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ABSTRACT
For cancers and other pathologies, early diagnosis remains the most promising path to survival. Profiling 
of longitudinal cohorts facilitates insights into trajectories of biomarkers. We measured microRNA 
expression in 240 serum samples from patients with colon, lung, and breast cancer and from cancer- 
free controls. Each patient provided at least two serum samples, one prior to diagnosis and one 
following diagnosis. The median time interval between the samples was 11.6 years. Using computational 
models, we evaluated the circulating profiles of 21 microRNAs. The analysis yielded two sets of 
biomarkers, static ones that show an absolute difference between certain cancer types and controls 
and dynamic ones where the level over time provided higher diagnostic information content. In the first 
group, miR-99a-5p stands out for all three cancer types. In the second group, miR-155-5p allows to 
predict lung cancers and colon cancers. Classification in samples from cancer and non-cancer patients 
using gradient boosted trees reached an average accuracy of 79.9%. The results suggest that individual 
change over time or an absolute value at one time point may predict a disease with high specificity and 
sensitivity.
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Introduction

Noncoding RNAs (ncRNAs) regulated physiological and patho-
logical functions. One regulatory mechanism relies on base pair-
ing between coding and non-coding RNAs in protein complexes 
[1]. microRNAs (miRNAs) belong to such master regulators. 
Reported first in Caenorhabditis elegans [2,3], researchers discov-
ered over three decades how miRNAs are transcribed, processed 
and repress genes [4]. The molecules are collected and system-
atically annotated in different databases, (including the reference 
database miRBase [5], MirGeneDB [6,7] or miRCarta [8]). 
MicroRNAs and isoforms of microRNAs are expressed in a very 
tissue- and cell type-specific manner or with a specific disease [9– 
14]. Several studies describe their potential as biomarkers [15–20]. 
While some studies rely on smaller cohorts, more recent research 
also includes larger case-control studies or longitudinal measure-
ment of circulating microRNAs as biomarkers [21–23]. In long-
itudinal studies, the individual changes of markers instead of the 
absolute value can be considered. We previously analysed data 
from the Norway-based Janus Serum Bank, demonstrating stable 
measurement of profiles decades ahead of the actual cancer diag-
nosis [24–28]. Based on the previous results, we defined a panel of 
48 microRNAs that we measured for different cancer patients and 
controls prior to diagnosis to identify and validate potential cancer 
biomarkers. To ensure a high data quality we applied a stringent 
filtering and included 21 miRNAs with stable expression above 

the background in the analysis. For each patient and control 
sample, we ensured that at least one time point prior to the 
diagnosis was available to facilitate paired data analysis and to 
evaluate the potential of dynamic changes in miRNAs as 
biomarkers.

The aim of the present study was to validate previous 
identified miRNAs with their respect to detect cancer prior 
to the diagnosis.

Results

Pre- and post-cancer serum miRNA patterns characterize 
molecular disease trajectories

We evaluated RT-qPCR biomarker profiles for three cancers 
(lung, breast, and colon cancer) and compared them to can-
cer-free controls. As mentioned, we have for all cancer cases 
at least one time point years prior to cancer diagnosis 
(Supplemental Table 1). The median time interval between 
the pre- and post-diagnostic samples exceeds one decade 
(Figure. 1A). Such measurements are only facilitated by sub-
stantial cohort studies, in our case the Norway-based Janus 
Serum Bank study [29]. Previously, we already described 
general patterns of biomarkers in this cohort and evaluated 
them with respect to their stability over time, indicating that 
we succeed to generate high-quality microRNA profiles 
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Figure 1. Study Set Up and Static biomarker analysis. A. The bubbles represent the different cohorts. The left bubble are pre-cancer samples and matched controls. 
The right bubble post-cancer samples and controls. The median time between the measurements is 11.6 years. Colours represent the different cancer types and 
controls. B. UMAP embedding for all 240 samples coloured with respect to the eight sub-cohorts. C. Beeswarm and Violin plots for miR-99a-5p for all samples from 
cancer patients (1) and controls (0). The Y-axis denotes the Ct value and the median for both groups is marked by a red dot. D. Same as panel C but for miR 149–3p. 
E. The cancer samples are split in the three different sub-cohorts for miR-99a-5p. F. Same as panel E but for miR-149-3p. G. The four cohorts are split up in the early 
time point and the late time point for miR-99a-3p. H. Same as panel G but for miR-149-3p.
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independent from the age and storage time of samples in the 
Janus Serum Bank [30].

We included altogether 240 serum samples. For these, we 
initially generated profiles of 48 microRNAs in duplicates. 
A first stringent quality filtering reduced the number to 21 
miRNAs, because all markers close to the background were 
excluded. The cohort of individuals split in pre- and post- 
diagnostic samples and highlights an intentional enrichment 
of colon cancer patients (Figure. 1A). Following previous 
results, we picked this cancer type as one of the most promis-
ing ones as an accurate diagnostic test. As a first view on the 
data, we performed a two-dimensional embedding (Figure. 
1B). Such an embedding can highlight valuable biological 
information but also indicate potential technical issues. In 
our case, we note a tendency of control samples collected 
corresponding to the pre-diagnostic cancer time point to 
cluster together. Paired controls corresponding to the post- 
diagnostic cancer time point show similarities. Other clusters 
in the embedding are enriched for samples from cancer 
patients, independent whether the samples have been col-
lected prior to or following the diagnosis. These results call 
for a more detailed consideration of single microRNAs and 
split in different case ontologies.

For each of the 21 microRNAs, we applied the same 
computational and statistical approaches to quantify the dif-
ference between the available groups, like we would do it in 
standard case-control study set-ups. The first aspect of our 
analysis was to test whether differences between cancer 
patients and controls independent of the actual clinical man-
ifestation and a positive diagnosis exists. We computed sig-
nificance values using a rank-based test because not all 
miRNAs were normally distributed. For each miRNA, we 
obtained one significance value for the Ct values of all samples 
from the cancer patients versus Ct values of all samples from 
the cancer-free controls. Most significantly, miR-99a-5p 
reached a p-value of 10−15 (Kruskal–Wallis test) and was 
3.7-fold higher expressed in controls (Figure. 1B). In the 
other direction, miR-149-3p reached a p-value of 10−3 and 
was 1.9-fold higher expressed in serum samples of cancer 
patients (Figure. 1C). For the latter miRNA (that was also 
among the top candidates in our previous Janus studies), we 
spotted differences in expression between the different cancer 
entities. We thus repeated the above calculations but split the 
cancer cases in three sub-groups, colon, lung, and breast 
cancer (Figure. 1D).

For miR-99a-5p, Ct values of all cancer types consistently 
showed downregulation (Figure. 1E). But for miR-149-3p we 
note a substantial difference between the considered cancer 
types. Between breast cancer and colon cancer we observe 
a 4.4-fold difference in expression based on the Ct values 
(Figure. 1F). We next compared the pre- and post- 
diagnostic samples of all cancers but ignore whether the 
samples were taken before or after the cancer diagnosis. In 
the last comparison, we split the four groups in the early- and 
late-time points. The time analysis confirms the finding for 
miR-99a-5p: while all samples from cancer samples are lower 
expressed than all samples from non-cancer patients. The 
differences between the early- and late-time samples are not 
significant (Figure. 1G). Supporting this, we also computed 

p-values between all early- and late-time points, not high-
lighting substantial difference between them. miR-149-3p 
was expressed in similar levels for pre- and post-diagnostic 
samples of lung- and breast cancer patients. For colon cancer 
patient, the abundance varies by a factor of 3.2-fold between 
the pre- to the post-diagnostic time point, marking 
a significant up-regulation following the diagnosis. Of note, 
also the control cohort revealed an increase over time but to 
a lower amount (Figure. 1H).

Given the 21 microRNAs (features) and the 240 samples 
we can ask whether machine learning facilitates 
a classification in samples from cancer and non-cancer 
patients. We performed a fivefold cross validation, paying 
attention that samples of one individual are assigned always 
to the same split to limit a potential overtraining effect. 
Applying gradient boosted tree classification, we reached an 
averaged accuracy of 79.9%. Considering the details of the 
classification performance we find that the sensitivity (87.8%) 
exceeded the specificity (67.3%). Interestingly, the false posi-
tive classifications (controls predicted to suffer or to get can-
cer) and false negative classifications (samples from the cancer 
group assigned to the controls) split similar between the early 
and late time points. Considering the feature importance 
values, we obtained similar results to the single biomarker 
analysis. The features with highest importance values were 
miR-99a-5p, miR-186-5p, miR-140-5p and miR-484 (sum-
ming up to 40.9% of the overall feature importance).

Our results indicate differences in the trajectories of cancer 
biomarkers. While we focused on two prominent examples 
that represent different groups – either with stable expression 
over time or with changes over time. Multiple other markers 
in our study showed similar patterns, including miR-100-5p, 
miR-575, let-7d-3p. We thus provide all expression values for 
the 21 miRNAs in the 8 groups (Supplemental Table 1). 
Especially, the change over time emphasizes how important 
longitudinal measurements are. We thus performed paired 
analyses and now consider the early to the late time point 
for each patient individually.

Individual serum cancer markers are frequently not 
specific for one cancer type

To identify early disease markers, we asked for miRNAs that 
are not significant for controls but significant for cancer cases 
prior to and at the time point corresponding to the cancer 
diagnosis. We thus performed pair-wise Wilcoxon-Mann- 
Whitney tests between the Ct values of all pre- and post- 
diagnostic samples and the corresponding Ct values from 
controls (Figure. 2A). For the controls, two miRNAs stand 
out by low significance values: miR-484 and the afore men-
tioned miR-149-3p. For breast and lung cancers, we found 
less significant effects. While several markers were nominally 
significant at an alpha level of 0.05 (e.g. miR-155-5p for lung 
cancer), they were not significant following adjustment for 
multiple testing. In contrast, for colon cancer multiple highly 
significant markers exist, such as the most significant miR- 
155-5p (p = 10−[5]). Likewise, we identified for cancers over-
all – and independent of the cancer type – highly significant 
markers. These however largely match the colon cancer 
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markers. Because colon cancer is the group with most samples 
these general cancer markers are partially biased and domi-
nated by colon cancer samples. This pattern altogether calls 
for caution with respect to p-values that are generally known. 

The decreased significance values for colon cancer samples 
and cancers might be inflated by the larger cohort sizes. Here, 
effect sizes are more appropriate than p-values. One com-
monly used measure for the performance of a biomarker is 

Figure 2. Dynamic biomarker analysis. A. Heatmap that displays the significance values for paired Wilcoxon-Mann Whitney tests between the early and late time 
point as negative decade logarithm for the 21 miRNAs and the 5 comparisons (three cancer types; controls; all cancers together). Dendrograms on top and right 
represent the clustering. B. Same as panel A but for the AUC values. C. AUC values versus p-values coloured by the cancer type and controls. The controls and colon 
cancer where most samples are included yield higher AUC values compared to the respective p-values. D. Specificity scores for the 21 miRNAs for one cancer. Left 
miRNAs are more specific as miRNAs on the right side. E. Line plot for miR-99a-5p that represent for each individual sample the Ct value of the early and late time 
point, connected by a line. The colours again represent the different cancer types and controls. F. Same as panel E but for miR-149-3p.
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the area under the receiver operator characteristics curve 
(ROC curve), the so-called AUC value. The closer this value 
to 1, the better a biomarker separates two groups. Given the 
Ct values and the class labels, we computed the AUC values in 
the same manner for the same comparisons as we computed 
p-values (Figure. 2B). Then, we compared the p-values to the 
AUC values for the different cancer types (Figure. 2C).

In contrast to the p-value, we now also identify for the 
other cancer types markers with diagnostic potential, charac-
terized by high AUC values. miR-155 again was among the 
most relevant markers but also miR-29c. The latter miRNA 
differed mostly between all cancer patients prior and post 
diagnosis. One remarkable finding is that miR-99a-5p, the 
most striking marker from the first part of our analysis, was 
the least notable one in the present analysis.

The type of biomarker, dynamic or static, might differ 
between different microRNAs. However, the specificity for 
certain cancer types might also vary, especially in conjunction 
with the afore mentioned differences. For each microRNA, we 
thus calculated the specificity for one cancer type, like a tissue 
specificity index. The specificity index can vary between 0 and 
1, where a value of 0 represents a biomarker without any 
specificity and a value of 1 represents a biomarker for only 
one cancer type (Figure. 2D). The cancer specificity values for 
all microRNAs range between 0 and 0.25, i.e. the specificity 
for certain cancer types is generally limited. But especially, the 
markers that vary over time (miR-149-5p, miR-140-5p, miR- 
155-5p) have increased specificity values as compared to the 
other markers such as miR-99a-5p. The remarkable exception 
is miR-29c-5p that varies over time but is not specific for any 
of the cancer types.

The aggregated analyses suggest valuable biomarker pro-
files. A detailed inspection is required to verify that the results 
also hold on an individual basis. We thus computed line plots 
for the biomarkers where the early to the late time point for 
each cancer and each patient is connected. Likewise, the 
controls are displayed in the same manner. For miR-99a-5p, 
we obtained the expected results: samples from cancer 
patients have lower expression compared to samples from 
controls, independent of the time point (Figure. 2E). 
As second example, we present miR-149-3p (Figure. 2F). In 
this case, the miRNA is lower expressed in controls as com-
pared to cancer samples. Further, for colon cancer and con-
trols, we monitor increasing expression over time while 
patterns for lung cancer and breast cancer are heterogenous. 
Here, a high level of the miRNA together with a further 
increase over time can be predictive for colon cancer. But, it 
is important to mention that controls show similar patterns as 
colon cancer samples (false positives) and colon cancer 
patients like controls (false negatives).

From the results obtained herein, we derive three impor-
tant conclusions. First, in-line with other studies, we note the 
limited value of p-values or at least the importance to consider 
both, p-values and effect sizes. Second, also matching other 
studies, we conclude that significant effects between cohorts 
still do not necessarily allow to perform accurate diagnoses on 
an individual level. Third, it is important to understand that 
biomarkers can follow different trajectories, i.e. they might be 
static and already dysregulated long before a diagnosis 

(comparable to genetic markers) or they might be dynamic 
and show an increase or decrease over time. These factors 
should be included in current biomarker studies. It is impor-
tant to mention that case-control studies have the potential to 
discover both types of biomarkers, but it is not feasible to 
understand to which group the markers belong.

Biomarkers split in static and dynamic markers

Our analyses suggest a split of biomarkers in static ones that 
are dysregulated at least a decade prior to the cancer diagnosis 
and dynamic ones that vary over time. The first group of 
markers is less specific for one cancer type as the second 
group. To substantiate the findings and to group miRNAs in 
the three groups (static markers, dynamic markers, and no 
markers), we compared AUC values for both, the setting from 
the first stage of the analysis (Figure. 1, static) and the second 
stage (Figure. 2, dynamic). For the three cancer types, the 
pattern differs significantly (Figure. 3A; Kruskal Wallis test 
p-value < 10−[5]). For colon cancer, we observed a significant 
shift towards dynamic markers (paired Wilcoxon-Mann- 
Whitney test p-value of 0.0008). For the other cancers, we 
found a slight but not significant shift towards static markers 
(paired Wilcoxon-Mann-Whitney test p-value > 0.05). Even 
though we checked in our first analysis for significant changes 
between the early and late time points for miR-99a-5p we 
correlated the difference between the time point in years with 
the difference in the expression identified by Ct values. Our 
analysis suggests a limited influence of the age on the expres-
sion of the selected 21 miRNAs (Figure. 3B for miR-99a-5p; 
Figure. 3C for miR-155-5p).

Based on the histogram plots, we select a threshold of 0.7 
to identify biomarkers with sufficient diagnostic potential. 
Correlating all static miRNA AUCs to all dynamic miRNA 
AUCs for the three cancer types identifies the three groups of 
markers (Figure. 3D). The lower left part of the scatter plot 
contains markers with limited diagnostic value. In the lower 
right part, we observe the dynamic markers that are enriched 
for colon cancer. In this area, we for example observe miR- 
155-5p for colon cancer and lung cancer while the miR-155- 
5p for breast cancer is in the not relevant area. In the upper 
left part of the scatter plot, representing static markers, we 
find miR-99a-5p for all three cancer types. No microRNA 
achieved high AUC values for the static and dynamic con-
sideration, allowing for a clear separation between the two 
marker types.

Discussion

In the present study, we compared pre- to post diagnostic 
markers in three cancer types and cancer-free controls. The 
markers were selected from our previous studies and the 
literature. As read out, we intentionally choose RT-qPCR 
compared to our previous studies were we typically used 
microarrays or NGS. Not all markers from the previous stu-
dies were confirmed, which might be due to technical biases 
inherent to the different profiling platforms [31]. But, our 
analysis yields a split of circulating serum biomarkers for 
cancer in two groups: static markers that are changed already 
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years prior to diagnosis and dynamic markers that are chan-
ging over time. To be able to distinguish between these two 
groups are likely of high importance in diagnostic 
applications.

To investigate such questions, broad population-based stu-
dies such as the Janus Serum Bank study from Norway are 
required. But with such studies, also potential challenges arise. 
The storage time and condition of the samples varies for 
example tremendously. In the previous studies, we carefully 
checked respective confounding variables and demonstrated 
that the storage time has only a limited influence [24–28]. 
Other confounding variables such as the age [32], sex [33], 
ethnicity [34], treatment [35], physical fitness [36], even the 
season when samples were collected [37], and many others 
can affect biomarker signatures. From respective population- 

based studies typically only a subset of respective variable is 
available, further emphasizing the need for validation studies 
and for larger cohorts [23]. For many markers in the study, 
such as miR-99a-5p, miR-100, miR-150 (Supplemental 
Figure 1) and others, no significant difference in the Ct values 
between the early and late time points exists. For those 
miRNAs where significant differences exist (e.g. miR-155- 
5p) the absolute differences remained limited (Supplemental 
Figure 2). Taken together, our previous studies and the pre-
sent results argue against a substantial influence of the storage 
time on the 21 biomarkers.

To account for technical effects, we followed a strict blinding 
scheme. The laboratory only got numbered samples without any 
class information or annotation and only after handing in the 
measured Ct values the class labels and annotation of the 
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samples were provided for the statistical analysis. Despite this 
careful handling and cross-checking technical bias cannot be 
fully excluded in such studies that run over half a century. It is 
thus also mandatory to cross check the results with the literature 
and to gain insight in the biological effects and functionality of 
the biomarkers. In the present study, we included 21 miRNAs. 
One way is to apply miRNA set enrichment analysis, either using 
subsets or ordered lists of miRNAs. To this end, tools as TAM 
2.0 [38], sTAM [39] or miEAA [40] exist. Respective analysis 
using the different tools and different analysis methods result in 
an enrichment of various diseases, including many cancers and 
also those cancers included in the study. But, the relevance of 
these analyses remains limited because we pre-selected the 
miRNAs with respect to their role in the respective diseases. In 
the light of this bias, complex functional analyses seem to be 
more appropriate for studies using high-throughput technologies 
such as next-generation sequencing. Targeted validation studies 
call for a more specific and manual analysis. We focused in the 
results on three cases with substantial effect sizes. miR-99a-5p as 
general static cancer marker, and miR-155-5p as well as miR- 
149-3p as dynamic marker with different cancer specificity 
scores. For miR-99a-5p PubMed (queried September 2022) lists 
63 manuscripts with relevance to different cancer types, tissue 
specimens and measured with different technologies. Of note, 
most studies list an increased level of this miRNA in serum (and 
especially exosomes) [41–43] and a decreased value in tissue 
biopsies [44]. But for breast cancer, Du and co-workers report 
a significant downregulation in serum [44]. The literature is 
partially contradicting itself and because of the large heteroge-
neity from a clinical and experimental side it is hard to conclude 
on the validity. For miR-155-5p, we identified 237 hits in 
PubMed (queried September 2022) and for miR-149-3p 70 
manuscripts. Comparing the results and conclusions in these 
manuscripts highlights a similarly complex landscape. One factor 
that adds to the complexity are microRNA isoforms, slightly 
modified molecules that can have different biological functions. 
Such variations can influence miRNA target genes in reporter 
assay experiments [45]. For several miRNAs similar effects are 
reported, including miR-31 isoforms [46], miR-222 isoforms 
[47] and miR-101 isoform [48]. Characterization of isomiRs 
e.g. by RT-qPCR can be challenging itself [49], adding to poten-
tially blurred profiles in biomarker studies. All these findings are 
well in line with our previous review on the literature, under-
lining that diagnostic miRNA biomarkers have certainly 
a potential, but the associated challenges persist [50].

But in sum, longitudinal measurement and large cohorts 
facilitate an improved understanding of the potential of 
microRNA biomarkers. From our view, it is mandatory to 
distinguish between markers that are present ahead of the 
diagnosis and stable and markers that are dynamic and 
change over time. The dynamic levels of miRNA are 
shown in other cancer such as lung cancer [51] and testi-
cular cancer [52]. Of note, markers from both groups can 
be suited as early diagnostic markers, but in the first case 
the absolute value is more important while in the second 
case the change of the marker over time has higher diag-
nostic potential. An improved understanding of the regula-
tory mechanisms can then lead to novel therapeutic 
strategies [53].

Methods

Patients and samples

The study participants have given a broad consent for their 
samples to be used in cancer research. The study is approved 
by the Norwegian regional committee for medical and health 
research ethics (REC no: 2013/614). Serum samples were 
collected over at least two different time points, i.e. one pre- 
diagnostic and one post-diagnostic time point. For the pre- 
diagnostics time point, a total of 142 samples from three 
different types of cancer including lung (n = 49), colon 
(n = 20), and breast cancer (n = 20) patients, and age and sex- 
matched cancer-free donors served as controls (n = 53), were 
included. For the post-diagnostic time point, a total of 98 
samples including lung (n = 29), colon (n = 20), and breast 
cancer (n = 20) patients, and age and sex-matched healthy 
donors served as controls (n = 29), were included. All serum 
samples were stored at −25°C until RNA, including miRNA, 
was isolated. More details on the storage and sampling con-
ditions are provided in our previous publications [24–28].

RNA extraction

Total RNA, including miRNA, was isolated from 200 µl serum 
samples using the miRNeasy Serum/Plasma kit (Qiagen) as 
previously described (Keller et al., 2017, RNA biology). Using 
the QIAcube Robotic Workstation (Qiagen), RNA, including 
miRNAs were eluted in a final volume of 14 mL RNase-free 
water according to the manufacturer’s recommendations. 
Small RNA Analysis Kit on the 2100 Bioanalyzer (Agilent 
Technologies) was used to resolve and quantify the small 
nucleic acid fraction of extracted total RNAs and concentra-
tion and purity were measured using NanoDrop™ 2000c 
Spectrophotometers (Thermo Fisher Scientific).

RT-qPCR measurement

The expression level of 48 miRNAs was quantified by RT- 
qPCR using the Biomark™ HD system (Fluidigm 
Corporation). These 48 miRNAs were chosen based on their 
differential expression level in patient group compared to 
matched controls, as determined previously and based on 
their known associations with different types of cancer from 
the literature. TaqMan® MicroRNA Reverse Transcription Kit 
and RT Primer Pools (10X) (Thermo Fisher Scientific) were 
used. All steps were carried out according to the manufac-
turer’s recommendations. Briefly, 75 ng of RNA, including 
miRNAs were reverse transcribed into cDNA. The generated 
cDNA was pre-amplified using the TaqMan™ PreAmp Master 
Mix (2X) and the PreAmp Primers Pool (10X). Lastly, qPCR 
was performed using 96.96 Dynamic Array™ IFC (Fluidigm 
corporation). For every 10X Assay, 3 µl TaqMan Primer 
Assay (20X) (Thermo Fisher Scientific) and 3 µl Assay 
Loading Reagent (2X) (Fluidigm) were mixed, and a Sample 
Pre-Mix was prepared by combining 3 μl TaqMan™ Universal 
PCR Master Mix, no AmpErase™ UNG (2X) (Thermo Fisher 
Scientific), 0.3 μl GE Sample Loading Reagent (20X) 
(Fluidigm corporation) and 2.7 μl pre-amplified cDNA for 
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each sample. The array was loaded such that 5 µl of the Assay 
Mix and 5 µl of the Sample mixture were added to each inlet 
and placed in the Biomark™ HD system. For quantification, 
the GT 96 × 96 Standard v1 PCR thermal protocol was used.

Data analysis

Each of the 48 miRNAs was measured in duplicates, and the 
average of the expression was computed. miRNAs with more 
than 10 not available measurements among the 240 samples 
(~4% missing values per miRNA) were removed as lowly 
expressed or technically instable from further considerations. 
For the remaining miRNAs missing values were replaced by 
the global mean of that miRNA. 21 miRNAs passed that 
filtering step and were included in the analysis. All subsequent 
analyses have been carried out with R version 4.1.2.

2D embedding has been performed using the umap function 
from the umap package and the two coordinates are shown as 
scatter plots. Because not all miRNAs are normally distributed, 
we carried out non-parametric rank-based statistical tests if not 
mentioned explicitly (Kruskal Wallis Tests and Wilcoxon-Mann 
Whitney tests either in a paired or non-paired manner depend-
ing on the hypothesis). Reported p-values are nominal but we 
also checked whether p-values are significant following adjust-
ment for multiple testing (Benjamini-Hochberg). As alpha level, 
we used the 0.05 threshold. The area under the receiver operator 
characteristics curve (AUC value) was calculated using the 
pROC package. Hierarchical clustering was performed using 
the Heatmap function from the ComplexHeatmap package. 
Beeswarm and volin plotes are generated using the ggstatsplot 
package with the function ggbetweenstats. Histograms are com-
puted using the hist function with 10 classes.
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