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Abstract Due to the complexities of indoor WiFi signal propagations, it is chal-
lenging to improvethe performance of indoor fingerprint-based positioning tech-
niques which is the main hot research in Internet of Things (IoT). Most existing
methods have limited positioning accuracy, since they do not take the full advan-
tage of the information available, i.e. timing information attached to the Received
Signal Strength Indication (RSSI) vector, and adopt the inappropriate training
methods. This paper proposes an indoor localization method based on Convo-
lutional Neural Network (CNN) by using time-series RSSI, termed CTSLoc, by
taking into account the correlation among RSSI in time and space. A CNN model
is used to extract the temporal fluctuation patterns of RSSI and learn the nonlin-
ear mappings from the signal features with time and space to position coordinates.
Finally the trained model is used to predict the user’s location. An extensive ex-
periment has been carried out in a space with the size of nearly 1000 squared
meters, and a comprehensive comparison with several existing methods indicates
that CTSLoc attains a lower average localization error (i.e. 4.23m) and more sta-
ble performance than those methods. The CTSLoc method performs relatively
less dependent on the amount of data which also eliminates spatial ambiguity and
reduces the effect of noise on localization.
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1 Introduction

In recent years, with the development and popularization of Internet of Things
(IoT), location based services (LBSs) get a great demand and application prospec-
t. Global positioning system (GPS) has widely developed in outdoor environments
while it works in indoor environments [1]. Therefore, great efforts have been devot-
ed to the development of indoor positioning systems (IPS) to achieve reliable and
accurate indoor positioning and navigation [1] in the past two decades, meeting
people’s increasingly demanding needs for indoor positioning. Which is the main
and hot research in IoT and IPS area.

At present, many technologies are extensively used in indoor positioning such
as [2] RFID, Bluetooth, UWB, WiFi, etc. Among them, WiFi positioning is widely
used due to its advantages of convenient deployment, wide coverage, high accuracy,
and low cost. Nowadays, WiFi network infrastructures are universally deployed in
indoor environments, and almost every ready-made mobile device supports WiFi
[1], so RSSI can be easier obtained than Channel State Information (CSI) from
most WiFi receivers (mobile devices) [4,24]. CSI requires specific hardware devices
or modified the device driver to acquire it from some advanced WiFi network
interface cards [1]. Therefore, indoor positioning based on RSSI is still mainstream.

Due to the complexities of indoor WiFi signal propagations and the device
heterogeneity and spatial ambiguity [5], it is challenging to improvethe perfor-
mance of indoor fingerprint-based positioning techniques. Most existing methods
are mainly based on probabilistic methods (i.e. Gaussian distribution, log-normal
distribution, etc. [8]), deterministic methods (i.e. KNN, SVM, etc. [10-12]) and
neural network methods (i.e. ANN, DNN, etc. [26,10,4]). Which mainly use one
single RSSI vector for positioning. These methods have limited positioning accu-
racy, since they do not take the full advantage of the information available, which
can able to investigate the relationships inside Received Signal Strength Indication
(RSSI) vector, i.e. timing information attached to the RSSI. What’s more, some
researchers adopt the inappropriate training methods [25].

Therefore, this paper proposes an indoor localization method based on Con-
volutional Neural Network (CNN) by using time-series RSSI, termed CTSLoc.
CTSLoc, taking into account the relationship among RSSI in time and space, is
to reduce the limitation of positioning accuracy by attaching timing information
on RSSI vector. In CTSLoc, a CNN model is used to extract the temporal fluctu-
ation patterns of RSSI and learn the nonlinear mappings from the signal features
with time and space to position coordinates. Finally the trained model is used to
predict the user’s location. Which attains higher accuracy and better performance
than some existing methods.

The main contributions of this paper are as follows.

(1) Better performance on indoor localization: the proposed method CTSLoc
takes the full advantage of timing information attached to the RSSI vector in
trajectory. Taking into account the correlation among RSSI in time and space
which attains better performance than existing methods.

(2) Reducing data noises: the CTSLoc method performs relatively less depen-
dent on the amount of data which also eliminates spatial ambiguity and reduces
the effect of noise on localization. The method of data preprocessing is effective in
CTSLoc.
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(3) Estimation and verification: to estimate and verify the performance and
the effectiveness of CTSLoc, there carried out an extensive experiment. Then a
series of analyses have given in the following.

The paper is organized as follows: the second section is Related work, which
summarizes and introduces the current research methods for WiFi indoor localiza-
tion. The third section describes the CTSLoc localization model proposed in detail
in this paper. The fourth part describes how the model was established and tested,
and explains the experimental results in detail. Conclusions will be provided at
the end.

2 Related Work

In this paper, WiFi-fingerprint-based methods are summarized into the following
three categories: probabilistic methods, deterministic methods, and neural network
methods.

In the probabilistic approach, the probability density function of RSSI has
been assumed a certain distribution of empirical parameters, such as Gaussian
distribution, lognormal distribution, etc. [8]. Based on this empirical basis, the
literature [9] uses the fitted RSS Gaussian distribution as a location fingerprint
to achieve a matching localization between it and the target signal measurements.
However, it is not always correct in practice. Compared to other probabilistic
systems of the same type, the literature [13] uses a large amount of data for
statistical inference to obtain an accurate probability density function, which yields
better performance and accuracy. However, it requires a large number of APs
for each reference points to obtain a large amount of data, which increases the
difficulty and cost of deployment.

In deterministic methods, RSSI is usually used as a feature parameter in com-
bination with a deterministic matching algorithm for location estimation. [10-12]
based on KNN method uses a similarity measure to distinguish between fingerprint
data and measurement signals in a dataset, and identifies the target point to be
measured as the reference point (RP) in the fingerprint library that is closest to
its fingerprint in order to determine the node location. The complexity of this al-
gorithm, although low, while does not applicable to unstable indoor environments
with the wide fluctuations of RSSI signals. Once the environment changes, the
location fingerprint library needs to be rebuilt.

Compared to these algorithms, deep learning methods attain more stable and
accurate classification [26]. The literature [10] introduces the extracted information
into a shallow neural network to nonlinearly estimate node position coordinates.
Literature [15] calibrates the localization results by adjusting the loss function
and weights in the CNN model. The authors in [17,18] propose a traditional DNN-
based WiF1i fingerprint localization method and experimentally demonstrated that
the proposed 4-layer network combined with a hidden Markov model is effective in
extracting RSSI signal features and generating initial localization estimates [24].

Table 1 summarizes the main fingerprint-based methods above.

However, the above methods use a single vector of RSSI and do not take full
advantage of the information available. The localization accuracy is limited by
the noise from individual RSSI readings. Thus, although it has been extensively
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Table 1 Comparisons of main fingerprint-based indoor localization methods

methods probabilistic methods deterministic methods neural network meth-
ods
Characteristic probability density RSSI is used as a fea- nonlinearly estimate n-
function of RSSI is ture parameter in com- ode position coordi-
assumed a certain dis- bination with a deter- nates with RSSI
tribution of empirical ministic matching algo-
parameters rithm for location esti-
mation
Advantages High accuracy low complexity of algo-  High accuracy and sta-
rithm ble performance
Disadvantages Large scale of data are  unstable with the wide unappropriate training
needed to verify the fluctuations of RSSI  method is significantly
correction of probabil-  signals, the location unfavorable for train-
ity distribution fingerprint library  ing duration and accu-
needs to be rebuilt racy
Once the environment
changes
Common Gaussian distribution, SVM, KNN, WKNN, ANN, DNN, RNN, etc.
methods Lognormal  distribu-  etc.
tion, etc.

studied, indoor locating based on a single RSSI vector still presents the following
problems [19].

(1) Randomly fluctuations in RSSI make the observed location fingerprint data
in the testing phase may not match the data in the training phase [6].

(2) The time of data sampling on each reference point is usually short, while
most existing methods need a large amount of data.

(3) Some physically distant locations may also have similar fingerprints or
fingerprint distances compared to the current location, resulting in ambiguous
localization results.

There emerge some localization methods based on trajectory RSSI. The au-
thors in [14] introduce a CNN model that uses time-series RSSI and achieves high
accuracy on the classification of multi-building and multi-floor. But the proposed
model has no attribute to coordinating estimation [27]. The RNN model proposed
in [4] for trajectory localization took into account the correlation between RSSI,
which obtained high localization accuracy. In this paper, training trajectories were
generated by RPs then a large scale of training dataset is established. However,
the RPs were randomly selected by Probabilistic Map which was established by
Euclidean distance. Therefore, the correlation between RSSI has uncertainty and
may not follow reality.

In order to solve problems in the current indoor positioning methods, this
paper proposes an indoor localization method based on CNN by using time-series
RSSI, termed CTSLoc, to fill in some gaps of current research.

(1) Taking into account the attaching information on RSSI, timing information
has been utilized in the form of time-series to take full advantage of the information
available.

(2) Collecting and establishing time-series dataset.

(3) CNN model is used in the area of time-series task of indoor localization.
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In CTSLoc, a CNN model is used to extract the temporal fluctuation patterns
of RSSI and learn the nonlinear mappings from the signal features with time and
space to position coordinates. Finally, the trained model is used to predict the
user’s location. An extensive experiment has been carried out in a space with the
size of nearly 1000 squared meters, and a comprehensive comparison with several
existing methods indicates that CTSLoc attainsa lower average localization error
(i.e. 4.23m) and more stable performance than those methods [22]. The CTSLoc
method performs relatively less dependent on the amount of data, which also
eliminates spatial ambiguity and reduces the effect of noise on localization.

3 CTSLoc Overview

This paper presents CTSLoc, an indoor localization method based on CNN by
using time-series RSSI, which attains a lower average localization error and more
stable performance than those methods. Analyzed by the propagation model:

RSSI = P, — K — 10alogiod (1)

where « is called the path loss index, Pt is the transmitting power, and K is
a constant that depends on the environment and frequency [20]. The attenuation
of RSSI fluctuates nonlinearly with time and distance at locations at different
distances from the source. User’s movement is restricted and the normal speed V
is 0.4m/s - 2m/s [21], the distance within the sampling interval T is S =V * T
Therefore, in continuous time we are able to obtain continuous trajectories. Con-
sidering the correlation among RSSI in time and space in continuous trajectories
to preserve the nonlinear fluctuating characteristics. In addition, CNN is highly ef-
fective in image problems which has superiority on CTSLoc’s dataset. The dataset
has two-dimensional matrix constructed from RSSI which is similar to grayscale
images.

Based on this, this paper proposes a method for localization using time-series
RSSI measurements that use a convolutional neural network model to learn the
temporal fluctuation patterns of the time-series RSSI which can be abbreviated as
CTSLoc, extract the temporal features of the signal with a nonlinear mapping to
time and space, and finally predict the user’s location using the established model.

3.1 Data Acquisition And Processing

The raw data is a series of one-dimensional vectors consisting of RSSIs collect-
ed by the collector from N APs in an experimental environment, defined as
(SSID, MAC,RSSI,T), where each M AC represents only an individual specific
AP. Since the data collection is based on a predefined path, location coordinates
at the start and end points are recorded at each collection. Assume that there are
a total of M reference points in the experimental field, N APs, and the acquisition
time is T'. Then the RSSI vector from N APs collected at the iy, time point T; is
labeled as:

ry = [RSSI{', RSSIy .- ,RSSI}, -, RSSIy] (2)
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where i =1,---, T, 5=1,--- N ; RSSI;Z denotes the RSSI values from the
Jin AP collected at the T' = 44, time point. The corresponding position coordinates
are: loc; = (locgi, locyi), i =1,--- , T, where locg; and locy; denote the horizontal
and vertical coordinates of the position in space at the i), time point, respectively.
Then the total vectors collected in the measured area are expressed as

Ry = [ryiris- 7y ] (3)
The corresponding matrix of all position coordinates is
Ly = [la; 125+ ;7] (4)

Conventional methods typically average the collected data over RSSI vectors
by location, with each location corresponding to a 1 x N dimensional vector, to
construct an M x N dimensional fingerprint library, where M is a predetermined
number of reference points. However, such a method may have large deviations in
the averaged data due to the existence of outliers, and a large amount of important
information will be lost if multiple RSSI values are averaged, which in addition
disrupts the time series arrangement of the data and does not take advantage of
the temporal features [23].

Our approach is different, to exploit the temporal characteristics of the signal,
the dataset construction method in this paper is to construct a temporal sequence
of RSSI vectors. A segment of RSSI trajectory data that is continuous in time
is selected and the end position of the segment is used as the coordinates of the
entire trajectory. The T' x N dataset is constructed as a time-sequential data set
by timestamp, i.e., the i, timestamp is denoted as t;. A sliding window is used
to implement the above conception. Assuming that the sliding window size is win
and the sliding step is 1, the RSSI feature matrix for the 4.5 time step W; can be
represented as a win X N matrix as follows

pPWi t; —win+1 t;i—1. pt;
Ry' = [Ry win ;o Ry Ry (5)
The corresponding position coordinates are loc; = (locgs,locy:), where i =
win — 1,--- ,T. That is, the position corresponding to the RSSI vector at the end

of the sliding window. This completes the mapping of the time series RSSI and
position coordinates. This method does not take into account the coordinates of
the middle position of the trajectory, and the original data are not averaged and
randomly selected, which not only ensures the accuracy of the position, but also
preserves the RSSI variation and decay characteristics intact, and takes advantage
of the time dependence between T' and the RSSI readings in the time series. The
training set and test set are constructed using the same size sliding window for
the RSSI measurements to ensure the consistency of the data scale and to lay the
data foundation for the use of CNN positioning.

3.2 Data Preprocessing

More than 100 APs were collected in the experimental field, some of which had a
large number of missing values or anomalies. Therefore, some abnormal APs need
to be cleaned up to avoid the model being contaminated by unstable APs. The
RSSI values are standardized to [-100,0], where 0 indicates the strongest signal
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Fig. 1 The Localization Process of CTSLoc

and -100 indicates a weak signal or no signal. The ones with the smallest missing
rate are chosen. By calculating the missing rate the final number of APs selected
is 20.

AP chosen is based on the AP missing rate. Suppose that N,, is used to
represent the number of elements in the my; column of the matrix R;‘C, of T x N
with a value of -100, i.e., the number of samples that represent the missing myp
AP. The missing rate Py, of the m, AP is denoted as

P, = Np/T (6)

3.3 CTSLoc Model

Specifically, the experimenter continuously collects RSSI data for all RPs in the
experimental field at a uniform velocity along a pre-defined trajectory. The col-
lected data are divided by temporal features, marking the start and end points of
the trajectory in chronological order, recording the direction of the trajectory, and
constructing a data set applicable to the proposed model. And based on the pre-
processed data, the CNN model is trained, and the corresponding position label
is obtained through feature matching, thus realizing the positioning of the timing
RSSI. The localization model conforming to the localization accuracy is obtained
and saved. After training, the experimenter continuously collects test data at a
uniform speed along the preset trajectory, processes the data in the same way,
and calculates the coordinates of the point to be measured. The model structure
is shown as Fig. 1. CNN is very prominent in image processing, and the dataset in
this paper is processed as a two-dimensional matrix of RSSI of size (win, N) which
is equivalent to a grayscale image of the same size. So CNN can better identify
the features characteristics in RSSI vector.

In CTSLoc, the CNN finds the non-linear mapping of RSSI to location infor-
mation by extracting features from the training data. Firstly, the training set is
selected to train the CNN model and the whole network is trained using gradient
descent and back propagation algorithm, when the loss function between adja-
cent iterations drops below the threshold or the number of iterations is satisfied,
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Fig. 2 The Structure of CTSLoc Model

the network reaches stability then the network parameters are saved, otherwise, a
new training sample input from the training sample set is selected to continue the
training.

The structure of a CNN generally consists of three parts: the convolution-
al layer, the pooling layer, and the fully connected layer, and by combining the
structure of the three parts in the CNN and adjusting the parameters, the C-
NN can be adjusted to be suitable for solving different problems. The CTSLoc
model adopts the structure of three convolutional layers, two maximum pooling
layers, and three full connection layers. Convolutional operations on the RSSI for
feature extraction. The max-pooling layers gradually reduce the space size of the
representation. These two parts preserve useful information and reducing the data
processing volume which could control overfitting to speed up the convergence of
the training network and to obtain new feature expressions. The distortion toler-
ance energy of the network is improved by feature extraction at the same time.
The flatten layer is added to compress the data and connect to the three fully
connected layers then obtain the results of the output layer. The model structure
is shown as Fig. 2.

The activation function used in CTSLoc after several experiments is rectified
linear unit (ReLU):

X, X>0

ReLU(X) = maz(0,X) = { 0. X <0 (7)

It is a segmented linear function commonly used segmented linear function in
deep neural networks and performs best in several experiments. It is a unilateral
inhibitory function which makes CTSLoc have sparse activation to reduces the
interdependence of parameters and alleviates the occurrence of overfitting prob-
lems, maintains the convergence of CTSLoc in a stable state to better exploit the
relevant features of RSSI. Loss function: the goal of neural networks’ training is
to minimize the loss function. In the CTSLoc model, the loss function is defined
as the Fuclidean distance between the output Y; and the predicted f/z in the back

propagation algorithm:
- 1 -
Loss(Y;,Yi) = ijl(Yi - Y,)? (®)

The performance of CTSLoc is calculated by Euclidean distance to measure
the performance of localization.
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D(XPreayP'r‘e; Xa Y) = ((XPre - X)2 + (YPT‘e - Y)Q)% (9)

Where Xp,. and Yp,. denote the predicted coordinates by CTSLoc, X and

Y are the measured coordinates in data collecting. D(Xpre,Ypre, X,Y) is the
FEuclidean distance between real and predicted coordinates which calculated by
(9). The average localization error is defined as:

D(i) = Di(Xpre,Ypre, X,Y) (10)

=1

In summary, the algorithm of CTSLoc is listed in Algorithm of CTSLoc.

Algorithm 1 Algorithm of CTSLoc

1:

2:

[y

12:
13:
14:

15:
: CNN training: use the preprocessed training data to train the proposed CNN model

17:
18:

o © 00

Original Data Collecting: collect original training and testing data based on predefined
paths, and record [SSID, MAC, RSSI,T] of each signal;

Training and testing dataset generating: denote RSSI vector from j;;, APs at the 44y,
time point Ti as: rﬁ\j = [RSSI?,RSSI;Z cee RSSI;." oo ,RSSIF\}];

: Establish the datasets:

T _ q.ti..t2. LetT.
RN*["’NJ'NM"J’NL

: The position coordinates is:

LY = [ly;lo;-- 5 l7];

: Time Window Data Partitioning: cut the data with sliding time window of length

win and step «;

: for i from win — 1 to T" do

W, _ t; —win+1, Cpti—1, ptiy,

RN _VI[/RN ""7RN 7RN]:
pPWi PW.

Add RN~toRN7

return RJV\‘,/;

: end for
: Data preprocessing: _
: for m from 1 to T in each columns of RJV\‘,/ do

if m == null then
end if
return N,,;

end for

Missing rate: Py, = Ny /T ;
if P,, > o then

Drop AP, ;
end if

until loss is stable; _
Loss(Y;,Y:) = 7 >o1_y (Vi — Vo) %
Save the best model on the hard disk;
Localization: Take in testing dataset as an input of the CTSLoc model, and use the
output I = (Xpre, Ypre) as a location estimate;

The important symbols and meanings are shown in Tab. 2
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Table 2 Important symbols and meanings

Symbol Meaning

RSSIi RSSI of ji, AP at iy, time

rhi the RSSI vector of N APs at ;;, time
R]%\, the matrix of total RSSI vectors

l; the location coordinates of i;;, time

L% the matrix of total coordinates

Wi the 4 time step

win the length of time step

Ryl time-series RSSI matrix of i4, time step
P, the missing rate of m;, AP

Np, the available number of RSSI of my, AP
ReLU(X) activation function

Loss(Y;,Y;) loss function

D(Xpre,Ypre, X,Y)  the Euclidean distance between real and predicted coordinates

4 Experiments

4.1 Setup

A large public space withthe size of nearly 1000 squaredmeters on the third floor
of Inner Mongolia University Library has been chosen as the experimental space

shown in the Fig. 3.

2 | 16.5m I(? 22 m 1®
"l
-

15m

16.5m ]

I
eannnn I
U

Total room area: 965.6 m 2

‘[:) 7.4m
fl'_ 1
29.8 m

14.6 m

145 m

Fig. 3 Floor Plan of The Experiment Space

There are 45 bookshelves with the height of about
bles and chairs in the reading area. The target space

2m, and a number of ta-
was divided into regular
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Table 3 The Environment of Software and Hardware

Categories Details
Software Operating System Windows 10
Developing Tools Pycharm 2020.3.3
MATLAB R2017b
CPU Intel(R) Core(TM) i7-4590
Destktop Computer RAM 16GB
Hard Disk Capacity 1TB
Hardware CPU Intel(R) Core(TM) i5-3337U
Laptop Computer RAM 8GB
Hard Disk Capacity 1TB
Mobile Device Mobile Phone Huawei P7

grid points spaced at 1m intervals as reference points, and a total of 938 refer-
ence points were selected. The train and test set data were collected at different
times in scenarios with people walking around irregularly. The experimenter held
a smartphone to collect RSSI information by walking along preset trajectories to
generate experimental data. Due to the WiFi signal propagations, the speed when
data collecting needs to be controlled to approximate a uniform velocity. At the
same time, this also makes contributions to accurately estimate according to time
and speed.

The experiment has been established on both desktop and laptop, the hardware
and software environments are shown in Table 3. And there shows variations on
training duration between the two devices.

In addition, the number of APs that can be collected in the experimental
environment exceeds 100, and there are some locations where little or no signal
can be collected, then the 20 APs with the strongest signals are selected for the
experiment. For some signals that cannot be collected at some reference points,
the default minimum value of -100 is taken.

4.2 Experimental Results and Analysis

To verify the efficiency and superiority of CTSLoc, extensive experiments have
been taken place. The experimental results are compared with existing methods
and show that CTSLoc obtains lower localization error. The results of ten posi-
tioning experiments are shown in Table 4 with an average error of 4.23 m.

Table 4 Location Errors in Ten Experiments

NO. 1 2 3 4 5 6 7 8 9 10 Average
Error(m) 4.24 4.26 4.23 4.25 4.19 421 4.23 4.19 4.27 420 4.23

Both time-series dataset and single-RSSI dataset are used for comparison ex-
periments with CTSLoc which indicates that CTSLoc has lower localization error
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Fig. 5 The CDF of the Localization Error of Comparison Experiments

and more stable performance. Results are shown in Fig. 4, which use time-series
dataset mentioned in section 3. Fig. 5 shows the CDF of the localization error of
CTSLoc with other methods, which use time-series dataset. Fig. 5 (a) shows the
localization error of SVM is 5.58m, KNN method is 5.28m and decision tree is
5.27m. In Fig. 5 (b), Random forest reaches a better result of 4.76m while the av-
erage localization error of CTSLoc is 4.23m, which is 19.8% and 19.7% and 11.1%
lower than them. For a fully comparison, an 8-layer DNN model is established
and achieves 4.94m location error. A linear regression method gets 5.09m local-
ization error which is 16.9% higher error than CTSLoc. In comparison, the best
results of these methods are used. Therefore, it is significantly showing that, CT-
SLoc exhibits the lowest positioning error and remarkably improved positioning
accuracy.

The efficiency of filter is shown as Fig. 6 (a). The average localization error
without filter is 4.52m which is 6% higher than filtered. It is proved that the
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Fig. 6 The Localization Error of Data-filter and Different Window Sizes

proposed filtering method is effective. Therefore, the experiments in the other
part of the paper are completed based on the filtered data.

Fig. 6 (b) shows the comparison of localization results for different time series
sliding window sizes, i.e. track lengths of CTSLoc. The best result (4.23m) of
sliding window size is 10. The average positioning error increases to 4.81m when
the sliding window size is 40. 4.69m and 4.51m when the sliding window size is
5 and 8. Explaining that when the track length increases, the calculated timing
information increases, as well as data noises. Therefore, when the track length is
longer than the best sliding window size, the effective of data noises is lager than
the advantage of time-series information. On the contrary, when the track length
is shorter, its timing information is lack for CTSLoc which has no better efficiency
than a single RSSI vector.

~ = Training Steps =
—— Training Steps =
= = Training Steps =
Training Steps =
—— Training Steps =

150000
100000
90000
70000
50000

0 1 2 3 4 5 6 7 8 9 10
Localization Error (m)

Fig. 7 The Localization Error of Different Training Steps

Fig. 7 shows the effect of different training steps of CTSLoc. Several experi-
ments have verified that CTSLoc gets the best location result when the training
step is 100,000. When it is less than 100,000, the location error decreases with
the training steps. The location error is no longer significantly lower and begins to
have an upward trend when the training step is more than 100,000, indicating that
the CTSLoc network has already fitted the RSSI input pattern and no longer up-
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dates the RSSI decay pattern in a gradient, the network is over-fitting. Therefore,
the training step that minimizes the location error of CTSLoc is between 90,000
and 100,000 finally determine the training steps to be 100,000. More experimental
results are not displayed.

5 Conclusions and Future Work

In this paper, a CNN indoor localization model CTSLoc is proposed which con-
siders the timing RSSI and uses the correlation between signals for localization. It
solves some of the problems existed in current indoor localization methods such
as insufficient data volume, large fluctuations in RSSI and mismatching between
training and the testing set, fingerprint localization that is prone to ambiguity,
and inaccurate localization results. An extensively experiment has been carried
out in a nearly 1000 m? area for data collecting, and a comprehensive comparison
between several existing methods indicates that CTSLoc attains a lower average
localization error (i.e. 4.23m) and more stable performance than those methods.
The CTSLoc method performs relatively less dependent on the amount of data
which also eliminates spatial ambiguity and reduces the effect of noise onlocaliza-
tion.

There have few limitations on experiment spaces, to adequately demonstrate
the superior performance of CTSLoc, more experiments in different spaces would
be established in future researches. This paper mentioned the available informa-
tion attached to RSSI, i.e. timing information. In future works, more kinds of
information will be attached to the RSSI vector, there will make greater processes
on indoor localization.e.
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