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Abstract

There is a growing recognition of the challenges associated
with ensuring good nutrition for all without compromising the
environment. This is particularly true for aquaculture, given the
reliance on marine extraction for key feed ingredients, yet at
the same time it delivers key nutrients such as omega-3 long
chain polyunsaturated fatty acids. This review will consider
progress in transitioning away from oceanic-derived fish oils as
feed ingredients, focusing on the emerging transgenic plant
sources of these fatty acids. Specific consideration is given to
the “validation” phase of this process, in which oils from GM
plants are used as substitutes for bona fide fish oils in aqua-
feed diets. Equally, consideration is given to the demonstration
of “real-world” potential by GM field trials. Collectively, the
status of these new plant-based sources of omega-3 fish oils
confirm the arrival of a new wave of plant biotech products, 25
years after the introduction of herbicide-tolerant input traits and
demonstrate the power of GM agriculture to contribute to food
security and operating within planetary boundaries.
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Introduction

The health-benefits associated with a diet containing
oily fish rich in omega-3 long chain polyunsaturated fatty
acids (omega-3 LLC-PUFAs) are now well-established,
linking regular consumption of these fatty acids with
reduced risk of cardiovascular disease and myocardial
infarction [1]. However, many factors have conspired to
make this apparently straightforward recommendation
less easy to fulfil, including the relentless growth in the
global population which puts increasing demands on our
planet’s finite resources, pollution of the marine envi-
ronments and advancing climate change [2,3]. Perhaps
counterintuitively, the growth in aquaculture as the
dominant farming system to produce fish for human
consumption, has altered the dynamics of omega-3
supply and demand, putting additional strain on finite
global fish stocks [2,3]. As discussed below, efforts to
make aquaculture more sustainable have lowered the
nutritional value of the final product [4]. In this sense,
the inclusion of terrestrial plant oils, the main alterna-
tive to fish oil in Europe, in aquafeeds has led to a
marked reduction in the levels of omega-3 LC-PUFAs
accompanied by increased levels of short chain fatty
acids characteristic of terrestrial systems. Long estab-
lished dietary patterns have radically shifted in the last
few decades, to the point that metabolic diseases
resulting from the overconsumption of calorie-rich but
low nutrient diets outweighs (no pun intended) the
number of people suffering from malnutrition due to
insufficient food. Simultaneous to that, a growing
awareness that global patterns of food consumption are
exceeding planetary boundaries has also led for calls in a
radical shift in how we feed ourselves, most notably with
a strong decrease in the consumption of (terrestrial)
animal protein and concomitant increase in dietary plant
protein [5]. Interestingly, elevated consumption of fish
is also recommended (because of the nutritional bene-
fits of omega-3s etc) but there is an inherent tension
associated with such advice, not least of all with respect
to sustainability of global fish stocks [2,5,6,7].

Plant biotechnology has always aspired to deliver ben-
efits to society, even if this has sometimes not been
obvious [8]. The first wave of GM crops developed in
the 1990s was focussed on delivering so-called input
traits, which help farmers (via herbicide tolerance and/or
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2 Plant Biotechnology

herbivore resistance) but provide no direct benefit to
the consumer or nutritional enhancement (although
they do deliver a reduced reliance on chemical inputs).
A second wave of output traits for improved nutrient
content is only now starting to appear, 25 years behind
the input traits — the many and varied reasons for this
have been recently considered by us and other [8,9]. At
the forefront of these new GM crops are plants which
have been engineered to accumulated omega-3 LC-
PUFAs in their seed oils, providing a novel terrestrial
source of this important fatty acids independent of
marine stocks [10] — such plant-based sources of
“omega-3 fish oils” can be used for both direct human
nutrition or as animal feed ingredients (in either aqua-
culture or terrestrial animals), delivering benefit by
these different routes [11].

The omega-3 LLC-PUFAs, eicosapentaecnoic acid (EPA;
20:5A>81 ‘14’17) and docosahexaenoic acid (DHA;
22:6A4’7’10’13’16‘19) are found in fish oils and are almost
exclusively restricted to aquatic foodwebs [2,3]. The
predominant biosynthesisers of EPA and DHA in the
marine ecosystems are microalgae and other phyto-
plankton, with the fatty acids accumulating in the
multiple trophic levels above these founders [2]. Marine
and salmonid fish species have little or no endogenous
capacity to synthesise these fatty acids, relying instead
on dietary intake. No angiosperm plant species have the
capacity to synthesise EPA and DHA, although C18
precursor polyunsaturated fatty acids are ubiquitous in
the Plant Kingdom [4]. Since the 1990s, significant ef-
forts have been made towards engineering plants to
accumulate EPA and/or DHA as an alternative to marine
extraction [8—10]. Representing one of the very few
projects to progress first from a discovery phase into
application, the production of omega-3 fish oils in
transgenic plants represents a significant achievement
for plant biotechnology. This short review will concen-
trate on recent examples of scale-up and translation,
including demonstration of efficacy in aquafeed trials.
Aspect of the molecular biology and genetic toolkits that
have been used to generate these transgenic plants have
been recently considered elsewhere and are therefore
only discussed briefly.

Transgenic plants as a platform for the
synthesis of EPA + DHA

Despite being a deceptively straightforward objective,
the efficient synthesis of the non-native fatty acids EPA
and DHA proved challenging to achieve, especially
when accumulation was restricted to storage triacylgly-
cerols via seed-specific promoters [12—14]. This was
due in part to the relative complexity of the biosynthetic
pathway, requiring the co-ordinated expression of a
minimum of five heterologous genes, representing some
of the most complex metabolic engineering attempted
in transgenic plants [10]. However, by adopting an

iterative approach to defining the optimal combination
of genes and regulatory elements, significant progress
has been achieved in two host species, Camelina
[12,15,16] and Canola [17,18]. Interestingly, it has also
become apparent that endogenous metabolism plays a
key role in enabling the effective reconstitution of the
omega-3 LC-PUFA biosynthetic pathway and this
inherent capability varies between species. For example,
the successful synthesis of EPA + DHA in Arabidopsis
or Camelina via the so-called alternative pathway
[19,20] was not recapitulated in peanut [21]. Even in
the case of effective oilseed chasses such as Canola and
Camelina, there are significant differences between the
species — for example, a very similar suite of genes and
regulatory elements was used to direct the synthesis of
EPA + DHA, resulting in ~20%EPA + DHA in
Camelina but only 8% EPA and 1% DHA in Canola. This
may indicate additional levels of control, which could
include transgene integration site, post-transcriptional
regulation, enzyme turnover and substrate channelling.
Irrespective of these open questions, it is clear that
Brassicacea oilseeds are excellent hosts for the trans-
genic accumulation of omega-3 LC-PUFAs (summarised
in Table 1) and the oils derived from these crops have
been used in multiple aquafeed trials. Importantly, the
real-world performance of these crops has been
demonstrated by multi-location field trials across
different continents [22-24]. Recently, gene-editing has
been used in conjunction with transgenesis to enhance
the accumulation of EPA + DHA in Camelina via the
inactivation of a competing endogenous pathway [25].

Novel oils in aquafeed — validation in fish
feeding trials

One key aspect of achieving the successful translation of
the biotech studies described above is to validate these
novel oils as effective substitutes for fish oils in the diets
used in aquaculture (represented in Fig. 1). To date, the
majority of research in fish using GM-derived oils rich in
n-3 LC-PUFA has predominantly focussed on Atlantic
salmon (Sa/mo salar). This is largely due to the fact that
salmonids are the primary consumer of extracted fish
oils given the energy dense feeds required for farming,
as well as its high-end value [4,26]. Therefore, it is of
paramount importance that the potential effects of
using such substitutes are investigated. Consequently,
oils derived from both omega-3 rich Camelina [12,23]
and Canola (Event NS-B50027-4) [17,18] have been
successfully trialled in several life stages. Freshwater
fingerlings fed either 4 or 8% high n-3 GM Canola oil
(9.3% omega LLC-PUFA) exhibited similar growth and
survival to those fed a diet containing fish oil as the main
dietary lipid source when cultivated at either 12 or 16 °C
[27]. In seawater, no difference in growth were found in
smolts fed a Camelina oil rich in either EPA or
EPA + DHA (23.9% and 16.7% omega-3 LC-PUFA,
respectively) compared to those fed a fish oil rich diet
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Table 1

Summary of GM Brassicaceae crops successfully engineered to accumulate EPA and/or DHA. The levels of individual fatty acids are
given, along with total amounts of omega-3 LC-PUFAs. The bulk of all successful engineering rationales have used the aerobic desatur-
ase and elongase pathway, although one example is listed using an anaerobic polyketide synthase-like system derived from microbial
sources. Please see [2] and [10] for further details of the pathways.

Crop Pathway Omega-3 profile Total EPA + DHA Commercialization status Reference

Camelina Aerobic pathway - Rothamsted 10% EPA, 10% DHA 20% Pre-regulatory phase [12]

Camelina Aerobic pathway - CSIRO 2% EPA, 12% DHA 14% Pre-regulatory phase [15]

Canola Aerobic pathway - BASF 7% EPA, 1% DHA <10% Approved for commercial [18]
growing

Canola Aerobic pathway - Nuseed/CSIRO 1% EPA, 10% DHA 12% Approved for commercial [176]
growing

Canola Anaerobic pathway (PKS-like) — 4% DHA <5% Unknown [38]
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Schematic representation of the requirement for omega-3 fish oils in marine aquaculture and how GM plant-derived fatty acids can be used as a substitute
for optimal fish and human nutrition.
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[28—31]. Moreover, all the aforementioned trials
showed that fish fed the GM-derived oils had enhanced
levels of n-3 LLC-PUFA in their flesh compared to either
a commercial diet control or a feed containing wild-type
Camelina, while also decreasing the omega-6:omega-3
ratio. For example, salmon fed a diet containing high
omega-3 LC-PUFA Camelina oil accumulated almost
double the amount of these health beneficial fatty acids
as salmon fed a fish oil diet [31]. Evidently, these
enhanced levels can contribute to bridging the gap be-
tween demand and supply and help meet the 500 mg/
day intake requirement for omega-3 LLC-PUFA in order
to attain optimal cardiac health [1,2,4]. Enhanced flesh
levels of EPA + DHA has been a common finding in
other studies where teleost fish were fed omega-3 LLC-
PUFA vegetable oils such as other fatty species
including rainbow trout (Oncorfyynchus mykiss) [32], but
also gilthead sea bream (Sparus aurata) [33] and sea bass
(Dicentrarchus labrax) [34]. In addition to the benefits
that the use of these oils can have for consumers, the use
of vegetable oils rich in omega-3 LC-PUFA can also have
added benefits for the fish such as reduced liver fat
infiltration and hepatocyte area relative to fish fed feeds
containing wildtype Camelina [35]. Perhaps, most
importantly to note is that none of the trials performed
to date have reported any adverse effect in fish fed these
novel oils thus demonstrating the potential for the
exploitation of this key raw material [27-30,31-36].
Studies so far have focussed on the use of the oil,
whereas the seed cake has yet to be tested as an alter-
native protein source. Additional processing of the seeds
such as dehulling or solvent extraction might be
required to concentrate the protein fraction which in
turn will increase the price as well as the environmental
footprint of the product.

Next steps and new approaches

The validation of these novel oils as safe and effective
substitutes for oceanic-derived fish oils was a key step in
derisking this technology and helping it advance to
market. In addition, increased awareness of issues
associated with sustainability and environmental foot-
print [5,11,26] have added impetus to commercialisa-
tion. Excitingly, two Canola events developed by BASF/
Cargill and Nuseed/CSIRO have been deregulated by
USDA and now can be cultivated at scale [18]. These
events represent the most complex metabolic engi-
neering in plants to have been approved for commercial
cultivation to date, although these developments
represent the culmination of 25 years of fundamental
research followed by a concerted focus on development
[8]. Simultaneously, oil from the lead Camelina event
has been used extensively in human studies, confirming
the utility of this oil in both indirect (i.e., animal) and
direct human nutrition [37]. There are also efforts to
combine a number of different traits to produce a
multifunctional crop tailored to the needs of e.g.

aquaculture [11], combining the EPA + DHA trait with
other high value components of aquafeed diets such as
the antioxidant and pigment astaxanthin, which can be
made in a number of different transgenic hosts and has
been independently validated as a novel ingredient in
fish feeding trials [39,40]. Similarly, the amino acid
composition and seed storage proteins can be enhanced
to make the resulting protein composition more suitable
for fish nutrition (e.g. by the inclusion of the cysteine
derivative, taurine) as has been achieved in transgenic
soybean [40]. Equally importantly, it is possible to use
gene editing to remove compounds such as glucosino-
lates which can act as feeding deterrents for some fish
species [41,42]. On this basis it is possible to envisage a
bespoke crop ideotype specifically designed to meet to
the nutritional needs of both the fish and the human
consumer whilst also delivering to the requirements of
operating within planetary boundaries and leaving a
lighter environmental footprint on our planet [11,43].

Conclusions

Recent analysis confirms the significant variance be-
tween demand for omega-3 long chain PUFAs and the
available supplies from our oceans, currently estimated
at providing only ~30% of the recommended levels of
EPA and DHA for the global population [44]. This
highlights the pressing need for alternative supplies of
these important fatty acids, not least of all given their
health-protective role against cardiovascular disease and
other metabolic pathologies which now blight the lives
of many millions of people. In addition to the sustain-
able synthesis of EPA & DHA via transgenic plants, a
number of microbial (predominantly algae) systems are
being established [reviewed in [45]] and also following
the same path of validating these novel oils via aquafeed
trials [46]. One advantage of using algal-derived omega-
3 PUFAs is that these strains are usually not GMOs,
making their regulatory approval and consumer accep-
tance relatively straightforward. However, the large-
scale culture of algal strains remains a challenge, in
terms of economics and infrastructure. Moreover, almost
all commercial algal platforms rely on heterotrophic
growth (i.e., cultured using an exogenous carbon source
which itself is invariably plant-derived, such as sugar-
cane) — this is not always fully reflected in claims of
sustainability, and it would be interesting to carry out a
life cycle analysis of the different production systems to
allow the consumer to make an informed choice with
regard to environmental footprint. Other sources of LLC-
PUFA such as krill oil are now mainstream ingredients in
aquafeed, although their inclusion is normally limited
mainly due to its high price [2]. Another approach to
boost the levels of these health-beneficial fatty acids in
fish without impacting on fisheries is the use of finishing
diets high in LC-PUFA [47]. Although the novel plant
platforms described above are GM with the associated
regulatory burdens [8,9], they have the advantage of
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utilising the pre-existing infrastructure and know-how
which underpin modern agriculture, allowing rapid
scaling and incorporation into production cycles.
Expanding our use of plant-derived feed and foodstuffs
will be essential for operating within planetary bound-
aries and collectively we need to embrace a different
approach to ensuring optimal nutrition for all — plant
biotechnology can play a key role in enabling this. As
such, it is important to consider all ethical aspects of
using GM-derived ingredients, including the impact of
not adopting these innovations [48].
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