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Abstract: Cancer is one of the leading causes of death in children and adolescents worldwide; among
the types of liver cancer, hepatoblastoma (HBL) is the most common in childhood. Although it
affects only two to three individuals in a million, it is mostly asymptomatic at diagnosis, so by the
time it is detected it has already advanced. There are specific recommendations regarding HBL
treatment, and ongoing studies to stratify the risks of HBL, understand the pathology, and predict
prognostics and survival rates. Although magnetic resonance imaging spectroscopy is frequently
used in diagnostics of HBL, high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy of
HBL tissues is scarce. Using this technique, we studied the alterations among tissue metabolites of
ex vivo samples from (a) HBL and non-cancer liver tissues (NCL), (b) HBL and adjacent non-tumor
samples, and (c) two regions of the same HBL samples, one more centralized and the other at the
edge of the tumor. It was possible to identify metabolites in HBL, then metabolites from the HBL
center and the border samples, and link them to altered metabolisms in tumor tissues, highlighting
their potential as biochemical markers. Metabolites closely related to liver metabolisms such as some
phospholipids, triacylglycerides, fatty acids, glucose, and amino acids showed differences between
the tissues.

Keywords: hepatoblastoma; liver metabolome; cancer NMR-metabolomics

1. Introduction

Metabolomics provides a complete set of qualitative and quantitative analyses of
diverse mixtures of low-molecular-weight compounds in cells, tissues, and body fluids
and is mostly assessed by three analytic techniques: nuclear magnetic resonance spec-
troscopy (NMR), gas chromatography coupled to mass spectrometry (GC-MS), and liquid
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chromatography coupled to mass spectrometry (LC-MS) [1–5]. Intact tissue samples can
be analyzed by high-resolution magic-angle-spinning nuclear magnetic resonance spec-
troscopy (HR-MAS-NMR) [3–5], which uses samples spinning at high speeds at an angle of
54.74◦ relative to the permanent magnetic field [3,6,7]. HR-MAS-NMR spectroscopy has a
promising future to explore metabolites and their involvement in biochemical pathways
due to its great advantages. These include simple preparation of samples, high repro-
ducibility, determination of either known or unknown molecule structures, and lastly, the
possibility to analyze in vivo and ex vivo samples, which is especially important for clinical
research [3–9]. Nevertheless, NMR spectroscopy has the disadvantage of lower sensitivity,
and a smaller number of compounds can be determined than applying MS.

HR-MAS-NMR is applied in metabolomics studies aiming to determine the current
pathophysiological state of organisms/tissues/organs and define disease outcomes [10].
Metabolomics has an important role in the pediatric oncology field of research, contributing
to evidence of alterations in the type and concentration of metabolites and delineating
specific metabolic profiles that are important for cancer diagnosis and improvement of
clinical treatment [6,7,10,11]. Due to the high heterogeneity of cancer, one of the important
challenges of NMR spectroscopy is that numerous metabolites are being analyzed and
resolved [3,6,7]. Although cancer is clonal, the neoplastic process is dynamic and tumors are
cellularly heterogeneous and can present metastatic phenotypes [12]. The high mutagenic
potential of heterogeneous cancer cells provides significant metabolic changes that can
distinguish malignant from non-malignant cells of the same tumor [12].

Hepatoblastoma (HBL) is the most prevalent liver cancer in children representing
around 1% of all pediatric tumors [13,14]. HBL commonly carries driver mutations in the
oncogene CTNNB1 which activates the Wnt/β-catenin pathway [15–19]. The activation of
the Wnt/β-catenin pathway leads to liver tumorigenesis and the alteration of cancer cell
metabolism [19]. A common clinical feature of HBL is the elevated level of α-fetoprotein
(AFP) in serum [20,21], and abdominal mass and distention. As far as we know, no data
have been yet reported about HR-MAS 1H-NMR of HBL tissue samples except 1H-NMR
metabolomics analysis in vitro of hepatoblastoma cell lines (HepG2) treated with aflatoxin
AFM1 and compared with untreated HepG2 cells [22]. The metabolomics study of HBL
was explored by LC-MS to determine the differences in metabolite profiles between HBL
cells with overexpression and normal expression of sodium-taurocholate co-transporting
polypeptide NTCP (SLC10A1) [2]. It was established that adenosine concentration was
lower in HBL cells with overexpressed NTCP (SLC10A1), leading to the hypothesis that
NTCP (SLC10A1) can diminish adenosine metabolism.

This study explored for the first time the alterations among tissue metabolites of intact
samples (ex vivo) from HBL compared with non-cancer liver tissues (NCL) by HR-MAS
1H-NMR. We also compared differences in tissue metabolites between two regions of the
same HBL samples, one more centralized and the other at the border of the tumor. It was
possible to characterize metabolites that differed among samples from the same patients,
and center and border samples and their link to altered metabolisms, highlighting their
potential as biochemical markers. Therefore, this study may open the opportunity to
monitor HBL for personalized diagnostics and treatment.

2. Materials and Methods
2.1. Samples

Thirty fresh frozen tissue samples (1–30) were used in this study and provided by
the Biobank of two cancer hospitals in Sao Paulo, Brazil—A. C. Camargo Cancer Center
(ACCCC), and the Pediatric Cancer Institute (ITACI). Fifteen of the analyzed tissue samples
were taken as biopsy specimens from young patients diagnosed with HBL, of which twelve
samples were obtained in pairs from the center region and the border of HBL tumors. A
further three samples were taken from three patients, but it was unknown from which part
of the HBL tissues. Another fifteen samples were taken as non-cancer liver (NCL) as control
samples, of which nine samples (16–24) were obtained from the healthy part of the liver
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from patients diagnosed with HBL (adjacent non-HBL samples), and six samples (25–30)
were taken from children with healthy livers.

All HBL patients were treated with pre-chemotherapy. Liver samples were collected
and stored frozen at −80 ◦C until NMR analysis. Patients were followed by clinical exam-
ination, imaging tests, and measurement of α-fetoprotein for a minimum of 18 months.
Patients were stratified into either high- (8/15), intermediate- (5/15 cases), or low-risk
(2/15) groups. Eleven (out of fifteen) patients were male. The Research Ethics Commit-
tees approved this project under registration number 1987/14 (retrospective study) and
informed consent was obtained from the patients’ legal guardians.

To carry out the analyses, a small portion of the tissues (around 10 mg) was defrosted
(ice bath at 4 ◦C) and cut with the help of a bistoury in sterile conditions. A drop of
deuterium oxide was then added to the tissue to facilitate its handling. With the aid of
a pipette tip, the piece of tissue was inserted into a 12 µL zirconia rotor. Over the tissue,
another 10 µL of deuterium oxide was added. The insert was placed into the rotor allowing
excess deuterium oxide to exit through its orifice. The rotor was closed and inserted into
the spectrometer for measurements.

2.2. Metabolomics by NMR Spectroscopy

HR-MAS 1H-NMR spectroscopy with a magic-angle spinning frequency of 3.5 kHz
and 298 K was used to analyze fifteen HBL and fifteen NCL tissue samples. The 1H-NMR
spectra were recorded using a Bruker Avance spectrometer (Bruker BioSpin, Germany)
operating at 400 MHz and equipped with the triple nuclei 4 mm probe for HR-MAS.
One-dimensional water-suppressed 1H-NMR spectra were performed with the nuclear
Overhauser effect spectroscopy (NOESY1D) pulse sequence and 256 repeats, and the 1H-
NMR T2-edited spectra were recorded using the CPMG (Carr–Purcell–Melboom–Gill) pulse
sequence with 128 repetitions. Two-dimensional total correlation spectroscopy (TOCSY)
experiments were performed with 256 scans of randomly selected samples from two
tissue groups. Chemometrics analysis was carried out through the open-access platform
MetaboAnalyst (www.metaboanalyst.ca, accessed on 20 August 2022) At the same time,
the metabolites were identified using 1D and 2D spectral data and databases, such as the
Human Metabolome Database (HMDB) and BioMagResBank (BMRB) [23,24].

2.3. Statistical Analysis of NMR Data

Using the spectral differences that were identified by analyzing the 1H-NMR T2-edited
spectra, the matrices were constructed from 30 spectra (15 for the HBL group and 15 for the
NLC group) with 1764 variables from two spectral regions, δ 0.50–4.50 and 5.50–9.00. The
first principal component analysis (PCA) was performed on all 30 samples with the objective
to investigate the inherent groupings within samples and evaluate eventual outliers. Two
additional principal component analyses (PCA) were performed, one with the spectra of
the paired samples of HBL and NCL tissues from the same patients (10 spectra in total, 5 for
HBL tissues and 5 for NCL tissues), and the other with the spectra of the paired samples
of HBL tissues taken from the center and border of the tumor (12 spectra in total, 6 from
the center and 6 from the edge of HBL tissue). Partial least squares-discriminant analysis
(PLS-DA) was applied to the NMR data to find metabolite dissimilarities between the
groups. Following the built PLS-DA models, variable importance in projection (VIP) scores
were evaluated to define the most different chemical shifts among the studied samples.

3. Results

A total of 30 samples (15 HBL and 15 NCL) were analyzed by HR-MAS 1H-NMR
to determine the intact tissue metabolites and metabolomic differences among HBLs and
NCLs, as well as possible differences in metabolomic profiles of HBL taken from two regions
of the same tumor. Two types of 1D NMR experiments by HR-MAS were recorded for
metabolomic fingerprinting of the tissues, nuclear Overhauser enhancement spectroscopy
(NOESY1D), and 1H-NMR T2-edited (CPMG) to analyze low-molecular-mass metabolites.

www.metaboanalyst.ca
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Data analysis showed that the most important spectral differences among HBL and NCL
tissue samples were in the aliphatic region (δ 0.50–4.50), followed by δ 5.50–9.00 aromatic
region of 1H-NMR CPMG spectra. Therefore, these spectral regions were used to construct
the metabolomics datasets.

The spectral differences in aliphatic regions were observed for 30 analyzed samples
(15 HBLs and 15 NCLs) and 10 paired HBL/NCL samples as illustrated in Figure 1.
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showed somewhat overfitting of the results, principally because of the low number of 
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Figure 1. HR-MAS 1H-NMR spectra of liver tissue samples, from the bottom to the top: non-
cancer liver (NCL) sample, hepatoblastoma sample (HBL-C) taken from the center of the tumor, and
hepatoblastoma sample taken from the border of the tumor (HBL-B) in 0.0-5.5 ppm. Identification of
the tissue metabolites is given in Table 1.

At the same time, the spectral features were significantly different in 12 paired HBL samples
taken from the center and the border of the tumor. Additionally, the observed differences were
revealed by the results of the executed chemometrics analysis (Figures 2–4). Using the PLS-DA
as a supervised method, the sample plots (Figures 2A, 3A and 4A) showed the analyzed sample
group membership. The statistical parameters for group discriminations were satisfactory,
regarding accuracies and R2, although the Q2 values showed somewhat overfitting of the results,
principally because of the low number of samples. Nevertheless, clear discriminations between
the tumor HBL samples and the NCL were achieved (Figures 2A and 3A). Figures 2B and 3B
illustrate the variable importance in the projection (VIP) scores that were computed to determine
discriminatory metabolites from the assigned NMR data. Both results of the PLS-DA revealed
VIP values greater than 2.35 that belong to identified metabolites, whose abbreviations are given
in Table 1. Furthermore, the color of the boxes showed increased (red) and decreased (blue)
metabolites, respectively (Figures 2B and 3B).
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Table 1. Chemical shifts, spectral peaks’ multiplicities, and coupling constants of the 16 most
important biomarkers in HBLs.

Metabolites Chemical Shifts (ppm), Peak Multiplicities,
and Coupling Constants

Lipids (-CH3) 1a 0.83 m

Lipids (-CH2-) 1b 1.28 m

Ile (Isoleucine) 2 0.93 t (J = 7.4 Hz); 1.00 d (J = 7 Hz); 1.25 m; 1.46 m; 1.97 m; 3.67 d (J = 3.97 Hz)

Leu (Leucine) 3 0.95 t (J = 8 Hz; 9 Hz); 1.70 m; 3.72 m

Val (Valine) 4 0.98 d (J = 8 Hz); 1.03 (J = 7 Hz); 2.26 m; 3.60 d (J = 4 Hz)

Lactate 5 1.33 d (J = 7 Hz); 4.10 q (J = 7 Hz)

Ala (Alanine) 6 1.46 d; 3.77 q

Pro (Proline) 7 2.00 m; 2.07 m; 2.35 m; 3.34 m; 3.42 m; 4.13 m

Glu (Glutamate) 8 2.04 m; 2.12 m; 2.34 m; 3.75 dd (J = 7.19, 4.72 Hz)

Gln (Glutamine) 9 2.13 m; 2.45 m; 3.77 t (J = 6.18 Hz)

His (Histidine) 10 3.16 dd (J = 7.75 Hz); 3.23 (J = 4.93 Hz); 3.98 (J = 4.98 Hz); 7.10 d (J = 5 Hz); 7.90 d (J = 2 Hz)

Cho (Choline) 11 3.19 s; 3.51 dd (J = 5.816 Hz, 4.162 Hz); 4.05 ddd

PL (Glycerophosphocholine) 12 3.20 s; 3.62 m; 3.90 m; 4.30 m

Glc (Glucose) 13 3.23 dd (J = 9.41 Hz, 7.98 Hz); 3.40 m; 3.46 m; 3.52 dd (J = 9.82 Hz, 3.77 Hz); 3.73 m; 3.82 m;
3.88 dd (J = 12.30 Hz, 2.23 Hz); 4.63 d (J = 7.98 Hz); 5.22 d (J = 3.80 Hz)

Tyr (Tyrosine) 14 3.03 dd (J = 14.55 Hz, 8.01 Hz); 3.34 dd (J = 14.53 Hz, 4.68 Hz); 4.04 dd (J = 8.03 Hz,
4.68 Hz); 6.94 m; 7.20 dd (J = 7.95 Hz, 1.51 Hz); 7.24 td (J = 7.76 Hz, 1.71 Hz)

Phe (Phenylalanine) 15 3.19 m; 3.98 dd (J = 7.88, 5.31 Hz); 7.32 d (J = 6.96 Hz); 7.34 m; 7.42 m

Formate 16 8.40 s
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Figure 2. HBL vs. NCL. PLS-DA of the HR-MAS 1H-NMR CPMG data: (A) 2D score plot shows
15 HBL and 15 NCL samples; statistical parameters were as follows: accuracy (0.68), R2 (0.77), and Q2

(0.39). (B) Variable importance in projection (VIP) scores greater than 2.35 were assigned to important
metabolites 1–16, as summarized in Table 1, which are discriminatory for HBL vs. NCL in the PLS-DA
model. HBL tissue samples are shown with red crosses and the non-cancer liver tissue samples (NCL)
are shown in green triangles.
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Figure 4. HBL border vs. center, PLS-DA of the HR-MAS 1H-NMR CPMG data in the analysis
of the cancer samples from border and center, HBL-B and HBL-C, respectively: (A) 2D score plot;
statistical parameters were as follows: accuracy (0.71), R2 (0.87), and Q2 (0.23). (B) Heatmap showing
discriminatory metabolites for the cancer samples. HBL-B tissue samples are shown in blue and
HBL-C are shown in red.

HBL and NCL samples showed differences in 16 metabolites (Table 1) with the highest
contributions identified by VIP values higher than 2.35 (Figure 2B). Five out of sixteen
metabolites identified by 1D and 2D NMR data (TOCSY) showed reduced and eleven
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increased concentrations of HBL compared with NCL (Figure 2B). Among the five metabo-
lites with decreased concentrations (boxes in blue, Figures 2B and 3B), were lactate, glucose
(Glc), and triacylglycerides (TAGs) with saturated (FAs) and unsaturated (UFAs) fatty
acids used as energy reserve sources. The greatest differences observed for metabolites
with increased concentrations (boxes in red, Figures 2B and 3B) were in glutamine (Gln),
glutamate (Glu), formate, some aromatic (phenylalanine—Phe, and tyrosine—Tyr), and
aliphatic amino acids, especially alanine (Ala), and phospholipids (PL), which are structural
lipids and the main components of cell membranes.

According to the PLS-DA results of the paired tumor samples, and the heatmap
(Figure 4), border and center samples showed variations in the relative metabolite levels
measured in NMR analyses, which are illustrated in color change intensities of increased
and decreased metabolites given in red and blue, respectively (Figure 4B). Columns rep-
resent samples, with red labels showing HBL-center samples. Rows represent distinct
chemical shifts assigned to indicated metabolites (Table 1). For example, it can be seen that
unsaturated fatty acid (UFA) levels show opposite trends in the center and border of the
cancer samples, and the red color prevails in the center tumor samples. At the same time,
TAG levels (first row, Figure 4B) were lower in the tumor center.

The metabolites that contributed to distinguishing both regions of HBL tumors (Figure 4)
are triacylglycerides (TAGs), and glutamate (Glu) with decreased concentrations in the center of
HBL, whereas concentrations of aliphatic amino acids (alanine—Ala, valine—Val, leucine—Leu,
and isoleucine—Ile), lactate, glucose, and phospholipids were increased compared with tissue
samples from the border of HBL (Figure 4B). It should be noted that according to data from the
most important variables with VIP greater than 2.4, triacylglycerides with especially unsaturated
fatty acids showed great differences between HBL tissues taken from the center and border of
the tumors.

4. Discussion

Due to the rarity of HBL, the studied cohort of samples is significant and especially
valuable because the paired HBL and NCL samples had been through the same medical
treatment. Differences in metabolite concentrations in HBL compared with NCL tissue
samples indicate altered metabolomic pathways and potential diagnostic biomarkers which
might be useful as possible targets in clinical treatments. To date, α-fetoprotein (AFP) is
the only clinical biomarker of HBLs [25]. AFM1 is a hydroxylated metabolite of aflatoxin
B1 (AFB1), known as a human carcinogen of the Group 1 type. It was found that AFM1
affects the reprogramming of lipidic, glycolytic, and amino acid metabolism and causes
inhibition of hepatoblastoma HepG2 cells. Reported data revealed that HepG2 untreated
cells compared with treated cells with AFM1 showed increased concentrations of formate
and decreased concentrations of acyl groups of fatty acids, cholesterol, pyruvate/lactate,
glycine, choline, phosphorylcholine (PC), glycerophosphorylcholine (GPC), branched-chain
amino acids (BCAA), and glutamate [22]. Our results are in agreement with this in terms
of decreased concentrations of pyruvate/lactate, glucose, and triglyceride lipids and in-
creased concentrations of formate. Conversely, there is disagreement in terms of increasing
concentrations of glutamine/glutamate, aliphatic (alanine) amino acids, and phospholipids
compared with reported data. Recently reported studies confirmed the diminished effect of
taurocholate co-transporting polypeptide NTCP, encoded by SLC10A1, in hepatoblastoma
HepG2 cells, and its effect was studied by LC-MS exploring the metabolomic differences
between HepG2 with overexpression and normal expression of NTCP (SLC10A1) [2]. Our
results, compared with data on LC-MS-based metabolomics of HepG2 with normal NTCP
expression, show good congruence with increased concentrations of phospholipids and
aliphatic amino acid leucine, and decreased concentrations of triglycerides (lipids) and
lactate/pyruvate. Additionally, our data show opposite results because of the aromatic
amino acids phenylalanine and tyrosine [2].

Cancer cells adapt to the nutrient-deficient microenvironment they need as a source of
energy by altering glycolysis, lipids, and amino acids’ metabolisms, in order to survive,
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proliferate and promote tumorigenesis [26–28]. The observed reduction in triglyceride
concentrations in all HBL samples indicates that cancer cells use this class of lipids as an
alternative source of energy necessary for tumor progression, and an increase in phospho-
lipid concentrations indicates that their synthesis is necessary for structural components
of membranes, both cytoplasmic and organelles [27–31]. Depleted glucose and pyruvate
concentrations in all HBL versus healthy NCL tissue samples demonstrated enhanced gly-
colysis that is typical for the so-called Warburg effect [23], wherein the energy metabolism
of cancer cells is switched from oxidative phosphorylation in mitochondria to aerobic gly-
colysis. In fact, glucose is transformed to pyruvate in glycolytic metabolism, and pyruvate
is further converted to lactate by the enzyme lactate dehydrogenase (LDH) instead of
continuing to participate in the tricarboxylic acid cycle (TCC). We recently reported that the
reduction of lipids in HBLs is positively correlated with nicotinamide N-methyltransferase
(NNMT) downregulation, proposing that these cancer cells are consuming triglycerides as
their requirement for energy in tumorigenesis [32]. Reduction of triglycerides and increase
of phospholipids were also observed in HBL samples taken from the center versus HBL
samples taken from the border of tumors.

The amino acid glutamine (Gln) also has a crucial role in energy metabolism, in
addition to proteins, and nucleotide synthesis and is therefore responsible for cell viability
and cancer growth [33]. The expression of the GLUL which encodes the enzyme glutamine
synthetase (GLUL), and is involved in Gln synthesis, is regulated by the Wnt/β-catenin
pathway. It was reported that CTNNB1 mutations, which are commonly detected in HBLs,
lead to the reduction of β-catenin degradation and GLUL overexpression [10,34], which
follows our results; namely, there is an increased Gln/Glu concentration in HBL compared
with NCL samples.

We also found significantly altered metabolite concentrations comparing HBL center
and border samples from the tumors. The essential difference was the opposite alteration
of concentrations of pyruvate/lactate, glucose, glutamine, and glutamate. Concentrations
of pyruvate/lactate and glucose were increased whereas glutamine and glutamate concen-
trations were decreased in HBL samples taken from the center compared with the samples
from the border of the tumor.

Indeed, the heterogeneity of HBLs is reflected in the existence of different cell types
including pure fetal type, embryonic type, mixed type, and small-cell undifferentiated
type [35]. Different HBL subtypes indicate diverse gene expression patterns as well as
unique metabolic routes. Crippa et al. showed that the embryonal type of HBL cells has
enhanced glycolysis with high activity of lactate dehydrogenase (LDH) and glycolytic
enzyme GLUT3, whereas the fetal type of HBL cells has enhanced glutamine metabolism
with glucose-6-phosphatase kinase (G6PC) upregulation [36]. Although reported data
indicated that glutamine reduction is typical for HBL fetal type [36], it was also detected in
the embryonal HBL cell type [34].

Regarding the high heterogeneity of HBL samples (1–12), our findings suggested that
HBL samples taken from the center of cancer indicate enhanced glutamine metabolism
that corresponds to the fetal cell type, whilst HBL samples taken from the border demon-
strate enhanced glycolysis that corresponds to the embryonal undifferentiated cell-type.
Therefore, our results reinforce that intratumoral heterogeneity can modify the findings
and that it is important to document and accurately describe the location of the studied
cancer tissue.

The low mutagenic potential of our analyzed HBL tissue samples and a number
of cases prevent us from comparing different HBL types. Another limitation is that all
samples were taken from patients that underwent pre-chemotherapy, and treatments can
also influence the validation of our findings.

5. Conclusions

HR-MAS 1H-NMR-based metabolomics study of HBL compared with NCL tissue sam-
ples of the same patients revealed different metabolic profiles and altered lipid metabolism,
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glycolysis, and glutaminolysis in this pediatric liver cancer. Decreased concentrations of
triglycerides, glucose, and pyruvate in HBL tissue samples indicate lipid consumption as an
energy source for tumorigenesis and enhanced glycolysis. Alteration of lactate/pyruvate
and glutamine/glutamate concentrations certainly revealed their potential role as diag-
nostic markers of HBL. In the comparison of HBL samples taken from the center and the
border of the tumor, opposite results in terms of these metabolites’ concentrations indicate
the importance of these metabolites in diagnostics. From the perspective of this research,
we can hypothesize that HBL metastases are favored by enhanced glycolysis and glutamine
metabolism; however, further metabolomics studies should be focused on a larger number
of samples to explore tissue metabolism from aggressive HBL.
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