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Abstract: While nickel-titanium (NiTi) is the primary shape memory alloy (SMA) used in endodontic
instruments, restorative dental components so far have not been fabricated from SMAs. The flexi-
bility of these materials may solve problems in implant prosthodontics resulting from non-parallel
implant positions and transfer inaccuracies. Based on a prototype of a novel attachment system for
implant overdentures, a finite element model was created and used for studying different loading
situations and design parameters followed by numerical analysis aided design optimization. The
results revealed that the basic design of the attachment is capable of compensating misalignments
of supporting implants as well as transfer inaccuracies of a clinically relevant magnitude by ac-
commodating the large deformations induced under masticatory loading upon martensitic phase
transformation at almost constant stress. The application of NiTi resulted in the reduction of the
reaction forces recorded in the surrounding of the supporting implant, as well, the reaction forces
between male and female parts of the attachment system could be reduced which will minimize
wear phenomena and subsequent maintenance costs. These effects were seen to be enhanced in the
optimized design.

Keywords: dental prosthesis; implant-supported; denture precision attachment; finite element
analysis; shape memory alloys

1. Introduction

Nickel-Titanium (NiTi) shape memory alloys (SMAs) belong to the group of metallic
alloys known as smart functional materials. Their functional behaviors cover mainly
superelasticity, shape memory effect, and shape memory actuation. Superelasticity is
related to the cyclic recovery of large thermo-elastic transformation strains on unloading,
the shape memory effect is correlated to the recovery of large thermo-elastic transformation
strains upon heating, and shape memory actuation describes the cyclic recovery of large
thermo-elastic transformation strain upon heating under an external bias load [1,2]. The
superelastic property of NiTi shape memory alloys is based on the induction of phase
transformation during mechanical loading and has recently been shown to arise from its
microstructure [3]. Their promising biocompatibility [4] allows for applications in the
design of many novel biomedical devices and implants [5–7]. Prior to entering costly
prototype fabrication for such novel applications, Finite element analyses could enhance
understanding of their physical responses under biomedical loading scenarios [8–10]. A
novel application for NiTi may be seen in dental implant prosthodontics for compensating
shortcomings with respect to the parallelism of supporting implants as well as transfer
inaccuracies between the patient situation and the laboratory working cast.
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The use of two dental implants in the interforaminal region and corresponding at-
tachments for stabilizing complete dentures (Figure 1) is a frequently applied [11] and
cost-effective treatment option [12], which is well documented in the literature.
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Figure 1. (a) Panoramic X-ray of an edentulous patient with two interforaminal implants showing
a distinct inter-implant angulation, (b) Mandibular cast of the patient shown in Figure 1a with
two male Locator attachments in place, (c) Removable prosthesis with female parts of the Locator
attachment system.

The use of prefabricated attachment systems such as locators (Zest Dental Solutions,
Carlsbad, CA, USA), instead of utilizing individually fabricated attachments such as tele-
scopic crowns or bars, drastically reduces the initial treatment costs in the edentulous
mandible [13,14]. Several studies have shown that maintenance frequency [15] and as-
sociated costs [16] in such restorations are quite high, equaling or even exceeding initial
treatment fees [14,17]. In particular, loss of retention and fractures of the prostheses in the
area of the attachment constitute the two main technical complications [18,19].

From a biomechanical perspective, the non-parallelism of supporting implants and
transfer inaccuracies between the clinical and the laboratory situation may be seen as
major reasons for wear phenomena occurring at the retentive interface of the attachment
system [20,21]. This assumption is supported by clinical studies showing that inter-implant
angulation resulted in a greater amount of wear of the attachments used [22,23]. Two
in vitro studies showed that retentive forces deteriorated faster when the attachments
were supported by angulated implants as compared to implants with a strictly parallel
orientation [24,25]. Coatings of the male attachment parts [22], as well as the use of
different plastic inserts in the female parts, seemed to have only a minor effect on wear
phenomena. Compromised clinical results have been reported for maxillary full arch
restorations supported by two to four implants arguing that potentially detrimentally high
levels of moment loading transferred via a stiff attachment system were a co-factor in
these cases [26,27].

To compensate for the non-parallelism of implants and transfer inaccuracies, as well
as to avoid excessive moment loading of supporting implants under dynamic masticatory
loading, an attachment system has recently been described [28] incorporating a superelastic
Nickel-Titanium (NiTi) element (Figures 2 and 3). The form of the NiTi element resembling
the shape of an endodontic instrument [29] is supposed to allow for lateral flexibility of
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the male part of the attachment while axial loads shall be transferred to the implant and
surrounding bone.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 12 
 

resembling the shape of an endodontic instrument [29] is supposed to allow for lateral 
flexibility of the male part of the attachment while axial loads shall be transferred to the 
implant and surrounding bone. 

 
Figure 2. Prototype attachment consisting of a base fixed on a tissue-level titanium dental implant 
with a rod-shaped connector extending from the base to a retentive structure onto which a remov-
able prosthesis can be mounted (here formed as a cylindrical telescopic crown). 

 
Figure 3. (a) Iso view of the reference model based on a patient situation and prototype attachment 
represented in Figures 1 and 2, representing the ideal parallel positioning of the two supporting 
implants. The single components of the attachment system were: 1—NiTi shaft of the male part of 
the attachment, 2—NiTi head of the male part of the attachment, 3—NiTi abutment of the male part 
of the attachment, 4—tissue-level dental titanium implant, 5—female part of the attachment system, 
6—removable prosthesis with female parts of the attachment system, 7—stiff plate simulating the 
patient’s soft tissue limiting the maximum vertical displacement of the removable prosthesis caused 
by masticatory loading to 5 mm; bottom view (b), side view (c), and front view (d) of the reference 
model. 

It was the goal of this optimization study to analyze the behavior of a flexible attach-
ment system made of superelastic NiTi alloy and allow for lateral and angular flexibility 
under the multiaxial loads induced by a moving prosthesis upon masticatory loading. 

  

(a) (b) 

(c) (d) 

Figure 2. Prototype attachment consisting of a base fixed on a tissue-level titanium dental implant
with a rod-shaped connector extending from the base to a retentive structure onto which a removable
prosthesis can be mounted (here formed as a cylindrical telescopic crown).
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Figure 3. (a) Iso view of the reference model based on a patient situation and prototype attachment
represented in Figures 1 and 2, representing the ideal parallel positioning of the two supporting
implants. The single components of the attachment system were: 1—NiTi shaft of the male part
of the attachment, 2—NiTi head of the male part of the attachment, 3—NiTi abutment of the male
part of the attachment, 4—tissue-level dental titanium implant, 5—female part of the attachment
system, 6—removable prosthesis with female parts of the attachment system, 7—stiff plate simulating
the patient’s soft tissue limiting the maximum vertical displacement of the removable prosthesis
caused by masticatory loading to 5 mm; bottom view (b), side view (c), and front view (d) of the
reference model.

It was the goal of this optimization study to analyze the behavior of a flexible attach-
ment system made of superelastic NiTi alloy and allow for lateral and angular flexibility
under the multiaxial loads induced by a moving prosthesis upon masticatory loading.



Appl. Sci. 2023, 13, 491 4 of 12

2. Materials and Methods
2.1. Design and Prototype Manufacturing

The design of the male attachment part is shown in Figures 2 and 3 detailing the
description of its components. This attachment system (in a previous prototype stage)
has been used for an in vitro biomechanical study [28] and consisted of assembled NiTi
superelastic components which all conform with ASTM F2633. A NiTi wire with a principal
diameter of 0.8 mm was welded at the top to a one-sided closed tube and the bottom to
a base. The upper tube end was closed by welding a cylindrical hole plate on it with the
same diameter as the outer diameter of the tube. The diameter of the hole in the plate was
slightly larger than the wire diameter for ease of welding. At the bottom, the wire was
welded to the base in order to increase stability against damage to the welding joint at
large shear forces. An outer thread was machined at the bottom of the base so that the
attachment system could be mounted on a titanium dental implant. Although it would
not have been necessary for the mechanical performance of the device to use only NiTi for
all components, it was necessary for the welding process due to issues with the welding
of dissimilar metals involving NiTi. Heat treatment was only necessary for the wire to
adjust the functional Af temperature to 17 ± 5 ◦C so that the mechanical behavior was
superelastic at body temperature.

2.2. Finite Element Simulation Method

In order to analyze the mechanical response of the NiTi superelastic male attachment
part the evolution of the martensite phase fraction and local stress magnitude under
multiaxial loading occurring as a consequence of mastication seemed to be important.
To that end, a three-dimensional mathematical phenomenological SMA model proposed
by Choudhry and Yoon [30], which has also been numerically implemented in the MSC
Marc finite element software and which has also been comprehensively outlined in the
supplementary material of Ref [31] was used. This model’s capabilities include capturing
phase transformation between the austenite and martensite phases, as well as the tension-
compression asymmetry in SMAs by the Conical Drucker approach.

The reference geometric model shown in Figure 3a consisted of the male part of the
attachment made of NiTi superelastic alloy, a stiff removable prosthesis with female at-
tachment parts, and a titanium implant. The model was generated based on an existing
patient situation (Figure 1) and the dimensions of the prototype of the attachment system
(Figure 2). In all simulations, a unilateral vertical force of 150 N was applied on a few nodes
resembling the approximated molar region of the prosthesis (red arrow in Figure 3a). Pros-
thesis displacement under masticatory forces was considered the standard cyclic loading
scenario the attachment has to withstand during function. While prosthesis displacement
should clinically be kept as low as possible e.g., by relining, 5 mm of vertical displacement
in the posterior region of the prosthesis was chosen for simulating a worst-case scenario.
To this end, a stiff plate was modeled at the posterior end of the prosthesis and fixed at the
bottom (see component number 7 in Figure 3a,c). Elastic deformation of alveolar bone as a
result of loading was not of primary interest here but instead, all degrees of freedom at the
outer surface of the dental implant were fixed.

Positional discrepancies between male and female parts of the attachment systems
constitute a frequent clinical problem and result from non-parallelism of implants and
transfer inaccuracies during prosthesis fabrication. Accordingly, the FE analysis of the ref-
erence design (following the prototype) with parallel alignment of the supporting implants
(Figure 3) was compared to the situation of the non-parallelism of the supporting implants
(Figure 4). For design optimization, two alternative designs of the male attachment part
were examined representing a larger contact area between the shaft and the male retentive
element and a necked shaft, respectively (Figure 5). Furthermore, a case study with the
male part made purely from titanium was investigated for comparison.
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Figure 4. Non-parallel positioning of two supporting implants. Approximately nine degrees axial
deviation in two axes were considered for both supporting implants, (a) side view, and (b) front view.
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Figure 5. Details, dimensions, and cross-section exhibition of the NiTi male part (the description of
each numbered component can be found in Figure 3): (a,b) the reference geometric design created
based on the prototype shown in Figure 2, (c) the alternative design 1 where the contact area between
the shaft and male attachment part was increased from 1 mm to 2 mm, (d) the alternative design 2
where—additionally to changes described in ‘c’—the shaft was necked in the middle by reducing the
0.8 mm overall diameter to 0.6 mm.

The material properties for the shape memory NiTi wire (part 1 in Figures 3 and 5) de-
termine the superelastic response of the device. In the present simulations, transformation
temperatures Ms, M f , As, A f , austenite and martensite elastic moduli EA and EM, Poisson
ratio νA and νM, thermal stress influences coefficients CA and CM and transformation
strain εT

eq were adapted to tensile experimental data obtained by the manufacturer of the
prototype NiTi attachment (ADMEDES GmbH, Pforzheim, Germany) which are given in
Figure 6 and in Table 1. It should be noted that, since the experimental data for the tensile
test was available only at a single temperature, the fitting parameters including the transfor-
mation temperatures could be unrealistic compared to those of the commercial NiTi used in
medical devices. Nevertheless, this approach still satisfied the fitting to the mechanical re-
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sponse of the device at the studied temperature in the present work. A tension-compression
asymmetry of the moduli and stress plateaus in the order of typical reported values [32,33]
was assumed (Figure 6). The quantities ga in Table 1 parametrize an empiric function
describing the level of alignment of transformation strain and deviatoric stress (see supple-
mentary material in [30]). The mechanical properties of Ti-30%Au alloy [34] were used for
simulating the female attachment part (number 5 in Figures 3a and 5).
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Figure 6. The uniaxial mechanical response obtained by fitting parameters of the FEM model to the ex-
perimental results recorded by the manufacturer of the prototype NiTi attachment system (ADMEDES
GmbH, Pforzheim, Germany), and considering the assumed tension-compression asymmetry [32,33].

Table 1. Material parameters of the SMA constitutive model, for more details, refer to supplementary
material in ref [30].

g Function (Fitting) Parameters

Param./[Unit] ga [-] gb [-] gc [-] gd [-] ge [-]
gf
[-]

g0 [MPa]

Values −2 2 0 2.75 0 3 300

Param./[unit] Ms [◦C] Mf [◦C] As [◦C] Af [◦C] CM [MPa/◦C] CA [MPa/◦C]

Values −63 −65 −13 −10 5.45 6.25

Param./[unit] EM [GPa] EA [GPa] νM [-] νA [-] εT
eq [-]

Values 19 61 0.33 0.33 0.049

In the FEM method, a glue-segment-to-segment contact was used at all contact surfaces,
except for the contact between components number 6 and 7 (Figures 3a and 5) where sliding
contact with bilinear friction force tolerance of 0.1 has been used.

3. Results

The major mode of deformation induced by the masticatory force F (Figures 3a and 7)
was bending, leading to compressive- and tensile-loaded zones of the NiTi shaft. The
surfaces at the SMA shaft where compressive stresses were dominant were named oral
according to their location in the oral cavity (right patient side: O1; left patient side: O2),
while the opposite sides were associated with tensile stresses and named buccal (right
patient side: B1; left patient side: B2) (Figure 7).
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Force application in rising magnitude resulted in two subsequent stages of deforma-
tion. In the first stage, it caused a maximum vertical displacement of 5 mm at the posterior
end of the prosthesis until mechanical contact with the binding sheet (Figure 8). In this
stage, the dominant deformation observed was the bending of the SMA shafts. In the
course of contact, at the second stage, the continuation of the loading induced compressive
stresses on the SMA shafts.
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Figure 8. Vertical prosthesis displacement at the posterior border was limited to 5 mm by simulating
a binding sheet.

The surface distribution of the axial stresses and martensite volume fractions at maxi-
mum load for all studied geometries (parallel and non-parallel implant fixation for proto-
type abutment design, as well as the non-parallel fixation for the optimized/alternative
designs) are given in Figure 9. Throughout this section, the term axial denotes the z direc-
tion of the reference cartesian system (Figure 3). Here, the SMA material is used for the
male part, shaft, and base parts. Figure 9(a1–d1) show the axial stress at surfaces that are
dominantly under compressive stresses (Oral Surfaces) and denoted by O1 and O2, while
in Figure 9(a2–d2,a3–d3) their corresponding axial strain and volume fraction of detwinned
martensite are depicted, respectively.

In contrast, Figure 9(a4–d4) exhibit the axial stress distribution at Buccal Surfaces
(denoted by B1 and B2), and their associated strains and martensite volume fractions are
represented in Figure 9(a5–d5) and Figure 9(a6–d6), respectively. In Figure 10 the corre-
sponding stress-strain responses at representative points (maximum martensite fraction
points) at Oral and Buccal surfaces from Figure 9a–d are represented. For comparative
purposes, Figure 11 represents the case study in which the material for the SMA parts was
replaced by titanium (in the non-parallel fixation case study, see Figure 4).
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Figure 9. Colormaps of axial stress, axial strain, and martensite volume fraction distribution at
NiTi shafts (a) reference case study (parallel), (b) misaligned, (c) misaligned alternative design 1,
(d) misaligned alternative design 2 (the configurations of the models were outlined in Figure 6).
(a1–d1) compressive stresses at the Oral Surface, (a2–d2) compressive strains at the Oral Surface,
(a3–d3) corresponding martensite volume fractions at the Oral Surface, (a4–d4) tensile stresses at
Buccal Surface; (a5–d5) tensile strains at the Buccal Surface, (a6–d6) corresponding martensite volume
fractions at the Buccal Surface. O1, O2, B1, and B2 refer to the areas outlined in Figure 7. The NiTi
shafts are predominantly under mixed bending and compression, hence, the axial components of
non-diagonal Cauchy stress tensor and axial component of the total strain were used for visualization.
Note: Gray areas are regions where the magnitude of the presented parameter falls out of the selected
range and is negligible.
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Figure 10. Stress-strain response corresponding to the case studies from Figure 9a–d. (a) reference
case study (parallel), (b) misaligned, (c) misaligned alternative design 1, (d) misaligned alternative
design 2. The data represent points in the Buccal Surface (black curve) or the Oral Surface (red curve)
where the maximum volume fraction of martensite evolves. The blue curve in (b) represents the
associated response of the case study in which titanium was used instead of NiTi in the misaligned
state, for comparative purposes (Figure 11).
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Figure 11. The non-parallel case while using titanium instead of NiTi for the shaft: (a,b) the compres-
sive stresses and strains at the Oral Surface, respectively; (c,d) the tensile stresses and strains at the
Buccal surface, respectively. One can compare (a–d) here, to Figure 9(b1,b2,b4,b5), respectively, where
the same state has been presented while using NiTi instead of titanium.

4. Discussion

The results in Figure 9 reveal that in the case of non-parallelism of supporting im-
plants (Figure 9b), the level of induced axial stresses slightly increases at both Oral and
Buccal surfaces, as compared to the situation of parallel aligned implants (Figure 9a),
which results in higher martensite volume fraction evolution. In the non-parallel state
(Figure 9b in comparison to Figure 9a) the stress also (thus, the stress-induced martensite)
concentrated in a small region where the male part and shaft were joined (Figure 9(b6)).

To overcome such stress concentrations and thus, very local cyclic phase transitions, al-
ternative design 1 (Figure 5c) was examined in the non-parallel state (Figure 9c). Due to the
increase of the contact area between the shaft and male attachment part, the concentration
of stress and volume fraction could be reduced, resulting in a larger active transforming
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region in the NiTi shaft. To further increase the deformability of the SMA shaft, and to have
enhanced control over the location of the maximum stresses for arbitrary misalignments
of supporting implants, the second alternative design was tested, where the SMA shaft
was necked in the middle (Figure 6d). This minor reduction of shaft diameter triggered
higher stress levels at both Oral and Buccal surfaces, which indeed enabled the system to
accommodate higher strains at constant stress by the evolution of a higher volume fraction
of martensite under an equivalent loading state. The gradual increase of the evolved
(compression- and tension-induced) detwinned martensite from the reference geometry to
the optimized design number 2, is well illustrated in Figure 10.

Under 150 N vertical force, the maximum stress at both shafts could reach very high val-
ues close to the yield point of titanium (~1100 MPa) (stress situation Figure 9(b1) vs. Figure 11a,
and Figure 9(b4) to Figure 11c), while the evolved strains were equivalent (strains in
Figure 9(b2) vs. Figure 11b, and Figure 9(b5) vs. Figure 11d). Comparing the results in
Figure 11a,b and Figure 11c,d with the case represented in Figure 9(b1,b2) and Figure 9(b4,b5),
respectively, demonstrated the effectiveness of the application of SMA shafts in the at-
tachment system to accommodate high deformations, whereby the martensitic phase
transformation prevented overstressing. The use of SMA potentially also reduced the
transmitted (reaction) force to the surrounding implant and bone. To better visualize this
effect, Figure 12 compares the reaction stresses on the inner surface of the titanium implants
(for a non-parallel state), showing a gradual decrease from the case where the male part
was made of titanium to the alternative design 2. This higher reaction force may be seen as
a cause for wear phenomena at the male/female interface of current attachment systems.
It can be anticipated, that the use of SMA reduces wear phenomena, thereby decreasing
maintenance costs [20–23].
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Figure 12. Reaction stresses induced on the inner surface of the titanium implant (implant-abutment
interface) for the non-parallel state: (a) reference design, male part made of titanium; (b) reference
design, male part made of NiTi; (c) alternative design 1, male part made of NiTi; (d) alternative design
2, male part made of NiTi.

Currently, it is not possible to link the simulations carried out to the anticipated clinical
performance of the novel attachment system. Given that NiTi is currently being used in
dentistry for orthodontic appliances and endodontic instruments [28], the envisaged attach-
ment system requires several additional developmental steps prior to clinical application.

5. Conclusions

Numerical analysis showed that using a superelastic NiTi shaft instead of titanium
alloy could result in the ability of the attachment system to withstand large deformations
and forces upon masticatory loading while avoiding over-stressing. Moreover, necking the
flexible SMA shaft in the middle could prompt better accommodation of large deforma-
tions triggered through masticatory loading. An increased contact area between the shaft
and the male retentive element of the attachment led to a more favorable, less localized
loading situation.
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