows the costly horizontal scaling of the architecture.

Figure 1.3: Magycal Scale

Stream

Magycal Magycal Magycal

While the cloud has the potential to dynamize software development, deployment

and execution, Magycal’s monolithic architecture acts as a bottleneck. The key limitations

of Magycal are:

Wasteful Scaling Current scaling Magycal requires that all of its source code to be repli-

cated. All services are copied whenever a popular service X requires more resources.

As the platform grows, this can lead to waste and increased costs.

Single Point of Failure As services gain more and more popularity, chances for failure

increase. In a monolithic architecture such as that of Magycal when an failure

occurs it can disrupt the whole platform.

Limited Modularity / Extensibility Upgrading existing services and extending with new

features can be quite challenging in a monolithic application. Components can be

coupled together which makes difficult for testing and debugging. This increases

the time of development, chances of errors, and therefore costs.

Rigid Deployability Magycal is comprised of many modules and services. Regular up-

dates are common to most of them. Deployment of those updates requires the entire

platform to be halted for a period of time generating unstable quality of service.

These issues are becoming more relevant as new partnerships are established and

projects are created, relying on the Magycal platform. Mitigating these problems would

have a significant positive effect in the companies’ growth.

4



1.2. ACCOMPLISHED WORK

1.2 Accomplished Work

Magycal has undoubtedly improved the quality of products delivered by Magycal Inter-

active. However, as discussed in section 1.1.2, we have identified paths for improvement

that need to be addressed. From the possible improvements, reducing the scaling cost of

the framework was decided to be the target of the research. We claim it to be possible

based on similar success cases such as Netflix, Amazon and Uber [34].

Magycal is a fully fledged platform deployed to assist Magycal Interactive’s appli-

cations. New concepts and implementation should not interfere with any working de-

ployment so we port a version of Magycal for testing purposes only. This copy of the

framework had some of its components migrated to a new machine on Amazon. Among

the components, we identify the long term database, the cache database, server software

and the source code itself.

We have analyzed other architectural designs in chapter 2 that take more advan-

tage from the cloud’s capabilities[50] to reorganize the framework current monolithic

architecture that is hindering Magycal Interactive’s evolution. This new design focus

on decoupling services. Independent services that distribute the single-point of failure

problem creating a more resilient framework and minimizing overall instability from

errors to users. Services can scale independently based on popularity, development is

more efficient because there is less interference from outside services, and deployments

are divided for easier and faster upgrades.

Since full development of independent services for the entire framework during this

thesis was not a realistic objective given the size of the platform, instead, we focused

on a proof of concept to demonstrate those described advantages. With this in mind, a

chat service was created using the microservice architecture design. This chat service

has the same components of Magycal so it can mimic the work flow for a more accurate

comparison.

Benchmark was performed using the Vegeta tool[48] to compare both implementa-

tions. Results of the benchmark are discussed in chapters 3 and 5 to support the hy-

pothesis stated before that it was possible to reduce cost of the Magycal framework via

implementation of microservices.

1.3 Document Layout

This chapter introduced Magycal Interactive’s Magycal framework and its opportunities

for growth. Chapter 2 presents relevant technologies and concepts for this research such

as the cloud and software architectures. Chapter 3 depicts a solution, an evaluation

method for this proposed solution, and a comparison of results between the new imple-

mentation and the original Magycal platform. Chapter 5 summarizes the project and

depicts future paths for researching.

5
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2
State of the art

Keep going. Everything you need will come to you at the perfect time. [35]

This chapter presents the technology relevant for this work. It encompasses the cloud,

cloud providers and software architectures. We focus the study on different architectures

to find out which ones best suit Magycal.

2.1 The Cloud

The cloud is an abstraction for enabling universal, on-demand and convenient network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services), It can be rapidly provisioned and released with minimal

management effort or service provider interaction[32], which allows companies to deploy

enterprise applications that (if they have been well designed) can scale their computing

resources on demand[14].

2.1.1 Cloud Services

The main abstractions of cloud computing are Infrastructure as a Service (IaaS), Platform

as a Services (PaaS), and Software as a Service (SaaS)m illustrated in Figure 2.1. In

IaaS, a cloud provider offers infrastructure such as servers, computing resources and

storage. Resources scale as necessary, companies only pay what they consume and the

infrastructure cost is outsourced to a provider. In PaaS, a platform is built on top of raw

components from infrastructure to provide consumers a way to tweak cloud components

more easily. In SaaS, applications are provided for the use of consumers.

These abstractions can also be viewed as a layered architecture where services of a

higher layer can be composed from services of the underlying layer.

7



CHAPTER 2. STATE OF THE ART

(a) IaaS (b) PaaS (c) SaaS

Figure 2.1: Pictures of Service Models

Figure 2.2: Types of cloud based on deployment models

2.1.2 Deployments of The Cloud

In addition to the abstractions referenced above, the cloud can be also divided among

types of deployment. A summary of types of cloud based of deployment models can be

viewed in Figure 2.2.

Public Cloud Deployment. Public clouds offer several key benefits to service providers,

including no initial capital investment on infrastructure and shifting of risks to

infrastructure providers. It is a cloud made available in a pay-as-you-go manner

to the general public. Public clouds are location independent, reliable and highly

scalable, but less secure and not customizable[49].

Private Cloud Deployment. Private clouds are setup and run for a particular enterprise.

It has privacy and security. Also, it has limited scalability and are restricted to an

area.

Community Cloud Deployment. Community clouds compose infrastructure shared among

8



2.2. SOFTWARE ARCHITECTURE

different organizations with similar activities. Typical examples are universities us-

ing it for learning and research.

Hybrid Cloud Deployment. Hybrid clouds are a combination of public and private cloud

models that tries to address the limitations of each approach. Core activities are

hosted on a private cloud, while less essential services are outsourced to a public

cloud.

As this research is not focused in the analysis of cloud or any of it’s features we just

noted a few concepts that are useful for understanding the basics of the cloud.

2.1.3 Where does Magycal fit?

Magycal is deployed to the public cloud AWS EC2 machine[33] as stated before. It can be

classified as PaaS since it provides the middleware services for the applications developed

by Magycal Interactive.

2.2 Software Architecture

Software Architecture (SA) appeared to tackle a real problem for software development.

As complexity grew, design and representation was needed for large-scale structures of

software systems [30, 43]. The normal use of SA is as a blueprint of the system during

development, for maintenance and reuse. SA can also be used to analyze and validate

architectural choices complementing traditional code-level analysis techniques. Model-

driven techniques and architectural programming languages were already introduced to

guide the design and coding process from an architectural artifact [22, 24]. In summary,

SA specifications are used for many purposes [11, 12, 36]: as a documentation artifact,

for analysis, and to guide the design and coding process. There is not a single correct

architecture for all since each one has pros and cons that need to be considered.

Mark Richards describes in his book [42] the five architectures commonly used for

developing software systems. He scores them against some concepts discussed in Section

2.2.5.1 so new architects can choose the best architecture that fits their needs.

2.2.1 Layered Architecture

The layered architecture is the most commonly implemented architecture because compa-

nies usually divide development into layers (presentation, business, persistence, database).

An example can be observed in Figure 2.3 with the four usual number of layers. Each

layer has a specific role to perform in the application flow and provides the next higher

layer with services. The presentation layer is the front end and handles all user interac-

tion. The business layer contains all operations from application logic to be performed

on top of user requests. The persistence layer retrieve and provide data to the underling

database layer to store.

9



CHAPTER 2. STATE OF THE ART

Figure 2.3: Layered Architecture Example

The application flow is a specific one with this pattern so layer isolation can be main-

tained. For example, a request originating from the presentation layer must first go

through the business layer and then to the persistence layer before finally reaching the

database layer. This leads to an architecture sinkhole anti-pattern where requests must

go through all layers without performing any real operations. A workaround is intro-

ducing an open layer concept where the open layer may be skipped from the normal

flow of application requests. This option increases layer coupling because changes into

this open layer requires modification of all layers related to it breaking the isolation rule.

This pattern usually leads to monolithic applications where one alteration implies the

redeployment of the whole application.

The layered architecture pattern is a widely know pattern that reflects organization

division is and not difficult to implement. Testing layers is a very easy task because

other layers of the system can be mocked reducing tests dependencies. To maintain

isolation, the application flow must be enforced. This leads to great inefficiency so high

performance applications should not be developed under this pattern. Components are

coupled within each layer which requires scheduled deployments during offline hours to

minimize issues. This reflects a slow release of updates.

Magycal is mostly implemented with this layered architecture design. Our goals align

with mitigating the downfalls of this pattern as described.

2.2.2 Event Driven Architecture

Event driven architecture is an asynchronous distributed systems pattern used for highly

scalable applications. It is composed of decoupled, single-process components that re-

ceive and process events. This architecture can be subdivided into two classes based on

the orchestration needs.
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Figure 2.4: Mediator Topology

2.2.2.1 Mediator Topology

The mediator topology, as shown in Figure 2.4, is composed of event queues, an event

mediator, event channels, and event processors. The event queue stores an event for the

mediator to process asynchronously. Then, the mediator redirects to the correct channel

the event without executing any business logic. Each event channel is listened by multiple

event processors that are self contained, independent and decoupled to perform specific

tasks. When an event arrives, a processor processes it, executes the appropriate logic

and returns the result to the mediator. If processing is necessary, the mediator launches

the received event again to the appropriate channel. If some steps can be performed

asynchronously, the mediator inserts events into multiple event channels at the same

time.

2.2.2.2 Broker Topology

The broker topology is simpler than the mediator topology presented before as can be

observed in Figure 2.5. The components are only event channels and event processors.

The event first arrives at a customer specific processor which handles some business

logic and, if nothing else is required, returns the requested data to the client. If more

processing is necessary, the customer processor generates an event and places it into the

right event channel for the next processor to pick up. The orchestration is replaced this

way by a series of chained events. Similar to the mediator topology, an event can trigger

multiple processors at the same time in a parallel asynchronous way.
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Figure 2.5: Broker Topology

The event driven architecture is complex to implement and maintain due to it’s asyn-

chronous distributed nature. It is required of the developer to address various distributed

systems issues on component level such as component failure and lack of responsiveness.

Also, there is no concept of atomic transactions so the granularity of each process must

be defined accordingly to each operation. Although unit testing is feasible with some

component that generate events, asynchronous behavior difficults the process. The most

difficult aspect is maintaining event-processor contracts so it is recommended to settle on

a standard data format and establish a contract versioning policy from the start.

All this overhead comes with advantages: components are decoupled enough that

new versions of each processor can be rapidly deployed not requiring a strict schedule.

Each component can scale independently as necessary. Queuing and dequeuing can have

it’s cost, but asynchronous behavior obtained from the design outweighs this cost and

supports high performance application.

2.2.3 Microkernel Architecture

This architecture is also called plug-in architecture pattern because it is composed of

a core system for basic functions and plug-ins to add on top of that with new features.

Plug-ins register into the core system as illustrated in Figure 2.6 creating a single piece

of software. Business logic is divided between all components where the core system

provides more basic functions and redirect previously registered advanced functions to

the correct plug-in to execute. It is possible for third parties to develop and integrate

software in this pattern if a contract, adapters and versioning between the core system

and plug-ins is established.

The microkernel architecture is extensible and flexible because of its plug-ins inde-

pendence(loosely coupled) allowing for changes to be integrated into the system easily.

Deployment can be performed at run-time because implementation normally increments
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Figure 2.6: Microkernel

existing features minimizing downtime. Testing is easy because components functions

can be mocked to the core system to demonstrate a prototype of new feature. High perfor-

mance can be achieved if extra unused plug-ins are deactivated. The architecture was not

developed with scalability in mind. It is possible to scale each plug-in, although not very

efficiently, but the core system will always remain the same. Development requires many

design options such as contracts at early stages when few plug-ins exist which makes

hard to predict what might be needed and prepare a core system for that.

2.2.4 Microservices Architecture

This pattern was created to solve problems present in monolithic applications using the

layered pattern and distributed applications developed through a service-oriented archi-

tecture pattern. Creating a pipeline for development and deployment in a monolithic

application can be tricky because all modules are coupled together. Microservices de-

couple some of the modules to create service components with different granularities.

Distributed applications can be daunting and over complex so microservices remove or-

chestration and simplify connectivity and access to services. The result is depicted in

Figure 2.7. There are three topologies for microservices: API REST-based, REST-based

and centralized messaging.

Figure 2.7: Microservices
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2.2.4.1 API REST-based Topology

The API REST-based topology is named after its REST-based interface implemented with

separately deployed web-based API layer for client requests. Services components are

very fine-grained (one or two modules) for specific tasks, independent from the rest of

services.

2.2.4.2 REST-based Topology

The REST-based topology is slightly different from the API REST-based topology. Instead

of a web-based API, this topology has an interface layer that returns rendered layouts.

Also, components tend to be larger, more coarse-grained, and represent a small portion

of the overall business application rather than fine-grained, single-action services.

2.2.4.3 Centralized Messaging Topology

The centralized messaging topology is similar to REST-based topology because it has a

layer for returning rendered requests to clients. The difference lies in using a lightweight

centralized message broker instead REST-based calls to access services. This broker does

not perform any orchestration, transformation or processing. The design allows for ad-

vanced queuing mechanisms, asynchronous messaging, monitoring, error handling, and

better overall load balancing and scalability. The single point of failure and architectural

bottleneck issues usually associated with a centralized broker are addressed through

broker clustering and broker federation (splitting a single broker instance into multiple

broker instances to divide the message throughput load based on functional areas of the

system).

The biggest challenge presented by this pattern is defining the correct granularity

of components. If the granularity is too coarse-grained, the pattern does not bring ad-

vantages since it becomes to similar to a monolith, on the other hand, with an overly

fine-grained leads to orchestration requirements that turn microservices pattern into

a soa pattern. If done correctly, it solves many of the common issues found in both

monolithic applications as well as service-oriented architectures and produces a more

robust application, provides better scalability, and can more easily support continuous

integration and delivery [16].

The microservices architecture have highly independent decoupled services which

allows hot deployments. Problems that occur from hot deployment are usually small and

localized not interfering with the overall experience. Testing can be performed easily

because there are few services dependency. Development can be sped up by dividing

the application into domains and assigning each one to a different team. However, high

performance applications are not suited for this distributed pattern because of the com-

munication overhead.
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Figure 2.8: Space Based

2.2.5 Space-based Architecture

The space-based architecture, also referred as cloud architecture pattern, was developed

to address and solve scalability and concurrency issues. This is accomplishing by replac-

ing a central database restriction for replicated in-memory data grids. Each grid is located

inside a processing unit that can scale endlessly. These are connected by the virtualized

middleware as shown in Figure 2.8.

Processing units usually contain application modules, the already mentioned in-

memory data grid, an optional asynchronous persistent store for failover, and a repli-

cation engine used by the virtualized middleware to replicate data changes made by one

processing unit to other active processing units.

The middleware is responsible for handling user interaction, orchestration, synchro-

nization and scalability. It has a maximum of four components: a message grid to allocate

incoming request into units, a data grid (most important piece of the pattern) responsible

for duplication in-memory data between active processing units in microseconds, pro-

cess grid that may or may not exist depending on application division, and deployment

manager that keeps track of load conditions to auto scale the number of processing units.

The space-based architecture is a complex and expensive pattern not recommended

for large scale relational databases with large amount of data. Components do not have

to reside on cloud environments, but they were built with this in mind and have imple-

mentations that easily support cloud deployment. It is highly scalable because there is no

central database to bottleneck and agile because each processing unit can be brought and

down quickly. It is not well suited for unit testing or benchmarking because replicating

high loads can be expensive. Development using in-memory and caching mechanisms is

complex most likely because of the lack of familiarity with required tools for that purpose

and the special care needed so new code does not impact performance and scalability.

2.2.5.1 Comparison

Mark Richards defines in his book [42] the vectors for comparing those described archi-

tectures.
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Figure 2.9: Pattern Analysis Summary

Overall Agility is how a pattern supports rapid modifications of the environment.

Deployment is how easy it is for any changes to be incorporated into the running appli-

cation.

Testability is how easy it is to build and run tests for that architecture.

Performance is how the pattern supports high performance applications.

Scalability is how does a component of the architecture scale, if possible, and how ex-

pensive that is.

Development is how complex is it to maintain, debug and build new features for that

architecture.

We have graded each architecture with these vectors according to the previous discus-

sion, but here we present a side by side comparison depicted in the Figure 2.9. It is easy to

observe from the figure that Magycal benefits most from implementing the microservice

architecure. The layered architecture is excluded because we are trying to move away

from it. The event driven architecture is the extreme opposite of what Magycal is right

now and it would mean taking Magycal all apart and reconstructing from ground up

which we do not think it is possible because of some coupled modules. The microkernel

architecture has limited potential to scale up so it must be discarded. The space-based

architecture can not be adopted because we have a large relational database that would

be very costly to maintain using this pattern. The microservices architecture pattern is

a compromise between layered and event-driven architectures, a common ground that

could work for Magycal. The evaluation above also points into that direction. Observing

the microservices column, our objectives defined in the introduction (better developmen-

t/deployment and scabality) is possible. In fact, the only negative side of the architecture
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does not interfere with Magycal at all because we are not building high performance

applications.

2.3 Microservices

The microservice architecture has been roughly described in the previous section, but

here is presented some further comparison to the monolith architecture. Bellow are

the advantages and constraints the microservice architecture has and how it can affect

Magycal. Furthermore, there is also some remarks about the migration process required

from the monolith architecture into the microservice architecture.

2.3.1 Advantages over Monolith

Applications with a monolithic structure need to be scaled horizontally and are limited to

the implementation language used initially [17], resources are wasted unnecessarily due

to the overall replication of the application and any complexity in the existing codebase

is also replicated. On the other hand, microservices can be individually scaled up and

down within their architecture [45] and a further point that underlines the technical

independence of microservices is the fact that the programming language to be used can

also be selected for each service in accordance to individual requirements [9].

The lack of agility of monolithic architectures can potentially slow down the entire

further development of existing business models or the introduction of new ones. One

cause is the ability to implement changed or new requirements, since these activities are

increasingly complex to manage and development capacities are therefore minimized by

the excessive time for implementation required [26].

In monolithic structures, the work of various teams on the same codebase results in

large dependencies [17].Conversely, microservices are characterized by the possibility

of clearly defining responsibilities with regard to the entire software development cycle,

although microservices may lead to more communication overhead if multiple services

use a specific library or call a generic service.

Due to the strong interdependencies, the failure of part of a monolithic application can

lead to a cascade and thus to the total failure of a system. In microservice architectures,

targeted safety mechanisms can be used to avoid such complete failures [26].

2.3.2 Drawbacks of the Architecture

Microservices also present drawbacks that must be accounted for. Microsoft pointed out

some of them [18].

Distributed application adds complexity for developers when they are designing and

building the services. Developers must implement inter-service communication

17



CHAPTER 2. STATE OF THE ART

which adds complexity for testing and exception handling. It also adds latency to

the system.

Deployment complexity from dozens of microservices that need high scalability. An

orchestrator or scheduler can mitigate that complexity, otherwise that additional

complexity can require far more development efforts than the business application

itself.

Atomic transactions between multiple microservices usually are not possible. Eventual

consistency between multiple microservices must be embraced.

Increased global resource needs when you replace a monolithic application with a mi-

croservices approach. The amount of initial global resources needed by the new

microservice-based application will be larger than the infrastructure needs of the

original monolithic application. This approach is because the higher degree of gran-

ularity and distributed services requires more global resources. However, given the

low cost of resources in general and the benefit of being able to scale out certain

areas of the application compared to long-term costs when evolving monolithic

applications, the increased use of resources is usually a good tradeoff for large,

long-term applications.

Partitioning the microservices is another challenge because it is necessary to decide how

to partition an end-to-end application into multiple microservices. One approach is

to identify areas of the application that are decoupled from the other areas and that

have a low number of hard dependencies. In many cases, this approach is aligned

to partitioning services by use case.

2.3.3 From Monolith into Microservice

In the past, replacing a monolithic application was often not considered due to the effort

involved and the technical capabilities at hand [13, 21].The introduction of microservices

changed this perspective, allowing monolith application to be tackled in many little steps

by splitting up all its functions and complexities into microservices with fast results

[20, 27, 47].Agile methods and new company organization were developed to reflect this

change in architectural design. Utilizing the advantage of being individually deployable,

companies can meet the requirements of speed and results in the Digital Transformation

with Microservices easier [13, 38].

However, many challenges are faced when moving from a monolith architecture into

a microservice architecture. In a monolithic application, for example, the graphical user

interface and the business logic are typically interdependent, something which must be

considered while designing and implementing the microservice architecture. A common

approach to deal with this is refactoring supported by tests [13, 26, 46].

18



2.3. MICROSERVICES

Migration from monolith applications into microservices can either be a one step

migration, also called big bang migration, where all components from the monolith ap-

plication are replaced by microservices equivalents in a single step or it can be a multiple

step migration where microservices components gradually replace monolith business

logic [28].

When done right, this approach can yield a resilient, scalable and maintainable dis-

tributed application while eliminating many of the disadvantages of monolith appli-

cations. Due to the polyglotism characteristic of microservices, experienced and long-

established software developers in an company can still be integrated in the shift towards

a modern architecture [10, 27], without the need to learn new programming languages.
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Solution

Everything you can imagine is real. (Pablo Picasso)

In this chapter we describe the porting of Magycal platform into a testing environment

on Amazon [1], we introduce and validate the chat service used a case study for the project,

and detail the implementation of a chat service also uploaded to Amazon.

3.1 Context

It is important to reiterate that the main goal of this work is to reduce costs of the Magycal

framework. More specifically, a microservice architecture design is attempted to reduce

scaling costs so each individual service can scale independently, based on client demand.

The major drawback from the microservice pattern is an increased complexity of

development because of its distributed nature. The case study selected for testing is an

independent service that does not suffer from this communication overhead, but in future

tests for different services the communication overhead must be accounted for.

All implementation developed during this research considered only free / trial tools

provided by Amazon. Choosing Amazon tools over other options was a no-brainer be-

cause Magycal is currently deployed on Amazon servers. This decision reduced the

learning curve since the working tools were familiar. Also, regarding the necessary tech-

nologies, other providers should have similar tools available with different names and

management only.

3.2 Magycal

We explain in this section why the migration process was necessary, how the migration

process was executed and a validation of the migration process. Section 3.2.1 describes

21



CHAPTER 3. SOLUTION

the migration process for Magycal’s macro components. Section 3.2.2 describes the chat

service of the migrated Magycal framework. A few challenges hindered some progress of

the process and they are explained in Section 3.2.3.

3.2.1 Amazon Resources

A version of the current platform was migrated to Amazon servers so changes and testing

would not interfere with live projects. Also, so testing could be performed under a con-

trolled environment. This migration process had three major steps: resource allocation on

Amazon, configuration of components, and validation of each component’s configuration.

Sections 3.2.1.1 and 3.2.1.2 depicts these steps for each necessary resource on Amazon.

3.2.1.1 Database

The database set up for testing was the free tier database tool from Amazon [7]. Magycal

has a centralized relational database to support long term storage so only one database

instance was required.

Configuration of the database entailed creating a user with read and write permissions,

and uploading staging data to emulate a working environment.

Validation was performed by manually opening a connection to the database and

placing queries to produce results.

3.2.1.2 EC2

Magycal was uploaded to an EC2 machine on Amazon[3]. This machine runs a Ubuntu

18.04 LTS version with the apt package manager used to install all the requirements of

the framework described below.

Nginx is the server engine responsible for controlling network traffic[37]. Nginx configu-

ration files from the working platform were imported and reused for setting up the

new environment. Adjustments to fields such as port and server name configuration

were necessary.

Php is the server side language for processing requests[39]. Php dependencies of Magy-

cal are managed with composer[15]. Default configurations were used for php and

its dependencies.

Redis[40] is the memory database used as cache. Default configuration files were ad-

justed to work with the Magycal.

Validation of these components was necessary to ensure Magycal was installed prop-

erly. The Php and Nginx components were easily validated by a default strategy used

when configuring such environments. This strategy required the creation of an informa-

tion php file on the root of the project and then to access it via a browser. Php information
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retrieved from the server indicated that both Php and Nginx were properly configured.

In addition, this file also described Php extra libraries installed for further validation.

The Redis component required to send an API call to a service of Magycal such as the

chat described in Section 3.2.2. Then, it was necessary to connect to the Redis component,

retrieve saved information and validate.

3.2.2 Chat service

After porting Magycal to Amazon, an array of services become available. Some of these

services are ready for use as soon as the Magycal is migrated and configured as described

in Section 3.2.1 because of their simple logic and/or lack of further configuration. In fact,

for the chat service, all that was required was an existing community that already exists

thanks to all staging data uploaded to the database from Section 3.2.1.1.

All interaction to the chat service is performed via API calls and, since the chat service

is the case of study for the project, its endpoints are exposed below for validation and

benchmarking.

GET /message/chat/id requests all messages from a chat identified by id.

POST /message/chat/id writes a message into a chat identified by id after having an

authenticated user.

The chat service has messages cached with Redis. This feature was used for validation

of the Redis component during migration explained in Section 3.2.1.2. This feature was

also considered for the microservice chat version described in Section 3.3 so testing could

have less interference.

From this description, one might assume that the chat service is independent from

other services of Magycal. Nonetheless, the chat service shares resources with all other

configured services even though they are not actively being called and that is evident

in Chapter 4. Additionally, during this work, simultaneous service execution was not

simulated because of the limited scaling resources used on Amazon.

3.2.2.1 API Validation

After Magycal was ported to Amazon, an API validation was required before performing

any benchmark.

Figure 3.1a shows two test calls to Magycal’s POST and GET chat API described in

3.2.2. The POST request writes a message to a community that can be retrieved via the

GET endpoint. Figure 3.1b shows the status of the database before the POST is executed.

The last message of the chat had the "hello, everyone! I’m here!" body. Once the POST call

is successful and a GET is performed, it can be verified that a new message with the body

"I’m still here." was placed on top of the previous message from figure 3.1c. GET data
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is retrieved in JSON(figure 3.1a) and the visualized with an online JSON parser tool[25]

(figures 3.1b and 3.1c).

(a) Terminal Requests (b) JSON status before POST (c) JSON status after POST

Figure 3.1: Validation of Magycal Chat API

3.2.3 Challenges and Remarks

We now summarize the problems and challenges faced during the porting of Magycal to

Amazon. Section 3.2.3.1 describes difficulties faced during porting and Section 3.2.3.2

describes an alternative postponed for future development.

3.2.3.1 Porting Challenges

Problems and challenges were faced during porting and configuration of Magycal. Some

of them were from our own making (see Section 3.2.3.2), but most of them had as its

root cause obfuscated and coupled code and configurations that required large amounts

of time to debug and set properly. Although the case of study was the chat service,

requirements from other services had to be installed and configured as well for Magycal

to work.

This challenge is one of the reasons this project is in place. Removing obfuscated and

coupled code could lead to better development and maintenance of Magycal.

3.2.3.2 Docker Attempt

It was planned to port Magycal using docker containers [19]. Docker images would

have all requisites installed and configured for future replication and testing. Also, it

could be used for scaling with Amazon as well. Unfortunately, one component of the

framework could not communicate over the intra-network created by the Docker system

and an alternative option had to be considered. The solution to the problem at hand was

disclosed at [41], but the project had already moved to the testing phase by that time.
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3.3 Microservice Chat

The chat service from Magycal was chosen as a case of study for the project meaning that

it was the selected service to be extracted from the framework and implemented into

the microservice architecture for testing. Note that the chat service from Magycal is still

there, but it will not be called upon during testing.

The new chat service is a simple service that is self contained and is only available

to others via it’s own API. The service only performs a few modular operations, truly

isolating itself from any external dependencies. The chat microservice was created with

Go Language [23] and the application mimicked the API from Magycal exposed below.

GET /chatroom requests all messages from chatroom.

POST /message writes a message into a chatroom.

Since tests performed in Chapter 4 only need one chat room, the API was simplified

so it only supports one chat room. This approach was picked over the real code from

Magycal because it would be necessary to adapt existing monolith coupled code logic

into microservice independent detached code logic. Although an interesting exercise that

will be performed in the future for production migration, it is estimated that additional

logic would not be much different from the real implementation. The chat service only

handles chat related tasks so it is assumed that any requests to the service was already

correctly authenticated(e.g. another microservice). Similar to Magycal, a redis server was

configured for caching the messages in memory.

No persistent storage was configured for the service since asynchronous dumps to

a database could be performed without impacting testing in Chapter 4. Persistence is

certainly an important topic to be handled before having the microservice working in

a production environment and it will be further investigated in the future considering

that another common bottleneck of monolith applications is a centralized database. After

decoupling the service logic into a microservice, it is only expected to detach the database

for improved performance. The most simple solution would be to create a single database

that all chat microservices have access to. More complex solutions could also be devised

for better performance such as a master slave system [31].

3.3.1 Comparison of Architectures

Before moving ahead with the API validation for the chat component, we compare in

figure 3.2 the architecture design shift of introducing a new microservice into the system.

Figure 3.2a is the original design of Magycal and figure 3.2b is the new design introduced

with the new chat microservice.

From figure 3.2b is possible to notice that the chat service was moved from the orig-

inal Magycal architecture to a new hybrid approach that presents some services in the

monolith architecture and a new chat service with the microservice architecture.
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Figure 3.2: Magycal Changes

Since the new approach is meant to optimize scaling components, we compare the

scaling of both approaches in figure 3.3. Figure 3.3a shows the original scaling of Magycal

and figure 3.3b shows the scaling of the hybrid approach. The chat service now scales

independently of the remaining services. The end goal, not aimed in the project, is to

reduce as much as possible the Magycal box and replace it with new microservices (Figure

3.2b).

Stream

Magycal Magycal Magycal

(a) Magycal Original Scale

Stream
Load 

Balancer
Magycal

Poll Poll Poll

(b) Magycal Hybrid Scale

Figure 3.3: Magycal Scaling Changes

A clear drawback from the microservice architecture is duplication of some base

resources. The hybrid example from figure 3.2b requires at least one machine for the

original Magycal and one machine for the chat microservice. Nonetheless, it is expected

that this extra initial cost will be mitigated in the future by transferring traffic from the

original Magycal platform which incurs substantially more expensive scaling cost to other

microservices with significantly reduced scaling cost.

3.3.2 API Validation

After creating the new chat service, it is possible to validate it via API calls. Figure 3.4

shows POST and GET calls to the microservice server API. The output can be visualized

without any parsing due to the simplification of the service.
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Validation begins with a GET that retrieves the "hello" message previously sent to

chatroom. Then, the messages "hello, there" and "how are you doing?" are sent to emulate

a replies. It can be verified from the third GET showed in the console.

Figure 3.4: Validation of Microservice Chat API - Console Terminal Requests

3.3.3 Load Balancer

A load balancer from Amazon [6] was considered to resemble a real application flow

illustrated in Figure 3.2b. But, prior to configuration, it was discovered that Amazon

charges for each request processed instead of the usual free / trial plans used for other

components of the project. The alternative adopted was to place all calls to API that

directed to the each respective machine. Since all parties are handicapped by the same

problem, it does not interfere with the results presented in Chapter 4.

The load balancer will be used in the future to configure production machines where a

hybrid version of the platform will be used. That will enable applications to keep working

despite of the changes performed into the server.

27





C
h
a
p
t
e
r

4
Benchmark

Be tolerant with others and strict with yourself. (Marcus Aurelius)

This chapter describes the testing set up, the testing methodology adopted for compar-

ing the chat service from Magycal migrated into Amazon against the new chat developed

under a microservice architecture described in Chapter 3 and a comparison of the tests

results obtained from the benchmark.

4.1 Set up

As mentioned before, only free / trial technology from Amazon was used during the thesis

which limited the amount and type of machines available for testing. It was possible to

set up two free tier EC2 machines from Amazon[4, 5] within given limitations, one for

Magycal and the other for the microservice chat service.

Magycal also required an external database set up with the free RDS database from

Amazon[7, 8]. The only available database for the baseline is inferior to the current

deployment of Magycal ,but it should not interfere with the benchmarking process since

the traffic to Magycal is also reduced to testing calls.

4.2 Methodology

Testing was performed by placing API calls to Magycal chat and the microservice chat

as described in Chapter 3. This is an unrealistic traffic scenario for Magycal, but the

alternative would require a fully operational platform not be possible in the scope of this

project because of the infrastructure cost.

Tests were performed in sets of runs. Each run had a 30 second length, a rate of

requests per second (1, 5, 10) and type of requests performed (GET and/or POST). The
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Figure 4.1: Magycal Monolith API Calls - GETs Requests

length of a run and rate per second values were gathered from a few calibration tests

where we tested the limits of the environment. From each set of tests it was selected

the run with the lowest mean response time for comparison in an attempt to remove

communication spikes and other possible problems of distributed system nature. Tests

had a warm up where database and memory where filled prior to benchmark calls. All

benchmark results was extracted from reports of the Vegeta HTTP load testing tool[48].

4.3 Comparison

This section compares results obtained from benchmarking Magycal chat service and the

microservice chat service. Both services are the only ones actively called during tests.

Magycal chat service is a downgrade from the production case because it does not

have the same scaling capabilities. To offset this, none of the live traffic is present which

means that most of the EC2 machine and database is dedicated to the chat service.

The microservice chat is as close to production code as possible. Magycal code was

not used for implementation because it is coupled with other services such as database

synchronization. In its place, we developed a simplified approach where multiple chat

rooms and persistence should be implemented in the future. Persistence could be per-

formed asynchronously during reduced traffic of the service. Multiple chat rooms logic

would required a slightly different Redis data structure (a hash map instead of a list)

and an upgrade of the API. Therefore, these simplifications do not have much impact in

testing.

The results obtained from the benchmark tests are detailed in 4.3.1. With such results,

it was possible to arrive at some conclusions in 4.3.2.
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Figure 4.2: Magycal Monolith API Calls - POSTs Requests

Figure 4.3: Chat Microservice API Calls - GETs Requests

4.3.1 Results

Figure 4.1 shows GET calls invoked to Magycal monolith. Five calls were placed per

second during a thirty second length period. It can be observed that the latency increases

over time. The average time of response is 4.37 seconds and the maximum time of

response is 7.95 seconds.

Figure 4.2 shows POST calls invoked to Magycal monolith. Five calls were placed per

second during a thirty second length period. It can be observed that the latency increases

over time. The average time of response is 13.30 seconds and the maximum time of

response is 24.48 seconds.

Figure 4.3 shows GET calls invoked to chat microservice. Ten calls were placed per

second during a thirty second length period. It can be observed that the latency is constant

over time. The average time of response is 0.12 seconds and the maximum time of
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Figure 4.4: Chat Microservice API Calls - POSTs Requests

Figure 4.5: Chat Microservice API Calls - GETs Requests

response is 0.53 seconds.

Figure 4.4 shows POST calls invoked to chat microservice. Ten calls were placed

per second during a thirty second length period. It can be observed that the latency is

constant over time. The average time of response is 0.06 seconds and the maximum time

of response is 0.38 seconds.

Figure 4.5 shows GET calls invoked to the microservice chat. Thirty calls were placed

per second during a thirty second length period. It can be observed that the latency is

constant over time. The average time of response is 0.31 seconds and the maximum time

of response is 3.84 seconds.

Figure 4.6 shows POST calls invoked to chat microservice. Ten calls were placed

per second during a thirty second length period. It can be observed that the latency is

constant over time. The average time of response is 0.06 seconds and the maximum time
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Figure 4.6: Chat Microservice API Calls - POSTs Requests

of response is 0.35 seconds.

4.3.2 Conclusions

Figures 4.1 and 4.2 show that Magycal consumed increasingly more resources under

frequent stress. Tests performed in those charts considered 5 requests per second. If this

number is increased to 10 requests per second, Magycal return timeouts errors with the

configuration used for this project.

On the other hand, 4.3 and 4.4 show that chat microservice is able to handle 10

request per second, the same amount that timed out Magycal, graciously. In fact, the

chat microservice was able to respond up to 30 requests per second before exhausting the

same configuration used for Magycal. This can be observed in figures 4.5 and 4.6.

It is possible to conclude that it is advantageous to move the chat from Magycal

monolith into a microservice architectural design from the data and comparison above.

The chat service would become more reliable because it could handle more requests at

the same time and it would also become more cost effective because it could handle those

new requests with a lower resources.
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Conclusion

The greatest glory in living lies not in never falling, but in rising every time we
fall. (Nelson Mandela)

In this chapter we summarize the work accomplished, how Magycal Interactive could

implement it, and enumerates new paths for research.

5.1 Summary

Magycal Interactive is a growing company in the software industry and Magycal is the

cloud-based, server-side platform used by all Magycal Interactive’s developed applica-

tions. It has been identified in Chapter 1 that Magycal can be upgraded for reducing

current costs of scaling, development and maintenance.

This work depicts the porting of Magycal into a testing environment on Amazon,

the creation of a chat service in the microservice architecture design and a comparison

between those deployments.

As demonstrated in Chapter 4, the chat microservice implementation can outperform

a ported Magycal chat service based on production code. The microservice could handle

more requests before scaling therefore reducing infrastructure costs. It is also cheaper

to scale the microservice chat than Magycal because a single service has far less resource

requirements than a monolith comprised of multiple services.

A clear downside of dividing services into multiples machines is the higher initial

base cost compared to a single machine for a monolith. Nonetheless, considering the

size of Magycal and demands of Magycal Interactive’s current applications, the downside

presented is expected to be outweighed by all the scaling already required by the monolith

implementation.
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Magycal current have the following limitations presented in Chapter 1: Wasteful Scal-
ing, Single Point of Failure, Limited Modularity / Extensibility, and Rigid Deployability. Mov-

ing from the monolith architecture into the microservice architecture would target all of

those hindrances. Wasteful Scaling would be reduced now that each service can scale based

on popularity. Single Point of Failure would be distributed along the multiple microser-

vices. Since code is divided, Limited Modularity / Extensibility and Rigid Deployability are

not an issue anymore.

This project brings to Magycal Interactive’s consideration a new approach to upgrade

its framework even further and make Magycal more robust and reliable.

5.2 Upgrading Magycal

With this work, Magycal Interactive has a starting point for shifting the Magycal monolith

architecture into a microservice architecture. The micoservice architecture is not free of

charge as it has been stated and so it would be wise to start with just one service under

production to gather real data and evaluate possible future migrations. Not every service

may have the best performance under the microservice architecture so a hybrid approach

such as the one presented in this work may be a viable solution as well.

Considerations aside, Magycal Interactive can now implement a hybrid approach. To

do so, it would be required to follow the next steps.

Update chat code with desired behavior for the production service. As stated, persis-

tence and multiple chat rooms are contemplated here.

A new scaling cluster to house the microservice chat implementation. Clusters are re-

sponsible for managing the number of machines active and can be configured to

consider the number of service requests, therefore, horizontally scaling the number

of servers for the chat service.

Create a load balancer to redirect all chat calls to the new cluster and other requests to

the original Magycal.

Bear in mind that these operations have an associated cost. Also, this is but one way to

compose the infrastructure. It is suggested this way because no further work than these

steps would be required to have a production ready upgrade. The company has already

plans to upgrade the platform and this project is going to be used as a starting point.

5.3 Future Work

Magycal is a complex platform with many improvements not possible to realize under

this work such as:
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New Microservices Magycal is a monolith with several coupled services. It is necessary

to identify and to divide those service into groups and develop new microservices

based on them.

CI/CD Methodology The present method of development and deployment from Magy-

cal is not fit for the new architectural design. A new pipeline must be created to

replace the old one.

Distributed Databases A common bottleneck for applications is the connection to a

centralized database. Microservices allow for dividing this centralized database into

smaller groups, but as the number of the same services grow so does the number of

simultaneous connections to the database.

Software Development Kits (SDK) Decoupling services make it possible to realize some

of the API into different Software Development Kits (SDK) for multiple types of

front-user applications. This SDK could be distributed as Software as a Service

(SaaS), explained in Chapter 2 so other applications could make use of Magycal.

Docker Docker is increasing in popularity nowadays because it allows users to build

whole systems detached from the host machine specifications. This feature could be

very useful for Magycal because it would smooth the scaling process. Additionally,

Amazon already provides support for Docker images installs[2].
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