
Deteção de patologia cardíaca usando
machine learning

JESSICA FELIZ DOS SANTOS
Outubro de 2022



 
 

 

Detection of cardiac pathology using machine 

learning 

  

 

 

Jessica Feliz dos Santos  

 

 

 

Dissertation for obtaining the Master's Degree in 

Computer Engineering, Area of Specialization in 

Information and Knowledge Systems 

 

 

 

Adviser: Elsa Ferreira Gomes 

Co-adviser: Jorge Oliveira  

 

 

 

 

 

Porto, October 2022 

 

 



ii 
 

 

 

 

 

 

 



iii 
 

 

Resumo 

Segundo a Organização Mundial da Saúde, as doenças cardiovasculares (DCV) representam 

32% do número de mortes no mundo. A redução deste valor pode ser atingida através da 

deteção precoce que pode levar a um tratamento mais preciso, melhorando a expectativa de 

vida do paciente. A ausculta cardíaca é a principal técnica utilizada pelos profissionais de 

saúde para identificar muitas DCV. No entanto, a auscultação dos sons cardíacos é um 

procedimento difícil, já que muitos sons são fracos e difíceis de detetar, sendo necessário um 

processo de treino contínuo. Os estetoscópios modernos podem amplificar os sons cardíacos, 

reduzir o ruído de ambiente, melhorar a percepção do usuário e, mais importante, converter 

um sinal acústico em digital. Isto permitiu o desenvolvimento de sistemas de decisão 

assistidos por computador baseados na auscultação. Este documento apresenta uma 

metodologia que pode detectar automaticamente a existência de DCV através de sons 

cardíacos obtidos de diferentes partes do coração. Diversas tecnologias foram analisadas, 

assim como projetos que tentam resolver parte do problema em questão e a partir deles, três 

alternativas diferentes foram elaboradas e documentadas, assim como a divisão do dataset e 

métricas a serem usadas nos testes. Essas alternativas visam classificar anomalias na 

auscultação cardíaca dos pacientes. Vários modelos das duas primeiras alternativas foram 

implementados e seus resultados apresentados. Também é feita uma comparação entre as 

experiências desenvolvidas entre si, também com experiências básicas que não utilizam 

mecanismos inteligentes e com outros trabalhos que tenham o mesmo objetivo. O melhor 

resultado obtido foi pela primeira abordagem com uma exatidão de 94%, precisão de 81% e 

recall de 67%. 

Palavras-chave: Doenças cardiovasculares, cuidados de saúde, auscultação cardíaca, redes 

neuronais, classificação, aprendizagem profunda  
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Abstract 

According to World Health Organization, the cardiovascular diseases (CVD) represent 32% of 

the number of deaths worldwide. Early detection leads to a more accurate treatment plan and 

improves the patient’s life expectancy. Cardiac auscultation is the main technique used by 

health professionals to identify many CVD.  Nevertheless, heart sound auscultation is a 

difficult procedure, since it requires continuous training and many heart sounds are faint and 

hard to detect. However, modern stethoscopes can amplify heart sounds, reduce the 

environment noise, improve the user’s perception and, more importantly, convert an acoustic 

signal to a digital one. This allowed, the development of computer assisted decision systems 

based on auscultation. This document presents a methodology that can automatically detect 

the existence of CVD through cardiac sounds obtained from different parts of the heart. 

Several technologies were analysed, as well as projects that try to solve part of the problem in 

question and from them, three different alternatives were elaborated and documented, as 

well as the division of test data and the metrics for their evaluation. These alternatives are 

intended to classify anomalies in patients' cardiac auscultation. Several models of the first two 

alternatives were implemented and their results presented. A comparison is also made 

between the experiences developed among themselves, also with basic experiments that do 

not use intelligent mechanisms and with other works that have the same objective. The best 

result obtained was by the first approach with an accuracy of 94%, precision of 81% and recall 

of 67%.  

Keywords: Cardiovascular diseases, healthcare, heart auscultation, neural networks, 

classification, deep learning  
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1 Introduction 

In this section it is performed a general introduction to the work developed. Initially it is 

presented the context and the problem. Following with the main objectives, solution 

requirements and the summary of the value analysis of the project. In the end the approach is 

described as well as the document structure. 

1.1 Context 

Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels that 

severely increases morbidity and causes lifelong disabilities. These diseases are the leading 

cause of mortality worldwide for many years now. In a world with 7.8 billion people, the 

World Health Organization estimates that 17.9 million (32% of all deaths) lives each year are 

taken by cardiovascular diseases. CVDs include coronary heart disease, cerebrovascular 

disease, rheumatic heart disease and other conditions. More than four out of five CVD deaths 

are due to heart attacks and strokes, and one third of these deaths occur prematurely in 

people under 70 years of age (WHO, 2022). 

To diagnose these disorders, stethoscopes are used worldwide in the primary health care to 

check the heart sounds of the patients. Health professionals usually auscultate the heart in 

four locations of the chest to maximize the detection of heart anomalies, these are called 

murmurs (Torres, 2021).  

Nowadays there are several stethoscopes for different functionalities. Cardiologists use a 

cardiology stethoscope that gives the professional the ability to hear high and low frequency 

sounds from the diaphragm, it also has a thick earpiece that cancels unnecessary noise and 

restricts interference with the auscultations. With the evolution of medical technology, we 

can now record the sounds and murmurs made by the heart with the help of the 

phonocardiograph. This machine has a big impact in the prevention of CVD (Pulse Uniform, 

2020). 



 

2 
 

1.2 Problem 

CVD diagnosis has improved with the technology growth. We currently have more and better 

tools to do an accurate prevention of these pathologies, but it is not available to everyone. In 

under-developed and developing countries the access to healthcare is limited making the 

heart sound auscultation the chosen diagnostic tool (Oliveira, et al., 2022). 

CVD cause health disabilities, which in turn increases the frequency of hospital admissions. 

This contributes to impoverishment specially in under-developed and developing countries, 

these expenses affect the economy in the healthcare system and population limiting the 

resources available. To minimize the impact on these countries and people’s lives an early 

detection is essential to design an effective prevention plan (Oliveira, et al., 2022). 

Another issue is the human hearing ability, even a professional with a vast experience with 

CVD cannot diagnose every single patient accurately. Failing is in the human nature which 

makes any help in critical subjects like CVD to be appreciated. 

1.3 Objectives 

The objective of this work is to produce a system capable of classifying heart sounds for 

screening first-level cardiac pathologies, in hospital and outpatient settings. This system is 

meant to be a contribute to the existing projects like the ones referred in the state of the art, 

giving more information about the heart sounds to the healthcare professionals. This 

additional information will support the professionals when preventing and diagnosing 

patients. 

It is also intended to compare this approach with relevant works identified during the analysis 

of the state of the art performed. 

1.4 Solution Requirements 

To address the problems stated above, the following requirements are expected in the 

conceived system: 

Functional Requirements 

• Classify patients based in heart sounds of four different auscultation locations in 

several characteristics. Namely, presence of pathology, murmur quality, murmur 

shape and others. 

Non-Functional Requirements 

1. Modifiability - The system is easily modified. 
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• Reliability - High efficiency of the system after extensive use. 

• Performance - Must deliver an output with high level of accuracy and speed. 

• Scalability - The system must accept any size of data. 

• Manageability - Easy way to change some characteristics of the model used. 

1.5 Approach 

In this project, the first phase consists in getting knowledge about cardiovascular diseases, the 

impact they have in people and countries, how they can be diagnosed and the concepts 

behind it.  

After that, the problem is formulated and the next phase begins, which consists of getting 

knowledge about technologies that can help us solve it in the artificial intelligence area, 

namely deep learning. It was essential to study the different types of neural networks that are 

available, their characteristics and components (feature extraction, activation functions, 

optimizers, and evaluation methodologies). This includes tools to easily build models and test. 

To learn what has been done by other authors a state of the art must take place, researching 

previous projects with similar objectives, analyse and make a critical comparison with the one 

we are aiming for. 

An evaluation methodology is documented, as it will take place once the systems are 

developed. 

A value analysis of the project was also done, it can be consulted in the attachments. This 

analysis focus in the importance of this study analysing the current status of the CVD 

prevention, specifically in third-world countries. An Analytic Hierarchy Process (AHP) was also 

applied to select the deep learning framework. 

Next, some design alternatives are documented and analysed, to have options for the 

development of the system. Some other decisions must be made like the language and tools 

to use, which model types should be implemented, activation functions to be explored as well 

as optimizers. 

Once the ideas are designed and analysed, implementation takes place being documented, it 

contains information regarding the models. After that, the evaluation is done and 

documented as well as the analysis of the results. 
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1.6 Document Structure 

The structure of this document is divided into the following parts: Introduction, Theoretical 

Concepts, State of the Art, Methodology, Solution Design and Conclusion.   

The Introduction is composed by context, the problem and objectives of the work, along with 

the main solution requirements, value analysis and approach. 

The Theoretical Concepts is composed by the heart description, cardiovascular diseases, heart 

sounds, clinical applications, tools and methods. 

The State of the Art is composed by technical concepts of artificial intelligence, neural 

networks, audio feature extraction, model evaluation methodologies, technology and 

scientific approaches related to the problem. 

The Methodology is composed by the hypothesis, available data, its origin, analysis, the 

description of the evaluation of the system and the experimental environment. 

The Solution Design is composed by framework selection and alternative designs to the 

problem. 

The Implementation is composed by the details of pre-processing of the data, structure and 

content of the project files, and detailed description of the most significant experiment 

models. 

The Evaluation is composed by the results of the developed models that were detailed in the 

implementation, comparison between experiments, comparison with some base algorithms 

and comparison with the literature projects. 

The Conclusion and Future Work summarizes the dissertation and describes the possible 

future work. 
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2 Theoretical Concepts 

In this section it is presented the main theoretical concepts necessary to understand this 

project. The addressed topics are the constitution of the heart, what are cardiovascular 

diseases, their burden in the society and the current process for prevention and diagnosis. 

2.1 Heart 

The human heart (illustrated in Figure 1) is made up of four chambers. Between those 

chambers there are valves that open when blood passes through them and then close to keep 

the blood from flowing in the wrong direction. In total there are four heart valves, tricuspid, 

pulmonary, mitral, and aortic (FPC, 2021).  

 

Figure 1 – Human heart (Wapcaplet, 2006) 
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2.2 Cardiovascular Diseases 

The disorders that affect the structure or function of the heart and blood vessels are in a 

group called cardiovascular diseases (CVD). Each disease has a set of distinct characteristics, 

like the coronary heart disease, cerebrovascular disease and peripheral arterial, that occur 

when there is a malfunction on the blood vessels supplying the heart, the brain and the arms 

and legs respectively (WHO, 2021). 

People with CVD are faced with several medical complications that force them to adjust their 

lifestyle to the disease, like arrhythmias, heart failure, and pulmonary hypertension. This 

illness is usually accompanied by psychological challenges related to lack of normality, social 

integration, body image, disclosure, uncertainty, dependence, and coping. Several studies 

have shown that people with CVD may experience psychological distress associated with 

feelings of persistent insecurity, depression, anxiety, and low self-esteem (Kim, Johnson, & 

Sawatzky, 2019).  

2.3 Heart Sounds 

During the cardiac cycle there are two factors that generate vibrations, the turbulence of the 

blood flow and the valves that open and close passively because of pressure differences on 

either side of the valve. These vibrations produce audible sounds, the “lub-dub” that is heard 

(Oliveira, et al., 2022). 

The cardiac cycle has mainly two phases, systole and diastole, each can be associated with a 

sound. In the systole phase the mitral and tricuspid valves close after the atria have pumped 

blood into the ventricles generating the first heart sound (S1). In the diastole phase, after the 

ventricles have ejected the blood from the heart, the aortic and pulmonary valves close 

producing the second heart sound (S2). S1 and S2 are called the fundamental heart sounds, an 

illustration of both sounds can be seen in Figure 2 (Had, Sabri, & Aoutoul, 2020). 

 

Figure 2 – Normal heart sounds for a single cardiac cycle. Image modified from (Had, Sabri, & 

Aoutoul, 2020) 
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2.4 Clinical Applications 

When a patient suffers from heart problems, the sound of their heart cycle is different, it 

presents additional sounds called murmurs. The time between valves closure can also be an 

indicator of some pathologies. 

After this feature of the heart was discovered, a new method of examination emerged, the 

cardiac auscultation. This is made with a single tool called stethoscope and relies in the 

human audition.  There are mainly four locations of auscultation defined by the best positions 

to hear the heart valves generated sounds, during the auscultation the stethoscope should be 

placed at the following positions as illustrated in Figure 3 (Jevon, 2007): 

 

Figure 3 – Aortic(A), Pulmonary(P), Tricuspid(T) and Mitral(M) regions for heart auscultation 

(Al-Hadithi, 2020) 

• Mitral area - left fifth intercostal space, mid-clavicular line. 

• Tricuspid area - left fourth intercostal space, just lateral to the sternum. 

• Pulmonary area - left second intercostal space, just lateral to the sternum. 

• Aortic area - right second intercostal space, just lateral to the sternum. 

2.5 Tools and Methods 

Cardiac auscultation is the most common method for the detection and prevention of 

cardiovascular diseases. This procedure is done using a stethoscope and poses no risks or side 

effects. However, the human audition limitations can make the cardiac examination difficult. 
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Several approaches and tools have been proposed in this research field to mitigate this 

problem, like the digital stethoscope and the phonocardiogram (Nall, 2018). 

The digital stethoscope allows the health professional to ear the cardiac sound without noise, 

speeding up the identification of anomalies in the heart. It also has a recording and 

reproduction function useful for further analysis of the sounds (Norreel, 2021). 

The heart sound recorded using a digital stethoscope is called Phonocardiogram (PCG), it 

converts the acoustic sound waves to electrical signals. This tool is very important for 

researchers to create innovative methods that extract more information out of the PCG signal 

with the objective of supporting CVDs prevention and diagnosis (Had, Sabri, & Aoutoul, 2020). 
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3 State of the Art 

In this section it is presented the artificial intelligence (AI) area, in particular the fields of 

machine learning (ML) and deep learning (DL). An overview of neural networks is also 

documented, from the available types to their components. The current technologies, tools 

and similar approaches to solve this type of problem are also studied. 

3.1 Artificial Intelligence 

 

Figure 4 – AI vs ML vs DL (Wolfewicz, 2021) 

AI is a field born in 1950s to add features to machines, like i) automation of repetitive learning 

and discovery through data; ii) intelligence and adaptation through progressive learning 

algorithms; iii) ability to analyse more and deeper data; iv) improved accuracy and v) extract 

the most information out of data (SAS Insights, 2022).  

A machine with AI has the ability of thinking in a similar way as a human allowing it to do tasks 

and solve problems that are complex and need more than just coded rules. This includes 
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learning from experience and adjusting to new inputs. According to (Poole, 1998) an 

intelligent system is “a system that acts intelligently: What it does is appropriate for its 

circumstances and its goal, it is flexible to changing environments and changing goals, it learns 

from experience, and it makes appropriate choices given perceptual limitations and finite 

computation”. 

In the AI area, input data is called feature and there are two important processes to prepare 

the data for the AI system, feature engineering and feature extraction. Feature engineering is 

the process of withdrawing important features from raw data. Feature extraction is the 

process of extracting features from the data (Mesquita, 2021). 

3.1.1 Machine Learning 

ML is a subset of AI that allows training systems to perform tasks or solve problems without 

having explicitly programmed rules. For this to work, the programmer needs to feed the 

system with pre-processed data, allowing it to learn patterns and be ready to fulfil its 

objective. This data needs to be previously filtered to contain only the important features to 

establish patterns (Mesquita, 2021). 

As an example, we can look at a system that is meant to solve sudoku puzzles using machine 

learning, data would be gathered from solved sudoku games and fed to a statistical model. 

This model is constituted by the ML algorithm and the training dataset (previous inputs and 

outputs). The ML algorithm predicts a new result based on the training dataset assuming the 

new input follows the same probability distribution. If, for some reason, the distribution 

changes, the model needs to be trained with a dataset that follow the new distribution 

(Mesquita, 2021). 

Machine learning can be applied in any business area in a lot of situations, the most important 

part when starting a new project in this area is to study and analyse the problem as well as the 

data to know how it can be used by the model. Some examples of machine learning 

algorithms are (Ray, 2017):  

• Support Vector Machine (SVM) that classifies data using filters calculated from 

training data. 

• K-Nearest-Neighbors (KNN) that estimates to which group a data point is likely to be 

in. 

• Decision Tree that uses a tree like structure to classify data. 

• Random Forest is a classification algorithm composed of many decisions trees. 
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3.1.2 Deep learning 

DL is a subset of ML inspired in the way a human brain filters information. In this area the 

system figures out by itself which information is important to establish patterns instead of 

applying feature engineering techniques. This means that, the feature engineering process 

can be bypassed (Mesquita, 2021). In Figure 5 the main difference of machine and deep 

learning is presented. 

 

Figure 5 – Comparison between Machine Learning & Deep Learning (Pai, 2020) 

Being able to skip the feature engineering gives us advantages in datasets that are complex 

like images and audios. In this type of data, we don’t need to know which features are 

important, the system will find them.  The way of deep learning mimicking human brains 

though process is by using deep neural networks (DNN). These networks have multiple hidden 

layers. 

DL is usually used to classify objects, for example classify a picture or set of pictures into the 

name of the animal in them or their characteristic, the number of inputs and outputs can be 

multiple. 

3.2 Neural Networks  

When certain application scenarios are too heavy or out of scope for traditional machine 

learning algorithms to handle, neural networks are the chosen solution (Great Learning Team, 

2021).  

A neural network is a set of algorithms with the objective of recognizing underlying patterns in 

a set of data like humans do. The main characteristic is the ability to adapt to changing 

outputs, exercising a self-training (Chen, 2021).  
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Figure 6 – An example of a neural network (IBM, 2020) 

As we can see in the Figure 6, neural networks are constituted by layers, an input layer, one or 

more hidden layers and an output layer. Each layer has a set of neurons that have connections 

with another layer. Each connection has an associated weight and bias, this are required to, 

together with an activation function, calculate which of the neurons of the next layer will be 

activated. In deactivated neurons no data is passed to the next layer of the network. Neural 

networks learning process consists in getting input data with known outputs and run them 

through the network adjusting the weights and bias of the connections. 

Neural networks are trained by a set of inputs with already known outputs. The weights in 

each layer begin with random values, and these are iteratively improved over time to make 

the network more accurate. A loss function is used to quantify how inaccurate the network is, 

and an algorithm called backpropagation performs a backward pass while adjusting the 

model’s parameters like weights and biases (Great Learning Team, 2021).  

Neural networks learn and improve their accuracy with experience, they rely on training data 

for that. These learning algorithms when well-trained are powerful tools in computer science 

and artificial intelligence, allowing us to classify data at a high velocity. The time to perform 

some tasks can go from several hours to just a few minutes. One of the most well-known 

neural networks is Google’s search algorithm (IBM, 2020). 

There are several types of neural networks, but the most used ones are Artificial Neural 

Network (ANN), Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM) and 

Convolutional Neural Network (CNN). 
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3.2.1 Artificial Neural Network 

The ANN, also called Feed-Forward Neural Network is a set of algorithms that mimic the 

human brain and find the relationship between the dataset (Agrawal, 2021). An example is 

illustrated in Figure 7. 

 

Figure 7 – Artificial Neural Network (Dertat A. , 2017) 

 

Before making predictions, the model needs to be trained to learn the weights, the training 

process works as follows (Dertat A. , 2017): 

• Randomly initialize the weights for all the nodes. 

• For every training example: 

o Perform a forward propagation using the current weights and calculate the 

output of each node going from left to right (the final output is the value of 

the last node). 

o Compare the final output with the actual target in the training data. 

o Measure the error using a loss function. 

o Adjust the weights (using the learning rate increment or decrement) the 

backward gradient propagation. 

Limitations (Dertat A. , 2017): 

• To solve a problem where the data is multidimensional the data needs to be 

converted in a 1-dimensional vector. 

• If working with images, the input vector size increases drastically with bigger images. 



 

14 
 

• The spatial features are lost, like the arrangement of the pixels in an image. 

• Cannot capture sequential information. 

To mitigate these limitations other neural networks were created, Recurrent Neural Networks 

and Convolution Neural Networks. 

3.2.2 Recurrent Neural Network 

A RNN is an upgraded version of an ANN. It consists of having a connection in each neuron to 

the same neuron, this extra connection makes the output of that neuron to have the 

influence, not only of the weight, but also of the previous input (IBM, 2020). In the Figure 8 it 

is presented the difference between ANNs and RNNs architecture. 

 

Figure 8 – RNN and ANN architecture (Pai, 2020) 

This type of neural network works good for time-series data, text data or audio data, for 

example in stock market predictions or sales forecasting (IBM, 2020).  

3.2.3 Long Short-Term Memory 

The LSTM is a special type of RNN in which each neuron contains a memory block for storing 

the previous inputs. Each memory block consists of three ports: in, out and forget. The neuron 

decides what to store and when to allow readings, writings or deleting of information. This 

allows the neuron to be influenced by the previous inputs stored in the memory block (Latif, 

Usman, Rana, & Qadir, 2018). In Figure 9 a word prediction system is presented as an example 

of an LSTM. 
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Figure 9 – Example of a word prediction system 

3.2.4 Convolution Neural Network 

The Convolutional Neural Network is a type of neural network that can take images as input. 

This neural network assigns importance to the arrangement of the image pixels and 

automatically detects the important features without any human supervision. It can be 

thought as a combination of feature extraction and classification (Dertat A. , 2017). In Figure 

10 it is presented an example of a CNN. 

 

Figure 10 – Example of an image classification (Pai, 2020) 

Advantages: 

• Learns the filters automatically helping in the extraction of the important features 

from the input data. 

• Captures the spatial features from an image. 
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3.2.5 Summary 

In the Table 1 it is presented the summary of the neural networks studied. 

Table 1 – Summary of the neural networks (Gupta, 2020) 

 ANN RNN CNN 

Type of Data Tabular Data Sequential Data Image Data 

Fixed Length input Yes No Yes 

Recurrent 
Connections 

No Yes No 

Spatial Relationship
  

No No Yes 

Vanishing and 
Exploding Gradient 

Yes Yes Yes 

Performance  ANN is less powerful 
than CNN, RNN 

RNN includes less 
feature compatibility 
when compared to 

CNN 

CNN is more 
powerful than ANN, 

RNN 

Applications Facial recognition 
and Computer vision 

Text-to-speech 
conversions 

Facial recognition, 
text digitization and 

Natural language 
processing 

Main advantages
  

Having fault 
tolerance and ability 

to work with 
incomplete 
knowledge 

Remembers each 
information and time 

series prediction 

High accuracy in 
image recognition 

problems and weight 
sharing  

Disadvantages Hardware 
dependence, and 

unexplained 
behaviour of the 
network  

Gradient vanishing 
and exploding 

gradient 

Large training data 
needed and don’t 

encode the position 
and orientation of 

object 

Analysing this summary, we can see that the different neural networks work better for 

different types of data, the ANN are used for tabular data, RNN for sequential data and CNN 

for image data. To choose the neural network to work is highly connected with the context 

and variables of the problem to solve. 

3.3 Audio feature extraction 

When working with audio data, the raw format cannot be understood by the models directly, 

so a conversion needs to be done. Audio feature extraction makes it possible to implement 

systems of classification, prediction and recommendation for audio data (Doshi S. , 2018). 

Next are presented the main methods to extract features from audio signals currently used in 

machine learning. 
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3.3.1  Fast Fourier Transform 

The Fast Fourier transform (FFT) is a method for efficiently compute the Fourier transform 

(FT) of discrete data samples, such as signals. It significantly reduces the computation time by 

taking advantage of the fact that the calculation of the coefficients of the DFT can be carried 

out iteratively (Cochran, et al., 1967).  

 
Figure 11 – Application of FT to a signal (Chaudhary, 2020) 

The Fourier transform (FT) is a mathematical transformation (illustrated in Figure 11) that 

allows the conversion of a signal from the time domain into the frequency domain, it is done 

by decomposing the signal (Roberts, 2020).  

The FFT extends the accessible information of the analysed data. One of the advantages is 

that it doesn’t give any information regarding changes in the frequency of the signal over 

time, it only gives the overall frequency components (Doshi K. , Audio Deep Learning Made 

Simple (Part 3): Data Preparation and Augmentation, 2021). 

3.3.2  Short-time Fourier Transform 

The Short-Time Fourier Transform (STFT) breaks up the audio signal into smaller sections, 

calculates the FFT for each section and then combines them. Unlike FFT that only provides the 

frequency information averaged over the time, SFTP captures the variations of the frequency 

(Doshi K. , Audio Deep Learning Made Simple (Part 3): Data Preparation and Augmentation, 

2021). 
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3.3.3  Mel Spectrogram 

The application of the Fourier transform to a signal generates a spectrogram. It is a visual 

representation of the amplitude of each frequency present in the signal. Mel spectrograms 

are modified spectrograms, frequencies are converted to a range that human can ear called 

the Mel scale and instead of amplitudes, the decibel scale is used which gives colour to the 

spectrogram. A Mel spectrogram is illustrated in Figure 12. 

 

Figure 12 – Mel spectrogram (Doshi K. , Audio Deep Learning Made Simple (Part 2): Why Mel 

Spectrograms perform better, 2021) 

3.3.4  Mel Frequency Cepstral Coefficients 

The Mel Frequency Cepstral Coefficients (MFCC) selects a compressed representation of the 

frequency bands from the Mel Spectrogram that correspond to the human speech 

frequencies (Singh, 2019).  

 

Figure 13 – MFCCs of a signal (Singh, 2019) 
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The MFCC applies several steps to extract information about the rate changes in the different 

spectrum bands. In the end we get a compressed representation as illustrated in Figure 13. 

This feature extraction technique is explained in detail in (Singh, 2019) 

3.4 Activation Functions 

Activation functions are used to compress the neurons output into a range, their purpose is to 

add non-linearity to the neural network. Some of the most popular functions (Sharma, 2017): 

• Sigmoid is usually for the prediction of probabilities, it ranges between 0 and 1. 

• Tanh is mostly used in binary classifications, it ranges between -1 and 1. 

• Softmax is used for multi-class classifications. 

• ReLU is the most popular for deep learning models, ranges from 0 to infinity. 

• Leaky ReLU is a modified ReLu, ranges from -infinity to infinity. 

3.5 Optimizers 

Optimizers are algorithms used in neural networks to reduce the loss when training the 

model, they do that by changing the attributes of the networks like weights and learning rate. 

Some of the most popular optimizers (Kumar, 2020): 

• Gradient Descent (GD) is the most basic, it helps the loss function to reach a 

minimum. 

• Nesterov Accelerated Gradient (NAG) is faster than GD to converge. 

• Adaptive Gradient (AdaGrad) has an adaptive learning rate. 

• Adam is the most used and considered the best as it converges faster than other 

algorithms. 

3.6  Model Evaluation Methodologies 

Model Evaluation is an important part of the model development process. It helps to estimate 

how well the chosen model will work in the future. Evaluating model performance with the 

data used for training is not acceptable in data science because it can easily generate almost 

perfect (overoptimistic and overfitted) models. To avoid this the Hold-Out and Cross-

Validation are two of the methods that can be used to slip the data in distinct subsets. To 
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evaluate the model performance several metrics can be calculated (Sayad, Model Evaluation, 

2022). 

The Hold-Out method is usually applied when the dataset is large, it randomly divides the 

dataset in three subsets (Sayad, Model Evaluation, 2022): 

• Training set is a subset of the dataset used to train the predictive models. 

• Validation set is a subset of the dataset used to assess the performance of the model 

training phase. 

• Test set is a subset of the dataset to assess the future performance of a model.  

For a small amount of data, the Cross-Validation (also known as k-fold cross-validation) 

method is suggested. In k-fold cross-validation, the data is divided into k subsets of equal size. 

The model is trained using k-1 of the divided subsets and use the remaining as the test set 

(Sayad, Model Evaluation, 2022). 

3.6.1 Classification Evaluation Metrics 

3.6.1.1 Confusion Matrix 

A confusion matrix calculates some metrics using the number of correct and incorrect 

predictions made by the classification model compared to the actual outcomes in the data. 

The matrix is NxN, where N is the number of classes. The Table 2 is an example of a confusion 

matrix for a binary classification model (Sayad, Model Evaluation - Classification, 2022). 

Table 2 – Confusion Matrix (Sayad, Model Evaluation - Classification, 2022) 

Confusion Matrix 
Classes  

Positive Negative 

Output 
Positive a b Positive Predictive Value a/(a+b) 

Negative c d Negative Predictive Value d/(c+d) 

 Sensitivity Specificity 
Accuracy = (a+d)/(a+b+c+d) 

a/(a+c) d/(b+d) 

Metrics (Sayad, Model Evaluation - Classification, 2022): 

• Accuracy: proportion of the total number of predictions that were correct. 

• Positive Predictive Value or Precision: proportion of positive cases that were 

correctly identified. 

• Negative Predictive Value: proportion of negative cases that were correctly 

identified. 
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• Sensitivity or Recall: proportion of actual positive cases which are correctly identified.  

• Specificity: proportion of actual negative cases which are correctly identified. 

 

3.6.1.2 ROC Chart 

The ROC chart provides a means of comparison between classification models. It used the 

sensitivity in the y-axis and 1-specificity in the x-axis (Sayad, Model Evaluation - Classification, 

2022). This chart is illustrated in the Figure 14, the diagonal red line is for a random model. 

 

Figure 14 – ROC Chart (Sayad, Model Evaluation - Classification, 2022) 

 

3.6.1.3 F1 Score 

The F1 score is the weighted average of precision and recall (Korstanje, 2021): 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
Recall ∗ Precision

Recall + Precision
 

 

3.6.1.4 Overall Score 

The Overall score is the average of sensitivity and specificity (Liu, et al., 2016): 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 =
Sensitivity + Specificity

2
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3.7 Technology 

3.7.1 Python  

Python is a programming language easy to learn with efficient high-level data structures and 

approach to object-oriented programming. It is a scripting language and allows a rapid 

application development in many areas on most platforms (Python, 2022). 

3.7.2 TensorFlow 

TensorFlow is an open-source framework developed by Google researchers for developing 

and deploying Machine Learning applications. It is known for documentation and training 

support, scalable production and deployment options, multiple abstraction levels, and 

support for different platforms, such as Android. It supports developers with tools, libraries, 

and community resources. It provides different levels of abstraction (TensorFlow, 2022).  

It is one of the most popular machine learning libraries being for all kinds of projects. 

Advantages: 

• Compatible with various coding languages such as C, C++, Java, etc. 

• Access to both low-level and high-level APIs. 

• Fast computational ability across several platforms. 

• Fast execution of large datasets. 

Disadvantages: 

• Not very easy to use. 

3.7.3 Keras 

Keras is a deep learning high-level API written in Python, that runs on top of the machine 

learning platform TensorFlow. It is an approachable, highly productive interface for solving 

machine learning problems, with a focus on modern deep learning. It provides essential 

abstractions and building blocks for developing machine learning solutions with high iteration 

velocity. It focuses on being modular, user-friendly, and extensible (Keras, 2022).  

Key Principles (Keras, 2022): 

• Simple: Reduces developer cognitive load to free you to focus on the parts of the 

problem that really matter. 
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• Flexible: Adopts the principle of progressive disclosure of complexity, simple 

workflows should be quick and easy, while arbitrarily advanced workflows should be 

possible via a clear path that builds upon what have been learned. 

• Powerful: Provides industry-strength performance and scalability, it is used by 

organizations and companies including NASA, YouTube, or Waymo. 

Advantages: 

• For Python-based coding. 

• Allows fast experimentation with neural networks. 

• Very high-level API that could run on CNTK and Theano. 

• Popular due to the syntactic simplicity and user-friendly nature. 

• Simple architecture 

Disadvantages: 

• Slower speed than competitors. 

• Usually used for small datasets as it is comparatively slower. 

3.7.4 Optuna 

Optuna is a software framework that allows automatic hyperparameter optimization of 

models. It has the following advantages: 

• Lightweight and versatile handling a wide variety of task with a simple installation. 

• Allows the definition of search spaces using familiar Python syntax. 

• Efficient optimization algorithms. 

• Easy parallelization and scalability. 

• Quick visualization of optimization histories. 

3.7.5 PyTorch 

PyTorch is an open-source machine learning library for Python developed by Facebook’s AI 

research group. It is based on Torch and is used for applications such as natural language 

processing (Sayantini, 2021).  
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Advantages: 

• Famous for academic research purposes. 

• Assists in deep learning applications. 

• Fast execution of large datasets. 

• Good for natural language processing. 

• Used for high-performance models and large datasets that require fast execution. 

Disadvantages: 

• Only for the Python-based coding. 

• Has only low-level APIs that would focus on the working of array expression. 

• Complex architecture and the readability are weak. 

3.7.6 Summary 

Table 3 – Summary of the frameworks (Rogel-Salazar, 2022) 

 TensorFow Keras Pytorch 

API Level High and Low level High-level High-level 

Performance High Low High 

Architecture Complex Simple Complex 

Debugging Difficult Moderate Easy 

Dataset Capacity Large Small Large 

Popularity Second most popular Most popular Third most popular 

In conclusion each framework is good for distinct objectives. Keras is more user-friendly for 

beginners and allows to a quick start on prototyping ML systems, lacking in performance in 

large datasets. Pytorch on the other hand is complex and less readable, but it’s better for 

systems that work with big datasets. Tensorflow is a bit in the middle of the previous ones, it 

allows the user to experiment with high and low API levels, giving it more control of the built 

systems, but it’s complex and not easy to debug. All the frameworks have currently a good 

supply of online resources. 

3.8 Scientific approaches related to the problem  

In this section there are presented several articles of interest. First, we analyse two articles, 

one related to the classification of murmur specific location to aid in the diagnosis and the 

other that explores a multi-classification of the location of the heart sounds before of the 
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murmur presence classification. Next other articles are summarized including papers that 

resulted from a previous PhysioNet (PhysioNet, 2022) challenge. This challenge is relevant due 

to the topic addressed, its objective was to develop algorithms to classify heart murmurs as 

normal or abnormal. 

3.8.1 Extraction and assessment of diagnosis-relevant features for heart murmur 

classification 

In the (Levin, Ragazzi, Szot, & Ning, 2021) article it is documented an approach for heart 

murmur detection and multi-class classification. The main objective was to classify the heart 

sounds into the following seven categories:  

• Early systolic murmurs. 

• Mid systolic murmurs. 

• Late systolic murmurs. 

• Holosystolic murmurs. 

• Diastolic murmurs. 

• Systolic and diastolic murmurs. 

• Normal heart sounds without murmurs. 

For this the extracted features were from the time and frequency domains, combined with 

the next 16 additional calculated features: 

1. Ratio of average systole amplitude to average S1 amplitude; 

2. Ratio of average diastole amplitude to average S1 amplitude; 

3. Theorized presence of systolic murmur, determined by whether Feature 1 crosses an 

empirically determined threshold; 

4. Theorized presence of diastolic murmur, determined by whether Feature 2 crosses an 

empirically determined threshold; 

5. Sum of the absolute values of the derivatives of every point in the systole silhouette; 

6. Sum of the absolute values of the derivatives of every point in the diastole silhouette; 

7. Number of peaks in the systole; 

8. Number of peaks in the diastole; 
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9. Variance in the time between peaks within the systole; 

10. Variance in the time between peaks within the diastole; 

11. Number of peaks in systole below a threshold 1a, which is 10% of the amplitude of S1; 

12. Number of peaks in systole above threshold 2a, which is 40% of the amplitude of S1; 

13. Number of peaks in systole in between threshold 1a and threshold a2; 

14. Number of peaks in diastole below threshold 1b, which is 10% of the amplitude of S2; 

15. Number of peaks in diastole above threshold 2b, which is 40% of the amplitude of S2; 

16. Number of peaks in diastole in between threshold 1b and threshold 2b; 

These features were fed to supervised machine learning with KNN and SVM algorithms. Which 

had an accuracy, average precision, and average sensitivity of 91%, 86% and 86% for KNN and 

94%, 91% and 92% for SVM. 

3.8.2 Multi-label classification of heart sound signals 

The (Zhiming & Sheng, 2021) article explores the problem of having mixed heart sound 

locations in a collection area. This study has two main objectives, to classify the location of the 

auscultation recordings and after classifying that auscultation in normal or abnormal heart 

sound. The extracted features used are the MFCC and Power Spectral Density, these were fed 

to an SVM, Random Forest and Back-Propagation Neural Network. The results for the 

auscultation location classification and murmur presence classification are shown in the Table 

4 and Table 5 respectively. 

Table 4 – Results of the auscultation location classification 

Model F1 Score Accuracy Recall 

Random Forest 79.32% 86.78% 89.34% 

SVM 81.65% 91.03% 91.56% 

BP Neural Network 75.48% 82.08% 77.06% 

 

Table 5 – Results for the SVM murmur classification 

Location F1 Score Accuracy Recall 

A 94.04% 92.92% 91.56% 

E 81.45% 80.65% 85.55% 

M 92.14% 90.55% 85.54% 

P 80.45% 86.55% 81.02% 

T 89.99% 89.65% 88.45% 
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3.8.3 Other Papers 

In this section it is presented other articles related to the problem. These studies summarized 

in Table 6 are all for the classification of a heart sound as normal or abnormal, taking as the 

input a sound recording file. The difference between them is in the models and features used 

as well as the metric results. 

Table 6 – Other studies details 

Paper Methods Features Metrics 

(Yaseen, Son, & 
Kwon, 2018) 

SVM, DNN and 
Centroid 

Displacement 
based KNN 

MFCC and Discrete 
Wavelet Transform 

(DWT) 

Accuracy 92.1% 
F1 Score 98.3% 

Recall 94.5% 
Specificity 98.2% 

(Wang, et al., 
2020) 

ANN DWT and Shannon 
Energy 

Accuracy 93% 
Recall 93.5% 

Specificity 91.7% 

(Poornima & 
Savithaa, 2021) 

Threshold Shannon Energy, 
Spectral Width and 

Pitch Frequency 

Normal heart 
sound efficiency 

90.47% 
Murmur efficiency 

87.53% 

(Ahmad, Mir, 
Ullah, Shahid, & 

Syed, 2019) 

SVM and KNN MFCC Accuracy 92.6% 

(Demir, Şengür, 
Bajaj, & Polat, 

2019) 

AlexNet, VGG16, 
and VGG19 (pre-

trained CNN), SVM 

STFT Normal heart 
sound precision 

59% 
Murmur precision 

77% 

(Fahad, Khan, 
Saba, Rehman, & 

Iqbal, 2017) 

Adaptive-Neuro 
Fuzzy Inference 

System 
(ANFIS) and Hidden 

Markov Model 
(HMM) 

Shannon Entropy, 
Energy, Zero–
crossing Rate, 

Spectral Entropy, 
Frequency and 

Spectral Centroid 
 

Normal heart 
sound accuracy 

98.7% 
Murmur accuracy 

100% 
Recall 100% 

Specificity 99.3% 

(Thompson, 
Reinisch, 

Unterberger, & 
Schriefl, 2018) 

“non-linear 
artificial 

intelligence” 

Unknown Accuracy 88% 
Recall 93% 

Specificity 81% 
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3.8.4 PhysioNet 2016 Challenge Papers 

Several papers from the PhysioNet 2016 Challenge (Liu, et al., 2016) where also analysed. 

These studies summarized in Table 7 are the result of the challenge and they have the same 

objective of the ones on the previous section, the classification of a heart sound as normal or 

abnormal, having a sound recording file as input. 

Table 7 – Challenge studies details 

Paper Methods Features Metrics 

(Grzegorczyk, et 
al., 2016) 

Threshold and ANN Time and Frequency 
domains  

Specificity 76% 
Recall 81% 

Overall Score 79% 

(Homsi, et al., 
2016) 

Cost-Sensitive 
Classifier, LogitBoost 
and Random Forest. 

Time, Frequency, 
Wavelet and Statistical 

domains 

Recall 81.2% 
Specificity 85.2% 

Overall Score 84.48% 
 

(Langley & 
Murray, 2016) 

Threshold Wavelet entropy Recall 98% 
Specificity 56% 

Overall Score 77%  

(Goda & Hajas, 
2016) 

SVM Average width of S1 and 
S2, DFT and Wavelet 

Transform 

Recall 77.2% 
Specificity 85.2%  

Overall Score 81.2%  
 

(Nilanon, Yao, 
Hao, 

Purushotham, & 
Liu, 2016) 

 

Logistic regression, 
SVM, and Random 

Forest 

Spectrogram and MFCC Recall 77% 
Specificity 85% 

Overall Score 81% 
 

(Ortiz, Phoo, & 
Wiens, 2016) 

SVM Time Interval, 
MFCC, Dynamic time 

warping distances 

Overall Score 82.4% 

(Potes, 
Parvaneh, 

Rahman, & 
Conroy, 2016) 

AdaBoost and CNN PCG intervals and 
amplitudes, DFT and 

MFCC 

Recall 94.2% 
Specificity 77.8% 

Overall Score 86.0% 

(Rubin, et al., 
2016) 

CNN MFCC Recall 76.5% 
Specificity 93.1% 

Overall Score 84.8% 

(Vernekar, Nair, 
Vijaysenan, & 
Ranjan, 2016) 

ANN, SVM, Random 
Forest 

FFT, Autoregressive 
Moving-Average, MFCC, 
Wavelet entropy, Music 
features, Octave band 
features and Markov 

Recall 71.6% 
Specificity 82.7% 

Overall Score 77.2% 

(Zabihi, Rad, 
Kiranyaz, 

Gabbouj, & 
Katsaggelos, 

2016) 

ANN and DNN Linear Predictive 
Coefficient, Natural and 

Tsallis entropy, 
MFCC, DWT and Power 

Spectral Density 

Recall 86.91% 
Specificity 84.90% 

Overall Score 85.90% 
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(Singh-Miller & 
Singh-Miller, 

2016) 

Random Forest Mean and Variance of 
spectral features 

Recall 76% 
Specificity 87% 

Overall Score 81% 

(Tschannen, 
Kramer, Marti, 
Heinzmann, & 

Wiatowski, 2016) 

CNN and SVM Amplitudes and 
Durations of periods, 

Power Spectral Density 

Recall 84.8%  
Specificity 77.6% 

Overall Score 81.2% 

3.8.5 Conclusion 

Analysing the articles, we see that all the developed approaches reached good results 

compared to their objectives. The presented system designs had similar steps, pre-processing 

of the signals, segmentation, extraction of the features, creation of the models, classification 

of the sounds and at the end, the evaluation of the system. 

Looking at the several articles we see a great variety in the models used, from Logistic 

regression, Random Forest classifiers, SVMs to different types of neural networks. In the 

feature extraction there is mainly time and frequency domain features. For the evaluation 

methodology of the models, the K-fold cross-validation with the accuracy, sensitivity and 

specificity metrics is the most common method, although the precision, overall score and F1 

score metrics are also found among the articles analysed. 
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4 Methodology 

In this section it is presented the hypothesis of this project, the origin of the test data, its 

analysis and how the system will be evaluated. 

4.1 Hypothesis 

The hypothesis of this project is that the system to be implemented will help professionals in 

the area of cardiovascular diseases by providing support and providing detailed information 

about possible murmurs in the patient's heart, giving information about the presence, timing, 

shape, grading, pitch, and quality of the murmur. 

4.2 Available Dataset 

4.2.1 Origin 

The dataset that will be used in this dissertation comes from the George B. Moody PhysioNet 

Challenge 2022 (Reyna, et al., 2022). According to (Oliveira, et al., 2022) the data was 

collected as part of two mass screening campaigns, conducted in Paraíba state, Brazil in 2014 

(CC2014) and in 2015 (CC2015).  

The data available is only 60% of the gathered data, this is because the rest 40% will be used 

in the challenge for testing purposes. After the campaigns the data was segmented using 

three algorithms to identify the S1 and S2 sounds and their boundaries. The recordings were 

also analysed by experts for the presence of murmurs and their characteristics, being labelled 

accordingly. The available dataset is composed by 3163 recordings from 942 patients (Oliveira, 

et al., 2022). 
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4.2.2 Data Files 

The dataset is composed by four different types of files (Reyna, et al., 2022). The Table 8 

summarizes these files. 

Table 8 – Available files details (Reyna, et al., 2022) 

File Format Content Number of Files Name example 

Audio .wav Auscultation recording data 1 file per 
auscultation 
location per 

subject 

12345_MV.wav 

Header .hea Description of the .wav file 
in the standard Waveform 

Database format 

1 file per 
auscultation 
location per 

subject 

12345_MV.hea 

Segmentation .tsv Segmentation information 
regarding the start and end 

points of S1 and S2 

1 file per 
auscultation 

location for all 
subjects 

12345_MV.tsv 

Subject .txt Demographic data such as 
age, sex, height, weight, and 
pregnancy status as well as a 
detailed description of any 

murmur events 

1 file per subject 12345.txt 

In the name of these files the subject is represented by its ID and the auscultation location by 

its code (PV for pulmonary valve, TV for tricuspid valve, AV for aortic valve, MV for mitral 

valve or Phc for any other auscultation location) (Reyna, et al., 2022). 

4.2.3 Data Variables 

Some of the variables available in the dataset subject file are annotations about the presence, 

location, most audible location, timing, shape, pitch, quality and grade of the murmurs. These 

characteristics are the categories for a classification system, Table 9 presents them. The 

timing, shape, pitch, quality and grade are annotation for both systolic and diastole periods. 

Table 9 – Information details (Reyna, et al., 2022) 

Tag Name Description Possible Values 

Murmur Presence of the murmur Present: murmur were detected in at least 
one recording 

Absent: murmur were not detected in any 
recording 

Unknown: the presence or absence of 
murmurs is unclear 

Murmur’s locations Auscultation location(s) 
where at least one 

PV, TV, AV, MV, Phc 
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murmur wave has been 
observed. 

Most audible 
location 

Auscultation location 
where murmur waves 

were most audible 

PV, TV, AV, MV, Phc 

Murmur timing Timing of the murmur 
wave 

Early-systolic, Mid-systolic, Late-systolic, 
Early-diastole, Mid-diastole, Late-diastole, 

Holosystolic 
 

Murmur shape Shape of the murmur 
wave 

Crescendo, Decrescendo, Diamond, 
Plateau 

Murmur pitch Pressure gradient felt in 
the heart chambers 

High, Medium, Low 

Murmur grading Murmur’s intensity 
grade according to the 

Levine scale 
(Kazemnejad, Gordany, 

& Sameni, 2021) 

Grade I/VI: if barely audible and not heard 
in all auscultation locations 

Grade II/VI: if soft, but easily heard in all 
auscultation locations 

Grade III/VI: if moderately loud or loud. 
Grade III/VI denotes all grade III/VI and 

above (IV/VI, V/VI, and VI/VI) 

Murmur quality Murmur’s quality 
feature from waves 

Blowing, Harsh, Musical 

4.2.4 Analysis 

The analysis of the data was done and documented in (Oliveira, et al., 2022). The heart sound 

signals were collected using a Littmann 3200 stethoscope which had the DigiScope Collector 

technology embedded. The recordings were sampled at 4KHz with an average duration of 28.7 

seconds and 19.0 seconds, in CC2014 and CC2015 respectively. The collected dataset includes 

a total number of 215780 heart sounds, 103853 heart sounds from CC2014 and 111927 from 

the CC2015. This sounds are summarized in Table 10. 

Table 10 – Locations of the recordings 

 CC2014 CC2015 Total 

Aortic point 540 817 1357 

Pulmonary point 497 793 1290 

Mitral point 603 812 1415 

Tricuspid point 461 754 1215 

Unreported point 5 1 6 

The collected auscultation recordings came from 1568 participants, 50.2% male and 49.8% 

female. There are samples from several age categories like children (63.0%), infants (19.80%), 

adolescents (8.1%), young adults (0.6%), neonates (0.7%) and patients without age data (0.8). 

There are also 8.1% of pregnant women.  The same occurs regarding ethnicity varying from 

mixed race (82.8%), white (15.9%), and other ethnic backgrounds (1.4%) of other ethnic 
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backgrounds. Table 11 summarizes the population demography. This dataset appears to be a 

good representation of the demography in Northeast Brazil, Paraíba. 

Table 11 – Gender, Age Group, Child’s Race, Mother’s Race Distribution from the CC2014 and 

CC2015 screening campaigns 

  CC2014 (%) CC2015 (%) Total (%) 

Gender Male 325 (49.8) 462 (50.5) 787 (50.2%) 

Female 328 (50.2) 453 (49.5) 781 (49.8%) 

     
Age Group Child 405 (62.0) 583 (63.7) 988 (63.0) 

Infant 126 (19.3) 185 (20.2) 311 (19.8) 

Pregnant 57 (8.7)  53 (5.8) 110 (7.0) 

Adolescent 51 (7.8)  76 (8.3) 127 (8.1) 

Young adult 5 (0.8)  4 (0.4) 9 (0.6) 

Neonate 3 (0.5)  8 (0.9) 11 (0.7) 

No info 6 (0.9)  6 (0.7) 12 (0.8) 

     
Race (child) Mixed Race 492 (75.3)  806 (88.1) 1298 (82.8) 

White 151 (23.1)  98 (10.7) 249 (15.9) 

Black 9 (1.4)  11 (1.2) 20 (1.3) 

Asian 1 (0.2)  0 (0.0) 1 (0.1) 

     
Race (mother) Mixed Race 389 (59.6)  705 (77.0) 1094 (69.8) 

White 240 (36.8)  195 (21.3) 435 (27.7) 

Black 24 (3.7)  14 (1.5) 38 (2.4) 

Asian 0 (0.0)  1 (0.1) 1 (0.1) 

 

Table 12 – Age Statistics of the Participants in Months 

 CC2014 CC2015 Total 

Mean  74.7 72.5 73.4 

Median  78.4 70 72.1 

Standard deviation  50.4 50.3 50.3 

Minimum  0.1 0.1 0.1 

Maximum  217.8 356.1 356.1 

The mean age (± standard deviation) of the participants is 73.4 ± 0.1 months, ranging from 0.1 

to 356.1 months, as presented in  

Table 12. 

4.3 Evaluation of the systems 
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The evaluation of the developed systems is very important to understand how well it achieves 

its goals. This can be done by using an evaluation methodology for neural networks and 

retrieving metrics that reflect the effectiveness and efficiency of the system.  

The evaluation methodology chosen is the cross validation because of the small dataset 

available (with only 942 patients), this dataset is going to be separated in three subsets (train, 

validation and test). The metrics presented in Table 13 are going to be used to measure the 

alternatives developed and compare them with each other and with other studies made in the 

field. In this project the class considered as positive is the “Present” class. 

Table 13 – Evaluation metrics 

Metric Comparison between 
alternatives  

Comparison with other 
studies 

Accuracy X X 

Precision X X 

Recall X X 

F1 Score X X 

Computation Time X  

Regarding the comparison with other studies, we can only compare the classification of 

normal or abnormal heart sounds except for the  (Levin, Ragazzi, Szot, & Ning, 2021) study 

that implemented a multi classification system. The metrics to be compared are the ones 

available in each study. 

When comparing the different alternatives, we can look at other metrics like the computation 

time for training the models, as this phase will be computed by the same environment. If 

needed other metrics will be added for the evaluation of the systems. 

4.4 Experimental Environment 

CNN are going to be used in the current study due to their time invariance properties. 

Furthermore, according to "Do we really need a segmentation step in heart sound 

classification algorithms?", no segmentation step is needed when using CNNs. 

The CNN is going to have as input the Mel spectrograms of the auscultation recordings, as this 

type of neural network is the most appropriate for working with images. Other reason is that 

we want the system to consider the spatial structure of the data. 

Regarding to the activation functions and optimizer, it was decided to choose the most 

referred on literature as these components are not the focus of this study. As activation 

functions we are going to use ReLu in the hidden layers and softmax in the last layer. For the 

optimizer it was decided to use Adam, as it is computationally efficient and has little memory 

requirements (Brownlee, 2017). 
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Regarding the development environment, it was decided to use Google Colab considering the 

following advantages: 

• Is free to use. 

• Doesn’t require any installation. 

• The sharing system makes easy to share the work done. 

• Integration with Github makes versioning easier. 

• Compatibility with Jupyter Notebook allowing a better organization of the code. 

• Runs in the cloud, in other words, free computation resources available. 

• Code executes in the Google servers providing high performance. 

Due to computation limitations, it was decided to upgrade to Paperspace. This environment 

offers the same advantages with the difference of the code executing in better servers. 
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5 Solution Design 

In this section it is presented the architecture of the solution, the selection of the language 

and deep learning framework to be used and the analysis of three alternative designs. The 

proposed architectures address a very challenging and innovative task in which recordings 

extracted from various auscultation points can lead to new architectures. 

5.1 Language and Deep Learning Framework 

The chosen language for this project was python (Python, 2022) considering the available 

libraries to work with deep learning, audio files and high-level data structures. In section 3.7.1 

there are more information about this language and its advantages. 

Regarding the deep learning framework to be used, based in the analysis made in the state of 

the art and the Analytic Hierarchy Process (AHP), located in the attachments, applied to the 

three most popular frameworks, we chose to use Keras (Keras, 2022) in combination with 

TensorFlow (TensorFlow, 2022). It provides the project with tools to do fast experimentation 

in the systems and change their parameters to best fit the project needs. 

5.2 Architecture Alternatives 

Design alternatives need to consider some main characteristics of the desired solution: it must 

receive up to four audio files per patient as input and can classify them in the attributes 

presented in Table 14. 

Table 14 – Patient classifications 

General Classifications Systolic Classifications Diastole Classifications 

Murmurs Presence 
Murmurs Location 

Murmur Systolic Timing 
Murmur Systolic Shape. 

Murmur Diastole Timing 
Murmur Diastole Shape. 
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Most Audible Location Murmur Systolic Grading. 
Murmur Systolic Pitch. 

Murmur Systolic Quality. 
 

Murmur Diastole Grading. 
Murmur Diastole Pitch. 

Murmur Diastole Quality. 
 

To study how the number of input auscultation locations and the new available murmur 

characteristics can affect the decision system, several alternatives of the system architecture 

were designed and analysed. 

5.2.1 Alternative 1 

 

Figure 15 – System architecture alternative 1 

In this design there is a deep learning model for each of the four auscultation locations. This 

design is based in the traditional approach. Each DL Model would try to predict the presence 

or absence of murmurs in their corresponding auscultation spot. At the end of the pipeline, 

another classifier is going to merge and combine the prediction of each single classifier, and 

output a patient’s heart state, in another words, the last classifier is going to infer if the 

patient’s heart is normal, abnormal or unknown. 
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Figure 16 – Final prediction process example 

When the audio files are processed the classifications would need to be joined, this process 

needs a strategy. The usual strategy used in the literature is that if any of the predictions 

points to the presence of heart murmurs, then the system infers that the patient is abnormal 

and complementary exams should be made. To simplify the system, in this design it is 

considered the prediction with the higher probability among the four predictions as illustrated 

in Figure 16. 

 

Figure 17 – Architecture of the alternative 1 DL Model 

The DL model (presented in Figure 17) will receive a single Mel spectrogram, generated from 

one of the auscultation points recording. The neural network is composed by an input layer 

which receives the image, a fully connected layer and an output layer with 3 neurons. Each 

neuron represents a possible outcome of the variable murmur presence, and its output will be 

the probability for each class. For example, we could have as output 90% Present, 7% Absent 

and 3% Unknown. 
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Advantages: 

• Each DL model would focus on a single auscultation location making it simpler to 

implement. 

Disadvantages/Limitations: 

• Time complexity due to having four DL models running at the same time. 

• The DL models don’t consider the other audio files which may lead to wrong 

predictions. 

5.2.2 Alternative 2 

 

Figure 18 – System architecture alternative 2 

Another design alternative is to have a single DL model receiving all the auscultation Mel 

spectrograms and classifying the patient’s heart. The major difference to the previous 

alternative is that the DL system is a multi-input CNN and considers all the auscultation spots 

for the classification as it is presented in Figure 18.  
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Figure 19 – Architecture of the alternative 2 DL Model 

Advantages: 

• The DL model consider all the files for the classification. 

• All data is processed one time only. 

Disadvantages/Limitations: 

• Single DL model with multiple inputs and outputs, increasing the implementation 

complexity. 

5.2.3 Alternative 3 

 

Figure 20 – System architecture alternative 3 



 

42 
 

A third alternative design is to have the four auscultation locations as input of several DL 

models and one model for each murmur characteristic (systolic and diastole timing, shape, 

grading, pitch and quality). In this alternative there is a pre-classification of the murmur 

characteristics and then a classification of the patient’s heart. Each pathology has a specific 

characteristic pattern, this design will take advantage of the correlation between the 

characteristics for the normality/abnormality detection. 

 

Figure 21 – Architecture of the alternative 3 DL Model for murmur pitch 

Advantages: 

• Each DL model would focus on a single murmur characteristic. 

• The DL model consider all the sites for the classification. 

Disadvantages/Limitations: 

• Time complexity due to having several DL models running at the same time. 

5.3 Conclusion 

Three design alternatives were proposed and analysed. They differ in the DL model design as 

well as in their distinct objectives: 

• Alternative 1, focus on a traditional approach having the auscultation recordings being 

analysed by different DL models, and after another model, the output of the system is 

if the patient should make complementary exams.  
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• Alternative 2, uses a single DL model that receives all the auscultation recordings with 

the same output of alternative 1. 

• Alternative 3, uses multiple DL models to pre-classify some murmur characteristics for 

another DL model make the classification of the patient’s heart with the same output 

as the other alternatives. 

The final decision is that the three approaches are worthy of development.  

In a final phase the developed systems will be evaluated and compared with the evaluation 

methodology documented in the previous section 4. 
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6 Implementation 

In this section it is presented the implementation of the designed solutions in the previous 

section. The implementation is divided in 3 parts, the data pre-processing, the structure and 

content of the files of the project, and detailed description of the most significant 

experiment’s models for alternative 1 and 2.  

6.1 Data Pre-processing 

The data for the alternatives presented in 5.2, must be processed. This is done mainly in the 

“Data_Preparation_Main.ipynb” script responsible to load “training.csv”, the file that contains 

the metadata of the patients regarding the locations of the murmurs and their characteristics, 

to a dataframe. The data is then processed by removing unnecessary columns, renaming 

columns to code-oriented names (Eg. “Patient ID” to “Patient_ID”) and changing some column 

values. These transformations are described in Table 15. 
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Table 15 – Transformations of the metadata 

Column Name Transformation Result 

Patient ID Change of column name Patient_ID 

Murmur Change of column name Murmurs 

Murmurs Convert string values to 
numbers 

present = 1 
absent = 2 

unknown = 3 

Murmur locations Change of column name Murmurs_location 

Systolic murmur timing Change of column name S_Timing 

Systolic murmur shape Change of column name S_Shape 

Systolic murmur grading Change of column name S_Grading 

Systolic murmur pitch Change of column name S_Pitch 

Systolic murmur quality Change of column name S_Quality 

Diastolic murmur timing Change of column name D_Timing 

Diastolic murmur shape Change of column name D_Shape 

Diastolic murmur grading Change of column name D_Grading 

Diastolic murmur pitch Change of column name D_Pitch 

Diastolic murmur quality Change of column name D_Quality 

The processed dataframe is then divided into 3 other metadata dataframes: i) metadata_alt1 

composed of Patient_ID, Location and Murmurs which has the classification for each location 

of the patients, used in alternative 1; ii) metadata_alt3 composed of Patient_ID, S_Timing, 

S_Shape,  S_Grading,  S_Pitch,  S_Quality, D_Timing, D_Shape, D_Grading, D_Pitch and 

D_Quality used in alternative 3 and iii) metadata_pat_mur composed of Patient_ID and 

Murmurs which has the overall classification of the patients, used in all 3 alternatives. 

Another dataframe is created with the features extracted from the audio files being 

composed by Patient ID, Location and Features columns. To maximize the number of samples 

available, each audio file is split in segments of 3 seconds. This means that for the same 

patient there are multiple entries for every auscultation location. All files and segments that 

had a duration less than 3 seconds were discarded. 

A feature extraction method was applied to each segment to calculate its Mel spectrogram. 

This approach is based in the works of (Doshi K. , Audio Deep Learning Made Simple - Why 

Mel Spectrograms perform better, 2021) and (Torres, 2021). A snippet of the features 

extraction code is shown in Figure 22. 

 

Figure 22 – Features extraction method 
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The Features column is composed of an array with 3 dimensions, with the shape (201, 128, 1) 

meaning width, height, and channel, respectively. At the end of the feature extraction of the 

auscultations of all patients, a normalization is applied to the entire features column. 

Since the data needed for each alternative is different, it was implemented a function to get 

and prepare the data for the experiments. To simplify this step, the division of the patients for 

training, validation and testing of each alternative is done separately and before the 

experiments, this division is recorded in txt files. In alternative 1, for the auscultation location 

focused models the training, validation and testing data is separated by location. For its 

classifier, the data is predicted with specified models and then combined in the 4 locations 

with the multiple segments of each location for the patients. In alternative 2, combinations of 

the segments of each location are made for further processing by the generator. In alternative 

3, it is used a mixture of alternative 1 and 2 data preparation strategies, combinations of the 

location segments are made for the murmur characteristics models. For the classifier, similarly 

to alternative 1 classifier, predictions are made models focused on classifying the murmurs 

characteristics. These predictions are then combined into sets of 4, each element representing 

each auscultation location, to constitute the training, validation and testing samples. The use 

of combinations greatly increases the number of samples available. 

6.2 Alternatives Implementation 

For each alternative, several experiments were implemented. Regarding the structure of the 

models, these experiments are represented by scripts. In alternative 1 and 3 the classifier is 

implemented in a separated script to allow the usage of data predicted by different models. 

The name of the scripts reflects what they are experimenting, for example, the file 

“alt1_m1_genetic_03” is a 3rd attempt of a genetic model for the location models of 

alternative 1. 

All scripts are structured in the same way, having the following sections: 

• Imports 

• Configuration 

• Get train, validation and test data 

• Build model 

• Search (only for genetic models) 

• Training 

• Testing 

 

The configuration section is composed by the alternative name, current experiment, 

experiment name to predict the data in case of the classifiers, number of epochs, batch size, 

learning rate and max trials for genetic models. These configurations allow the user to easily 

run the models of a script with different parameters and save them and its results without 
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overriding other experiments, simplifying further usage of the models. The configuration of 

two experiments can be seen in Figure 23 and Figure 24. 

 

Figure 23 – Alternative 1 experiment configuration 

 

Figure 24 – Classifier configuration 

Next, the data to be used in the training, validation and testing is generated using an auxiliar 

script “alt<n>_prepare_data”, being n the alternative number. This file uses the dataframes 

built in the pre-processing phase to generate the X and y variables needed for training and 

evaluating the developed models. Regarding the classifiers, the data is predicted using a 

specified model. Furthermore, in the data for the classifier in alternative 1, combinations of 

the predictions of each location are calculated, increasing the number of samples to be used. 

In alternative 2 and 3 the same approach is used for the models input. To better simulate the 

real cases, the combinations include samples without values/with -1 to represent patients 

with missing auscultation locations files. 

The next step is the creation of the model, in which the experiments differ between 

themselves, more details of this differences can be consulted in sections 6.3 and 6.4. This is 

implemented in a function, as seen in Figure 25, to easily create multiple models. All models 

were compiled using the categorical cross entropy loss function and the Adam optimizer. 
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Figure 25 – Function to build a model 

Tuning of the hyperparameters was done using genetic algorithm, in this project they were 

given the name of genetic models for simplification. In these models, initially the framework 

keras-tuner was being used, but because of its limitations regarding the tuning objective and 

learning rate, a decision was made to use Optuna (Optuna, 2022) instead. More information 

about this decision is addressed in section 6.3.2. 

The layers filters range of values are calculated based on the layers of fixed hyperparameters 

experiments where the first and last layers has 16 filters. The range of values for the filters of 

a layer follows the formula: 

 

[2(𝑙+3) −
2(𝑙+4) − 2(𝑙+3)

2
− 2 ;  2(𝑙+3) +

2(𝑙+3) − 2(𝑙+2)

2
 ] 

 

Or if the layer is after the middle layer, the formula: 

 

[2(2𝑚−𝑙+3) −
2(2𝑚−𝑙+4) − 2(2𝑚−𝑙+3)

2
− 2 ;  2(2𝑚−𝑙+3) +

2(2𝑚−𝑙+3) − 2(2𝑚−𝑙+2)

2
 ] 

Where l is the layer number and m is the number of the layer in the middle. In Table 16 the 

range values for a model with 7 layers is presented. 
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Table 16 – Filter values for a model with 7 layers 

Layer Min value Max value 

1 12 22 

2 24 46 

3 48 94 

4 96 190 

5 48 94 

6 24 46 

7 12 22 

 

Next is the training of the model: it uses model checkpoints which allows saving the best 

epoch model, the metrics being monitored are the accuracy, precision and recall of the 

validation dataset. After the model is trained, plots of the loss, accuracy, precision and recall 

variation during training are saved as images as well as the trained models (Figure 26). In early 

versions of this function, only one of the metrics was being monitored. 

 

Figure 26 – Alternatives training function 

Finally, an evaluation of the model is done using the data from the test patients. This 

evaluation is composed of confusion matrixes and a classification reports. In Figure 27 it is 

presented an example of the classification report. 
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Figure 27 – Classification report of a model 

6.3 Alternative 1 

6.3.1 Fixed Models 

The first approach for implementing alternative 1, specifically the models focused on each 

auscultation location (PV, TV and MV), were simple CNNs with only Conv2D layers with ReLu 

activation functions disposed sequentially, with fixed hyperparameters values as illustrated in 

Figure 28. The input shape was three dimensional, with no restrictions to the width and height 

of the spectrogram, but with a mandatory 1 channel only. The filter values of the Conv2D 

layers assume values that are powers of two, starting at 16. In the end, a GlobalMaxPooling2D 

layer is used to down sample the data along its spatial dimensions and a Softmax activation 

function gets the predictions of the data.  

 

Figure 28 – Architecture of alternative 1 fixed hyperparameters models 

The first experiments were models with this structure and received part of the data available 

for the training. Although the models developed had poor results, they served to get 

knowledge on how models are constructed and their needs, like the type and shape of the 
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input data. This new knowledge was the base to create the pre-processing steps previously 

documented in section 6.1. 

Next, BatchNormalization layers were added to the model, these layers were applied to the 

input data and the output of each Conv2D layer. 

The dataset being used is imbalanced, because there are more samples of the class “Absent” 

than the others. For these situations, the training function (Keras fit function) can receive a 

parameter called class_weight where the user can set the weight for each class in order to tell 

the model what adjustments it must make while training. If a weight of 5 is set to a class, the 

model will count each sample of that class as 5 samples. Initially the weights were calculated 

following a TensorFlow documentation tutorial at (TensorFlow, 2022) and the weights given 

to each class were rounded values. Later it was changed to being calculated by a sickit-learn 

function and keeping the most common class weight with the value of 1. The class weights 

calculated can be consulted in Table 17. 

Table 17 – Class weights for all patients in each location 

Location Present Absent Unknown 

AV 2.39 0.41 5.84 

PV 1.99 0.42 8.73 

TV 2.01 0.42 10.15 

MV 2.07 0.43 5.05 

 

In this dataset one of the characteristics of the patient’s murmurs is its grade, murmurs with 

grade I/IV and II/IV, difficult the ability of models to find a pattern between absent and 

present murmurs. For this reason, it was made the decision to remove the patients with those 

types of murmurs, leaving only patients with absent or aggressive murmurs, to try to get 

models with better metrics. Removing samples from the dataset changes the weights of the 

classes, so they had to be calculated again. In Table 18 the updated values are documented. 

Table 18 – Class weights for patients with absent and aggressive murmurs in each location 

Location Present Absent Unknown 

AV 5.15 0.38 5.09 

PV 4.58 0.38 7.58 

TV 4.64 0.37 8.83 

MV 5.43 0.39 4.36 

 

To get the model with the best metrics from all the training epochs, a ModelCheckpoint was 

added to the implementation. Initially only the validation accuracy was being monitored, but 

as the experiments with the base tests in section 7.2 exemplify, using only one metric to 

evaluate the model can potentially discard good models. The main problem with 

ModelCheckpoint is that it only allows choosing one metric to be monitored, in order to 
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overcome this issue two more checkpoints were added to the training. These new checkpoints 

were monitoring the validation precision and recall. The three models selected by the 

checkpoints can then be compared to find the best model. A code snippet of the checkpoints 

being used in the training function is shown in Figure 29. 

 

Figure 29 – Code snippet of the training process 

6.3.2 Genetic Models 

On a more elaborated approach, genetic models were developed with the same number of 

layers and characteristics of the previous approach to search for the best hyperparameters for 

each layer, specifically the filters parameter values. For this purpose, the Keras tuner 

framework was used since it allows an easy creation of genetic algorithms. 

From the available tuners, the BayesianOptimization shown in Figure 30 was chosen for this 

task because it considers the first n trails result to calculate the next trials hyperparameters. 

This tuner objective was to maximize the recall of the validation data since it represents the 

percentage of patients that have murmurs present and were classified correctly. 

 

Figure 30 – BayesianOptimization Tuner for alternative 1 AV location model 

One of the limitations of Keras tuners is that the learning rate for the model can’t be adjusted, 

so the default value of 1 is used for the search.  
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Analysing the obtained search results, the models that were being selected were the ones 

that predicted almost all patients as having murmurs present, which is problematic. This 

happens because the metric used to evaluate the model is not the most adequate. F1 could 

be a proper metric but it is not supported by Keras. Another solution would be using an 

additional metric to complement the already used recall, specifically the precision that 

represents the percentage of patients predicted as having murmurs present that were 

classified correctly, but unfortunately, multi-objective optimization is not supported by Keras. 

For the previously mentioned reasons, another framework named Optuna that focus in 

hyperparameter optimization was used. It also supports tunning the learning rate of the 

model but a fixed learning rate of 0.0001 was used.  

The same strategy used in the previous approach was implemented, where three model 

checkpoints are used. To define the best model, the F1 score of the 3 selected models was 

calculated. 

6.3.3 Pre-trained Models 

Another approach to the alternative presented in section 5.2.1 is using pre-trained models. 

The model chosen is the Xception, a convolutional neural network that is 81 layers deep and 

22.9M parameters (Keras, 2022). At the end of this model, multiple layers were added to 

prevent drastic down sampling. 

Several adjustments had to be made for the input data be compatible with the models.  First, 

pre-trained models only allow an input with 3 channels and the data had only a single 

channel, the way to solve this issue was to transform the last dimension to an array of 3 equal 

values. Another issue was regarding the shape of the data, the size of the image had to be at 

least 299 x 299 for the used model and the added layers increased even more this size. This 

problem of the size of the spectrogram image was solved by increasing the duration of the 

segments. 

Experiments with the Xception model were made but with no success. It was not possible to 

train the Xception model due to computational limitations. 
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6.3.4 Multi Model Strategy 

 

Figure 31 – Diagram of a multi model approach 

To improve the results of the fixed hyperparameters and genetic models, another approach 

was developed (Figure 31). Instead of using just one model for the predictions, multiple 

models could be used, the predictions were then compared with each other. The class 

predicted by most of the models would be the input of the classifier. 

6.3.5 Classifier 

To decide regarding the patient’s heart situation, a classifier was implemented. There were 

two versions of it, a simple model with a single Dense layer and a model with multiple Dense 

layers to expand and compress the data. The input of these models is a concatenation of the 

predictions of the four auscultation locations of the patients, to increase the samples 

available, these predictions were combined. The same strategy of using three checkpoints 

monitoring three different metrics was used. 
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6.3.6 Significant models details 

6.3.6.1 Model of 5 layers with fixed hyperparameters 

 

Figure 32 – Diagram of the fixed hyperparameters model of 5 layers 

The model illustrated in Figure 32 is composed of multiple layers disposed sequentially, it has 

BatchNormalization, Conv2D, Activation and GlobalMaxPooling3D layers. The input is 3 

dimensional representing the width, height, and number of channels of the Mel spectrogram. 

This input is first subjected to a batch normalization and then fed to a repetitive sequence of 

three layers. These layers are Conv2D, BatchNormalization and Activation, it repeats 5 times 

with different number of filters in the Conv2D layer and a fixed kernel size of 3. In the 

activation layer it is used the ReLu activation function. This model has a total of 46763 

trainable params. 

Multiple experiments were carried out since the development of the alternatives is an 

iterative process. Here are listed some of the experiments: 

• Training with all the available patients without taking care of the imbalance. 

• Experimentation with different filter values. 

• Use of class weights presented in Table 19 to indicate the imbalance of the dataset to 

the model. 

• Use of checkpoints focusing on a metric of the validation data. 

• Training the model with only patients with absent murmurs and aggressive murmurs. 

• Use of 3 checkpoints to monitor accuracy, precision and recall of the validation data. 
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• Different values for batch size, epochs and learning rate. 

Table 19 – Class weights used in the fixed hyperparameters models training. 

Location Present Absent Unknown 

AV 10.0 0.5 8.0 

PV 10.0 0.5 11.0 

TV 10.0 0.5 10.0 

MV 10.0 0.5 6.0 

 

6.3.6.2 Genetic model of 5 layers 

The architecture of the genetic model is similar to the previous, the only difference being the 

filter values, in this case the filters change during the model tuning. In this approach, the 

filters determined by the tuner used. 

Table 20 – Class weights used in the genetic model training 

Location Present Absent Unknown 

AV 5.15 0.38 5.09 

PV 4.58 0.38 7.58 

TV 4.64 0.37 8.83 

MV 5.43 0.39 4.36 

 

The tuning of the model was done using only the absent and most aggressive murmurs with 

the weights presented in Table 20. Based in the training graphs of the fixed hyperparameters 

models, it was determined to use 30 epochs because after this number of epochs the metric 

values had minimal changes. It was also used a batch size of 100 and a learning rate of 0.0001. 

This tuning had a maximum of 100 trials and the results of the search are documented in 

Table 21. 

Table 21 – Filters values after search 

Location Layer 1 
filters 

Layer 2 
filters 

Layer 3 
filters 

Layer 4 
filters 

Layer 5 
filters 

Trainable 
parameters 

AV 18 46 62 34 18 58,361 

PV 16 38 90 36 22 73,367 

TV 16 26 50 36 12 36,143 

MV 22 24 88 24 12 46,115 
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6.3.6.3 Classifier with single dense layer 

 

Figure 33 – Architecture of the classifier with a single dense layer 

As shown in Figure 33 this model is very simple having only a Concatenate layer to join the 

inputs received, one for each auscultation location prediction of the patient, a 

BatchNormalization and a Dense layer with the 3 possible output values using the softmax 

activation function. The model has a total of 63 trainable parameters. 

 

6.3.6.4 Classifier with multiple dense layers 

 

Figure 34 – Classifier model with multiple dense layers 

In the more complex approach of the classifier a model with multiple layers was developed. It 

is composed of five dense layers that expand and compress the data as presented in Figure 

34. This model has a total of 5499 trainable parameters. 
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6.4 Alternative 2 

Taking advantage of the knowledge acquired in the implementation of alternative 1, the 

approaches of this alternative follow the same strategy. Starting with models with fixed 

hyperparameters, followed up by genetic models and pretrained models. The main difference 

is the architecture of the alternative, specifically the input of the models. 

In alternative 2 the input is a set of auscultation locations features, which means that there 

are four 3 dimensional inputs. To merge these inputs together a Concatenate layer was used 

and like the name suggests, it concatenates a list of inputs. This allows doing combinations of 

the data as described in section 6.1, vastly increasing the number of samples. Unfortunately, it 

is not possible to use all the data because it would take a lot of time and computational 

resources. To solve this issue a generator was developed that received information of the 

combinations and during the training transform that information into real data. 

The generator creates a subset of the data with the number of samples specified in a balanced 

way, in that subset 45% of the patients belong to the class “Present”, other 45% to the class 

“Absent” and the remaining 10% to the class “Unknown”. 

Other than the input, there is also a huge difference in the amount of data available between 

this alternative and the previous one. As explained in section 6.1, the strategy used to 

combine all audio segments of patients gives the developer the opportunity to work with 2 

million samples rather than only the 3000 of alternative 1. Due to computation constraints, 

the number of samples used for training, validation, and testing had to be limited. 

6.4.1 Significant models details 

6.4.1.1 Model of 5 layers with fixed hyperparameters 

 

Figure 35 – Architecture of alternative 2 fixed hyperparameters models 
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As shown in Figure 35, the only difference to the model presented in 6.3.6.1 is the input 

structure. In this case, it is composed of four Mel spectrograms concatenated, in which each 

spectrogram represents an auscultation location of the patient. This model has a total of 

47201 trainable parameters. 

Since the generator developed for alternative 2 data balanced the data between present and 

absent murmurs, the only adjustment needed regarding class weights was to the unknown 

class. For this, class weights of 1.0, 1.0, and 4.5 for present, absent, and unknown were used. 

 

6.4.1.2 Genetic model of 5 layers 

Analysing the training done to the fixed hyperparameters models, it was determined to use 30 

epochs in the model tuning. It was also used a batch size of 500 and a learning rate of 0.0001. 

This tuning had a maximum of 100 trials and was done using 10000 training samples and 5000 

validation samples, the results of the search are documented in Table 22. Due to time 

constraints, only 20 trials were completed. 

Table 22 – Filters values after search 

Layer 1 
filters 

Layer 2 
filters 

Layer 3 
filters 

Layer 4 
filters 

Layer 5 
filters 

Trainable 
parameters 

14 32 56 30 12 39,509 
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7 Evaluation 

In this section it is presented the results obtained in some of the most significative 

experiments for alternative 1 and 2. A comparison between the alternatives and with the 

literature presented in 3.8 is also made. 

7.1 Methodology 

As explained in section 4.3, all the models were evaluated with the metrics: accuracy, 

precision, recall and F1 score. The evaluation was done with only the patients previously 

divided for testing, avoiding any overlapping between the datasets used for training, 

validation, and testing. 

7.2 Base Tests 

To establish base metrics for checking the performance of the models developed, some basic 

experimentations were done. These experimentations have no intelligent mechanisms and 

only do basic operations. As said before in section 4.3, the class considered as positive is the 

“Present” class. 

In alternative 1 there is a separation between the models that classify each auscultation 

location spectrogram and the final classifier that predicts the patient heart murmurs 

presence. The first test pretends checking the metric results if all samples are classified with 

the class present. In the opposite side, the second test classifies all samples as being of the 

class absent. The metrics for these two tests are documented in Table 23 and Table 24. 
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Table 23 – Metrics if all samples are classified as class present 

Location Accuracy Precision Recall F1 Score 

AV 0.14 0.14 1.00 0.14 

PV 0.11 0.11 1.00 0.11 

TV 0.13 0.13 1.00 0.13 

MV 0.14 0.14 1.00 0.14 

 

As Table 23 shows, the best metrics were achieved by the AV and MV auscultation locations 

with 0.14 for accuracy, precision and F1 score and 1.00 for recall. 

Table 24 – Metrics if all samples are classified as class absent 

Location Accuracy Precision Recall F1 Score 

AV 0.79 0.00 0.00 0.00 

PV 0.82 0.00 0.00 0.00 

TV 0.80 0.00 0.00 0.00 

MV 0.79 0.00 0.00 0.00 

 

As for the nest test, classifying all samples as absent, the best metrics were achieved by the 

PV auscultation location with 0.82 accuracy and 0.00 for the rest of the metrics. 

Using another test strategy, randomizing the prediction based in the dataset classes 

percentages, the metrics in Table 25 were obtained. 

Table 25 – Metrics if the samples are classified in a randomized way 

Location Accuracy Precision Recall F1 Score 

AV 0.67 0.15 0.25 0.19 

PV 0.79 0.26 0.38 0.31 

TV 0.67 0.08 0.13 0.10 

MV 0.68 0.09 0.13 0.11 

 

When using a randomized test strategy, the best metrics were achieved by the PV 

auscultation location, but if this test is repeated, it can easily change. 

Regarding the methods to classify the patient’s murmurs, the three previous classification 

experimentations were applied, resulting in the metrics in Table 26. 

 

 

 



 

63 
 

 

Table 26 – Metrics of the tests classifying the patient’s hearts using the alternative 1 test 

patients 

Prediction strategy Accuracy Precision Recall F1 Score 

All present 0.21 0.21 1.00 0.35 

All absent 0.72 0.00 0.00 0.00 

Randomized 0.63 0.25 0.33 0.28 

 

Another prediction strategy was used for the patient’s heart classification using the models 

for the auscultation locations developed for alternative 1. In this teste, if there was at least a 

model that classified the patient’s heart as having the presence of murmurs, then that would 

be the final decision. Using this strategy, the most significant models were tested and 

documented in Table 27. 

Table 27 – Metrics when using the strategy of at least one 

Model Accuracy Precision Recall F1 Score 

Fixed hp models tf 0.88 0.40 0.89 0.55 

Fixed hp models sickit 0.43 0.12 0.97 0.21 

Best of 5 fixed hp models 0.49 0.14 0.96 0.24 

Genetic models 0.88 0.39 0.86 0.54 

Best 5 of genetic models 0.93 0.56 0.84 0.67 

 

Using the at least one strategy, the best results were obtained when using the best of 5 

genetic models to feed the test, having 0.93 accuracy, 0.56 precision, 0.97 recall and 0.67 F1 

score. 

In alternative 2, because of the difference of the data available, the test metrics are slightly 

different but similar, except for the random classification algorithm as it can be seen in Table 

28. 

Table 28 – Metrics of the tests classifying the patient’s heart using the alternative 2 test 

patients 

Prediction strategy Accuracy Precision Recall F1 Score 

All present 0.19 0.19 1.00 0.32 

All absent 0.74 0.00 0.00 0.00 

Randomized 0.63 0.16 0.19 0.17 

7.3 Alternative 1 

Regarding the auscultation location focused models, the initial experiments were done using 

all the patients available and without indicating the imbalance of the dataset to the models 
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which resulted in bad results. In Table 29 it is documented one of these first model’s metrics, 

it refers to a fixed hyperparameters model of 5 layers.  

Table 29 – Metrics of the fixed hyperparameters models using all patients and without class 

weights 

Location Accuracy Precision Recall F1 Score 

AV 0.80 0.06 0.02 0.03 

PV 0.79 0.11 0.10 0.10 

TV 0.80 0.33 0.24 0.28 

MV 0.75 0.14 0.10 0.12 

 

Analysing the Table 29, we can see that this model is predominantly classifying the patient 

murmurs as absent, having better metrics in the TV location. This location presented better 

results than the base experiment that classifies every sample as absent, but all other locations 

were presented worse results. 

After filtering the patients by absent and aggressive murmurs and adding weights to the 

models, slightly better results were obtained. There is a noticeable difference in the results 

between the use of TensorFlow tutorial-based class weights and class weights calculated by a 

sickit-learn (scikit-learn, 2022) function. The results of the best models can be seen in Table 30 

and Table 31. 

Table 30 – Metrics of the fixed hyperparameters models using TensorFlow tutorial-based class 

weights 

Location Accuracy Precision Recall F1 Score 

AV 0.87 0.13 0.07 0.09 

PV 0.88 0.23 0.10 0.14 

TV 0.89 0.49 0.57 0.53 

MV 0.88 0.50 0.03 0.05 

 

Table 31 – Metrics of the fixed hyperparameters models using class weights calculated by 

sickit-learn function 

Location Accuracy Precision Recall F1 Score 

AV 0.86 0.19 0.17 0.18 

PV 0.77 0.16 0.52 0.25 

TV 0.87 0.41 0.49 0.45 

MV 0.52 0.11 0.30 0.16 

 

In these experiments, the location TV model had significantly better metrics than the other 

locations, this behaviour was unexpected since there was no difference in how the data was 

processed and how the model was built. The same behaviour is seen in all experiments. 
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Using the multi model strategy documented in section 6.3.4, an experiment with the best 5 

fixed hyperparameters models of the experiment with the sickit-learn class weights was 

conducted. This experiment slightly improved the model metrics. In Table 32 it are presented 

the F1 scores of the models used for this experiment, and in Table 32 its results. 

Table 32 – F1 scores of the models used in the multi model strategy 

Location M1 F1 Score M2 F1 Score M3 F1 Score M4 F1 Score M5 F1 Score 

AV 0.17 0.13 0.18 0.17 0.09 

PV 0.18 0.25 0.16 0.15 0.14 

TV 0.45 0.23 0.32 0.30 0.37 

MV 0.12 0.16 0.12 0.16 0.14 

 

Table 33 – Results of the multi model strategy of fixed hyperparameters models 

Location Accuracy Precision Recall F1 Score 

AV 0.90 0.38 0.10 0.16 

PV 0.61 0.11 0.76 0.18 

TV 0.89 0.44 0.40 0.42 

MV 0.60 0.11 0.72 0.19 

 

Next are presented the metrics for the genetic models experiment. This experiment trained 

three models in each trial and completed 100 trials, meaning that 300 models were trained 

and tested. The model with the highest F1 score between all the models was considered the 

best model. As Table 34 shows, the metrics greatly improved when using this approach. 

Table 34 – Results of the genetic models of 5 layers 

Location Accuracy Precision Recall F1 Score 

AV 0.89 0.36 0.34 0.35 

PV 0.89 0.50 0.48 0.49 

TV 0.89 0.57 0.49 0.52 

MV 0.84 0.36 0.45 0.40 

 

Similar to the fixed hyperparameter experiment, the multi model strategy was applied to the 

5 best genetic models, the F1 scores of these models are presented in Table 35. 

Table 35 – Best 5 genetic models F1 scores used in the multi model strategy 

Location M1 F1 Score M2 F1 Score M3 F1 Score M4 F1 Score M5 F1 Score 

AV 0.28 0.26 0.26 0.26 0.35 

PV 0.40 0.45 0.43 0.46 0.49 

TV 0.50 0.50 0.52 0.49 0.51 

MV 0.33 0.40 0.32 0.31 0.32 
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Table 36 – Metrics of the multi model strategy with 5 best genetic models 

Location Accuracy Precision Recall F1 Score 

AV 0.91 0.59 0.34 0.43 

PV 0.90 0.52 0.45 0.48 

TV 0.90 0.61 0.54 0.58 

MV 0.85 0.35 0.35 0.35 

 

Analysing Table 36, applying the multi model strategy metrics to the 5 best genetic models, 

resulted in the improvement of AV and TM location models, but a slight deterioration to PV 

and MV models. Applying this strategy with only the best 5 genetic models didn’t result in 

significant better models, but an experiment with 10 models instead of 5 improved the results 

in all location models as shown in Table 37. 

Table 37 – Metrics of multi model strategy with 10 best genetic models 

Location Accuracy Precision Recall F1 Score 

AV 0.91 0.80 0.28 0.41 

PV 0.90 0.58 0.48 0.53 

TV 0.90 0.64 0.51 0.57 

MV 0.86 0.43 0.38 0.40 

 

Regarding the classifier, only experiments that used the filtered patients are documented. In 

addition, the models were trained using combinations with incomplete sets of locations, 

meaning that samples without predictions to all locations were used. In Table 38 are 

presented the results for the simpler classifier, each model was trained 5 times with a batch 

size of 500 to ensure the best results. The experiments using the multi model strategy were 

also tested since it improved the models. 

Table 38 – Results of classifiers with a single Dense layer 

Model Accuracy Precision Recall F1 Score 

Fixed hp models tf 0.94 0.81 0.64 0.72 

Fixed hp models sickit 0.88 0.64 0.60 0.62 

Best of 5 fixed hp models 0.93 0.78 0.51 0.62 

Genetic models 0.93 0.71 0.61 0.66 

Best 5 of genetic models 0.93 0.79 0.67 0.73 

 

In the more complex approach described in section 6.3.6.4, the experiments had similar 

results as it can be seen in Table 39. 
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Table 39 – Results of classifiers with multiple dense layers 

Model Accuracy Precision Recall F1 Score 

Fixed hp models tf 0.89 0.77 0.67 0.72 

Fixed hp models sickit 0.82 0.53 0.67 0.59 

Best of 5 fixed hp models 0.89 0.70 0.49 0.58 

Genetic models 0.88 0.61 0.70 0.66 

Best 5 of genetic models 0.91 0.61 0.76 0.68 

 

Some single layered classifiers were also tested using all patients to check how they would 

behave in a real environment. These tests are documented in Table 40. 

Table 40 – Metrics of single layer classifiers using all the dataset 

Model Accuracy Precision Recall F1 Score 

Fixed hp models tf 0.75 0.47 0.11 0.17 

Fixed hp models sickit 0.70 0.33 0.06 0.10 

Genetic models 0.48 0.24 0.41 0.30 

 

The genetic models showed a better performance among the tested models, with the cost of 

accuracy. 

7.4 Alternative 2 

In alternative 2, similarly to the first experiments in alternative 1, a model with fixed 

hyperparameters and with no indication of weights was tested using all patients. The trained 

model received all four auscultation locations instead of only one and was receiving 

incomplete combinations, meaning that there were combinations without a spectrogram, 

simulating the patient not having all locations auscultated. In the training, the model was fed 

by 10,000 training samples and 10,000 validation samples, being tested by another 10,000. It 

obtained 0.83 accuracy, 0.31 recall, 0.16 precision and 0.21 of F1 score. Although these results 

look better than the ones obtained in alternative 1 similar experiment, no conclusion can be 

taken because the models have different objectives, the first model is classifying a patient 

auscultation location and the second is classifying the patient when receiving all four 

auscultation locations.  

When using only complete combos, the results of precision, recall and F1 score improved but 

with lowered the accuracy, passing from 0.83 to 0.38. In this experiment more samples were 

used to train the model, specifically 50,000 and the same 10,000 for validation and test 

purposes. It obtained a precision of 0.50, recall of 0.72 and F1 score of 0.59. 
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Adding the class weights to the model stabilized all metrics around 0.45 like the Table 41 

shows. In this table it is presented the classification report metrics for the “Present” class for 

the models selected by each model checkpoint during the training phase. 

Table 41 – Metrics of each model checkpoint for the fixed hyperparameters model of 

alternative 2 

Monitor Metric Accuracy Precision Recall F1 Score 

val_accuracy 0.48 0.44 0.46 0.45 

val_precision 0.46 0.45 0.41 0.43 

val_recall 0.49 0.45 0.47 0.46 

 

The model that presents the best results is the one obtained by the model checkpoint that 

was monitoring the validation recall with 0.49 accuracy, 0.45 precision, 0.47 recall and an F1 

score of 0.46. 

Using a genetic algorithm to tune the model hyperparameters, the recall metrics improved by 

0.34 for the best previous model. The model selected has accuracy of 0.44, precision of 0.44, 

recall of 0.81 and a F1 score of 0.57. 

7.5 Analysis 

This analysis is composed by a comparison between the experiments in each alternative 

including metrics and time spent in training, comparison of the experiments with the best 

results against the base algorithms described in section 7.2 and a comparison of the best 

location focused models of alternative against some of the models presented in the literature 

in section 3.8. 

7.5.1 Comparison between experiments 

To evaluate the alternative 1 experiments, regarding the models focused in the auscultation 

locations, their accuracy, precision, recall, and F1 score are presented in Figure 36, Figure 37, 

Figure 38, and Figure 39 respectively. 
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Figure 36 – Chart of alternative 1 location focused experiments accuracy 

Across the experiments there is no significant variation of the model’s accuracy, except for the 

experiments with the sickit-learn calculated weights. There is a slight improvement of this 

metrics when using genetic algorithms. 

 

Figure 37 – Chart of alternative 1 location focused experiments precision 

 

Figure 38 – Chart of alternative 1 location focused experiments recall 
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Looking at the information of the models regarding the precision and recall, when these 

metrics are analysed in a separated way no conclusions can be taken. For that reason, the F1 

score metric, that correlates these two metrics, should be analysed. 

 

Figure 39 – Chart of alternative 1 location focused experiments F1 score 

Looking at the chart in Figure 39, the genetic models achieved better performance overall 

among the experiments. Except for the TV location models, tunning the hyperparameters of 

the models increased the F1 score relatively to the previous approaches. 

Between the 3 experiments with the genetic models, half the location didn’t improve when 

using a multi model approach with the 5 best models selected by the genetic algorithm, but 

they all benefited when using 10 models instead of 5.  

Regarding the classifier experiments, the metrics of the two developed models described in 

section 6.3.5 are illustrated in Figure 40, Figure 41, Figure 42 and Figure 43.  

 

Figure 40 – Chart with the accuracy of the classifier experiments 

The accuracy of the experiments with the model composed by a single dense layer surpasses 

the results of the multi layered model. Among all the experiments for the alternative 1 



 

71 
 

 

classifier the one that has better accuracy is the single layer model when using the locations 

models that were trained with the class weights calculated by the TensorFlow method.  

 

Figure 41 – Chart with the precision of the classifier experiments 

In the precision, as it can be seen in Figure 41, the same behaviour of the previous metric is 

observed, when comparing the two models and relatively to the best model between all 

experiments. However, the behaviour is not the same for the recall measure. 

 

Figure 42 – Chart with the recall of the classifier experiments 

As it can be seen in Figure 42, the multi layered model presents better recall values apart from 

when using the majority prediction among the 5 best fixed hyperparameters models. The best 

model regarding the recall metric is the multi layered model when using in combination with 

the 5 best genetic models. 
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Figure 43 – Chart with the F1 score of the classifier experiments 

Analysing the chart of Figure 43, the model that presents higher F1 score is the single layered 

model when using the fixed hyperparameters models with TensorFlow calculated weights to 

predict the auscultation location class. 

A test using all the data instead of only the patients with absent or aggressive murmurs was 

also done to three of the models.  

 

Figure 44 – Metrics of models using the complete dataset 

When testing the experiments with data simulating a real environment, with all types of 

murmurs, the model’s performance is low which is normal due to the training being done with 

only the filtered patients. This shows that murmurs that are not aggressive are harder to find. 

Regarding alternative 2 experiments, the results are summarized in Figure 45. 
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Figure 45 – Alternative 2 experiments metrics 

As shown in the alternative 2 experiments metrics chart, the best model regarding accuracy 

was the model with the fixed hyperparameters, for precision and F1 score was the model with 

the fixed hyperparameters when using complete data and for recall, was the model selected 

by the genetic algorithm. 

 

Figure 46 – Results of the models with higher F1 score of alternative 1 and 2 

Between the two implemented alternatives the one that presents better results is alternative 

1 because the F1 score is 0.14 higher and presents a much better accuracy and precision while 

the recall has only a decrease of 0.05 as shown in Figure 46 comparison chart. 

In another perspective the time spent on training the models is another factor of distinction 

between the alternatives. These times are presented in Table 42. The times recorded include 

model checkpoints processing, genetic models’ operations, and generator functions.  
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Table 42 – Times spent training the models 

Alternative Model Number of samples* Batch size Time per epoch 
(seconds) 

1 Fixed hp 3,249 100 6s 

1 Genetic 3,249 100 5s 

1 Single layer classifier 499,083 500 4s 

1 Multi layer classifier 499,083 500 7s 

2 Fixed hp 60,000 100 500s 

2 Genetic 15,000 500 90s 

*number of samples used for training and validation 

The training of alternative 1 experiments is faster than alternative 2. This happens because of 

several factors: i) the model’s structure is simpler than the ones from alternative 2; ii) number 

of samples is smaller in the location focused models, not needing as much memory as 

alternative 2; iii) the input of the classifier is an array of three float elements against an array 

with shape (201, 128), meaning each sample is significantly smaller and even with 8 times the 

number of samples of alternative 2, the size is smaller than the input of alternative 2. 

7.5.2 Comparison of experiments with the base tests 

When comparing the alternative 1 location focused models with the base experiments, the 

models developed have better results.  The only base test that, after some tries, could surpass 

the models is the random output experiment, but it is not a reliable option because in a real 

situation we would never know which try is the right one. 

In relation to the classifier of alternative 1, in the base experiments, the best metrics achieved 

are from the test that classifies the patient’s heart murmurs as present if any of the prediction 

of the auscultation location focused models classifies the murmur as present. This algorithm 

F1 scores were added to the classifiers chart for comparison (Figure 47). 

 

Figure 47 – F1 score of base algorithms and alternative 1 classifier experiments 
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Analysing the F1 scores for both base and the developed classifiers, all the implemented 

models have better score. Next in Figure 48 is presented a chart comparing the best base 

experiment with the best developed model. 

 

Figure 48 – Comparison of the best base and developed approaches 

Although the base algorithm has better recall values, it has lower values of precision, making, 

not only the best, but all experiments of the alternative 1 classifier having better values of F1 

score. 

Regarding alternative 2, the models developed had better results than the base tests of 

classifying all the samples with the same class and when randomizing the prediction. 

7.5.3 Comparison of developed models with literature 

When comparing the models implemented for the alternatives with the approaches explored 

in the literature, only alternative 1 can be fairly compared, no studied literature work receives 

a recording of each auscultation location like in alternative 2. 

Table 43 – Metrics of the literature study and the best developed models 

Model Location Accuracy Recall F1 Score 

 AV 0.93 0.92 0.94 

Literature PV 0.87 0.81 0.80 

 TV 0.90 0.88 0.90 

 MV 0.91 0.86 0.92 

 AV 0.91 0.34 0.43 

Developed  PV 0.90 0.48 0.53 

Models TV 0.90 0.54 0.58 

 MV 0.86 0.38 0.40 
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Although it is not a fair comparison because the datasets used in both projects are not the 

same, the multi-label classification of heart sound signals paper described in section 3.8.2 

presents better results than the location focused models of alternative 1 as it can be seen in 

Table 43. 
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8 Conclusion and Future Work 

CVDs are in the top of the causes of death in the world, any help to prevent them is 

appreciated in the healthcare community. There are several studies with the objective of 

aiding the prevention and diagnosis of these diseases, they were studied and documented in 

the state of the art. We designed three alternatives to support on this subject. The first two 

alternative designs are base in the projects that use machine learning to classify if the patient 

heart is normal or abnormal being the main difference that we now have more than one 

auscultation location for each patient. The third alternative uses not only the four locations 

but also a pre-classification phase to classify some murmur characteristics. 

During the implementation process a lot of knowledge was gained regarding audio processing, 

creation and tuning of deep learning models, and more specific components. Like generators, 

the types of layers available and what they do, how the dataset should be composed and 

more. 

In alternative 1 a lot of experimentation was done because it was the first approach being 

implemented. A gradual increase of the components of the model and difficulty allowed 

gaining knowledge in a relaxed way. This made the entrance to a more complex alternative, 

like alternative 2, simpler and faster. 

In the first alternative, several models achieved good results, with the accuracy above 0.81, 

precision above 0.52, recall above 0.48 and F1 score above 0.58 in the latest models tested. 

With the models developed surpassing the “at least one” test strategy, being this the 

conventional way of choosing the final prediction. 

In alternative 2, from the four models developed, even not being from the same model, the 

highest accuracy achieved is 0.83, the highest precision was 0.5, the highest recall was 0.81 

and the highest F1 score was 0.59. 

Alternative 3 was not developed but from the early investigations to the dataset, a problem 

with the number of samples for each class was discovered. Some classes have less than 3 



 

78 
 

patients meaning that it is not possible to have a patient of those classes in the three datasets 

of training, validation, and testing. One way to solve this problem is to join some classes. 

These models also require an increase of the duration of the segments retrieved from the 

recording or use of any other strategy to increase the spectrogram image since, currently, 

does not comply with the requirements of the pre-trained models studied.  

Models for two of the alternatives were implemented and obtained better results than the 

ones established by the base experiments of section 7.2, the best model having 0.94 accuracy, 

0.81 precision, 0.67 recall and F1 score of 0.73. 

The model implemented obtained good results and can aid in the healthcare system. The 

investigation performed in this dissertation will also be of great help to the scientific 

community regarding the development of systems in the area of cardiovascular diseases. 

As future work, we intend to work with pre-trained models, since it was not possible due to 

computational limitations. Implementing alternative 3 could also be a possibility. Other 

approaches like different model structures or more elaborated systems like the multi model 

strategy presented in section 6.3.4 could be investigated too. 
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Value Analysis 

In this section it is presented the value analysis of the system to be created, it consists in the 

application of the new concept development model, value proposition and function analysis 

system technique. 

The value analysis in a project is important to pinpoint areas that need attention and 

improvement, it provides a means for evaluating alternatives and documents the rationale 

behind recommendations and decisions. 

 

New Concept Development Model 

 

Figure 49 – The New Concept Development model (Martikainen, 2017) 

Opportunity Identification 

Cardiovascular diseases are currently the leading causes of death in the world as it can be 

seen in the graph of Figure 50, ischaemic heart disease and stroke alone represent 32% (17.9 

million) out of 55.4 million disease related deaths worldwide. Since 2000, the largest increase 

in deaths has been for ischaemic heart disease, rising by more than 2 million to 8.9 million 

deaths in 2019 (WHO, 2020).  
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Figure 50 – Leading causes of death globally (WHO, 2020) 

The World Bank classifies the world's economies into four income groups based on gross 

national income and in all the groups CVDs are in the top 3 causes of death (WHO, 2020), this 

makes the prevention and diagnosis of an extreme importance, to start an early planning and 

treatment of the patient (WHO, 2020). 

People with CVD are faced with several medical complications that force them to adjust their 

lifestyle to the disease, like arrhythmias, heart failure, and pulmonary hypertension. This 

illness is usually accompanied by psychological challenges related to lack of normality, social 

integration, body image, disclosure, uncertainty, dependence, and coping. Several studies 

have shown that people with CVD may experience psychological distress associated with 

feelings of persistent insecurity, depression, anxiety, and low self-esteem (Kim, Johnson, & 

Sawatzky, 2019). 

There is also an economic challenge to health care systems in the EU that is expected to grow 

in future years. The most recent data estimate that CVD costs the EU economy approximately 

€210 billion a year. Of that cost, around 53% (€111 billion) is for health care costs, 26% (€54 

billion) is due to productivity losses and 21% (€45 billion) due to informal care of people with 

CVD (EHN, 2022). 

Currently the main methods for cardiovascular diseases diagnosis are the electrocardiogram 

and the ultrasound, this one only used if necessary. The machine for the ECG costs from €500 

to €15.000 (Medizinio, 2022), and for ultrasound machines the prices are higher, from 

€15.000 to €30.000 (Medizino, 2022). 

Auscultation, despite being an economical method, is a complex method that depends, 

predominantly, on the experience and knowledge of the doctor and his hearing ability. A 

diagnosis made by an experienced cardiologist can have an accuracy rate of around 80%, 
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while a student or doctor at the beginning of their career has an accuracy rate between 20%-

40% (Torres, 2021). 

 

Opportunity Analysis 

In the previous section we analysed the effects of cardiovascular diseases in the world 

regarding death rate, life disabilities, economy in the healthcare system and population. 

Based on the critical situation presented, in the poor health of the population and economic 

burden, we can conclude that the processes of prevention, diagnosis and treatment of CVDs 

need to be improved.  

The suggested system focuses in accelerating the prevention and diagnosis phase, and at the 

same time reducing the costs for the healthcare system. This will benefit the patients, as they 

will have an early diagnosis increasing the speed of action for treatment, and the healthcare 

professionals by having a decision support system at their side. 

 

Analytic Hierarchy Process 

In this project we can apply the Analytic Hierarchy Process (AHP) to the selection of the DL 

framework. 

First the decision tree must be created, it presents the structure of the problem, with the final 

objective, the criteria, and the alternatives in question. The decision tree for the selection of 

the DL framework follows: 

 

Figure 51 – Decision Tree 

Next the levels of comparison between the different criteria defined in the previous step. For 

this, the fundamental scale of Saaty (Saaty, 2008) was used, which defines the following 

values: 
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Table 44 – Saaty’s scale (Saaty, 2008) 

Value Definition Explanation 

1 Same importance The two activities contribute equally to the objective 

3 Moderate importance Experience and judgment slightly favour one activity 
over another 

5 Strong importance Experience and judgement strongly favour one 
activity over another 

7 Very strong importance An activity is favoured very strongly over another 

9 Extreme importance The evidence favouring one activity over another is 
of the highest degree possible for affirmation 

2, 4, 6, 8 Values in between  

By placing the criteria in a 5x5 table it is possible to give a value to each relationship between 

them: 

Table 45 – Criteria comparison 

 Learning 
Difficulty 

Debugging Speed Dataset 
Capacity 

Popularity 

Learning Difficulty 1 4 2 5 1 

Debugging 1/4 1 1/3 2 1/4 

Speed 1/2 3 1 3 1/2 

Dataset Capacity 1/5 1/2 1/3 1 1/5 

Popularity 1 4 2 5 1 

 

Next the criteria weights need to be calculated, the following table shows the results.  

Table 46 – Calculation of the criteria weights 

 Learning 
Difficulty 

Debugging Speed Dataset 
Capacity 

Popularity Weight 

Learning Difficulty 0,34 0,32 0,35 0,31 0,34 0,33 

Debugging 0,08 0,08 0,06 0,13 0,08 0,09 

Speed 0,17 0,24 0,18 0,19 0,17 0,19 

Dataset Capacity 0,17 0,24 0,06 0,06 0,17 0,06 

Popularity 0,34 0,32 0,35 0,31 0,34 0,33 

To check if these weights are consistent, the Consistency Ratio (CR) was calculated resulting in 

a value of 0,013. Since we obtained a RC less than 0,1 we can conclude that the weights are 

consistent, which means we can continue with the decision process. The next step is the 

construction of the parity comparison matrix for each criterion. 
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Table 47 – Learning difficulty comparison matrix 

Learning 
Difficulty 

Keras TensorFlow PyTorch Weight 

Keras 1 5 7 0,70 

TensorFlow 1/5 1 5 0,23 

PyTorch 1/7 1/5 1 0,07 

 

Table 48 – Debugging comparison matrix 

Debugging Keras TensorFlow PyTorch Weight 

Keras 1 3 1/3 0,26 

TensorFlow 1/3 1 1/5 0,11 

PyTorch 3 5 1 0,63 

 

Table 49 – Speed comparison matrix 

Speed Keras TensorFlow PyTorch Weight 

Keras 1 1/5 1/5 0,09 

TensorFlow 5 1 1 0,45 

PyTorch 5 1 1 0,45 

 

Table 50 – Dataset capacity comparison matrix 

Dataset Capacty Keras TensorFlow PyTorch Weight 

Keras 1 1/3 1/3 0,14 

TensorFlow 3 1 1 0,43 

PyTorch 3 1 1 0,43 

 

Table 51 – Popularity comparison matrix. 

Popularity Keras TensorFlow PyTorch Weight 

Keras 1 3 5 0,63 

TensorFlow 1/3 1 3 0,26 

PyTorch 1/5 1/3 1 0,11 

Finally, we calculate the composite priority for the alternatives: 

Keras = (0,70 x 0,33) + (0,26 x 0,09) + (0,09 x 0,19) + (0,14 x 0,06) + (0,63 x 0,33) = 0.49 

TensorFlow = (0,23 x 0,33) + (0,11 x 0,09) + (0,45 x 0,19) + (0,43 x 0,06) + (0,26 x 0,33) = 0.28 
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PyTorch = (0,07 x 0,33) + (0,63 x 0,09) + (0,45 x 0,19) + (0,43 x 0,06) + (0,11 x 0,33) = 0.23 

According to the AHP the DL framework suggested is Keras with the highest score of 0,49. 

 

Concept Definition 

The system must be able of receiving the recorded sounds of the patient’s heart in four 

auscultation locations. Extract features of the sound files and apply them in a model to make 

classifications regarding some characteristics of the heart sounds. These characteristics are, 

for example, presence of pathology, murmur location, murmur quality, murmur shape. Finally, 

it should retrieve to the user the information about the patient’s heart.  

The core of the system will be a convolutional neural network, its inputs will be four audio 

files each being the recorded sound in each auscultation location.  

 

Value proposition 

The Value Proposition Canvas is a tool to help understand the product or service and if it is 

positioned around what the customer values and needs are. In this project the customers are 

the health professionals. 

 

Figure 52 – Value Proposition Canvas 
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In the value proposition presented in Figure 52 we see that the product is a system that 

classifies the patient’s heart murmurs based on the recorded sounds in the four auscultation 

locations (Aortic, Pulmonary, Tricuspid and Mitral regions). It can aid health professionals in 2 

ways: i) when examining the patient’s heart it supports them with detailed information, 

allowing them to make a more accurate diagnosis of cardiovascular diseases, and ii) in the 

prevention of diseases, as a first control option. The system makes an automatic classification 

of the murmurs and acts as a decision support system in the CVDs prevention and diagnosis. It 

is easy to use and has an elevated precision on the predictions, reducing time and cost to a 

critical medical area, it provides detailed information through a fast analysis. On itself it is not 

a diagnosis system, the expertise of a health professional is always needed to confirm the 

result and identify the specific condition. 

 

Function Analysis System Technique 

The Function Analysis System Technique (FAST) is a technique that aids in thinking about the 

problem objectively and in identifying the scope of the project by showing the logical 

relationships between steps. 

 

 

Figure 53 – FAST diagram 

Looking at the FAST in Figure 53 we can see that the system is used to classify the patient 

sounds regarding several characteristics. It does that by receiving the patient sounds, doing an 

initial processing of them, extracts the features of each sound and classifies the patient by 

executing a classification model, which allows the system to detect the characteristics of the 

patient heart sounds. 

 


