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A B S T R A C T

The radial (penny-shaped) model of hydraulic fracture is considered. The tangential traction on the fracture
walls is incorporated, including an updated evaluation of the energy release rate (fracture criterion), system
asymptotics and the need to account for stagnant zone formation near the injection point. The impact of
incorporating the shear stress on the construction of solvers, and the effectiveness of approximating system
parameters using the first term of the crack tip asymptotics, is discussed. A full quantitative investigation of
the impact of tangential traction on solution is undertaken, utilising an extremely effective adaptive time-space
solver.
1. Introduction

Hydraulic fracture (HF) involves a fluid driven crack propagating in
a solid material. This process is widely studied, due to it’s appearance
in nature, for example in subglacial drainage and the flow of magma
in the Earth’s crust, as well as it’s use in energy technologies, most
notably geothermal energy, unconventional hydrocarbon extraction
and in the relatively new process of carbon sequestration. While many
advanced models exist of this phenomena, the 1D models of hydraulic
fracture developed in the 1950’s and 1960’s: PKN, KGD and radial
(penny-shaped), still maintain their relevance. This is particularly true
when it comes to examining the roles certain physical effects play in
determining the fracture behaviour.

One approach to updating the 1D models is the recent drive to better
describe the behaviour of the fluid which drives the fracture. This has
previously been considered as either purely Newtonian or as following
a power-law description (see eg. Peck et al., 2018a; Perkowska et al.,
016), however recent works attempt to incorporate a truncated power-
aw (Lavrov, 2015), Herschel–Bulkley law (Kanin et al., 2021), or a
arreau fluid description (Wrobel, 2020b) into HF models. Other major
evelopments in this area have involved approaches which provide an
mproved description of the influence of the proppant (particles within
he fluid) on the apparent viscosity of the fluid (Wrobel, 2020a) and
ear front behaviour (Bessmertnykh et al., 2020), as well as incor-
oration of turbulence within the fracture fluid (Dontsov and Peirce,
017a; Zolfaghari and Bunger, 2019), plasticity or porosity of the
racture walls (Wrobel et al., 2022b,a; Selvadurai and Samea, 2021),
nvestigations of the impact of toughness heterogeneity (Da Fies et al.,
022; Dontsov and Suarez-Rivera, 2021), amongst others. Of crucial
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importance for this paper however, is the recent incorporation of shear
stress induced by the fluid into the 1D models of HF (Wrobel et al.,
2017; Shen and Zhao, 2018).

The incorporation of hydraulically induced tangential traction on
the fracture walls into the PKN and KGD models was provided in Wro-
bel et al. (2017). One crucial result was that, when the shear stress was
accounted for, there was no longer a difference in aperture asymptotics
between the viscosity and toughness dominated regimes. Given the high
dependence of most modern algorithms for modelling hydraulic frac-
ture on these asymptotic terms (see eg. Peck et al. (2018b), Perkowska
et al. (2016) and Peirce and Detournay (2008)), this suggested that
significant simplifications could be made to the numerical modelling
of hydraulic fracture. In addition, incorporating the hydraulically in-
duced tangential traction can also have a noticeable effect on fracture
redirection, as outlined in Perkowska et al. (2017) and Wrobel et al.
(2019), and unstable crack propagation (Shen et al., 2020).

It should also be noted however that the original paper on the incor-
poration of tangential traction into hydraulic fracture models (Wrobel
et al., 2017) was not without controversy, sparking significant dis-
cussion about whether the tangential traction on the fracture walls
needs to be accounted for when modelling hydraulic fracture (Linkov,
2018b,a; Wrobel et al., 2018). To ensure the presented paper addresses
the key aspects of this discussion, here a full quantitative analysis of
the time-dependent case is provided in Section 4.

The paper is arranged as follows. The problem formulation of the ra-
dial model incorporating the tangential traction is outlined in Section 2,
including the updated elasticity equation, fracture criterion and system
asymptotics for the viscosity dominated regime, as well as modifying
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the shear stress formulation at the injection point. Next, in Section 3 the
self-similar formulation is used to examine the effect of the updated
formulation on the construction of the algorithm, most notably the
effect of the changed system asymptotics. Finally, in Section 4 a full
quantitative investigation of the impact of the shear stress for the time
dependent formulation is conducted, and the applications for which it
may play a role are discussed. A summary of the most important results
is given in the concluding Section 5.

2. Problem formulation

2.1. Governing equations

We consider the case of a radial hydraulic fracture, driven by a
Newtonian fluid. The system is considered in cylindrical coordinates
{𝑟, 𝜃, 𝑧}. The crack dimensions are given by 𝑙(𝑡), 𝑤(𝑟, 𝑡), describing the
fracture radius and aperture respectively. The fracture is driven by a
point source located at the origin, with known pumping rate 𝑄0(𝑡).
Due to the axisymmetric nature of the problem, the solution will be
independent of 𝜃, and only 0 ≤ 𝑟 ≤ 𝑙(𝑡) needs to be considered.

The fluid mass balance equation is given by:
𝜕𝑤
𝜕𝑡

+ 1
𝑟
𝜕
𝜕𝑟

(𝑟𝑞) + 𝑞𝑙 = 0, 0 < 𝑟 < 𝑙(𝑡). (2.1)

where 𝑞𝑙(𝑟, 𝑡) is the fluid leak-off function, representing the volumetric
fluid loss to the rock formation in the direction perpendicular to the
crack surface per unit length of the fracture. Throughout this paper we
will assume it to be predefined and bounded at the fracture tip.

Meanwhile 𝑞(𝑟, 𝑡) is the fluid flow rate inside the crack, for a
ewtonian fluid, is given by the Poiseuille law:

= −𝑤
3

𝑀
𝜕𝑝
𝜕𝑟
, (2.2)

where the constant 𝑀 = 12𝜇 is the fluid consistency index.
The elasticity relation defining the deformation of the rock needs

to be updated to incorporate the effect of tangential traction on the
crack faces, with the derivation provided in the supplementary material
(first provided by the authors in Peck (2018), with a similar form
also derived independently in Shen and Zhao (2018)). The elasticity
equation takes the form:

𝑝(𝑟, 𝑡) = − 1
𝑙(𝑡) ∫

1

0

[

𝑘2
𝜕𝑤(𝜌𝑙(𝑡))

𝜕𝜌
− 𝑘1𝑙(𝑡)𝜏(𝜌𝑙(𝑡))

]

× 
(

𝑟
𝑙(𝑡)

, 𝜌
)

𝑑𝜌, 0 ≤ 𝑟 < 𝑙(𝑡),
(2.3)

with its inverse:

𝑘2𝑤(𝑟, 𝑡)+𝑘1 ∫

𝑙(𝑡)

𝑟
𝜏 (𝑠, 𝑡) 𝑑𝑠 =

4
𝜋2
𝑙(𝑡)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∫

1

0

𝜕𝑝(𝑦𝑙(𝑡), 𝑡)
𝜕𝑦


(

𝑦, 𝑟
𝑙(𝑡)

)

𝑑𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑤1 (𝑟,𝑡)

+

√

1 −
(

𝑟
𝑙(𝑡)

)2

∫

1

0

𝜂𝑝(𝜂𝑙(𝑡), 𝑡)
√

1 − 𝜂2
𝑑𝜂

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑤2 (𝑟,𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(2.4)

where the kernel functions are given by:

 [𝑟, 𝜌] =

⎧

⎪

⎨

⎪

⎩

1
𝑟𝐾

(

𝜌2

𝑟2

)

+ 𝑟
𝜌2−𝑟2𝐸

(

𝜌2

𝑟2

)

, 𝑟 > 𝜌
𝜌

𝜌2−𝑟2𝐸
(

𝑟2

𝜌2

)

, 𝜌 > 𝑟,
(2.5)

(𝑦, 𝑟) = 𝑦
[

𝐸
(

arcsin(𝑦)
|

|

|

|

𝑟2

𝑦2

)

− 𝐸
(

arcsin(𝜓)
|

|

|

|

𝑟2

𝑦2

)]

, 𝜓 = min
( 𝑦
𝑟
, 1
)

,

(2.6)

with 𝐸 (𝜙 |𝑚) denoting the incomplete elliptic integral of the second
kind, while:

𝑘1 =
1 − 2𝜈 , 𝑘2 =

𝐸 . (2.7)
2

𝜋(1 − 𝜈) 2𝜋(1 − 𝜈2)
Note that if we take 𝑘1 = 0 (ie. 𝜈 = 0.5), this is identical to the ‘classical’
elasticity equation.

We can also utilise the elasticity equation to parameterise the
fracture regime, as outlined in Da Fies et al. (2022). Note that in (2.4),
he fracture aperture 𝑤 can be represented as the sum of the term
enoted 𝑤2, which represents the impact of the material toughness 𝐾𝐼𝑐 ,
nd 𝑤1, representing the contribution of the (viscous) fluid pressure,
longside some final shear term. Consequently, we can define the
ssociate volumes

𝑣(𝑡) = 2𝜋 ∫

𝑙(𝑡)

0
𝑟𝑤1(𝑟, 𝑡) 𝑑𝑟, 𝑉𝑇 (𝑡) = 2𝜋 ∫

𝑙(𝑡)

0
𝑟𝑤2(𝑟, 𝑡) 𝑑𝑟. (2.8)

he ratio of these two terms

(𝑡) =
𝑉𝑇 (𝑡)
𝑉𝑣(𝑡)

, (2.9)

will provide a (rough) measure of the extent to which fracture evo-
lution is governed by the fluid viscosity or the material toughness.
This can therefore be used to parameterise whether the fracture is
within the viscosity (0 ≤ 𝛿 ≪ 1), transient (𝛿 ∼ 1), or toughness
(1 ≫ 𝛿) dominated regime, which will prove useful when conducting
the time-dependent investigation. Note that for the radial model this
will change over time, as the fracture transitions from the (initially)
viscosity dominated to the toughness dominated regime as it grows (see
e.g. Savitski and Detournay, 2002; Lecampion et al., 2017; Dontsov and
Peirce, 2017b for details of the fracture regimes). For more details of
the parameterisation by 𝛿(𝑡), see Da Fies et al. (2022).

These equations are supplemented by the boundary condition at
𝑟 = 0, which defines the intensity of the fluid source, 𝑄0:

lim
𝑟→0

𝑟𝑞(𝑟, 𝑡) =
𝑄0(𝑡)
2𝜋

, (2.10)

alongside the tip boundary conditions:

𝑤(𝑙(𝑡), 𝑡) = 0, 𝑞(𝑙(𝑡), 𝑡) = 0. (2.11)

We assume that there is a preexisting fracture, starting with appropriate
non-zero initial conditions for the crack opening and length:

𝑤(𝑟, 0) = 𝑤∗(𝑟), 𝑙(0) = 𝑙0, (2.12)

Finally the global balance equation takes the form:

∫

𝑙(𝑡)

0
𝑟
[

𝑤(𝑟, 𝑡) −𝑤∗(𝑟)
]

𝑑𝑟 + ∫

𝑡

0 ∫

𝑙(𝑡)

0
𝑟𝑞𝑙(𝑟, 𝜏) 𝑑𝑟 𝑑𝜏 =

1
2𝜋 ∫

𝑡

0
𝑄0(𝜏) 𝑑𝜏.

(2.13)

In addition to the above, we employ a new dependent variable
amed the fluid velocity, 𝑣, defined by:

(𝑟, 𝑡) =
𝑞(𝑟, 𝑡)
𝑤(𝑟, 𝑡)

= −
𝑤2(𝑟, 𝑡)
𝑀

𝜕𝑝
𝜕𝑟
, (2.14)

t has the property that, provided the fluid leak-off 𝑞𝑙 is finite at the
rack tip:

lim
→𝑙(𝑡)

𝑣(𝑟, 𝑡) = 𝑣0(𝑡) < ∞, (2.15)

hich, given that the fracture apex coincides with the fluid front
no lag), allows for fracture front tracing through the so-called speed
quation (Linkov, 2011):
𝑑𝑙
𝑑𝑡

= 𝑣0(𝑡). (2.16)

ote that this replaces boundary condition (2.11)2, which now imme-
iately follows from (2.11)1, (2.14)–(2.16). This Stefan-type condition
as previously been employed in 1D hydraulic fracture models, the
dvantages of which (alongside technical details) are shown in Kus-
ierczyk et al. (2013), Perkowska et al. (2016), Wrobel and Mishuris

(2013, 2015) and Wrobel et al. (2017). Of crucial importance is the

fact that the fracture tip can now be considered in terms of the finite
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Fig. 1. Exaggerated depiction of the expected primary streamlines within a quarter-segment of a penny-shaped hydraulic fracture, which determine the tangential traction on the
racture walls. The red line indicates the longest streamline within the stagnant zone (wall-jet effect), while the blue line indicates the longest streamline connecting the fluid
ource (blue dot at 𝑟 = 0) to the fracture tip. The expected streamline behaviour is based upon experimental and numerical results for impinging jet flow, see e.g. Nishino et al.
1996), Shekhar and Nishino (2019) and Zhang et al. (2019). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
article.).
variable 𝑣, with clearly defined leading asymptotic coefficient 𝑣0, elim-
inating the singular term 𝑞 from computations entirely. These singular
terms are however closely related to the fluid velocity (2.14), and as
such can easily be obtained in post-processing.

2.2. The shear stress at the fracture inlet

The normal and tangential stress on the fracture walls, created by
the fluid pressure, follows directly from lubrication theory (see for
example Tsai and Rice, 2010), in this case being given by:

𝜎0 = −𝑝, 𝜏(𝑟, 𝑡) = −1
2
𝑤(𝑟, 𝑡)

𝜕𝑝(𝑟, 𝑡)
𝜕𝑟

. (2.17)

It should be noted that this representation of the shear stress is singular
at both the crack tip (𝑟 = 𝑙(𝑡)) and the fracture opening (𝑟 = 0).
While the former singularity is physically meaningful for defining the
total flux within the fracture, following the same principles as that
for the stress at the crack tip in linear elastic fracture mechanics, the
singularity at 𝑟 = 0 should be properly addressed.

There is a clear explanation for the singularity at the fracture
pening. HF models typically treat the fluid source as a singularity at
he fracture inlet (𝑟, 𝜃, 𝑧) = (0, 𝜃, 0). Tangential traction is induced by
fluid travelling in a single (turbulence-free) streamline from this source
directly to the fracture wall, and along this wall to the fracture front.
However, this behaviour is a clear violation of established rules for
fluids in such situations, where it has been demonstrated that instead
stagnant regions will form in the region where the fluid source makes
contact with the fracture wall (𝑟, 𝜃, 𝑧) = (0, 𝜃,±𝑤(0, 𝑡)), preventing
luid from the source from reaching these points (see Fig. 1). These
econdary streamlines will typically be stable, even though it arises
rom turbulent effects acting on the fluid, however its precise form will
epend upon both the problem geometry and fluid properties (Reynolds
umber). This can be thought of as a form of the ‘wall jet’ effect,
nalogous to the behaviour of a rocket exhaust hitting the ground
reviews can be found in Gauntner et al. (1970) and Launder and Rodi
1983), while experimental results for the ‘stagnation region’ can be
ound in e.g. Nishino et al. (1996) and Shekhar and Nishino (2019), and
umerical simulation of the velocity profiles in Zhang et al. (2019)).
Consequently, while the singularity at the fracture front needs to

e maintained to properly model the radial geometry, the formulation
eeds to be updated to eliminate this non-physical singularity at 𝑟 = 0.
here are three primary options for doing so:

• Incorporating the wellbore will (artificially) cut-off the current
left-hand boundary (𝑟 = 0), with the fluid flow instead ending
3

some distance away from the origin (the half-width of the well-
bore), and thus remove the singularity. This has previously been
incorporated for the classical radial model, for example in Lecam-
pion et al. (2017) where it effectively predicted experimental
results.

• Fixing the opening height by adding an additional boundary
condition such that 𝑤(0, 𝑡) = 𝑤∗(0), a constant, where 𝑤∗(𝑟) is the
initial fracture profile (2.12). This could be enforced numerically,
and would eliminate the effect of the tangential traction at the
crack opening.

• Modifying the tangential traction formulation to eliminate the
singularity at 𝑟 = 0 from (2.17). Unfortunately, there is no simple
formula to describe the effect of these stagnant zones on the tan-
gential traction induced on the fracture walls. Subsequently, this
requires a more general modification, allowing multiple ‘possible’
forms of the shear stress to be considered.

As the aim of this paper is to incorporate the tangential traction into the
general radial model, rather than for some specific application, we will
take the third option and modify the formulation. This has the added
benefit of being the most generalised approach, allowing for different
forms of the tangential traction to be investigated. Note however that
the other two approaches could be utilised for specific applications, if
it were preferable.

In order to control the extent to which the shear stress is changed
away from the point 𝑟 = 0, we introduce the updated formulation of
the tangential stress on the fracture wall:

𝜏(𝑟, 𝑡) = −1
2
𝜒(𝑟, 𝑡)
𝑙(𝑡)

𝑤(𝑟, 𝑡)
𝜕𝑝(𝑟, 𝑡)
𝜕𝑟

, (2.18)

where the particular form of 𝜒 is not fixed (to allow for various possible
formulations to be considered), but is always a continuous function
such that

𝜒(𝑟, 𝑡) ∼ 𝑟, 𝑟→ 0, 𝜒(𝑟, 𝑡) = 𝑙(𝑡), 𝑟→ 𝑙(𝑡). (2.19)

In this paper we will mimic 𝜒 in the form

𝜒(𝑟, 𝑡) = 𝑙(𝑡)

[

1 −
(

1 − 𝑟
𝑙(𝑡)

)𝛽
]

, (2.20)

where 𝛽 ≥ 1 is a predefined constant. This form is chosen to allow
a general investigation into the effect of differing near-well fluid be-
haviour on the fracture profile (by varying the constant 𝛽). While we
will assume here that 𝛽 is predefined, it will be directly linked to the
size of the stagnant zones and can therefore, in principle, be chosen to
match the expected behaviour of the tangential traction for a particular
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problem. An examination of the effect of the choice of 𝛽 on the fracture
profile is provided in Section 4.2.

This formulation therefore allows the potential effect of the ‘wall jet’
behaviour to be accounted for, incorporating all expected behaviour of
the phenomena, while leaving the tangential traction unchanged away
from the fluid inlet. Crucially, the shear stress remains identical to the
standard formulation as 𝑟 → 𝑙(𝑡), so does not effect the evaluation of
he crack tip asymptotics or Energy Release Rate.
In addition, this new formulation resolves the issues related to the

racture inlet asymptotics, creating a fully consistent formulation that
an account for the varying possible effects of the stagnant zones at the
rack opening. As a result, irrespective of the form of 𝜒 , the asymptotics
at the crack opening remain identical to those in the case without
tangential traction (Peck et al., 2018b):

𝑤(𝑟, 𝑡) = 𝑤(0)
0 +𝑤(0)

1 𝑟 + 𝑂
(

𝑟2 log(𝑟)
)

,

𝑝(𝑟, 𝑡) = 𝑝(0)0 log(𝑟) + 𝑝(0)1 + 𝑂 (𝑟) , 𝑟→ 0,

𝜏(𝑟, 𝑡) = 𝜏(0)0 + 𝜏(0)1 𝑟 + 𝑂 (𝑟 log(𝑟)) .

(2.21)

2.3. Crack tip asymptotics

In the classic radial model the basic modes of fracture propagation
are related to the energy dissipation throughout the fracture, and thus
can influence the tip asymptotics. Typically, fractures will begin in the
viscosity dominated regime and transition to the toughness dominated
regime over time, although the particular regime depends upon the
system parameters (particularly 𝐾𝐼𝑐 and 𝜇). These two modes have
been extensively studied, and have qualitatively different asymptotic
behaviour, leading to a singular perturbation problem when transition-
ing between the cases. In the revised HF formulation however this
problem is eliminated, as the introduction of the shear stress ensures
that the tip asymptotics remain the same irrespective of the regime.

The revised crack tip asymptotics are the same irrespective of the
regime, and coincide with those for the toughness dominated regime in
the classical model (assuming no fluid lag) (Wrobel et al., 2017):

𝑤(𝑟, 𝑡) = 𝑤0(𝑡)
√

1 − 𝑟 +𝑤1(𝑡) (1 − 𝑟) +𝑤2(𝑡) (1 − 𝑟)
3
2 log (1 − 𝑟)

+ 𝑂
(

(1 − 𝑟)
3
2
)

, 𝑟 = 𝑟
𝑙(𝑡)

→ 1,
(2.22)

𝑝(𝑟, 𝑡) = 𝑝0(𝑡) log (1 − 𝑟) + 𝑝1(𝑡) + 𝑝2(𝑡)
√

1 − 𝑟 + 𝑝3(𝑡) (1 − 𝑟) log (1 − 𝑟)

+ 𝑂 ((1 − 𝑟)) , 𝑟 = 𝑟
𝑙(𝑡)

→ 1,

(2.23)

additionally, we immediately have the following asymptotics for the
fluid velocity and shear stress:

𝑣(𝑟, 𝑡) = 𝑣0(𝑡) + 𝑣1(𝑡)
√

1 − 𝑟+𝑂 ((1 − 𝑟) log (1 − 𝑟)) , 𝑟 = 𝑟
𝑙(𝑡)

→ 1, (2.24)

𝜏(𝑟, 𝑡) =
𝜏0

√

1 − 𝑟
+ 𝜏1 + 𝑂

(
√

1 − 𝑟 log (1 − 𝑟)
)

, 𝑟 = 𝑟
𝑙(𝑡)

→ 1, (2.25)

where:

𝑣0(𝑡) =
𝑤2

0(𝑡)𝑝0(𝑡)
𝑀𝑙(𝑡)

, 𝑣1(𝑡) =
𝑤2

0(𝑡)𝑝2(𝑡) + 4𝑤0(𝑡)𝑤1(𝑡)𝑝0(𝑡)
2𝑀𝑙(𝑡)

, (2.26)

𝜏0(𝑡) =
𝑤0(𝑡)𝑝0(𝑡)

2𝑙(𝑡)
, 𝜏1(𝑡) =

𝑤0(𝑡)𝑝2(𝑡) + 2𝑤1(𝑡)𝑝0(𝑡)
4𝑙(𝑡)

. (2.27)

This yields the relation between the coefficients:

𝑣0(𝑡) =
2
𝑀
𝑤0(𝑡)𝜏0(𝑡), 𝑣1(𝑡) =

2
𝑀

[

𝑤0(𝑡)𝜏1(𝑡) +𝑤1(𝑡)𝜏0(𝑡)
]

. (2.28)

Evaluating the elasticity Eq. (2.4) at the crack tip, noting the asymp-
totics above, we obtain:

𝑘2𝑤0(𝑡) + 𝑘1𝑤0(𝑡)𝑝0(𝑡) =
4
√

2
2
𝑙(𝑡)∫

1 𝜂𝑝(𝜂𝑙(𝑡), 𝑡)
√

𝑑𝜂, (2.29)
4

𝜋 0 1 − 𝜂2
which replaces the standard integral definition of the stress intensity
factor.

Finally, combining the speed Eq. (2.16) with (2.26) yields:

𝑑𝑙
𝑑𝑡

=
𝑤2

0(𝑡)𝑝0(𝑡)
𝑀𝑙(𝑡)

, (2.30)

hich can be integrated directly to determine the crack length:

(𝑡) =

√

𝑙2(0) + 1
𝑀 ∫

𝑡

0
𝑤2

0(𝑠)𝑝0(𝑠) 𝑑𝑠. (2.31)

.4. Energy release rate

It has previously been shown that the crack tip asymptotics play
crucial role in the behaviour of a hydraulic fracture (Garagash and
etournay, 2000; Savitski and Detournay, 2002). As such these must
e examined in more detail, which is achieved through an examination
f the Energy Release Rate (ERR), accounting for the effect of tangential
raction. An updated form of Linear Elastic Fracture Mechanics to
rovide the Energy Release Rate accounting for tangential traction is
rovided in Piccolroaz et al. (2021), while a summary of results specific
o the radial model from Wrobel et al. (2017) and Perkowska et al.
2017) are provided below.
We have that

2
𝐼𝑐 = 𝐾2

𝐼 + 4(1 − 𝜈)𝐾𝐼𝐾𝑓 . (2.32)

The form of the first term of the apertures asymptotic representation
2.22) is as follows:

0(𝑡) = 𝛾
√

𝑙(𝑡)
(

𝐾𝐼 (𝑡) +𝐾𝑓 (𝑡)
)

, 𝐾𝑓 = 𝐵−1√𝑀𝑣0(𝑡)𝑝0(𝑡)𝑙(𝑡),

𝐵 =
2
√

2
√

𝜋
(1 − 𝜈),

(2.33)

here:

= 8
√

2𝜋

(1 − 𝜈2)
𝐸

, (2.34)

Here the term 𝐾𝑓 is denoted the shear stress intensity factor.

𝐾𝐼 =
𝐾𝐼𝑐

√

1 + 4(1 − 𝜈)𝜔̄
, 𝐾𝑓 =

𝐾𝐼𝑐𝜔̄
√

1 + 4(1 − 𝜈)𝜔̄
, 𝜔̄ =

𝑝0
𝐺 − 𝑝0

, (2.35)

here 𝐺 is the shear modulus and 𝑝0 is the first term of the pressures
symptotic representation at the fracture front (2.23). As such we can
epresent (2.33) in the following form:

0(𝑡) =
√

𝑙(𝑡)
𝛾(1 + 𝜔̄)

√

1 + 4(1 − 𝜈)𝜔̄
𝐾𝐼𝑐 . (2.36)

It is clear from the above and (2.35)3 that we must have:

0 < 𝑝0(𝑡) < 𝐺. (2.37)

Combining the above with the speed Eq. (2.16), we obtain:
1

𝛾2𝑙(𝑡)𝐾2
𝐼𝑐 (𝑡)

𝑣0(𝑡) =
𝑝0(𝑡)
𝑀

𝐹
(

𝑝0(𝑡)
)

, (2.38)

where:

𝐹
(

𝑝0(𝑡)
)

= 𝐺2
[

𝐺 − 𝑝0(𝑡)
] [

𝐺 + (3 − 4𝜈) 𝑝0(𝑡)
] . (2.39)

It is worth noting that in (2.38) the right-hand side is a monotonically
increasing function from zero (when 𝑝0 = 0) to infinity (when 𝑝0 = 𝐺).
onsequently, the solution for 𝑝0 is unique, and can be found as a
function of 𝑣0, 𝐾𝐼𝑐 and 𝑙(𝑡) (or similarly for 𝑣0).

Using the above notation, we can also rewrite (2.36) as:

𝑤0(𝑡) = 𝛾𝐾𝐼𝑐
√

𝑙(𝑡)𝐹
(

𝑝0(𝑡)
)

. (2.40)

Note that unlike with (2.38), the right-hand side of (2.40) is not
monotonic with respect to 𝑝0. Note that 𝐹 (0) = 1, while the right-
hand side subsequently decreases until 𝑝0(𝑡) = (1−2𝜈)𝐺∕(3−4𝜈), before
beginning to increase and tending to infinity as 𝑝 → 𝐺.
0
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Table 1
Values of the parameters used in self-similar computations. Here 𝛽 defines the behaviour
of the shear stress at the injection point (2.18)–(2.20).
𝜈 𝑄̂0 𝛶 𝛽

0.3 1 1/3 1

3. Effect on algorithm construction

Incorporating the tangential traction, in particular the updated
fracture criterion (2.32) and system asymptotics (see Sections 2.3–
.4), fundamentally alters the construction of algorithms for generating
olutions to the radial model. We investigate the consequences of this
hange using the self-similar formulation, as this simple case allows
or the clearest results. It is not possible to obtain a power-law type
olution, so instead an exponential variant must be obtained, similar to
hat utilised in Spence and Sharp (1985). We normalise the problem as

̃ = 𝑟
𝑙(𝑡)

, 𝑡 = 𝑡
𝑡𝑛
, 𝑡𝑛 =

𝑀
𝑘2
, (3.1)

where 𝑟 ∈ [0, 1], before utilising the following separation of variables

𝑄̃0(𝑡) = 𝑄̂0𝑒
2𝛶 𝑡, (3.2)

for some chosen constant 𝛶 . The full normalised and self-similar
roblem formulations are provided in the supplementary material. It is
mportant to note that the self-similar equations still feature the Pois-
on’s ratio 𝜈, self-similar fracture toughness 𝐾̂𝐼𝑐 , self-similar injection
ate 𝑄̂0 and parameter 𝛽 describing the shear near the fracture inlet
2.18)–(2.20), while the remaining material constants are eliminated
rom the governing equations. The values of the self-similar constants
sed in simulations (unless stated otherwise) are provided in Table 1.
or the remainder of this section, the ‘∧’ symbol will be used to denote
elf-similar parameters (e.g. 𝑤̂(𝑟) for the self-similar aperture).
Solutions are obtained using an approach based on the ‘‘universal

lgorithm’’, first introduced in Wrobel and Mishuris (2015), which is
n explicit solver combining rigorous use of the system asymptotics
nd implementation of the speed equation to trace the fracture front
2.16), amongst other novelties. This method was previously used
y the authors for the radial model (Peck et al., 2018b,a), and the
eader is directed there for the details of the algorithms construction
alongside Perkowska et al., 2016). This method stands in contrast
o the implicit level set method more common in the literature (see
g. Dontsov and Peirce, 2017b; Peirce and Detournay, 2008 or the
recent open-source general solver PyFrac Zia and Lecampion, 2020),
which is typically far more flexible but achieves a lower level of
accuracy (for a more complete comparison, see e.g. Zia and Lecampion
(2019) and Linkov (2019)). The solver utilised here for the self-similar
scheme achieves an exceptionally low level of error for the key process
parameters against both analytical benchmarks and convergence-based
error tests (below 10−4 across the entire domain when taking 𝑁 = 300
nodal points, see Peck et al. (2018b)).

3.1. Transition from viscosity to toughness dominated regimes

Typically, when obtaining the solution for the radial model, one
of the most important aspects to incorporate is the transition from
the viscosity dominated regime to the toughness dominated mode as
the fracture develops (a detailed overview of the differing fracture
regimes can be found in e.g. Savitski and Detournay, 2002; Lecampion
et al., 2017; Dontsov and Peirce, 2017b). However, as the updated
system asymptotics no longer vary between the two regimes when
the tangential traction is incorporated, this transition will now occur
automatically.

As this ‘‘automatic switch’’ is a result of the updated asymptotics
(2.22)–(2.25) and fracture criterion (2.32), a modified form of the
5

problem can be considered that avoids having to fully incorporate a
the updated elasticity Eq. (2.4). To demonstrate this, we consider two
variants of the problem

1. Full shear: This is the full radial model incorporating the tan-
gential traction induced on the fracture walls. Note that in this
section we will take 𝛽 = 1 in the shear stress formulation (2.18)–
(2.20), signifying the minimum potential impact of the shear
stress on the fracture behaviour.

2. Modified variant: This is a reduced form of the radial model
with shear stress, but reducing the need to incorporate the
updated elasticity equation. There are two possible approaches
to achieving this. The first is to neglect the additional term of
the elasticity equation (equivalent to taking 𝑘1 = 0), similar to
that done for KGD in Wrobel et al. (2017). For the radial model
however, this approach leads to inconsistencies in the asymp-
totics. For this reason, we instead favour a partial incorporation,
in which the updated integral definition of the stress intensity
factor is utilised (2.29), but the additional term of the elasticity
equation is not. This avoids asymptotic inconsistencies, whilst
also avoiding incorporating the elasticity equation in full. This
will not effect the ‘automatic switch’, as we continue to utilise
the updated fracture criterion and system asymptotics.

The values of the stress intensity factors (mode-I and shear), and
the leading asymptotic coefficients for the aperture and pressure, for
varying 𝐾̂𝐼𝑐 are provided in Fig. 2. The transition between viscosity
and toughness dominated regimes can clearly be seen (starting near to
𝐾̂𝐼𝑐 = 1). It is interesting however to note that, in the viscosity domi-
nated regime, the coefficient 𝑝̂0 is almost exactly 𝜋(1− 𝜈) (with it being
exact for 𝐾̂𝐼𝑐 ≡ 0), and behaves in a monotonic fashion with increasing
𝐾̂𝐼𝑐 . The combination of near-constant 𝑝̂0 in the viscosity dominated
regime and increasing 𝐾̂𝐼𝑐 , leads to 𝑤̂0 monotonically increasing with
𝐾̂𝐼𝑐 , overcoming the non-monotonic behaviour observed in (2.40).

It is also apparent from Fig. 2 that the modified formulation is an
effective substitute when computing the local parameters describing the
crack tip, with there being no noticeable difference between the full
shear/modified variants.1 Consequently, incorporating the tangential
traction can have a benefit in reducing algorithm complexity. The
more complicated form of the elasticity equation can be incorporated
solely through the updated integral definition of the stress intensity
factor without significantly impacting the result, and instead only the
updated asymptotics and fracture criterion incorporated, to simplify the
modelling of hydraulic fracture during viscosity-toughness transition.

3.2. The fracture tip vs. near-tip asymptotics

While incorporating the updated system asymptotics has a notable
benefit on simplifying algorithm construction, it may have a detrimen-
tal effect on how effectively the first term of the crack tip asymptotics
approximate key problem parameters. This is because the updated sys-
tem asymptotics for the viscosity dominated regime now only describe
the behaviour at the fracture tip, while experimental results indicate
that the near-tip behaviour remains the same as ‘classical’ asymptotics
for the viscosity dominated regime (Bunger and Detournay, 2008). This
is crucial to understand, as in the case without tangential traction
the leading asymptotic terms for the aperture and pressure are highly
effective at approximating the solution (see e.g. Savitski and Detournay
(2002)), and form the basis of many semi-analytical approximations

1 For example, asymptotic coefficient 𝑤̂0 has a relative difference between
he ‘full shear’ and ‘modified’ variants of 2% or below in the viscosity
ominated regime with 𝜈 = 0.1, and below 1% for 𝜈 = 0.3, both of which
apidly decrease when entering the toughness dominated regime. For 𝑝̂0, the
ifference is negligible (of order 10−10 for 𝐾̂𝐼𝑐 = 10−4) except at the point of
ransition between viscosity and toughness dominated regimes, where there is

maximum relative difference of just below 1%.
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Fig. 2. The relationship between the self-similar material toughness 𝐾̂𝐼𝑐 and the system stress intensity factors. Here we show the self-similar forms of: (a) the shear stress intensity
factor 𝐾̂𝑓 , (b) the mode-I stress intensity factor 𝐾̂𝐼 , and the leading term of the system asymptotics for (c) the aperture 𝑤, (d) the pressure 𝑝.

Fig. 3. (a) Log–log plot of the aperture over the leading tip asymptote 𝑤̂(𝑟)∕
√

1 − 𝑟 in the viscosity dominated regime (𝐾̂𝐼𝑐 = 0) with (black, solid line) and without (red, dashed
line) tangential traction for 𝜈 = 0.3. (b) The exponent of the first-term asymptotics (1 − 𝑟)𝛼(𝑟) (3.3)–(3.4) which best describes the behaviour of the aperture at point 𝑟.
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Fig. 4. The smallest distance from the fracture front 𝑟𝛼 (3.5) where the exponent 𝛼(𝑟)
of the near-tip aperture asymptotics is 1% greater than the exponent at the fracture
tip (𝛼 = 0.5).

(see e.g. Dontsov (2016)). Consequently, differing fracture tip and near-
tip behaviour may reduce the effectiveness of these approaches, and
need to be accounted for.

To investigate whether there is any divergence in the crack tip and
near-tip behaviour of the leading asymptotic term of the aperture, we
consider the exponent, denoted 𝛼

𝑤̂(𝑟) ≈ 𝑤̂0 (1 − 𝑟)
𝛼 . (3.3)

We consider this for fixed points in space 𝑟, to determine the associated
constant 𝛼 which best describes the behaviour of the aperture. It can
be demonstrated that this exponent, 𝛼(𝑟), is given by

𝛼(𝑟) = − 1
log (1 − 𝑟) ∫

1

𝑟

1
𝑤̂(𝜉)

𝑑𝑤̂
𝑑𝜉

𝑑𝜉. (3.4)

The deviation of this parameter away from the value at the crack tip
(𝛼 = 1∕2) gives an indication of the extent to which the aperture
can be described by it’s leading crack-tip asymptotic term along the
fracture front. We compute 𝛼 for each 𝑟 numerically, using spline-based
pproaches, for both the ‘classical’ case and the case with tangential
raction (including the full elasticity equation). An example for the
iscosity dominated regime (𝐾̂𝐼𝑐 = 0) is provided in Fig. 3, with
ll other material constants as in Table 1. It is immediately apparent
hat, while in the case without tangential traction the tip asymptotics
ill provide a highly accurate description of the solution behaviour
ven beyond the near-tip region, the crack tip asymptotics are not as
ffective at approximating the whole fracture when the shear stress
s accounted for. In the case with tangential traction the exponent 𝛼
as deviated from the tip solution by 16% for 𝑟 = 0.999, and by 23%
or 𝑟 = 0.99, while the deviation is less than 0.5% for 𝑟 = 0.99 when
the shear stress is neglected. This trend for the viscosity dominated
regime holds true irrespective of the value of Poisson’s ratio 𝜈 being
considered, although will become less significant when transitioning to
the toughness dominated regime (for which the asymptotics between
the two cases are unchanged).

To better examine this behaviour, let us consider the smallest dis-
tance away from the crack tip where the exponent of the near-tip
aperture asymptotics 𝛼(𝑟) is 1% greater than that of the crack tip
asymptotics (𝛼 = 1∕2). We label this new length 𝑟𝛼 :

𝑟𝛼 = min {1 − 𝑟 ∈ [0, 1] ∶ 𝛼(𝑟) > 0.505} . (3.5)

The plot of 𝑟𝛼 over 𝐾̂𝐼𝑐 , for various values of the Poisson’s ratio 𝜈, is
iven in Fig. 4. It is immediately apparent that the near-tip asymptote
7

s

begins to deviate from the crack-tip exponent exceptionally close to
the fracture front in the viscosity dominated regime, with it occurring
when 1 − 𝑟 < 10−5 for all Poisson’s ratio 𝜈 when 𝐾̂𝐼𝑐 = 0. The crack tip
asymptote however provides a far better approximation of the near-tip
behaviour with increasing 𝐾̂𝐼𝑐 , with the distance 𝑟𝛼 where the exponent
differs by 1% being of order 10−4 for all 𝜈 when 𝐾̂𝐼𝑐 = 1. This trend
is not surprising, as the tip asymptotics in the toughness dominated
regime are unchanged from the classical case, and have been confirmed
to correspond to the near-tip asymptotics in experiments (Bunger and
Detournay, 2008).

We conclude that the crack tip asymptotics do not correspond to
the near-tip asymptotics even a short distance from the front in the vis-
cosity dominated regime when tangential traction is incorporated. This
adds additional difficulty to the modelling of problems incorporating
this effect, and must be accounted when constructing such algorithms
or semi-analytical solutions.

4. Analysis of the time-dependent formulation

Having investigated the effect of incorporating the tangential trac-
tion on the construction of numerical solvers, we can now move to-
wards an examination of the quantitative effect of the tangential trac-
tion in the time-dependent case.

The numerical solver used to obtain time-dependent results is out-
lined in Da Fies (2020). It follows a similar ‘‘universal algorithm’’
methodology to that for the self-similar case, utilising the fluid velocity
(2.14) as a process parameter, tracing the fracture front using the
associated Stefan-type condition (2.16), and employing rigorous use
of the system asymptotics (2.22)–(2.25) to properly treat any singular
points at all stages of the algorithm. The algorithm is also adaptive
in both the spatial and temporal dimensions, ensuring a high level of
accuracy over the whole domain.2 The reader is referred to Da Fies
(2020) for further details.

Throughout the investigation, the parameter 𝛿 introduced in (2.9)
will be utilised to parameterise the fracture regime (viscosity, transient
or toughness dominated). An initial examination against the reference
case of HF in shale will be conducted, before examining the impact of
different parameters on the significance of the shear stress for a variety
of applications.

4.1. Quantitative impact of the shear stress

4.1.1. The reference case - hydraulic fracturing of shale rock
We first consider the quantitative effect of the tangential traction for

the case of a hydraulic fracture in shale, as encountered in numerous
(typically energy-related) applications. The reference values for the
material constants and process parameters are provided in Table 2, with
the values of the Young’s modulus 𝐸 and Poisson’s ratio 𝜈 taken in line
ith values typically encountered during hydraulic fracturing in rock,
nd the material toughness 𝐾𝐼𝑐 from the range given in Chandler et al.
(2016). The pumping rate and viscosity may vary widely between sites,
and even stages of the HF process, so convenient but reasonable values
were taken for simplicity. Finally, the shear-related constant 𝛽 (2.18)–
(2.20) was chosen to minimise the effect of the tangential traction, to
avoid unfairly biasing the result.

The relative difference, 𝛥, for the fracture (half-)length 𝑙(𝑡), the
perture 𝑤(𝑟, 𝑡) and fluid pressure 𝑝(𝑟, 𝑡) between the case with and
without tangential traction are provided in Fig. 5, alongside the values
of 𝛿(𝑡) parameterising the regime. It can be seen that the aperture
achieves a difference larger than 1% at the crack tip for time 𝑡 = 10−4,
however this is only at the tip and dissipates rapidly over time. Over
the remainder of the domain, and for the crack length, the relative

2 All simulations were run to the level of accuracy necessary to confirm the
tated results.
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Fig. 5. The relative difference, 𝛥, of the (a) the crack (half-)length 𝑙(𝑡), (c) the aperture 𝑤(𝑟, 𝑡), (d) the pressure 𝑝(𝑟, 𝑡), between the case with and without tangential traction on
the fracture walls for the reference case of HF in shale rock (material constants in Table 2). Here time 𝑡 [s] is not normalised, while the crack length 𝑟 is normalised over the
ength (3.1)1. In (b) 𝛿(𝑡) which parameterises whether the system is in the viscosity (𝛿 ≪ 1) or toughness (𝛿 ≫ 1) dominated regime (2.9).
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ifference is of order 10−4 or below even at 𝑡 = 0.0001 s,3 and decreases
o order 10−7 away from the crack tip within 100 s. The difference
f the pressure is of a similar order to the aperture, both at the tip
nd over the domain, with the only exception being that the relative
ifference near the crack tip briefly tends to infinity due to a change
n sign. From Fig. 5b, it can be seen that 100 s is approximately the
ime when the crack begins transitioning to the toughness dominated
egime, meaning that the effect of the shear becomes negligible even
efore this transition occurs.

.1.2. Effect of the material/process parameters
With the reference case now established, we can consider a wider

ange of process parameters to determine whether the traction may be
mpactful in any other contexts. Noting that the relative difference over
he crack length in Fig. 5a is consistently of the same order as that of
the aperture and pressure (Fig. 5b,c) over almost the entire domain
(except the crack tip) at each point in time, only the relative difference

3 Note that throughout Section 4 we are evaluating over such small times or
high values of the viscosity in order to demonstrate what would be required to
obtain a non-negligible impact of the shear stress within the current model. To
accurately model these scenarios modifications should be made to the model,
most notably incorporating the fluid lag (see e.g. Lecampion and Detournay
8

(2007)). r
Table 2
Reference values of the material constants and process parameters used in simulations.
Note that the pumping rate 𝑄0(𝑡) is taken as constant, while 𝛽 defines the behaviour
of the shear stress at the injection point (2.18)–(2.20).
𝐸 𝜈 𝜇 𝑄0 𝐾𝐼𝑐 𝛽

2.81 × 1010 [Pa] 0.25 1 × 10−3 [Pa s] 6.62 × 10−2 [m3/s] 1 × 106 [Pa m
1
2 ] 1

of the fracture length will be provided in the remaining subsections
for the sake of brevity.4 Additionally, in all subsequent figures the
relative difference for the reference case in Section 4.1.1, is shown
on each figure as a dashed black line. Note that we are focusing on
a narrower temporal range in Fig. 6 and subsequent figures (𝑡 ∈ [0, 105]
) compared to Fig. 5 (𝑡 ∈ [10−4, 106] s), to focus on the most important
rea of effect.
We begin by examining the effect of varying the fracture toughness

𝐼𝑐 . The relative difference 𝛥𝑙 obtained for a variety of toughness’
re provided in Fig. 6. It can be seen that having a lower fracture
oughness does increase the effect of the shear, but only up to a certain

4 The authors computed the average of the relative differences over the
rack length for the aperture and fluid pressure for each simulation in the
emainder of the paper, and confirmed that they are of identical order.
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Fig. 6. The effect of the material toughness 𝐾𝐼𝑐 [Pa m
1
2 ] on the impact of the shear stress. All other material parameters are taken as in Table 2: (a) the relative difference in the

rack length 𝑙(𝑡), against the case without tangential traction, (b) 𝛿(𝑡) which parameterises whether the system is in the viscosity (𝛿 ≪ 1) or toughness (𝛿 ≫ 1) dominated regime
(2.9).
Fig. 7. The effect of the Young’s modulus 𝐸 [Pa] on the impact of the shear stress. All other material parameters are taken as in Table 2: (a) the relative difference in the crack
length 𝑙(𝑡), against the case without tangential traction, (b) 𝛿(𝑡) which parameterises whether the system is in the viscosity (𝛿 ≪ 1) or toughness (𝛿 ≫ 1) dominated regime (2.9).
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point. For both 𝐾𝐼𝑐 = 104 Pa m
1
2 and 𝐾𝐼𝑐 = 105 Pa m

1
2 the relative

ifference is almost identical. This is because taking a significantly
ower toughness places it further into the viscosity dominated regime,
here the material toughness has a significantly smaller effect on
he crack evolution. Meanwhile, increasing the toughness significantly
ecreases the impact of the shear, with the difference clearly tending to
ero in the limiting case of an immobile crack. We can conclude that
hanging the toughness alone will not cause the effect of tangential
raction to be significant.

This trend continues when considering the Young’s modulus 𝐸,
hich is shown in Fig. 7. Here, taking a very low value of the Young’s
odulus (<2.81 ⋅ 108 Pa) results in the fracture starting in the tough-
ess regime, where the effect of the tangential traction is negligible.
onversely, while having a higher Young’s modulus does lead to the
racture remaining the viscosity dominated regime for a longer time pe-
iod, this does not always increase the effect of the tangential traction.
nstead, for the material constants (aside from 𝐸) taken as in Table 2,
he effect of the tangential traction appears to be maximised when the
oung’s modulus is between 1010 and 1012, with the relative difference
ecreasing with increasing Young’s modulus after that point. We can
9

i

onclude that the impact of the shear stress increases as 𝐸 decreases,
but only if the system remains in the viscosity dominated regime.

Next, we examine the effect of varying the Poisson’s ratio 𝜈, with
he relative differences provided in Fig. 8. Here, it is clear that when
he Poisson’s ratio is low (𝜈 < 0.4), the impact of the tangential traction
s not significantly affected by changing 𝜈. However, this changes in the
imit as 𝜈 → 0.5, with the shear stress playing a rapidly diminishing role
s the Poisson’s ratio increases.
In the final set of figures, Fig. 9, we examine the effect of changing

he fluid viscosity3. It can be seen that this parameter plays the largest
ole in determining the effect of the tangential traction, with very
igh viscosity leading to a shear stress that can significantly effect the
esulting fracture length. Taking a value of 𝜇 = 1012 Pa s, which can
e found for some forms of magma, leads to a difference that is above
% even after 104 s. However, outside of this particularly extreme case
he effect of the tangential traction remains small, and even fluids with
n exceptionally high viscosity 𝜇 = 106 Pa s experiencing a relative
ifference below 1% even at 𝑡 = 1 s.
Finally, it should be stated that the pumping rate 𝑄0 will not

ignificantly effect the impact of the tangential traction. Increasing 𝑄0
s equivalent to decreasing the toughness 𝐾 , which does not produce a
𝐼𝑐
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1

𝛥

Fig. 8. The effect of the Poisson’s ratio 𝜈 on the impact of the shear stress. All other material parameters are taken as in Table 2: (a) the relative difference in the crack length
𝑙(𝑡), against the case without tangential traction, (b) 𝛿(𝑡) which parameterises whether the system is in the viscosity (𝛿 ≪ 1) or toughness (𝛿 ≫ 1) dominated regime (2.9).
Fig. 9. The effect of the fluid viscosity 𝜇 [Pa s] on the impact of the shear stress. All other material parameters are taken as in Table 2: (a) the relative difference in the crack
length 𝑙(𝑡), against the case without tangential traction, (b) 𝛿(𝑡) which parameterises whether the system is in the viscosity (𝛿 ≪ 1) or toughness (𝛿 ≫ 1) dominated regime (2.9).
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sizable effect (see Fig. 6). Decreasing the pumping rate 𝑄0 meanwhile,
like increasing 𝐾𝐼𝑐 , reduces the effect of shear stress. Consequently,
altering the pumping rate cannot lead to a significant impact of the
tangential traction compared to the classical case.

4.1.3. Estimate of the quantitative impact in the viscosity dominated regime
With the impact of the tangential traction for each parameter indi-

vidually now considered, it is useful to provide a method of approx-
imating the relative effect that the tangential traction may have in a
given scenario. To do this, we note from the results of the previous
subsection that the shear stress remained negligible in the toughness
dominated regime for all of the cases considered. Consequently, only
the viscosity dominated regime needs to be considered, and the typical
scalings for the viscosity dominated regime can be used to provide an
estimate of the relative error for the crack length.

It can be demonstrated that in the viscosity dominated regime (𝛿 ≪
), if the relative deviation 𝛥𝑙 is small (𝛥𝑙 ≪ 1), then it behaves as

𝑙 ≈ 0.17
[

(1 − 𝜈2)𝜇
𝐸𝑡

]

3.16
6

+ 0.25
( 1 − 2𝜈
1 − 𝜈

)

[

(1 − 𝜈2)𝜇
𝐸𝑡

]

1
3
. (4.1)

Here the first term comes from the viscosity dominated scaling (Gara-
gash, 2009) (see also e.g. Dontsov (2019), Garagash et al. (2011) and
10

d

Peirce and Detournay (2008)) accounting for the modified stress in-
tensity factor, while the second was obtained using numerical analysis
when varying the values of the parameters. In the toughness dominated
regime, or where the effect of shear stress is not negligible, it can be
demonstrated that this estimate will act as an upper bound on the
relative difference. The regime can be approximated by noting that,
in the viscosity dominated regime, the parameter 𝛿(𝑡) behaves as

𝛿 ∼ 0.9642

[

𝐾18
𝐼𝑐 (1 − 𝜈

2)13

𝜇5𝐸13𝑄3
0

]
1
18

𝑡
1
9 , 𝛿 ≪ 1.

Recall that (4.1) will also provide an estimate of the order of the
ifference in the fracture aperture and fluid pressure away from the
rack tip (see Section 4.1.1), and as such can be used to estimate the
irect impact of the tangential traction for all key process parameters.
his was confirmed in numerous simulations by the authors, using
everal different combinations of parameters that span all cases.
Consequently, this can be used to determine if the shear will likely

lay any direct, quantitatively significant, role in a given HF process,
ith the relative difference obtained for the reference example in
ection 4.1.1 acting as a point of comparison. Note however that it
s not possible to achieve an arbitrarily large relative deviation by
ecreasing the Young’s modulus 𝐸, as seen in Fig. 7, as this will cause
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Fig. 10. The fracture aperture 𝑤(𝑟, 𝑡) near the wellbore for varying 𝛽 at fixed moments in time. Here we evaluate over normalised spacial variable 𝑟, taking all material parameters
other than viscosity as in Table 2. We show at times (a), (b) 𝑡 = 10−4 s, (c), (d) 𝑡 = 1 s, for viscosity (a), (c) 𝜇 = 10−3 Pa s, (b), (d) 𝜇 = 103 Pa s.
a transition to the toughness dominated regime for which 𝛥𝑙 remains
negligible.

4.2. Effect at the injection point

The final quantitative investigation to conduct is an examination of
the parameter 𝛽, introduced into the model in Section 2.2 to account
for the stagnant zones of fluid reducing the tangential traction near the
wellbore (𝑟 = 0). As this parameter is assumed to be predefined, rather
than part of the solution, knowing the sensitivity of the solution to the
value of 𝛽 is crucial in understanding the ability of the model to make
accurate predictions near to 𝑟 = 0.

We begin by analysing the effect of this parameter on the aperture
near the wellbore. The fracture opening near 𝑟 = 0 is shown for a
variety of 𝛽 in Fig. 10, at two different time-steps and for two different
values of fluid viscosity 𝜇. The corresponding tangential traction 𝜏 is
provided for the case 𝜇 = 10−3 Pa s in Fig. 11. Two trends are imme-
diately apparent. Firstly, the effect of the parameter 𝛽 on the fracture
opening is dependent upon the viscosity, with a higher fluid viscosity
making the system more sensitive to the parameter 𝛽. The second clear
trend is that the impact of the shear stress reduces significantly with
time, in part as the tangential traction 𝜏 itself reduces rapidly with time
as shown in Fig. 11. There is very little difference in fracture opening
behaviour when 𝜇 = 10−3 Pa s at 𝑡 = 10−4 s, and even this difference has
11
disappeared by 𝑡 = 1 s. Similarly, while there is a far greater difference
in fracture profile for different 𝛽 when 𝜇 = 103 Pa s, the impact of the
tangential traction decreases significantly between 𝑡 = 10−4 s and 𝑡 = 1
s. One interesting observation is that for the crack aperture, when 𝛽 = 1
the case with shear remains above the classical case as 𝑟 → 0, but acts
to decrease it for larger values of 𝛽.

Finally, the values of the relative difference of the fracture aperture
𝑤, normal fluid pressure 𝑝 and the crack length 𝑙(𝑡), against the case
without tangential traction, are provided in Fig. 12, for a variety of
values 𝛽 at different points in time 𝑡. It can clearly be seen that the
differing behaviour near the wellbore does not significantly effect the
impact of the tangential traction on the key system parameters, with
the relative difference at the crack tip always exceeding that at the
wellbore while in the viscosity dominated regime, and negligible for
the toughness dominated regime. Finally, from Fig. 12c it can be seen
that the impact of the tangential traction on the fracture length is
largely independent of 𝛽, indicating that the effect of the stagnant zones
remains local to the fracture opening, and does not impact the global
parameters in a significant way.

5. Discussion and conclusions

An updated formulation for the radial (penny-shaped) model of
hydraulic fracture was created to account for the tangential traction
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Fig. 11. The tangential traction 𝜏 for varying 𝛽 at fixed moments in time. Here we evaluate over normalised spacial variable 𝑟, taking all material parameters as in Table 2,
including viscosity 𝜇 = 10−3 Pa s corresponding to those in Fig. 10a,c. We show at times (a) 𝑡 = 10−4 s, (b) 𝑡 = 1 s.

Fig. 12. The relative difference 𝛥 of the (a) fracture aperture 𝑤(𝑟, 𝑡) and (b) normal fluid pressure 𝑝(𝑟, 𝑡), over normalised spacial variable 𝑟 at fixed moments in time and (c) the
crack length over time, for various 𝛽 (2.18)–(2.20). Here all material parameters are taken as in Table 2, including viscosity 𝜇 = 10−3 Pa s.
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on the fracture walls. This model incorporated the updated fracture
criterion, system asymptotics, and accounted for the stagnant zone
formation of fluid near the injection point. An examination of the
impact of the shear on both the construction of numerical solvers, and
the direct quantitative effect on the solution for the time-dependent
case, was undertaken.

It was demonstrated that:

• As the crack tip asymptotics for the key system parameters
no longer vary between the viscosity and toughness dominated
regimes, incorporating the tangential traction into numerical
solvers eliminates the need to implement methods of transition
between the different regimes (similar to that shown for the
KGD model Wrobel et al., 2017). It was also demonstrated that
a modified model, utilising the classical elasticity equation and
incorporating the shear effects via the updated integral defi-
nition of the stress intensity factor, could accurately compute
the updated tip parameters (asymptotic coefficients and stress
intensity factors), simplifying the application of this approach.
This ‘automatic switch’ can simplify the construction of solvers
handling the viscosity-toughness transition, however may make
the leading term of the crack tip asymptotics less effective at
approximating the system parameters (aperture, fluid pressure).

• The direct impact of the shear stress on the process parameters
(aperture, fluid pressure, crack length) is negligible for the vast
majority of applications. There was no examined scenario for
which the shear stress played any significant role in the toughness
dominated regime. In the viscosity dominated regime, it was
only possible that the tangential traction may influence the crack
development in the case of exceptionally viscous materials, such
as magmatic fracture. The model would however require some
modification to accurately describe such extreme cases.

• An estimate for the effect of the tangential traction in the viscosity
dominated regime was provided (4.1). This allows the order of
the change in crack length 𝑙(𝑡) resulting from the traction to be
approximated, which was of the same order to the average of that
for the crack aperture 𝑤(𝑟, 𝑡) and fluid pressure 𝑝(𝑟, 𝑡) away from
the fracture front in all simulations conducted by the authors.

• The stagnant zones near the injection point 𝑟 = 0 were accounted
for by updating the formulation of the tangential traction 𝜏,
including the introduction of a new (pre-defined) parameter 𝛽
(2.18)–(2.20). The aperture profile was shown to have some sensi-
tivity to this parameter for high viscosities, however it diminished
rapidly with time. The impact of the tangential traction on the
aperture and fluid pressure profiles always appeared to be more
significant at the crack tip than that observed at the injection
point for the Newtonian fluid considered here, while the impact
on global parameters (such as the crack length) does not appear
to be significant.

The presented results indicate that the direct impact of shear stress
s largely negligible for radial hydraulic fracture. The shear stress may
lay some role in HF models for use in volcanology, where exception-
lly high viscosity magma plays a role, however the current model
ould need to be modified to provide accurate predictions in this
nstance. Incorporating the tangential traction does however offer some
enefits for the construction of HF algorithms, due to the ‘automatic
witch’ between viscosity and toughness dominated regimes, but this
as to be balanced against the reduced effectiveness of the crack tip
symptotics to approximate the system parameters.

It should be noted however that the tangential traction may still
lay an important role for penny-shaped fractures in special cases.
or example, the impact of the stagnant zone formation will depend
pon the fluid properties, and some classes of non-Newtonian fluids
13

ill need to account for this feature (for example, in plastic fluids it
may influence the activation of plastic behaviour). The impact of fluid-
induced shear could also be significant in cases where the solid behaves
as a hyperelastic material.

It is also important to consider the secondary role that tangential
traction may play in hydraulic fracture processes, in areas that this
model did not account for. For instance, the tangential traction has been
shown to play some role in crack redirection (Perkowska et al., 2017;
Wrobel et al., 2019), and may induce ‘wrinkling’ in the near-tip region
when plasticity is accounted for. These effects however require further
investigation.
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