
Citation: Harweg, T.; Wagner, M.;

Weichert, F. Agent-Based Simulation

for Infectious Disease Modelling over

a Period of Multiple Days, with

Application to an Airport Scenario.

Int. J. Environ. Res. Public Health 2023,

20, 545. https://doi.org/10.3390/

ijerph20010545

Academic Editor: Paul B.

Tchounwou

Received: 29 October 2022

Revised: 16 December 2022

Accepted: 20 December 2022

Published: 29 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Agent-Based Simulation for Infectious Disease Modelling over a
Period of Multiple Days, with Application to an Airport Scenario
Thomas Harweg 1 , Mathias Wagner 2 and Frank Weichert 1,*

1 Department of Computer Science, TU Dortmund University, Otto-Hahn-Str. 16,
44227 Dortmund, North Rhine-Westphalia, Germany

2 Department of Pathology, University of Saarland Medical School, Homburg Saar Campus,
Kirrberger Strasse 100, 66424 Homburg Saar, Saarland, Germany

* Correspondence: frank.weichert@tu-dortmund.de

Abstract: With the COVID-19 pandemic, the role of infectious disease spreading in public places has
been brought into focus more than ever. Places that are of particular interest regarding the spread of
infectious diseases are international airport terminals, not only for the protection of staff and ground
crew members but also to help minimize the risk of the spread of infectious entities such as COVID-19
around the globe. Computational modelling and simulation can help in understanding and predicting
the spreading of infectious diseases in any such scenario. In this paper, we propose a model, which
combines a simulation of high geometric detail regarding virus spreading with an account of the
temporal progress of infection dynamics. We, thus, introduce an agent-based social force model for
tracking the spread of infectious diseases by modelling aerosol traces and concentration of virus load
in the air. We complement this agent-based model to have consistency over a period of several days.
We then apply this model to investigate simulations in a realistic airport setting with multiple virus
variants of varying contagiousness. According to our experiments, a virus variant has to be at least
twelve times more contagious than the respective control to result in a level of infection of more than
30%. Combinations of agent-based models with temporal components can be valuable tools in an
attempt to assess the risk of infection attributable to a particular virus and its variants.

Keywords: COVID-19; agent-based simulation; social-force model; numerical simulation; systems
biology

1. Introduction

Numerous international airports worldwide allow passengers and visitors to find
a variety of restaurants and food outlets, and passengers with a valid boarding pass
can also make purchases from a range of items available at duty-free stores inside the
security area [1]. Aviation industry ground crew members and franchise staff are, therefore,
engaged in various roles at airports, such as operating the information desks, check-in desks,
and boarding desks, the security checkpoints, shops, and restaurants. Despite the fact that
they constitute the main set of airport personnel that passengers and visitors will interact
with at an international airport directly, their role in the COVID-19 pandemic has not been
subjected to extensive simulation studies so far. We, therefore, propose a novel agent-based
approach to infectious disease modelling, which we extend into covering a greater time span
by simulating multiple consecutive days. We then apply this approach to a realistic scenario,
modelling an international airport terminal. In this scenario, we simulate the upcoming
of a new and more contagious virus variant with a gradually increasing proportion in the
population with respect to an already prevailing virus variant. This approach is based
on the fact that COVID-19 is linked to an enveloped, positive-sense single-stranded RNA
((+)ssRNA) virus that has been isolated from bronchoalveolar lavage fluid samples obtained
from patients who contracted pneumonia in Wuhan, the People’s Republic of China (syn.:
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PRC) [2]. The earliest case of an infection attributable to this virus seems to have been found
on 17 November 2019 [3]. On 11 February 2020, the International Committee on Taxonomy
of Viruses (ICTV) announced “Severe Acute Respiratory Syndrome CoronaVirus 2” (syn.:
SARS-CoV-2) as the name of the virus, formerly known as “2019 novel coronavirus” (syn.:
2019-nCov). The same day, the disease name has been designated as “CoronaVirus Disease
2019” (syn.: COVID-19) by the World Health Organization (WHO).

We propose a novel agent-based approach to infectious disease modelling, which
we extend into covering a greater time span by simulating multiple consecutive days.
Our approach rests upon a numerical simulation of a social force pedestrian model [4,5],
which we complement with infectious disease modelling. We then apply this approach
to the aforementioned realistic scenario, modelling an airport terminal. In this scenario,
we simulate the upcoming of a new and more contagious virus variant with a gradually
increasing proportion in the population with respect to an already prevailing virus variant.

A variety of approaches to infectious disease spread modelling have been implemented
so far. They largely differ in granularity and the aspects modeled. Very common are
compartmental models, which model infection dynamics on a large scale. There are several
variants, notably SEIR (susceptible–exposed–infectious–recovered) and SIR (susceptible–
infected–removed) and other similar models [6]. In these approaches, the population is
divided into several categories, which form the basis of a system of differential equations
to model infection dynamics.

On a smaller scale, various agent-based models (ABM), also called individual based
models (IBM), to infectious disease modelling have been proposed [7], many of which are
graph-based at their core, combined with compartmental models.

More recently, “microscopic” agent-based models have been proposed (e.g., [5,8–10]),
which employ particle simulations, which are governed by social-force interaction, allowing
for analysis of disease spreading on a small scale. While these approaches allow for highly
detailed analysis in the spatial domain, they usually lack the temporal aspects of the
macroscopic approaches.

We attempt to narrow this gap by extending the social force approach into covering
a longer timespan. Our goal is to retain the geometric detail of ABM-based simulations,
but at the same time, stretch this approach towards time spans that are relevant to covering
infections caused by individuals who themselves became infected during the simulation.
In other words, we seek to investigate the effect of agents passing the virus on to other
agents. Due to the fine-grained nature of ABM, a simple increase in simulation time to cover
days or even weeks would demand very high resources, mainly in terms of computational
power, but also in modelling the underlying scenario. To overcome this issue, we propose
an approach, in which we simulate a certain time span of a whole day, but repeatedly
over several consecutive days. To create consistency between consecutive days, we keep a
subset of the simulated agents and their state persistent over the whole set of days. These
agents can be thought as, for example, employees, staff, or other people who have a regular
schedule of appearance on the simulated scenario.

We then apply this approach to the analysis of infectious disease spreading by the
example of two (hypothetical) variants of the SARS-CoV-2-virus with different degrees
of infectivity, taking place in a realistic scenario set in an international airport terminal.
With the passage of time, the emergence of more transmissible variants cannot be ruled
out [11]. We provide experiments to gain insight into how high the proportion of such
a variant has to be for a significant rise in infection counts. We also quantify the rate of
contagiousness by quantifying the viral load necessary for infection. We include a simple
model for tracking aerosol concentration and measuring aerosol exposure times in multiple
discrete simulations, which are set to take place on several consecutive days. This way,
we seek to combine the microscopic social-force-based simulation with the progression
of infections after initial exposure. A visualisation of the simulation process is shown in
Figure 1.
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Figure 1. Visualisation of the developed agent-based simulation with agents, trajectories, and tracking
of aerosols shown.

The main contributions of this paper are centred around a generic agent-based model
for infectious disease modeling, which is:

• almost arbitrarily applicable to scenarios defined by a two-dimensional floor-plan
• capable of handling large areas and high agent counts
• incorporates a basic model of aerosol spreading
• augmented by extending the time span over multiple days to account for the temporal

progress of infection dynamics

This paper is organized as follows: The following Section 2 gives an overview of the
state-of-the-art of infectious disease modeling, with a focus on agent-based simulations.
In Section 3, we describe in detail the model we developed and the accompanying imple-
mentation. This section is further divided into sub-sections covering pedestrian dynamics
(Section 3.1), modelling of the simulation domain, including agent pathfinding (Section 3.2),
and infectious disease modeling (Section 3.4). Section 4 describes our experimental setup,
in Section 5, the results are presented, which are then discussed in Section 6. Finally,
Section 7 gives a short conclusion and outlook.

2. Related Work

In this section, we first review extensions that have been made to compartmental mod-
els for covering spatial aspects, indoor disease transmission, and multi-strain epidemics,
before we put our focus on agent-based models for infectious disease and epidemics mod-
eling. We differentiate these approaches into two categories, compartmental agent-based
models and social-force agent models.

Transmission of COVID-19 and airborne diseases, in general, has already been inves-
tigated with respect to indoor environments. Both Gao et al. [12] and Noakes et al. [13]
use the Wells-Riley equation [14,15] in combination with an SEIR-model to investigate the
effect of ventilation control and further measures on infection dynamics.

There have also been numerous approaches for analysing multi-strain pandemics
with compartmental models. Lazebnik and Bunimovich-Mendrazitsky propose a model
for multi-strain pandemics with a focus on the relations of basic reproduction number,
the total count of infected individuals, and mortality rate [16]. In another publication,
Lazebnik et al. [17] present a graph-based spatio-temporal model based on a SIIRD-scheme
(susceptible–infected asymptomatic–infected symptomatic–recovered–dead) for analysis
of COVID-19-related dynamics. Fudolig and Howard [18] analyse a modified SIR model,
which takes vaccination into account, hence described as SVIR (susceptible–vaccinated–
infected–removed) and analyse its dynamics regarding local stability. Khyar and Karam [19]

Figure 1. Visualisation of the developed agent-based simulation with agents, trajectories, and tracking
of aerosols shown.

The main contributions of this paper are centred around a generic agent-based model
for infectious disease modeling, which is:

• almost arbitrarily applicable to scenarios defined by a two-dimensional floor-plan
• capable of handling large areas and high agent counts
• incorporates a basic model of aerosol spreading
• augmented by extending the time span over multiple days to account for the temporal

progress of infection dynamics

This paper is organized as follows: The following Section 2 gives an overview of the
state-of-the-art of infectious disease modeling, with a focus on agent-based simulations.
In Section 3, we describe in detail the model we developed and the accompanying imple-
mentation. This section is further divided into sub-sections covering pedestrian dynamics
(Section 3.1), modelling of the simulation domain, including agent pathfinding (Section 3.2),
and infectious disease modeling (Section 3.4). Section 4 describes our experimental setup,
in Section 5, the results are presented, which are then discussed in Section 6. Finally,
Section 7 gives a short conclusion and outlook.

2. Related Work

In this section, we first review extensions that have been made to compartmental mod-
els for covering spatial aspects, indoor disease transmission, and multi-strain epidemics,
before we put our focus on agent-based models for infectious disease and epidemics mod-
eling. We differentiate these approaches into two categories, compartmental agent-based
models and social-force agent models.

Transmission of COVID-19 and airborne diseases, in general, has already been inves-
tigated with respect to indoor environments. Both Gao et al. [12] and Noakes et al. [13]
use the Wells-Riley equation [14,15] in combination with an SEIR-model to investigate the
effect of ventilation control and further measures on infection dynamics.

There have also been numerous approaches for analysing multi-strain pandemics
with compartmental models. Lazebnik and Bunimovich-Mendrazitsky propose a model
for multi-strain pandemics with a focus on the relations of basic reproduction number,
the total count of infected individuals, and mortality rate [16]. In another publication,
Lazebnik et al. [17] present a graph-based spatio-temporal model based on a SIIRD-scheme
(susceptible–infected asymptomatic–infected symptomatic–recovered–dead) for analysis
of COVID-19-related dynamics. Fudolig and Howard [18] analyse a modified SIR model,
which takes vaccination into account, hence described as SVIR (susceptible–vaccinated–
infected–removed) and analyse its dynamics regarding local stability. Khyar and Karam [19]
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follow a similar approach, analysing a multi-strain SIR model with regard to global stability.
Edilson et al. [20] present an analysis and accompanying optimal control strategies of a
multi-strain epidemic model with respect to COVID-19, and Yagan et al. [21] use a model
proposed by Eletreby et al. [22] to analyse the impacts of an upcoming, more transmissible
strain of COVID-19. De León et al. propose a multi-strain model, which they apply to the
analysis of two virus variants and associated diminished effectiveness of vaccination [23].

Concerning compartmental agent-based models, Hoertel et al. propose a stochastic
model, which they use for a simulation based on data from France; study the impact of
measures like physical distancing, mask-wearing, and shielding individuals [24]. Their
model is based on the model of Perez and Dragicevic [25], which is an SEIR-based model
based on GIS (Geographic Information System) data and movement rules, and the model
Venkatramanan et al. [26], which is an agent-based network model combined with SEIR,
used for forecasting an Ebola outbreak. Wang et al. implemented the model of Hoertel et al.
into a visual interactive tool for strategy assessment [27]. A large-scale ABM with the
SIRD (susceptible–infected–recovered–deceased) scheme is proposed by Giacopelli [28].
Müller et al. combine transportation modelling with infection modelling, using “(daily)
activity chains” [29]. Wolfram presents an analysis of graph-based (social-)networks and
SIR-models, with studies modelling choices in general, and choice of distributions in par-
ticular [30]. Ying and O’Clery apply a graph-based model to a supermarket setting [31],
and Kerr et al. propose the “Covasim” simulation framework [32], which offers various
contact network models with compartmental models. It also includes a scaling model (one
person represents multiple real persons) with a technique they call “dynamic rescaling”.
Krivorotko et al. [33] use the Covasim-framework to consider cases of corona outbreaks in
the US and UK and corresponding available data. Their focus lies on the process of data
collection and parameter identification, and calibration. Truszkowska et al. propose an
agent-based model with single-individual resolution and a five-state-model (susceptible–
exposed–infectious-symptomatic–removed-healed–removed-dead) [34]. Shamil et al. simu-
late the spread of COVID-19 in the example of US cities with an agent-based state model.
They also investigate the influence of the ability to trace individuals via smartphones on the
accuracy of their simulation [35]. Chumachenko et al. propose an agent-based model with
an SEIR scheme for assessment of the dynamics of influenza and acute respiratory virus
infection [36]. Alvarez Castro and Ford combine a 3D-agent model with an SEIR model to
simulate COVID-19 transmission in university students [37].

Social-force ABM has been proposed and applied to different scenarios with respect to
infectious disease modelling. We already used social-force ABM for analysis of supermarket
capacity or occupancy with respect to abiding prescribed distances [5]. Parisi et al. also
did a study concerning supermarkets, with regard to the question of how the number of
customers affects social distancing [9]. Islam et al. analysed indoor spaces in general [38].
Espitia et al. [39] propose a “social distancing model”, comparing the social force model to
their own social distancing model. Their simulation considers the city of Venice. Garcia et al.
analyse daily life situations in various public places [8]. Alam and Ahsanul [40] developed
a social-force-based model to reflect pedestrian behaviour under COVID-19 restrictions.
They also consider an airport scenario. Cuevas presents an agent-based model for COVID-
19 transmission with a focus on agent interactions [41]. Nikoohemat et al. focus on building
realistic point-cloud models for simulation [42], while Kramer and Wang did a study on
the adverse effects of social distancing on pedestrian movement [43]. Last but not least,
Mayr and Köster propose an “optimal steps model”, with focus on keeping distances [10].

In this study, we extend a social-force-based simulation [4,5] by creating coherence
over multiple simulation runs, which are considered to be taking place on consecutive
days. In the following sections, we describe all aspects of our simulation framework
in detail, including pedestrian dynamics, modelling of the airport area, and infectious
disease modelling.
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3. Materials and Methods

In this section, we present the underlying model used in our simulation as well as the
additions we made for infectious disease modelling. We first describe the pedestrian simu-
lation itself (Section 3.1), before we proceed to infectious disease modelling (Section 3.4),
including the important extension to simulating multiple consecutive days (Section 3.4.2).
All identifiers and variables used throughout this chapter are summarised in Table 1.

3.1. Pedestrian Dynamics

Pedestrians are modelled as self-propelled agents pi, interacting with each other and
with obstacles [4]. We formally define an agent as pi = (xi, vi, e0

i , v0
i , si, di, ci, cvt

i , caexp
i , dinc

i ),
which will be explained in detail in the following. Agent interaction is effected by forces,
which obstacles and other agents exert on an agent. Figure 2 shows the interaction of agents
with the environment and with each other and the associated variables.

(a) Agent–wall (b) Agent–agent

Figure 2. Interactions according to the underlying model of pedestrian dynamics between (a) agents
(shown as blue points) and obstacles (black rectangle) and (b) between two agents, with associ-
ated quantities.

The movement of an agent is described by the following equation of motion, defining
the acceleration of an agent pi as

dvi
dt

= f0
i + fwall

i + fij. (1)

In this equation, f0
i denotes the self-acceleration of agent pi, and fwall

i and fij denote
the forces exerted by the closest obstacle, and by another agent pj, respectively. An agent’s

velocity vi is the derivative of its position xi with respect to time vi = dxi
dt . Note that

agents have no defined mass in the underlying model, which hence is omitted. The
self-acceleration f0

i is defined as

f0
i =

v0
i e0

i − vi(t)
τ

, (2)

where v0
i is the desired speed of pi (in metres per second), e0

i its desired direction, and τ is
a relaxation constant, measured in seconds.

The force fwall exerted from an obstacle w ∈ R2 on agent pi is given by

fwall
i (dw) = a exp

(−dw

b

)
nw, (3)

with a = 3, b = 0.1 being constants [4], nw being the normal vector pointing from obstacle
w to pi, and dw the distance from pi to w. A detailed definition of obstacles and modelling
of the simulation domain is given in Section 3.2.

The force fij acting from agent pj on agent pi is defined as

fij(d, θ) = −â exp
(−d

b̂

)
[exp(−(n′ b̂θ)2)tij + k̂ exp(−(nb̂θ)2)nij]. (4)
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Here, eij denotes the normalised direction from pi to pj: eij =
xj−xi
‖xj−xi‖ , tij =

t′ij
‖t′ij‖

is

the so-called interaction direction between two agents, with t′ij = λ(vi − vj) + eij, λ a
constant, and nij the normalised vector perpendicular to tij, oriented to the left. The angle
between tij (interaction direction) and eij (vector pointing from pi to pj) is described by
θij, and a, b̂, n, n′ are (constant) model parameters [4]. Finally, b̂ and k̂ are calculated as
b̂ = γ‖t′‖ and k̂ = sgn(θ).

3.2. Simulation Domain Modelling and Pathfinding

In this paper, we focus our simulation domain solely on the airport-terminal scenario
described in Section 4 and the according floor-plan. Nonetheless, our approach is not
restricted to a certain type of scenario at all, and should be applicable to almost any 2D
scene described by a suitable binary floor plan.

The simulation domain is defined as a two-dimensional rectangular area Ω = [0, w)×
[0, h) ⊂ R2 of a given size w × h (in metres). The floor-plan is modelled as a two-
dimensional binary map F ∈ {0, 1}wF×hF , defining walkable space (F = 1) and obstacles
(F = 0), the ratio sF = wF

w = hF
h defines the resolution of the floor map with respect to the

underlying area in points per metre. The corresponding mapping from the simulation
domain is referred to as the scalar field φF(x) : Ω→ {0, 1}. The set of obstacles can, thus,
be defined as W = {w ∈ Ω | φF(w) = 0}. Within Ω, the distance dw (cf. Equation (3)) is
calculated as the perpendicular distance from pi to the closest obstacle w ∈W.

This is done efficiently by means of the distance transform [44,45] of the binary floor
map F, which is described as a scalar field φdt : Ω → R. Formally, this is defined as
φdt(x) = minw∈W(‖x−w‖) with W = {w ∈ Ω | φF(w) = 0}.

On the area Ω, we define a set S of starting points sk ∈ Ω ⊂ R2 and a set D of
destination points dk ∈ Ω ⊂ R2, which determine how the agents move and navigate in
the simulation. The set of destination points D is further divided into two disjoint sets,
D = DD∪̇DW , denoting waypoints (DW) and final destination points (DD). Technically,
both are mostly treated the same way, the only difference arises in handling agents after
they reach those points. This is described in detail in the following. Regardless of the type
of destination point, agents start from a certain point si from the set S and move towards a
point di ∈ D. Within the simulated airport terminal, starting points represent entrances or
incoming escalators within the simulated airport. Waypoints represent points-of-interest of
any kind agents by stopping by, like counters, helpdesks, or shops, while final destination
points represent exits or outgoing escalators.

Path-finding is done by applying Dijkstra’s Algorithm [46] to the floor plan, gener-
ally assuming an 8-neighbourhood-connectivity at each point x ∈ Ω of the floor-plan F.
Depending on the problem, other algorithms can also be integrated for the pathfinding,
like, for example, A* [47] or fast-marching based methods [48,49]. This results in scalar
fields φdist

k : Ω → R, one for each way- and destination point dk ∈ D. Each of those
maps consequently holds the minimum distance to the destination point for each walkable
position φF = 1. Following, the gradient operator is applied to the distance field giving a
vector field Gdir

k = ∇φdist
k , Gdir

k : Ω → R2. Exemplary colour-coded visualisations of the
resulting scalar- and vector fields are shown in Figures 3a and 3b, respectively. The colours
in Figure 3a indicate the distance to the destination point, from near (violet) to far (yellow).
In Figure 3b, the colours correspond to directions of the shortest path at every position,
as shown in the colour-wheel at the lower right. For example, pure orange colour implies
movement to the left, and pure green colour implies the upper right direction. Blended
colours accordingly stand for directions in between.
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(a) (b)
Figure 3. Exemplary visualisation of distance map φdist and directions Gdir, the associated desti-
nation point is located in the lower left in both cases. (a) Colour-coded display of a distance map
φdist. (b) Colour-coded display of directions Gdir, mapping of directions to colours is shown in the
lower right.

Agents have several attributes attached beside the model-related value of desired
speed v0

i , including the current starting point si(t) ∈ S from the set of available points,
and the current destination point di(t) ∈ D. Additional attributes relevant to infectious
disease modelling will be detailed in Section 3.4.

3.3. Pedestrian Simulation

The simulation runs on a defined set of agents Psim of given size nP = |Psim| at the
same time, and over a defined period of time [t0, tmax), measured in seconds, with t0 = 0
by default. Initially, each agent is assigned a destination point di(t0), which is chosen
uniformly random from the set D of available points. However, to avoid crowding around
starting points at the beginning of the simulation, which would also lead to distorted data
concerning aerosol exposure levels (cf. Section 3.4.1), the initial starting positions si(t0) of
the agents are spread randomly across the (walkable) area of the terrain, instead of drawing
from the available starting points S. These points are used only afterward, as described
below. A possible starting point configuration is shown in Figure 4.

Initial positions

Figure 4. Exemplary starting point configuration, individual starting positions are shown as
blue points.

Even though the number of agents in the simulation is set to a fixed number nP,
as stated above, the number of individuals in a simulation run can be notably higher by
allowing for individuals to leave and new individuals to join. To this end, a global agent
pool Ppool, with |Ppool| > |Psim|, is maintained. This pool defines the individuals available
for the simulation in its entirety. If, after reaching its destination, an agent leaves the
simulation, it gets replaced by another individual from the agent pool. The new agent is
then randomly assigned a starting point si(t) ∈ S and a way- or destination point di(t) ∈ D.
However, if an agent’s current destination di is a waypoint, i.e., di ∈ DW , this agent is not

Figure 3. Exemplary visualisation of distance map φdist and directions Gdir, the associated desti-
nation point is located in the lower left in both cases. (a) Colour-coded display of a distance map
φdist. (b) Colour-coded display of directions Gdir, mapping of directions to colours is shown in the
lower right.

Agents have several attributes attached beside the model-related value of desired
speed v0

i , including the current starting point si(t) ∈ S from the set of available points,
and the current destination point di(t) ∈ D. Additional attributes relevant to infectious
disease modelling will be detailed in Section 3.4.

3.3. Pedestrian Simulation

The simulation runs on a defined set of agents Psim of given size nP = |Psim| at the
same time, and over a defined period of time [t0, tmax), measured in seconds, with t0 = 0
by default. Initially, each agent is assigned a destination point di(t0), which is chosen
uniformly random from the set D of available points. However, to avoid crowding around
starting points at the beginning of the simulation, which would also lead to distorted data
concerning aerosol exposure levels (cf. Section 3.4.1), the initial starting positions si(t0) of
the agents are spread randomly across the (walkable) area of the terrain, instead of drawing
from the available starting points S. These points are used only afterward, as described
below. A possible starting point configuration is shown in Figure 4.

Initial positions

Figure 4. Exemplary starting point configuration, individual starting positions are shown as
blue points.

Even though the number of agents in the simulation is set to a fixed number nP,
as stated above, the number of individuals in a simulation run can be notably higher by
allowing for individuals to leave and new individuals to join. To this end, a global agent
pool Ppool, with |Ppool| > |Psim|, is maintained. This pool defines the individuals available
for the simulation in its entirety. If, after reaching its destination, an agent leaves the
simulation, it gets replaced by another individual from the agent pool. The new agent is
then randomly assigned a starting point si(t) ∈ S and a way- or destination point di(t) ∈ D.
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However, if an agent’s current destination di is a waypoint, i.e., di ∈ DW , this agent is not
removed from the simulation after it reaches this point. Instead, it is randomly assigned a
new destination di from the set D. This means, the new destination can again be either a
way- or a destination point, and the process repeats until the agent reaches a final desti-
nation point from DD. As the computation of inter-agent forces have to be computed for
all pairs implying a complexity of O(n2), running the simulation is quite computationally
intensive. Thus, for efficient execution, we devised parallel implementations for both
conventional desktop processors (CPU, Central Processing Unit) and dedicated graphics
processors (GPU, Graphics Processing Unit), using OpenMP (https://www.openmp.org/,
accessed on 23 September 2022) and OpenCL (https://www.khronos.org/opencl/, ac-
cessed on 23 September 2022), respectively. Our analyses revealed that the OpenMP-based
implementation did not yield a major improvement in our experiments, while the OpenCL
implementation did, with a speed-up by a factor of almost 10.

In the following section, we describe the additions we made to the pedestrian model
for modelling infectious disease transmission.

3.4. Infectious Disease Modelling

We model virus transmission by generating simulated aerosol trails based on the
agents’ trajectories. The resulting viral loads are then accumulated over time and a rough
approximation to diffusion is applied. To evaluate a simulation run with regard to different
infection scenarios, aerosol trail generation is not done while the simulation is running, but
rather afterwards.

Specific to infectious disease modelling, the following attributes are attached to
an agent pi: Its infectivity ci ∈ {0, 1} as a Boolean value, the according virus variant
cvt

i ∈ {0, 1}, if ci is true (i.e., 1), and the cumulative viral load from aerosol exposure time
caexp

i .

3.4.1. Aerosol Modelling

As already mentioned, virus transmission is modelled by tracking aerosol concen-
tration within the simulated area. To this end, we augment our simulation with a simple
aerosol model we developed specifically for this purpose. The calculation is done as fol-
lows. The movement data containing the agents’ positions xi(t) for t ∈ [t0, tmax) is split
into discrete time-frames of length tframe (measured in seconds) and sampled at a rate of
tsteps steps per frame. Aerosol maps, represented as scalar fields φae

j : Ω → R, are then
generated as follows, one for each time frame. For each (sampled) position of an infected
agent’s pi trajectory, a certain amount cae of virus concentration is distributed evenly and
proportionally to the area of a disc of radius rae (in metres), centred at an agent’s current
position xi(t) for t ∈ [tj, tj+1) with t0 = 0 and tj+1 = tj + tframe. Thus, each map φae

j
covers a time-window of length tframe seconds. Virus concentration is accumulated not only
within a map φae

j of a single discrete time frame but over consecutive maps φj and φj+1,
as well. Additionally, aerosol diffusion is approximated by applying a Gaussian filter (with
parameter σ, relative to map resolution) to the aerosol map within each step, after all trails
have been calculated. To inhibit diffusion through walls, all areas which represent obstacles
are then set to zero. A visualisation of the process can be seen in Figure 5, with Figure 5a
showing an aerosol map, with agents and their trajectories as overlays. Infectious agents
are drawn as red discs and non-infectious ones in light blue. Trajectories are shown as
lines in the same colours. For better recognisability, a section from the centre is shown
again in greater detail, with Figure 5b showing all agents and trajectories and Figure 5c
showing only infectious ones, which are the ones responsible for generating aerosol-trails
with viral load.

https://www.openmp.org/
https://www.khronos.org/opencl/
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(a)

(b) (c)
Figure 5. Detail view of trajectories and aerosol trail generation. (a) Exemplary agent trajectories and
aerosol trail generation. (b) Detail view with agents, trajectories, and aerosol traces. (c) Detail view
showing only infectious agents and traces.

Tidal air virus concentration is measured in mRNA copies · cm−3 [50], the actual value
cae

i (t) is sampled from a normal distribution at each step. The actual virus concentration
deposited is calculated as the product of respiration rate rresp, viral load cae

i (t), and length
of the time-step tsteps. Figure 6 shows an exemplary visualisation of aerosol concentration
level within the simulation area.
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Figure 6. Exemplary visualisation of aerosol trails and corresponding amount of viral load.

Figure 5. Detail view of trajectories and aerosol trail generation. (a) Exemplary agent trajectories and
aerosol trail generation. (b) Detail view with agents, trajectories, and aerosol traces. (c) Detail view
showing only infectious agents and traces.

Tidal air virus concentration is measured in mRNA copies · cm−3 [50], the actual value
cae

i (t) is sampled from a normal distribution at each step. The actual virus concentration
deposited is calculated as the product of respiration rate rresp, viral load cae

i (t), and length
of the time-step tsteps. Figure 6 shows an exemplary visualisation of aerosol concentration
level within the simulation area.
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Figure 6. Exemplary visualisation of aerosol trails and corresponding amount of viral load.
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Finally, aerosol exposure measurement is done analogously to the generation of aerosol
trails. For each step j, aerosol concentration, given by the corresponding aerosol map φae

j , is
integrated over the (non-infected) agents’ trajectories as the (line-)integral along the section
of the trajectory of agent pi over the aerosol-map φae. Thus, aerosol concentration for step j
is calculated as a discrete approximation of:

caexp
i,tj

=
∫ tj+1

tj

φaec
j (xi(t))dt. (5)

From these series of values, the total viral load exposure per agent is calculated as the
cumulative sum

caexp
i = ∑

j
cae

i,tj
. (6)

These values are then used for determining if an agent is possibly infected, by compar-
ing caexp

i to the threshold ccrit
vt for the corresponding virus variant.

3.4.2. Extension and Coherence over Multiple Days

The strength of our social-force-based simulation lies in tracking contact times with
great geometric detail, mostly in a confined space, but, more importantly, in a rather short
period of time. To overcome this limitation, we propose the following additions, to simulate
coherence over time between multiple runs of the simulation. This way, not only the
effects of an agent passing the infection on to other agents can be taken into consideration,
but possible re-infection as well. Central to our method is a subset of agents which persists
over the multiple runs of the simulation. To this end, a subset Ppersist ⊂ P0

pool is chosen from

the set of all agents available in the pool P0
pool of the first simulation run. In the context of

the airport terminal scenario chosen here, persistent agents would most likely correspond to
personnel working at the airport. Then, a series of a total of mtotal = 10 discrete simulations
are run, each simulation representing a consecutive day in the simulated (airport terminal)
setting. Each simulation is run with the same basic settings. The agent pool Pm

pool for each
simulation following the first one are sampled randomly from the same distributions except
for the set of persistent agents. From simulation-day, m to m + 1, the set Ppersist of agents
are transferred to m + 1 with their state being the one of the ends of the simulation of day
m. In the transition from day m to day m + 1, it is checked whether a persistent agents’
ppst

i aerosol viral exposure level caexp
i is above a given threshold ccrit

vt for the corresponding
virus type. If this is the case, the agent is assumed to be infected by the end of a certain
incubation period of dinc

i ∈ R days, which is sampled from N (3, 0.5) (cf. [51–53]). If this
incubation period is over, the agents infection status ci is set to 1 (along with the according
virus-type cvt

i ). This way, the detailed spatial simulation of virus spreading is extended into
the time domain.

Table 1. List of identifiers and parameters used.

Name Description

a Model parameter
â Model parameter (A in [4])
b Model parameter
b̂ Model parameter (B in [4])
ci Infectivity of pi
cvt

i Virus-variant of pi
cae

i Tidal air virus load of pi
caexp

i Aerosol exposure level of pi
ccrit

vt Necessary viral load for infection per variant
dinc

i Incubation time for pi
dw Distance to wall
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Table 1. Cont.

Name Description

di, dk Destination point
D Set of all way- and destination points
DD Set of all destination points
DW Set of all waypoints
eij Direction from pi to pj
f0

i Self-acceleration
fij Agent-to-agent force
fwall

i Wall force
F Binary floor map
Gdir

k Direction map for dk
h Height of simulated area in metres
hF Height of floorplan in pixels
k̂ Model parameter (K in [4])
mtotal Number of simulated days
nij Vector perpendicular to tij
nw Wall normal
n Number of agents
nP Size of agent pool
n′ Model parameter
Ω Simulation area
φae Map of aerosol concentration
φdt Distance transform of F
φF Floor-plan/obstacle map
pi Agent
ppst

i Persistent agent
Psim Set of simulated agents
Ppool Set of all available agents
Ppersist Set of persistent agents
rae Radius of aerosol distribution in metres
rresp Respiration rate
si Starting point of agent pi
S Set of all starting points
sk Starting point
tij Interaction direction between pi and pj
t0 Time of simulation start
tmax Time of simulation end
tframe Length of time-frame for aerosol calculation
tsteps Sampling rate for time-frames
τ Relaxation constant
vi Velocity of pi
v0

i Desired speed of pi
w Wall/obstacle position
W The set of all obstacle positions
w Width of the simulated area in metres
wF Width of floor-plan in pixels
xi Position of pi

4. Experiments

We run the simulation in a realistic setting which represents the floorplan of an airport
terminal, as shown in Figure 7. The floorplan was created true to scale, based on publicly
available map data (Google Maps https://www.google.de/maps/@50.0475523,8.5731218,
17.96z, accessed on 8 December 2022). The interior structure and points of interest (POI)
were placed to be in accordance with the assumed layout as closely as possible. Waypoints

https://www.google.de/maps/@50.0475523,8.5731218,17.96z
https://www.google.de/maps/@50.0475523,8.5731218,17.96z
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were placed at stores and counters, starting points at assumed entries and escalators,
and exit points at possible exits. The actual size is assumed to be 451.63 m × 291.78 m,
the floor map TF has a resolution of sT = 7.05 points per metre. The size stems directly from
the map data, while the resolution is resulting from the manual process of map creation.
The floor map is embedded into the rectangular area Ω, in which we manually define 11
starting points (S) and 46 destination points (D). The destination points are divided into 29
waypoints (DW) and 17 final destination points (DD), with the numbers resulting directly
from the manual placement described above. The distribution of the respective points
is shown in Figure 7, as well. The considered overall time period in days is assumed as
mtotal = 10 and individual simulation time is set to tmax = 3600 (one hour). This means
we simulate ten consecutive days, and for each day a time-frame of one hour. The number
of days were chosen to be large enough with respect to the chosen incubation period
with a mean of three days (cf. Section 3.4.2), and tmax was intended to be an adequate
time-window per day, while keeping computing time at reasonable levels.

Figure 7. Floorplan with starting- and destination points shown.

The number of simultaneously active agents is set to nP = |Psim| = 200, while the
total number of individuals available from the agent pool is |Ppool| = 3000. Consecutive
simulations from one day to the next share |Ppersist| = 50 persistent agents. These numbers
are intended to be a rough approximation to the order of magnitude of passengers at the
corresponding airport with reference to the chosen time interval per day (https://www.
fraport.com/en/investors/traffic-figures.html, accessed on 8 December 2022). The agents’
desired movement speeds v0

i are sampled according to N (1.29, 0.19), as suggested in the
original paper [4].

Time-frames for aerosol and viral load exposure calculation are set to tframe = 50 s,
with a sample rate of tsteps = 500. These values were chosen for computational efficiency.
Smaller numbers would lead to numerically more accurate results but increased com-
putation times. The radius of aerosol distribution is chosen as rae = 0.5 m [54]. Tidal
air virus concentration is assumed as 5× 108 mRNA copies · cm−3 [50], the actual value
cae

i (t) is sampled from a normal distribution N (5× 108, 103) each step. A person’s respi-
ration rate rresp is assumed as 10 L min−1. Finally, Gaussian blur is applied with σ = 3 to
approximate diffusion.

In terms of infectious disease modelling, we consider two main scenarios. In the
first scenario, we only assume a single virus-variant, whereas, in the second one, infected
agents carry one of two different virus-variants. For the first scenario, we only change
the threshold ccrit an agent has to resorb to count as infected. For the second scenario,
we additionally vary the relative amounts of the two different virus types among the
infected agents.

https://www.fraport.com/en/investors/traffic-figures.html
https://www.fraport.com/en/investors/traffic-figures.html
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For each simulation run of the assumed duration of ten days, the set of infected agents
is divided into two different virus variants, which differ in terms of infectivity. This again
is effected by defining distinct thresholds ccrit

vt for each type, meaning the assumed viral
load an individual has to resorb to get infected is significantly lower for the more infectious
variant. Viral load is measured in RNA concentration, cf. [50].

We assume the amount of infected to be at 2%, so infectivity is sampled from a
Bernoulli distribution: ci ∼ B(0.02). This number is an estimation of the incidence
among vaccinated people at the age of 18 to 59 (https://www.rki.de/DE/Content/InfAZ/
N/Neuartiges_Coronavirus/Daten/Inzidenz_Impfstatus.xlsx?__blob=publicationFile, ac-
cessed on 12 December 2022). The virus-type cvt

i ∈ {0, 1} is chosen from two variants,
with their amounts varying in ratios 9:1, 8:2, 7:3. This again corresponds to a sampling
from B(0.9) down to B(0.7).

For each agent pi, aerosol exposure cae
i is measured as described in Section 3. An agent

is considered to be infected if it’s accumulated viral load cae
i exceeds the threshold of

corresponding virus type cvt
i . Persistent agents can cause infections of other agents–in

addition to agents who have been infectious from the beginning–if they become infective
within the simulated period of ten days.

We then go on to evaluate the average infection counts and how they change over the
simulated duration of 10 days, for each variant of the chosen parameters. For each com-
bination of available parameters, we perform ten separate runs of the simulation process.
This is not to be confused with the discrete simulation runs for the considered period of ten
days. Or, put differently, each ten-day simulation run is repeated independently ten times,
to get more reliable and meaningful figures. We did not choose a higher number here, as
each simulation run is relatively expensive in terms of computing time. All simulations
were run on a desktop computer with an Intel Core i9-9900K 3.6 GHz CPU, 64 GB of RAM,
and an NVIDIA GeForce RTX 2080 Ti GPU with 11 GB of RAM.

5. Results

We analyse the results of our experiments with regard to two principal questions. First,
we check how different levels of infectivity affect the number of infected in our simulated
scenario. This gives insight into the orders of magnitude to consider with the assumptions
and parameters chosen, and furthermore ensures that our simulation behaves as expected.
Second, we tackle the main question of our scenario, introducing a second, more contagious
virus type, which is gradually gaining traction. Here, we are interested in the proportions
of how high the ratio of the new variant is compared to the pertaining one, and how much
more contagious it has to be to cause notable increase in infections.

5.1. Single Virus-Variant

We first consider the results of running the simulation with only one virus type.
In different runs, we vary the contagiousness ccrit

0 from 1× 1013 down to 6× 1012, one
for each run. The range of these numbers was chosen based on empirical data from
simulation runs in conjunction with the chosen amount of average viral load, as described
in Section 3.4.1. Figure 8 shows the results of these simulations. Here, each graph shows
the mean value of ten simulation runs. As to be expected, a lower threshold ccrit

0 results
in faster-growing infection rates and, thus, more infected people. With ccrit

0 = 1× 1013,
the curve does not rise at all until day 6, and still remains flat more or less, afterwards.
Within thresholds from 0.9× 1011 down to 0.7× 1011, infection counts rise more obviously.
And running at ccrit

0 = 0.6× 1011 shows an even more significant increase in infections
during the 10-day period, especially after day 5, which is in accordance with the assumed
incubation time of about three days. The peak at day 10 for this threshold equates to a
relative amount of about 17% of all simulated agents.

In summary, the evolution of the figures behaves as can be expected. Rising numbers
due to infections by newly infected agents do not occur until about four days of the simulated
overall time period. Depending on the choice of threshold ccrit

0 , and, thus, the degree of
infectivity, the steepness of the curves change, with lower thresholds causing more infections.

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Inzidenz_Impfstatus.xlsx?__blob=publicationFile
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Inzidenz_Impfstatus.xlsx?__blob=publicationFile
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Figure 8. Simulations with one virus-variant of varying contagiousness: Number of infected agents
over a simulated period of ten days. Shaded areas show respective minima and maxima.

5.2. Two Virus-Variants

Based on these numbers, we now consider simulations with two different virus types of
different contagiousness. The first variant is kept at a constant threshold of ccrit

0 = 1.9× 1012,
slightly below the highest value of the single-variant runs, where the number of infections
remained almost stable over the first half of the simulated period of 10 days and only
a slight increase in the second half. This can be interpreted as a variant the population
already has developed a certain degree of immunity, whether through vaccination of
previous infections.

In separate simulation runs, we then gradually adjust the value ccrit
1 for the second

virus type. This value is chosen to be significantly lower than the one for the first virus
type, ccrit

0 , as it intended to model a significantly more contagious new variant. For each
value of ccrit

1 , we also ran separate simulations with the relative amounts of the infected
carrying the second virus variant increasing. In other words, for each chosen value of ccrit

1 ,
three series of simulations are run, one for each chosen ratio of old-to-new-variant. We do
this for ratios 9:1, 8:2, and 7:3. With the combination of these parameters, we seek to gain
insight into the critical proportions when a new, more contagious variant gains traction.

Figure 9 shows the results of the simulation series with ccrit
1 = 1.6× 1012. Here, only a

ratio of 7:3 for virus types shows a significant increase in infection numbers. At its peak
on day 10, a share of about 43% of the simulated population is reached. With a ratio of
8:2, the number of infected agents also rise after 5 days, but much slower. The highest
relative rate (day 9) is at about 11%. Finally, with a ratio of 9:1, the curve remains almost
flat, showing no noticeable effect of the more contagious virus-type added.

Figure 10 shows the results for ccrit
1 = 1.2× 1012. In this setting, a ratio of 7:3 shows an

even stronger increase (with a maximum of almost 58%), while a ratio of 8:2 also shows
a notable rise in infected towards the end of the 10-day period, albeit much slower and
still well below the numbers of the 7:3-runs with the higher threshold ccrit

1 = 1.6× 1012.
The corresponding peak is at about 26%. The runs for ratio 9:1 also start to rise slowly,
but still not really noticeable.

If we further lower the threshold of the more contagious variant to ccrit
1 = 0.8× 1012,

the trend indicated by the previous runs continues. The corresponding curves are shown
in Figure 11. Here, the 7:3-ratio shows a strong increase, with a notable jump in numbers
already after day 4, ending at a share of slightly above 70%. Moreover, the curve of the
8:2-ratio-variant is much steeper than in the ccrit

1 = 1.2× 1012-runs, reaching almost 50% at
its peak. And even the 9:1-ratio distribution of the two virus-variants shows an increase
at about day 8, still slightly above 20%, indicating that the further lowering of viral load
necessary for infection shows an effect, even if the amount of infected among the population
is only at 10%.
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Figure 9. Viral load thresholds ccrit
0 = 1.9× 1013 and ccrit

1 = 1.6× 1012. In this setting, only the
numbers for the ratio 7:3 are significantly rising.
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Figure 10. Viral load thresholds ccrit
0 = 1.9× 1013 and ccrit

1 1.2× 1012. The number of infected is
significantly rising for ratio 7:3, while for ratio 8:2 also rising, but much slower.
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Figure 11. Viral load thresholds ccrit
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rising. Ratio 9:1 shows a rise towards the end of the ten-day-period.
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6. Discussion

We have presented a social-force-based simulation with a basic aerosol model for
modelling the spread of infectious diseases. Central to our approach is the extension
of our simulation model into covering a larger span of time (days instead of hours) by
creating coherence over days. This was done by integrating a subset of individual agents
for multiple runs of the simulation, which had a consistent state over the whole time
period. In this process, each simulation run covers part of one of multiple consecutive days.
With these assumptions made, we applied our simulation to a scenario representing an
international airport terminal.

In this scenario, persistent agents can be thought of as employees, staff, or crew
members. The results can provide insight into the impact of COVID-19 on the ground crew,
franchise staff, or passengers at an international airport. Considering the potentially high
numbers of people attending such a location and the distances potentially travelled, such a
scenario could prove to be very relevant for infectious disease spread [55]. Nevertheless,
as our approach is kept very generic, it can be applied to almost any scenario, which
includes individuals attending on a regular short-term basis, for example, supermarkets,
malls, stations, or public buildings.

As the model presented here is focused on the extension of an agent-based approach
into the temporal domain, there are some limitations to our simulation. First of all,
aerosol modelling is basic and could be improved by a proper fluid dynamics simula-
tion (cf. [56–59]). Thus, accuracy is limited, and phenomena like air circulation are not
taken into account yet. Both the pedestrian- and aerosol simulation are two-dimensional,
even though this is presumably more relevant to the latter, as well. The agents’ behaviour is
mainly governed by commuting between their points of interest, which can presumably be
considered a reasonable approximation for the scenario at hand. Here, more sophisticated
models of pedestrian behaviour could be incorporated [40,60]. Finally, the implemented
virus- or disease-transmission model only considers the assumed viral load in the air. In this
regard, a more sophisticated model of transmission (cf. [12,13]) is a possible enhancement
for future research. Additional factors like an individual’s age, the wearing of various types
of masks, vaccination status, or similar could also be taken into account then.

So far, the our results of our experiments appear to be plausible, with figures changing
with different parameters as to be expected. Consistency with existing models, however,
remains to be analysed, at least as far as the models can be directly compared. In this
context, especially comparison to established temporal models of infectious disease spread
should be carried out.

7. Conclusions

Obvious improvements can be made by incorporating a more sophisticated aerosol
model based on computational fluid dynamics (CFD). Not only would this make for a
more realistic account of aerosol concentration, but also aspects like ventilation could
be taken into account. CFD has already been applied in various scenarios regarding the
airborne spreading of diseases in general and COVID-19 in particular [56–59]. Moreover,
phenomena on a smaller scale, considering droplets and local spreading [61], as well as
general insight about the flow physics of COVID-19 [62] have been covered in research.

Apart from the disease modelling aspect, the agent simulation we proposed can be
further improved by allowing for varying elevation levels. Extension to multiple layers or
even to three dimensions might also be possible, but would take considerably more effort.
Another quite obvious improvement, which could be done with little effort, could be made
by not only simulating one time period per day, but rather multiple ones. A possible choice
might be, for example, one period of morning hours, afternoon, and evening, respectively.
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