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Abstract: For decades, sensorless position estimation methods gained lots of interest from the re-
search community, especially in the field of electric drives and active magnetic bearings (AMBs).
In particular, the direct flux control (DFC) technique promises unique advantages over other sen-
sorless techniques, such as a higher bandwidth, but on the other hand, it requires the coils to be
connected in a star topology. Until now, star-point connections are rarely found on active magnetic
bearings. In consequence, there is no known publication about the application of the DFC to an
AMB to this date. In order to apply the DFC to an AMB, a star-point driving approach for AMBs
must be developed beforehand. A star-connected driving approach, capable of driving a four-phase
AMB, is proposed and validated against traditional H-bridges in a simulation. Further, the strategy is
tested in a physical application and generalised for 4∗n phases. In terms of current dynamics, the
simulation results can be compared to the well-known full H-bridge driving. The experiments on
the physical application show that the actual current in the coils follows a reference with satisfactory
accuracy. Moreover, the inductance measurements of the coils show a strong dependency on the
rotor’s position, which is crucial for sensorless operation. A star-point connection delivers a satisfying
response behaviour in an AMB application, which makes sensorless techniques that require a star
point, such as the DFC, applicable to active magnetic bearings.

Keywords: active magnetic bearing; AMB; star connection; star point; direct flux control; DFC;
sensorless; anisotropy-based position estimation

1. Introduction

Compared to classical mechanical bearings, active magnetic bearings (AMBs) offer
unique properties due to a lack of mechanical contact and have, therefore, attracted tremen-
dous interest in research and industry. In particular, they drastically reduce the mechanical
friction at the rotor with the advantage of reduced wear, acoustic noise, maintenance cost
and lubrication, as well as increased efficiency and a higher rotational speed when applied
to electrical machines [1]. Thus, the economic and ecological impact of those machines can
be improved significantly. The here-considered AMBs are based on magnetic reluctance
forces, and consequently, they are inherently unstable systems. Hence, AMBs require con-
trol algorithms with position feedback in order to stabilise the rotor at the centre position [1].
The position feedback is realised conventionally by additional sensors, such as laser- or hall-
effect sensors. Nevertheless, the sensors increase the cost, size and maintenance effort of
the overall system, therefore weakening the economic merits of AMBs. In the past decades,
sensorless control has been widely applied to AMBs to retrieve position information from
electrical quantities already being measured in the system. Such a self-sensing approach
can replace position sensors in cost-critical applications or provide further redundancy
with existing position sensors in use cases where high functional safety is required.

Self-sensing for AMBs started decades ago with the application of observers [1],
such as Luenberger observers, based on a linearised model [2]. The following works are
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based on signal modulation and therefore inject a time-varying signal into the AMB and
evaluate the current response dependent on the air gap [3]. Such an approach offers an
increased disturbance rejection. Another approach is based on processing the current
ripple induced by a switching power amplifier. Such amplifiers are usually driven by
a pulse-width-modulated (PWM) voltage that inherently injects a high-frequency signal
into the AMB. The slope of the resulting current ripple depends on the inductance and,
consequently, on the actual position and can be processed for position estimation [1,4,5].
Common limitations are bandwidth restrictions as well as a saturation of the inductance at
higher currents that allows no robust position estimation in these working points. Another
interesting attempt for self-sensing is based on the exploitation of the star-point voltage
of a three-phase AMB. In particular [6], a high-frequency component is injected into an
AMB, and the resulting voltage response at the neutral point of the AMB is measured.
The work verified the effectiveness of the approach. Nevertheless, a poor signal-to-noise ra-
tio (SNR) was obtained because the voltage at the star point is too small to be measured accu-
rately. Especially for small low-power AMBs, the evaluation of the star-point voltage seems
desirable because the current sensor measurements can be avoided for self-sensing, which
is usually characterised by a small bandwidth and a small SNR for machines in the low-
power region.

In the field of electrical machines, other sensorless algorithms were developed over
the decades, based on either the induced back-EMF or machine anisotropies. The re-
view works [7–9] provide a good overview of the existing techniques. In particular,
there also exists a technique under the name of direct flux control (DFC), which suc-
cessfully exploits the star-point voltage [10–15]. These works demonstrate the robustness,
accuracy and increased SNR of this approach. More in detail, there is another circuitry
based on a re-settable integrator circuit that allows to amplify the star-point voltage with
an increased SNR.

This approach seems interesting for future research works. Nevertheless, the DFC tech-
nique requires not only an accessible star point but also the modification of the PWM pattern.
In particular, this modification is performed using zero voltage vectors and dedicated volt-
age vectors for measurement. This puts several requirements on the switching power am-
plifier that is used. Because AMBs usually only need one direction of the current, there exist
different switching power amplifiers than the one for electrical machines. Usually, only one
voltage direction is required. Thus, an opposing transistor can be replaced by a freewheel-
ing diode. The work [16] provides a good overview of the existing typologies. In particular,
a full H-bridge for each AMB phase provides the maximum flexibility while requiring the
highest amount of components [16]. The unidirectional bridge reduces the component effort
by replacing the complementary transistors with freewheeling diodes, hence allowing only
a positive current flow. A star point cannot be created in this configuration. An interlaced
H-bridge is instead able to provide a current in both directions [17] but forces the star point
to a fixed potential, thus allowing no measurement of induced voltages. Three-half-phase-
leg bridges [18–20] overcome the above-mentioned issues, allow complete axis control
of an AMB but force the star point to a fixed potential on the other hand. A shared leg
bridge [21] allows the connection of several phases to a shared leg, thus drastically reducing
the component effort while increasing the number of available phases. A further drawback
of this typology is a fixed star point and the enormous stress on the transistor of the shared
leg. The reversed shared leg bridge [22] reduces the stress at the transistor of the shared leg.
A good trade-off provides the series-winding topology [23], which requires the phases to
be decoupled. Thus, no star point is available. A common typology known from the field
of machines is the three-phase inverter, where a leg with two transistors is used to drive the
terminal of every motor phase. This approach allows measuring the star point because it is
floating and can drive the machine with defined active voltage vectors. Thus, this typology
seems promising, although more electronic components are needed, and the flexibility and
dynamics are reduced compared to a full H-bridge per each phase.
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This work aims to investigate and develop an AMB system consisting of actuators,
rotors and current-driven power amplifiers that can operate in a sensorless manner with
techniques that use the star-point voltage of the AMB. First, an AMB stator and rotor are
developed and manufactured, specially designed for self-sensing operation. In particular,
the dependence of the inductance on the air gap is optimised during the design process. The
realised AMB consists of four phases with a magnetical air gap of 2mm for demonstration
purposes. The measurements confirm the increased dependence of the actuator inductance
on the position. Based on the obtained AMB, a switching power amplifier with four
phases is designed and manufactured. A driving strategy for this amplifier is presented
and evaluated in a simulation and experiment. The driving strategy can drive the AMB
so that a star-point voltage is present and the DFC technique can be applied. A control
approach for the current controller is shown, implemented and tested in a simulation and
an experiment. A simulation study compares the performance of the driving approach to
traditional full-bridge driving in terms of the obtained dynamics and accuracy.

The work is structured as follows: Chapter 2 briefly introduces the modelling and
design process of the AMBs and presents the proposed driving method for the case of
4 phases and a generalised case of 4n phases. Chapter 3 describes the development and
realisation of the hardware set-up involving the rotor and the stator as well as the power
amplifier. Chapter 4 shows the simulation results concerning the driving approach and
current control strategy and provides the simulation study that compares the driving
approach to a classical full H-bridge-based solution. Chapter 5 shows the experimental
results and discusses them in terms of the robustness, current control accuracy and dynam-
ics. Finally, a conclusion is drawn, and ideas for future research topics will be provided.
Abbreviations (List of Symbols) provides a list of the used symbols, Abbreviations (List of
Indices) provides a list of the used indices.

2. Materials and Methods
2.1. Basic Theory of AMBs

The reluctance force-based classic active magnetic bearing can be considered a typ-
ical mechatronic product with different components. Figure 1 illustrates the interaction
of the components of an active magnetic bearing system. The controller receives the er-
ror ε of the rotor’s displacement and sends a reference current signal i∗ to the current
controller to counteract the error and correct the rotor’s position. The current controller
then realises the voltage u on the coils, resulting in a flowing current that generates a
magnetic field. This magnetic field affects the rotor and its position in the mechanic plant.
The measured position xm is then fed back to the controller and compared to the reference
displacement x∗.

Figure 1. Block Diagram of Active Magnetic Bearing.

In a classical radial AMB configuration, the rotor is supported by two radial bearings,
which can be simplified to a four-phase horseshoe-shaped electromagnet, as illustrated
by Figure 2. The currents in coils are denoted as ix+ and ix− for the current in the coil in
the positive and negative x direction, respectively. The notation in y direction follows the
same pattern. Compared to a three-phase approach, the control is simplified because forces
can be generated in either positive or negative x and y direction. Further, the four-phase
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approach allows the easy utilisation of the differential driving mode, explained in the
following paragraph.

Figure 2. Classic radial four-phase AMB.

Each phase can generate a magnetic flux Φ and a force f dependent on several con-
stants, such as the permeability of vacuum µ0, the number of windings Nc, the cross-section
A of the electromagnet leg and the angle between legs α. Moreover, it is influenced by the
air gap size s and the current i flowing in the coil, as shown in Figure 3.

Figure 3. Force and geometry of a single AMB phase.

The force f can be expressed by:

f =
1
4

µ0N2
c A

i2

s2 cos(α), (1)

and can be simplified with

f = k
i2

s2 with k =
1
4

µ0N2
c A cos(α). (2)

The last equations depend on current i squared, which means that the sign of the
current applied on the coils can be neglected. Only the amplitude influences the force.

A common way to implement AMBs control is the so-called differential driving mode,
in which each electromagnet works with an opposing one. In the case of the Y-axis, the
force fy represents the difference between the top and bottom electromagnet, fy+ and fy−:

fy = fy+ − fy− . (3)

The top electromagnet is driven with the sum of the bias current i0 and the control
current iy. The opposite electromagnet, instead, is driven by their difference. By inserting
Equation (2) into Equation (3) and setting (i0 + iy) = i and (s0 − y) = s for the upper
magnet and (i0 − iy = i) and (s0 + y) = s for the lower magnet, respectively, it yields to:
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fy = k

(
(i0 + iy)2

(s0 − y)2 −
(i0 − iy)2

(s0 + y)2

)
. (4)

Here, y denotes the displacement of the rotor in y direction. Equation (4) can be
simplified and linearised with respect to small displacements compared to the air gap size
(x << s0):

fy(y, i) = kiiy − ksy, (5)

with

ki ≡
4ki0
s2

0
and ks ≡ −

4ki20
s3

0
. (6)

According to this equation, the driving of the rotor position can only be realised with
the control current iy. The same method can be applied to the X-axis analysis and yields
the same result.

2.2. Proposed Driving Method with Star Connection
2.2.1. For Four-Phase AMB Topology

In order to realise the differential driving mode, 4 phase currents, ix+ , iy+ , ix− and iy− ,
are needed. They are individually composed of 2 variables: a bias current i0, which is iden-
tical for all phases, and a control current ix or iy, respectively. They can be mathematically
expressed as:

ix+ = i0 + ix and ix− = i0 − ix, (7)

iy+ = i0 + iy and iy− = i0 − iy. (8)

A star connection of 4 phases is realised by interconnecting the four coils, as illustrated
in Figure 4. The common node N is the star point or neutral point. The current must be
neutral at this node to obtain a stable system. According to Kirchoff’s current law, the
current iN flowing through the star point is equal to the sum of all the other currents:

iN =
n

∑
k=1

ik = 0. (9)

Figure 4 and Equation (10) show a possible configuration that allows a stable oper-
ation regarding the phase currents in Equations (7) and (8), respectively. According to
Equation (2), this is only possible because of the current flow’s sign, which does not affect
the force generated by a phase.

iN = ix+ + ix− − iy+ − iy− = 0. (10)

Figure 4. Equivalent circuit diagram of the proposed star connection.
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This configuration with negative currents in y direction −iy+ and −iy− can be sum-
marised by the matrix TD and its inverse TD

′ such as:


ix+
iy+
ix−
iy−

 =


1 0 1 1
0 −1 −1 1
−1 0 1 1
0 1 −1 1


︸ ︷︷ ︸

TD


ix
iy
i0
iN

;


ix
iy
i0
iN

 =
1
4


2 0 −2 0
0 −2 0 −2
1 −1 1 −1
1 1 1 1


︸ ︷︷ ︸

T ′D


ix+
iy+
ix−
iy−

. (11)

With the star point iN = 0, the transformation matrices can be simplified as:

TD =


1 0 1
0 −1 −1
−1 0 1
0 1 −1

; T ′D =
1
4

2 0 −2 0
0 −2 0 2
1 −1 1 −1

. (12)

These matrices allow the closed-loop control of the currents in the plant. The currents
are composed of the bias current and the control currents ix and iy, as shown by the block
diagram in Figure 5. The current errors, εix, εiy and εi0, are fed into three PI controllers,
tuned according to the modulus optimum criterion [24]. In control theory, the modulus
optimum criterion is a design principle that optimises the controllers’ behaviour in terms
of the settling time [24]. With the help of the matrix TD, the resulting three output voltages
are now transformed into four voltages which are then converted into PWM signals and
applied to the circuit. The inverse matrix TD

′ in the feedback loop provides the necessary
backwards transformation.

Figure 5. Block diagram showing the described transformation and anti-transformation of
the currents.

Figure 6 shows a four-phase inverter that fulfils the earlier outlined requirements
(star connection, four-phase, switching power amplifier). This kind of inverter is usually
used for asynchronous and synchronous motors in star connection but with three phases
instead. The transistors (Bipolar, MOSFET, etc.) of each phase Si and S′i are complementary.
When one is switched off, the other one is active. Therefore, the voltage outputs could be
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positive or negative. Currents can be generated depending on the differences between the
duty cycles of the phases. The PWM duty cycles are centred at 50%. During functional
operation with the developed method, two currents are positive and the two others negative.
Therefore, two duty cycles are over 50%, while the two others are below 50%, which allows
current generation.

Figure 6. Equivalent circuit of the four-phase inverter model.

2.2.2. For 4n-Phase AMB Topology

This method can be generalised for different applications. On the one hand, the
addition of phases onto a radial bearing allows a better resolution or control of the magnetic
flux resulting in a better dynamic of the rotor position. On the other hand, devices with
several four-phase bearings, radial or axial, can get their neutral point connected to reduce
the number of measurement devices using star-point current or voltage. These circuits are
illustrated in Figure 7. However, the developed method was balanced for 4 phases and can
only be generalised for 4n phases.

Figure 7. Possible equivalent circuitries for 8-axis bearings: (left) single radial bearing/(right) two
radial bearings.

In this case, 4n phases can drive 2n axis. Therefore, there are 4n phase currents com-
posed of 2n control and one bias current. It leads to Equation (13) and to the (4n) × (2n + 1)
transformation matrix Tn. Its pseudo-inverse matrix T ′n is introduced in Equation (14) and
can be used to deduce the control and bias currents from the phase currents. Both matrices
can be used to convert currents and voltages as well.
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i1+
...
...

i2n+

i1−
...
...
...

i2n−



=



1 1
−1 O −1

. . .
...

O 1 1
−1 −1

−1 1
1 O −1

. . .
...

O −1 1
1 −1


︸ ︷︷ ︸

Tn


i1
...

i2n
i0

 (13)


i1
...

i2n
i0

 =



1
2

−1
2

−1
2

1
2 O

. . . . . .
O 1

2
−1
2

−1
2

1
2

1
4n

−1
4n · · · · · · · · · · · · 1

4n
−1
4n


︸ ︷︷ ︸

T′n



i1+
...

i2n+

i1−
...

i2n−


(14)

The following equations show the derivation of the coefficients of the matrices Tn
and T ′n, which allow quick and easy computation of the matrices. As expected, all the
phase currents with odd indices are positive, and the phase currents with even indices
are negative.

∀i ∈ [1, 2n], ∀j ∈ [1, 4n],

For Tn:

t(i, i) = (−1)i−1; t(2n + i, i) = (−1)i; t(j, 2n + 1) = (−1)i−1. (15)

For T ′n:

t′(i, i) =
(−1)i−1

2
; t′(i, 2n + 1) =

(−1)i

2
; t′(2n + 1, j) =

(−1)i−1

4n
. (16)

For increasing the magnetic flux resolution, the number of phases can be increased.
Hereby, θ denotes the angle between the phases, for instance, 90 degrees in the case of a
four-phase AMB. In order to simplify the control in such a case, a transformation matrix
can be used: 

i1
...

i2n
i0

 =


cos(θ1) sin(θ1) 0

...
...

...
cos(θ2n) sin(θ2n) 0

0 0 1


iix

iiy
i0

 (17)

in which, ∀k ∈ [1, 2n],

θk =
(k− 1)π

2n
. (18)

Its inverse is:
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 1
n cos(θ1) · · · 1

n cos(θ2n) 0
1
n sin(θ1) · · · 1

n sin(θ2n) 0
0 · · · 0 1

 (19)

3. Simulative Validation
3.1. Simulation Model and Parameters

The proposed driving method was tested numerically in a Matlab/Simulink model.
Inspired by the block diagram in Figure 1, it easily allows testing different driving currents
and position estimation methods with several plant designs. The focus of this work is
on the validation of the proposed star connection, whereas the position control follows
a known pole placement approach [1]. Figure 8 shows that a cascading control design
has been chosen. The newly introduced PID position controller takes the error ε and
calculates the desired current i∗ to counteract the error. In the current controller and power
amplifier block, the desired currents are realised in the coils, represented by a physical
model. The model utilises the prior introduced differential driving method. The now
obtained actual currents in the coils are then fed into the AMB block. With the help of a
physical representation of the plant, the forces and rotor position are calculated and fed
back to the position controller. The position controller and the model of the plant are here
duplicated in order to extend Figure 1 to a complete two-degrees-of-freedom (DOF) model.

Figure 8. Block diagram of the simulated two-DOF bearing.

The star-connected current method is also compared with a driving one composed
of H-bridges. As mentioned in the introduction, a star-connected driving approach might
result in unsuitable current dynamics for an AMB application. The simulation allows the
investigation of the influence of the phase currents on each other compared to where they
are completely independent. Table 1 summarises the hardware parameters used during the
simulations and experiments.

Table 1. Hardware parameters.

Parameter Symbol Value Unit

Mass of the rotor m 2.0× 10−1 kg
Nominal magnetic air gap s0 2.0× 10−3 m
Nominal mechanical air gap sm0 1.0× 10−3 m
Bias current i0 2.5 A
Coil resistance R 1.2 Ω
Coil inductance L 2.18× 10−3 H
Electromagnet factor k 1.19× 10−6 Hm
Force-displacement factor ks −316.16 N/m
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Table 1. Cont.

Parameter Symbol Value Unit

Force-current factor ki 0.53 N/A
DC-link voltage for star-connected inverter u∗ 24 V
DC-link voltage for H-bridges uH 12 V
PWM frequency fA 2.0× 104 Hz
Current sensor frequency fs 1.0× 104 Hz

The gains of the current controllers are listed in Table 2 and have been tuned based on
the modulus optimum. The PID controller gains are listed in Table 3.

Table 2. Current controller gains.

Gain Symbol Value

Proportional PPI 14.53
Integral IPI 6400

Table 3. Position controller gains.

Gain Symbol Value

Proportional PPID 5.0× 103

Integral IPID 8.0× 104

Derivative DPID 33.06
Filter coefficient NPID 1000

3.2. Simulation Results

The simulation’s purpose is the numerical validation of the proposed driving method.
The actual current in the coils should follow a current command sent by a PID position
controller. Furthermore, a disturbance force is applied on both axes. As shown in Figure 9,
the disturbance force follows a stair pattern:

• Step 1 (from 0 to 0.33 s): the disturbance force fg1 = −m× g = −1.96 N with starting
condition x0 = 1.0× 10−3 m and y0 = 0.5× 10−3 m;

• Step 2 (from 0.33 to 0.66 s): fg2 = 2× f g1 = −3.92 N;
• Step 3 (from 0.66 to 1.0 s): fg3 = −5.66 N the limit disturbance force that one axis of the

star-connected AMB can bear.

Figures 10 and 11 indicate the resulting displacements on both axes as well as the
corresponding phase currents according to the applied forces over time. First, it can be
noticed during the entire simulation that the differential driving mode works as intended.
At the beginning of step one, the maximum control currents are necessary to bring the
rotor to the desired position. Until the start of step 2, the displacements and the phase
currents are settling at a certain value, allowing the rotor to settle around the reference
position. In step 2, the force needed to counteract the disturbance is higher and the system
reacts as expected. The phase currents are settling at a higher plateau to tackle the bigger
force. In step 3, the same behaviour is noticed with a saturation of the currents because of
the differential driving mode itself. The control currents are reaching their maximum or
minimum limit set with the absolute bias current |i0|.
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Figure 9. Profile of the disturbance force over time.
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Figure 10. Displacements with the star connection.
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Figure 11. Phase currents with the star connection.

The plots in Figures 12–14 allow a comparison of the displacements and the phase
currents with another topology in which each phase is independently driven by an H-
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bridge. In this particular case, four H-bridges are needed. The simulations demonstrate
that the star-connection driving delivers the same behaviour as the H-bridge driving in
terms of displacements and phase currents. At a second glance, it becomes apparent that
the star-connected approach shows a bigger displacement overshoot. However, the rise
and settling times are nearly the same. As it can be expected, the currents in Figure 14 show
a familiar behaviour. The current tends more towards overshooting with the star-connected
approach compared to the H-bridge driving. Again, the rise and settling times are not
affected. The H-bridge driving reacts faster to the changing disturbance forces, giving the
overall system better dynamics. Consequently, this results in the mentioned overshoots in
displacement. However, the maximum displacement difference between both cases is only
10−5 m which can be neglected.

In conclusion, the star-connected four-phase inverter works as intended and can be
considered as efficient as a full H-bridge driving topology in terms of the rotor displacement
and phase current dynamic, respectively, and the error of both.
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Figure 12. Displacement comparison on x-axis.
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Figure 13. Displacement comparison on y-axis.
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Figure 14. Comparison of phase currents of both typologies.

4. Experimental Validation
4.1. Experimental Setup

In order to evaluate the star-connected driving, an experimental test bench, shown
in Figure 15, was set up. This test bench consists of two independent 2DOF magnetic
bearings that stabilise the rotor in the X and Y direction. The axial shift in the z direction
is neglected in this prototype application. Each bearing consists of an eight-pole stator
with a heteropolar coil arrangement (blue). The eight coils (red) have 96 windings and are
interconnected to pairs. The position of the rotor is measured by a total of four position
sensors (orange) that operate at a sampling frequency of 2 kHz. The rotor is composed of an
aluminium hull (light grey) and two ferromagnetic cores (darker grey), which are embedded
in the hull at each end. This construction prevents a magnetic “sticking” in the event of a
touchdown or in the startup phase. This design leads to a nominal mechanical air gap of
1 mm and a nominal magnetic air gap of 2 mm, meaning the outer aluminium hull has a
thickness of 1 mm.

However, in this section, the focus will be on the currents and the proposed driving.
The position control of the rotor is prototypical in this work and subject to further studies.

In order to realise the mentioned test bench, an electronic board and a mechanical
plant are necessary. The electronic board, shown in Figure 16, was designed based on a
32-bit microcontroller and a four-phase MOSFET-based inverter. The microcontroller was
chosen for its advanced-control timers, capable of generating pulse-width modulations
(PWM) on six channels with a full modulation capability from 0 to 100%. The four-phase
inverter operates at 36 V and was limited by the software to deliver a maximum phase
current of 4 A and a bias current of 2 A. The measurements of the phase currents are
conducted by four shunt amplifiers.
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Figure 15. Three-dimensional model of the test bench with stator (blue), coils (red), rotor (light grey),
sensors (orange), supports (grey) and base plate (grey).

Figure 16. Motherboard used to drive the physical plant in the experiments.

The experiment aims to check if the phase currents can follow an arbitrary input
command. The profiles of the two control currents ix and iy are shown in Figure 17.
The control current ix is a signal starting at 0 A with a step amplitude of 0.25 A each 0.5 s
up to 1 A, from 0.5 s after the start of the experiment. The current iy is the same signal
but negated and delayed by 1 s. Both are used in complement with the bias current of
2 A. According to Equations (7) and (8), the four desired phase currents are obtained.
The positive currents i∗x+, i∗x− and the negative currents i∗y+, i∗y− are shown in Figure 18.
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Figure 17. Profile of the control current command.
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Figure 18. Reference phase currents used in the experiment.

4.2. Experiment Results

Figure 19 shows the results of the experiments. The phase currents, ix+, ix−, iy+ and
iy−, follow the desired commands. During the experiment, the mean absolute error is below
0.7%. Some overshoots with an amplitude smaller than 0.2 A can be noticed at each step.
Furthermore, the x and y currents influence each other but on a negligible scale. Figure 20
shows the back-transformed currents with small spikes at the switching instances of the
reference current. Their absolute values are equal to the bias current of 2 A. As expected,
the sum of all the currents equals zero, which means that the system is balanced.
Thus, a successful implementation of the proposed star-point connection is achieved.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-4

-3

-2

-1

0

1

2

3

4

P
h

a
s
e

 C
u

rr
e

n
ts

 [
A

]

i
x+

i
x-

i
y+

i
y-

Figure 19. Measured phase currents before anti-transformation.
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Figure 20. Measured bias and neutral current after anti-transformation.

Because this work’s aim is to provide a star-connected power stage for a sensorless
AMB operation, the inductances of the proposed circuit have been measured with an LCR
meter. The measurements were conducted at 100Hz with the minimum and maximum air
gaps of each axis, which is the closest and furthest rotor position away from the phases.
Table 4 shows a heavy dependence on the position and inductance. These are promising
results regarding the implementation of sensorless techniques.

Table 4. Measured inductances (in mH) on each phase at 100 Hz.

Phase x+ x− y+ y−

Minimum air gap 2.18 1.84 1.87 2.09
Maximum air gap 1.17 1.17 1.17 1.17

5. Discussion and Conclusions

This work provides a new driving method for a four-phase active magnetic bearing
that combines the classical differential driving mode with a star connection of the phases.
Moreover, the method was generalised for 4n phase actuators. It has been validated in a
simulation and proved to be as efficient as full H-bridge driving. The method was tested
experimentally with a custom-built four-phase inverter actuator. The results show that
the phase currents were able to follow the reference signals with an average error of 0.7%.
This new method gives new perspectives in the field of magnetic bearings and sensorless
operation. The exploitation of the star connection with different methods is nowadays
mostly employed in asynchronous or synchronous motors. The results of this work now
allow the implementation of techniques like the DFC on AMBs. The future focus of interest
will be on implementing more sophisticated position control strategies for star-connected
AMBs. Building upon this, the implementation of sensorless position estimation techniques
is of further interest.
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Abbreviations
List of Symbols:

x∗ reference displacement in x direction
xm measured displacement in x direction
x0 initial rotor displacement in x direction
y∗ reference displacement in y direction
ym measured displacement in y direction
y0 initial rotor displacement in y direction
ε control error
εi current error
u voltage
i current
i0 bias current
iN current in the star point
f force
fg disturbance force
µ0 permeability of vacuum
Nc number of windings in a coil
A cross-section area
α angle between the legs of the AMB
s magnetic air gap
T′D inverse transformation matrix
Tn generalised transformation matrix
T′n inverse generalised transformation matrix
θ angle between the phases
P phases
S transistors
s0 nominal magnetic air gap
Φ magnetic flux
k machine constant
ki force/current factor
ks force/displacement factor
TD transformation matrix

List of Indices:

∗ control reference
x in x direction
y in x direction
+ in positive direction
− in negative direction
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