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ABSTRACT 

Using a longitudinal approach, I sought to deepen my understanding on social integration 

in wild juvenile vervet monkeys (Chlorocebus pygerythrus). First, I focused on the analytical 

tools used to capture the social and temporal dynamics within my data, which led me to provide 

my own flexible and reliable methods. Second, I used these methods to address theoretical 

questions regarding the development of social networks as well as the emergence of sex-specific 

social behaviours in male and female juveniles, throughout social development. Overall, my 

findings showed that juveniles develop social networks composed of few strong and many weak 

ties, through social niche construction. Taking a closer look at these strong ties, in turn, 

demonstrated that the value of sociality not only lies in the formation of a subset of strong ties, 

but also in the formation of a more extended social network, where the offspring’s mother 

grooming partners were found. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 Aims 

Primates’ individuals are embedded in changing networks of relationships with social 

group members. As such, there is a need to understand social life from a dynamic, 

multidimensional perspective because approaches that either ignore or do not adequately account 

for these temporal dynamics can result in inappropriate inferences. Addressing such temporal 

issues is, however, reliant on the availability of appropriate analytical techniques. My aims in this 

thesis, therefore, are to describe the development of such techniques and to use them to 

investigate aspects of the social dynamics of a non-human primate system: the juvenile vervet 

monkeys (Chlorocebus pygerythrus). That is, I propose to study in detail the development of 

social networks as an index of social integration into the group during the juvenile period, while 

addressing the need for flexible and reliable methods that can take into account the social and 

temporal dynamics. What follows here is a general overview of the relevant issues. 

1.2 Background 

1.2.1 Group living 

Primates are long-lived mammals that exhibit a strong tendency to live in cohesive social 

groups (Isbell & Young, 2002), where one sex usually remains in its natal group (philopatry) 

while the other disperses. In the main, they form persistent, multi-generational societies. i.e., they 

comprise overlapping generations of matrilineal or patrilineal kin (Dunbar, 1988; Humphrey, 

1976). Observed consistent cross-species differences in group structure suggested that social 

organisation reflected the evolutionary consequences of a species!#ecological niche and gave rise 

to a long-standing question in socioecology (Crook & Gartlan, 1966): what drives the structure of 
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these groups? To explain the evolution of sociality in primates and the resulting variation in 

social systems, verbal models appealing to ecological factors were developed (Clutton-Brock, 

1974; Crook & Gartlan, 1966; Sterck et al., 1997; Van Schaik, 1989; Wrangham, 1980). The 

principle debate hinged on whether the variation in group size, group composition, and social 

relationships among group members was the consequence of a need to defend patchily distributed 

resources, such as food for females (Wrangham, 1980) or reproductive access for males (Watts, 

1998), or to reduce the risks of predation or infanticide (Dunbar, 1988; Harcourt & Greenberg, 

2001; Sterck et al., 1997; Van Schaik & Van Hooff, 1983). Today, the general empirical 

consensus is that predation risk is the primary driver of primate sociality (Dunbar & Dunbar, 

1988; Majolo et al., 2008; Schülke & Ostner, 2012; Van Schaik & Van Hooff, 1983; Van Schaik, 

1989). This is based on the evidence that predation risk appeared to be lower in larger groups that 

were more efficient at detecting the presence of predators from a longer distance (Van Schaik & 

Van Hooff, 1983). The main expected cost with increasing group size, however, is an increase in 

the level of within-group food competition (Isbell, 1991; Janson & Van Schaik, 1988), which 

affects reproductive performance or survival through lower net food intake (Majolo et al., 2008). 

Group size and structure, therefore, represent a balance between predation risk and group 

competition, where the lower threshold to group size is set by predation and the upper limit is 

posed by feeding competition among group members (Van Schaik & Van Hooff, 1983). 

While these socio-ecological studies highlighted the ultimate importance of ecological 

factors, determining the adaptive strategies of individuals, to alleviate the costs of living in 

groups and the consequent group social organisation, they also contributed to defining primate 

competitive regimes. In fact, with ecological competitors constrained to coexist within a social 

group, such gatherings had an effect, not only on the grouping and dispersal patterns of females, 
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but also on the strength in the competition for resources. Extending on the theme of competition, 

Van Schaik (1989) argued that the role of dominance, in structuring social relationships between 

the philopatric sex, should depend on species!#local ecology (i.e., the distribution of food 

resources relative to group size), and the intensity level of intra-group competition. That is, 

despotic species have clearly established dominance relationships (de Waal, 1989) and usually 

have linear dominance hierarchies (Sterck et al., 1997). For instance, rhesus and Japanese 

macaques (Macaca mulatta and M. fuscata) engage in conflicts of high intensity, which are 

mainly asymmetric (Chaffin et al., 1995; De Waal & Luttrell, 1989). In egalitarian species, the 

dyadic dominance relationships are not detectable or poorly defined, resulting in uncertain and 

non-linear dominance hierarchies (Sterck et al., 1997). In these systems, therefore, social 

interactions are more symmetrical, and less kin biased (Tonkean macaques (M. tonkeana), 

(Matsumura, 1999)). van Schaik#s original slate of dominance styles reached its conceptual 

endpoint in the publication by Sterck et al. (1997), with a very detailed elaboration of four 

categories (resident-nepotistic, resident-nepotistic-tolerant, resident-egalitarian and dispersal-

egalitarian), which describe the social responses that arise among female primates from the 

strength of within- and between-group contest competition. Overall, social competition in groups 

sets out the framework in which the social relationships of group members should be considered, 

and the establishment of competitive gradients allowed for predictions about the nature of 

affiliative relationships among females to be made. 

The important point to note here is that these social relationships are taken to be 

categorical markers that apply to entire species. So, for example, baboon females (Papio 

cynocephalus ursinus) are $resident-nepotistic#, while blue monkeys (Cercopithecus mitis) are 

$resident-egalitarian#. In other words, while ecology structures social relationships, the 
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relationship styles themselves, depicted at the level of the species, are considered to be fixed. 

Therefore, these relationships are relatively impervious to spatial or temporal variations in local 

ecology. Lastly, different dominance styles may reflect different behavioural strategies for 

contesting and defending resources, and individuals may be expected to adapt their strategies in 

response to their local and social environments. As such, these fixed relationships also fail to 

explain interspecific variation in individuals/populations/species (e.g., Kuester et al., 1998; 

Matsumura 1999). 

1.2.2 The demands of social life 

While socioecological studies investigated how environmental conditions influenced the 

social structures of animals, the intense nature of primate#s sociality was investigated in relation 

to their unusual large brains (Jerison, 1975). Humphrey (1976) originally proposed that the social 

environment might select for primate intelligence. This idea was later elaborated by Whiten and 

Byrne (1988) with the Machiavellian Intelligence hypothesis (MIH). In essence, it argued that 

coexistence with ecological competitors selected for animals that could simultaneously deceive 

others while being able to detect and avoid deception in turn. Tactical deception (Byrne and 

Whiten 1992), hence, became one of the defining criteria for this hypothesis, where selection for 

a tactical intelligence relied incrementally on the ability to cope with increasingly elaborated 

strategies and counterstrategies, in order to $outwit!#the competition. This explanation, however, 

suggests that social strategies are needed to alleviate these costs linked to living in social groups.  

In 1992, Dunbar extended van Schaik#s (1989) earlier analysis by quantitatively 

examining how different social and ecological indices correlate with different measures of 

relative neocortex size. This resulted in a series of influential papers, where Dunbar (1992, 1995, 
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1998) drew a clearer picture of the relationships between ecology, female sociality, and 

population structure. He argues that, as a means of solving an ecological problem (Dunbar, 1992, 

1998; Dunbar & Shultz, 2007), individuals would be exposed to rising competition with 

increasing group size through (a) ecological competition and (b) the consequences of crowding in 

limited space (Dunbar & Shultz, 2017). To alleviate these costs, the capacity to form and sustain 

agonistic coalitions (Harcourt, 1988), mediated by grooming as an affiliative tactic (Dunbar, 

1992, 2012; Seyfarth, 1980) and reconciliation (de Waal, 1989), would be increasingly difficult 

but also valuable. It would, therefore, necessitate an ability to track and monitor the social 

environment in order to exploit the knowledge of other individuals’ behaviour (Whiten & Byrne, 

1988; Cheney & Seyfarth, 1990), and hence to sustain beneficial alliances. This was thought to 

be cognitively demanding, thus driving selection for the increased brain size underpinning the 

necessary cognitive requirements. In other words, the need to cope with this unusually complex 

social life consequently necessitated a proportionally bigger brain to handle social relationships 

(Dunbar, 1992, 1995, 1998), generating the prediction that social group size (as index of social 

complexity) should predict the size of the primate neocortex (the most recently evolved part of 

the brain). That is, the cognitive demands from group life were linked to the need to manage an 

exponentially increasing number of potential relationships associated with linearly increasing 

group size. In support of this, Dunbar (1992, 1995, 1998; see Dunbar & Shultz 2007 for a more 

recent restatement of this position) pointed to empirical data indicating that the neocortex was 

relatively larger in primate species living in larger social groups.  

In sum, anthropoid primate social societies result from a complex combination of 

cooperative and competitive interactions (Hinde, 1976; Walters, 1987), and are characterized by a 

high proportion of female-bonded social groups (Shultz & Dunbar, 2007). In other words, 
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females have close, bonded relationships in which dyads maintain long-term close spatial 

proximity, interact frequently with each other, and come to each other#s aid. This sets out the 

context under which highly differentiated social relationships evolve (Seyfarth, 1980; Silk et al., 

2006b). Factors have been proposed to underpin the highly differentiated relationships, such as 

resource-holding potential, which describes the inherent ability of an animal to acquire and hold a 

resource (Parker, 1974), in conjunction with the inclusive fitness benefits of assisting close kin 

(Hamilton, 1964). Further determinants of primate social relationships were also proposed like 

dominance rank and the advantages of forming close bonds preferentially with high-ranking 

group members (Seyfarth, 1980). Put simply, these relationships are shaped by social status, 

friendships, alliances, and kinship. These differentiated relationships bring in the final piece of 

the puzzle, which is the link between environmentally induced sociality and fitness. Silk and her 

colleagues (2003, 2009) first demonstrated a link between strong social bonds and offspring 

survival in free-ranging baboons. Bringing things full circle, predation risk was linked to obligate 

sociality for primates, which gave rise to costs associated with group living, which then led to a 

need for advantageous cooperation with others, which in turn required cognitive skills that relied 

on a "social brain”, that ultimately paid reproductive dividends. 

 

In sum, socio-ecological studies assumed that a limited number of environmental factors 

affect population characteristics, leading to predictable differences in social systems. This 

categorical approach makes the assumption that species could be adequately characterized and 

placed in categories based on the ‘average’ behavioural characters for each taxonomic unit, 

ignoring the within-specific variation in social structure. The flexibility in primate social systems 

was, therefore, considered a consequence of the variation in ecology (Koenig et al., 2013). In 
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addition, these studies emphasize entities above the individual level, such as dominance style 

(Van Schaik, 1989), and make the implicit assumption that patterns arise because all individuals 

respond uniformly to their ecological and social contexts (e.g., Sterck et al., 1997). Yet, group 

composition varies and modifies the social context under which social interactions. This suggests 

that optimal responses to the local and social environment may also be expected to vary, as 

individuals track changes in local resource availability and shift patterns of social affiliation in 

response to these ecological and demographic conditions (Barrett & Henzi, 2005; Henzi et al., 

2013; McFarland et al., 2014). It, therefore, encourages a shift in focus from between to within 

species variation. Lastly, recent analyses (DeCasien et al., 2017; Lindenfors et al., 2021; Powell 

et al., 2017) provide no evidence that brain structure is tailored to social demand per se. There is 

also very little evidence that tracking changes requires the cognitive capacities suggested by the 

MIH. In line with this, Henzi and Barrett (2007), following the arguments of Biological Markets 

Theory (BMT: Noë & Hammerstein 1994a, 1995a) proposed that alliances and coalitions, and 

their generation and maintenance via grooming, occurred too infrequently to serve as an 

organizational principle on which natural selection could act to structure social relationships and 

therefore groups. Instead, they suggested that grooming was better seen as a service that can be 

exchanged either for itself or for immediately trade-able commodities. The BMT, therefore, 

proposes that cheating can be avoided through appropriate partner choice. As such, taking a more 

individual-based approach, $traders!#are predicted to behave differently depending on what they 

are trading and with whom (Barrett & Henzi, 2006). Consequently, individuals can vary in value 

depending on their health, reproductive state, seasonal changes in the competitive regime, and on 

the presence or absence of other individuals. Interactions, in other words, are contingent on 

context. 
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What we can take from all this, then, is that primates live in the company of others, in 

unpredictable local and social environments and have distinctively large brains that are 

presumably directed at tracking ecological and social contingency. If so, then an evaluation of the 

value of social relationships needs to begin with a better understanding of the dynamics of social 

interaction. Long-term studies have proven to be one of the best approaches to address such 

issues, as they have provided insights into primate social behaviour patterns, giving us the 

opportunity to shift towards more rigorous, quantitative approaches. 

1.2.3 Social relationships 

In line with this quantitative approach is the recognition that, to explain and predict the 

behaviour of individuals, simple description of who does what to whom and how often is not 

enough. Instead, a step back is required to identify, at a more abstract level, social relationships 

and the general principles that underlie them. Hinde#s (1976) conceptual framework does so 

where social relationships, emerging from the patterning of interactions between pairs of 

individuals, lead to the emergence of a group#s social structure. Hinde (1976) argues that social 

relationships can be described in terms of their content (what do two individuals do together?), 

quality (how do they do it?), and the frequency and patterning of social interactions through time 

(Hinde, 1976). He also emphasizes the dynamic aspect of social relationships, which he 

perceived as relationships that change, or are adjusted, over time. Although Hinde#s framework 

doesn#t consider the environment in which the social structure evolves, it allows for the 

quantification of social relationships. As such, it also contrasts with commonly used measures, 

like group size (Dunbar, 1998; Strier, 1989), which only indirectly reflect the social relationships 

between individuals and assume homogeneity of effect on all of them. Finally, with its three 

levels of structure (interactions, relationships, social structure), this framework depicts the 
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complex multi-dimensional nature of sociality (Whitehead, 2008), where causal relationships 

between these three levels exist (Hinde, 1976). To understand the nature of feedback between 

social structure and social behaviour, detailed descriptions of social structure over the long-term 

are needed (Clutton-Brock & Sheldon, 2010). This includes the quantitative insights provided by 

network analysis (Cantor & Whitehead, 2013), which are not possible when using the verbal 

arguments of the socioecological model.  

Given its multiple levels of organisation, and therefore, multiple levels of description, the 

multi-dimensional nature of sociality is difficult to represent accurately and to quantify (Hobson 

et al., 2019). Whereas interactions between two individuals sit at the core of Hinde#s framework 

and most studies focus on dyadic relationships, the context of these relationships extends beyond 

the dyad itself (Arnold & Barton, 2001; Kutsukake & Castles, 2004). That is, the number and 

quality of social relationships formed depends not only on the individual#s own position within 

the group#s structure (McDonald, 2007) but also on the broader social context in which social 

interactions take place (Kutsukake, 2009), which includes the way the group is organized (Hock 

et al., 2010). These social interactions should therefore be studied in the context in which they 

emerge, which is the social group. With its ability to combine individual and group properties in 

analysis, Social Network Analysis (SNA) provides the appropriate analytical framework. 

1.3 Studying Social Relationships: the case of SNA 

1.3.1 General introduction 

SNA offers the possibility to deconstruct a social group into nodes and edges, representing 

respectively, individuals and the interactions between individuals (Pinter-Wollman et al., 2014) at 

a point in time. By aggregating interactions over any relevant period of time, SNA can quantify 
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the patterns of relationships that arise among interacting individuals. This can be done thanks to a 

well-established suite of quantitative social network metrics (Croft et al., 2008; Newman, 2010) 

that enables researchers to define and quantify sociality in a variety of ways. Thus, social network 

measures can be calculated to quantify the properties between two individuals (dyad scale), 

around the individual (ego scale) and at the entire group level (network scale) (Wey et al., 2008). 

In behavioural ecology, SNA is procuring researchers with tools to probe social groups and their 

dynamics, providing greater insights into how the group#s social network structure and the 

individual#s social network position impact fitness components. For instance, in mammalian 

species, studies have shown that survival may be negatively correlated with eigenvector centrality 

(Male Bottlenose dolphins (Tursiops sp.): Stanton & Mann 2012) and with variance in edge 

weights for spatial proximity (Rock hyrax (Procavia capensis): Barocas et al., 2011), but also 

positively associated with stability or quality of affiliative relationships (Chacma baboons (Papio 

hamadryas ursinus): Silk et al., 2010a; Barbary macaques (Macaca sylvanus): McFarland & 

Majolo 2013 both using the composite sociality index (CSI), and Blue monkeys (Thompson & 

Cords, 2018), using the annual dyadic sociality index). 

If these examples reveal the wide applicability of SNA across diverse taxa, they also give us a 

quick glimpse into the overwhelming number of available measures with which to investigate 

social relationships. A recent study by Schülke et al. (2022) assessed the similarity of quantitative 

measures of sociality. Regarding social bonding, which concerns the strongest affiliative 

relationships individuals form, they extracted seven measures (e.g., CSI, the annual dyadic 

sociality index, strength, degree), revealing the plethora of measures that can be used and, 

therefore, the lack of consensus in how to quantify sociality. Furthermore, these measures can be 

inferred differently, depending on whether they focus on all ties or on different threshold values. 
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So, for example, we might include in an analysis an individual#s top three partners using the CSI, 

or the number of strong ties with strength above either the 0.9 percentile, the 3rd quartile, or the 

mean value. We might, finally, also consider the strength of the strongest ties using the top three 

connections per individual (Schülke et al., 2022). The takeaway message here is that numerous 

indices exist to describe specific aspects of a social relationship between two individuals (Fraser 

et al., 2008). This calls, therefore, for transparency in terms of the measures used to quantify 

social relationships, which should clearly be defined and justified in analyses. This then raises the 

additional question of whether sociality is best captured from (i) grooming behaviour alone 

(Mcfarland et al., 2015), (ii) spatial association (Jones et al., 2020), (iii) both types of data (Brent 

et al., 2013a), or (iv) a combination that also includes agonistic behaviour (Crockford et al., 

2013). 

1.3.2 From static to dynamic 

Until recently, most network analyses considered a network to be a static structure, 

providing "snapshots” of social structure at a predefined time, regardless of how long that time 

period was (Seyfarth et al., 2012; Silk et al., 2006a, 2006b, 2010a). This, however, did not depict 

the most accurate structure as not all relationships present in that timeframe may have existed at 

the same time, nor may the individuals have all been together simultaneously. In reality, patterns 

of social interactions shift in response to factors such as resource distribution, seasonal change, 

predation pressure or demography (Blonder et al., 2012). Consequently, to address particular 

theoretical and empirical concerns, measures of how social networks change over time are 

required (Aplin et al., 2015; Bonnell et al., 2019), and efforts have been made to incorporate the 

dynamic nature of social networks, which allows for the description of social structure based on a 

series of continuous measures. As such, if certain network positions or characteristics provide 
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fitness benefits (Alberts, 2019), a dynamic approach can now be used to quantify the consistency 

with which individuals maintain these positions to achieve such benefits and might well reveal 

the mechanisms that underpin these functional outcomes (Ostner & Schülke, 2018). In the same 

way, the study of longitudinal networks allows us to investigate how social networks emerge and 

evolve over time and could further our understanding as to how variation in sociality arises. 

Although the introduction of SNA and its shift to a more dynamic approach has helped our 

understanding of sociality, the multi-dimensionality of social structure has, until recently, been 

ignored. 

1.3.3 From a single to a multidimensional representation 

Social networks have the capacity to capture the multi-dimensional nature of sociality. 

Yet, the early and traditional use of SNA has tended to aggregate animals!#social relationships 

into a single edge between nodes, often aggregating over long periods of time. This resulted in 

network structure being “flattened” into a single dimension, and social dynamics thereby 

necessarily being ignored (Finn et al., 2019). Consequently, variations that may exist across 

behaviours are lost (Chan et al., 2013; Hasenjager et al., 2021; Jones et al., 2020). Additionally, a 

single layer approach ignores the interdependencies that may exist between different types of 

interaction (Beisner, 2015). Multilayer network analysis (MLNA) has recently been proposed as 

an approach that can help to construct a more nuanced representation of social structure (Finn et 

al., 2019). In brief, a multilayer network incorporates multiple sets of relationships into the same 

structure, often with each layer representing a distinct type of interaction (Hasenjager et al., 

2021). These layers are not limited to social interactions, as they can also represent non-social 

forms of relationship (e.g., genetic relatedness) and can include different types of entities (e.g., 

nodes may be physical locations in one layer and individual animals in another). Finally, because 
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a multilayer network approach includes a series of layers within a single structure, the 

interdependencies between the different layers also can be modelled and investigated. To 

understand how behaviour and social context interact to influence individual variation in 

sociality, it is necessary to address the multidimensional nature of animal social associations 

(Finn et al., 2019) and MLNA holds a great potential to do so (Bonnell et al., 2021; Montiglio et 

al., 2020). For instance, it becomes possible to investigate whether grooming associations 

indicate an active social choice or merely the emergence of patterns due to shared space use. We 

can also start to identify how changes in an individual#s social position cascade through the other 

network layers. 

In this thesis, I capitalise on the methodological and analytical developments, which allow 

us to build on what has been found, in a more accurate and reliable way. But first, let#s see what 

has been found more recently. 

1.4 The importance of social relationships: where are we at? 

The link between sociality and fitness components in primates, first mentioned above, has 

also been found across a diverse array of species (bottlenose dolphin: Frere et al., 2010; wild 

horses (Equus caballus): Cameron et al., 2009; killer whales (Orcinus orca): Brent et al., 2015), 

highlighting the taxonomic generalizability of this sociality–fitness link. Concretely, social 

relationships have been shown to predict higher health, greater longevity, fecundity, and 

offspring survival (McDonald, 2007; Schülke et al., 2010; Silk et al., 2003, 2009, 2010a), 

emphasizing the importance of social integration to ensure fitness benefits. Among primates, the 

benefits of increased social integration have been argued to derive from an improved ability to 

deal with $social stress#, as females with strong social bonds displayed lower glucocorticoid (GC) 
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levels than did females with weaker bonds (Brent et al., 2011a; Crockford et al., 2008; Widdig et 

al., 2016). In line with this, lack of social support has been shown to correlate with elevated stress 

hormones (GC) in a wide variety of primate species (Abbott et al., 2003), while competition for 

resources has been shown to increase allostatic load, reflected in elevated GC concentrations 

(Goymann & Wingfield, 2004). Yet, this seemingly direct effect between GC levels and stress 

may not be that straightforward since the observed stress response (i.e., the physiological changes 

that occur when cortisol levels are elevated) comes from the individual#s attempt to restore or 

maintain homeostasis when exposed to changes in their environment or their physiological status 

(Romero et al., 2009; Young et al., 2019a). Lastly, social instability, like changes in group 

composition (Kohn et al., 2011), also increases levels of aggression in the group (Marler, 1976) 

and can induce chronic social stress (Baranyi et al., 2005; Capitanio & Cole, 2015; Deputte, 

2000; McCormick et al., 2012). For instance, female baboons who lost a close relative to 

predation experienced a dramatic increase in GC levels (Engh et al., 2006), which in turn may 

affect their reproductive success (Silk et al., 2003, 2006a, 2006b). Alternatively, female baboons 

showed lower GC levels when they concentrated their grooming on a few preferred partners 

compared to when their grooming was more equally distributed (Crockford et al., 2008). In sum, 

strong relationships (Crockford et al., 2008; Fuentes-González & Martins, 2019; Seyfarth et al., 

2012) play a crucial role in enhancing primates’ fitness between genetically related individuals 

(Chapais, 2001), but also when they involve non-kin (Seyfarth et al., 2012; Silk, 2002). These 

relationships are commonly seen as high frequency of affiliative interactions, and can include 

body contact, close spatial association, grooming, and huddling (Cords & Thompson, 2017). 

Considering that prolonged activation of the stress system can have long-term negative 

effects on primate health and reproduction (Wingfield & Sapolsky, 2003), and that primates form 
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permanent social groups, a certain notion of stability in social relationships is implied to maintain 

cohesive groups. Yet, this may be misleading as, to generate adaptive benefits, social 

relationships do not necessarily imply a stable pattern of highly frequent interactions (Henzi et 

al., 2009; Hinde, 1976). This notion is also amplified by the focus on the quality of social 

relationships and its link to fitness components. Yet again, weak social relationships, 

characterized by interactions that are deemed to be infrequent, have been also linked to fitness 

components (see Ellis et al., 2019; McFarland et al., 2017). For example, with minimal effort, 

individuals can increase the number of social partners in ways that may aid predator avoidance or 

thermoregulation (Josephs et al., 2016; Mcfarland et al., 2015; Ostner & Schülke, 2018). Such 

benefit comes at a low-cost as, all else being equal, a weakly-bonded partner would be as 

efficient as a strong one in such contexts (Ostner & Schülke, 2018). As such, while weak social 

relationships may serve different functions than strong ones (Mcfarland et al., 2015), and show 

different patterns, they too provide fitness-related benefits. Despite their differences, strong and 

weak social relationships may hence serve to complement each other with respect to the fitness 

benefits associated with relationship formation. Lastly, quantitatively speaking, these strong and 

weak social relationships distinguish each other by a required threshold value, above which a 

relationship is considered $strong!#and below which it is considered $weak!#(e.g., CSI values 

smaller than one, Silk et al., 2006b).  

As social relationships have mainly been considered with respect to the ways that they 

contribute to fitness, there is an obvious reason to consider how these social relationships emerge 

and evolve across individuals’!lifetimes and how this leads to variation in fitness benefits across 

individuals. 
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1.5 The development of social relationships 

When asking the question “how do social relationships develop”, it makes intuitive sense 

to look at their origin, which takes root either during infancy or the juvenile period. This juvenile 

period in primates is also of general interest because of its extended duration. Primates’ social 

developmental process spans years (Harvey & Clutton%Brock, 1985; Pereira & Fairbanks, 2002), 

during which young animals can shape their own social development through forming, 

maintaining, and reconstructing social relationships (Deputte, 2000; Fairbanks, 2002; Joffe, 1997; 

Kohn, 2019; Shimada & Sueur, 2014). The delayed maturation, characteristic of anthropoid 

primates, is part of an ongoing debate as to whether it represents a constraint imposed by the 

demands of growing a large brain (Aiello & Wheeler, 1995), or whether a long lifespan requires a 

large brain to cope with environmental unpredictability (Allman et al., 1993; Gibson, 1986; Sol, 

2009). Several authors have also suggested that this prolonged juvenile period contributes 

positively to survival and fitness by enabling the acquisition of the cognitive skills needed to 

succeed in social groups (Joffe, 1997; Johnson & Bock, 2004; Leigh, 2004). Not surprisingly, 

there is a need for a better understanding of early life social experiences in the development of 

potentially long-lasting relationships, and how it affects later fitness benefits. In fact, considering 

the potential costs entailed by a delayed maturation from a life history perspective, and the risk of 

mortality as a juvenile (Fairbanks & Pereira, 1993), it becomes relevant to understand how and 

why this socialisation occurs over such an extended time. If being socialized means being able to 

live in a group, then studying infant socialisation is needed to understand the maintenance of 

social groups (Fragaszy & Mitchell, 1974).  

  Most of our current knowledge remains limited to few studies that have addressed how 

sociality develops during ontogeny in non-human primates and other social mammals (e.g., 
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Deputte, 2000; Ilany & Akcay, 2016; Jarrett et al., 2018; Kulik et al., 2015a, 2015b; Lonsdorf et 

al., 2014; Förster & Cords, 2005). Ilany and Akcay (2016) provide a good starting point for 

explaining how network structures in juveniles are generated and maintained by a process of 

inter-generational inheritance. Their approach treats social networks as the result of a dynamic 

process (Pinter-Wollman et al., 2014) that depends on environmental, individual, and structural 

effects (Ilany et al., 2015). Yet, it fails to consider changes in social bonds once these are 

established. Again, this notion of stability may be misleading as Jarrett et al. (2018) found that 

maternal networks were insufficiently stable to support the inheritance of social partners in 

juvenile vervet monkeys, Chlorocebus pygerythrus. This suggests that network flexibility, not 

stability, is what characterizes this population, and that juveniles must learn to cope with 

temporal shifts in network structure (Jarrett et al., 2018). This makes sense, as for long-lived 

individuals in stable social groups, demographic changes are recurrent, leading to social 

instability. This finding supports previous results from the same population, where female vervets 

were shown to possess the flexibility to shift patterns of social engagement in response to 

ecological and demographic conditions (Henzi et al., 2013; McFarland et al., 2014). Taken 

together, these results suggest that unpredictable variation in group size and structure may select 

for animals that are able to respond flexibly to circumstance and adjust affiliation networks 

accordingly (Chapman et al., 2016; Henzi & Barrett, 2007; Henzi et al., 2003). In other words, 

the socialisation process requires ongoing behavioural adjustment to achieve and sustain 

integration into an existing group (Deputte, 2000), where individuals choose partners in relation 

to the state of the local $market!#(Henzi et al., 2003; Noë & Hammerstein, 1994b, 1995b; Barrett 

et al., 1999). In turn, this means that relationships can be seen as highly informative, where the 

variance around a mean level of interaction between two individuals can be viewed as a 
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contingent response to fluctuations in the supply and demand of the commodities on offer 

(Barrett & Henzi, 2006).  

Whether or not social inheritance enables the emergence of offspring social networks, via 

the inheritance of their parents!#social connections, the close proximity to their parents plays an 

important role in juvenile social integration (Deputte, 2000). For instance, maternal style can 

have long-term on offspring social development, including social preferences, affiliative and 

aggressive behaviour (Maestripieri, 2018), while mothers can influence the development of sex-

specific social behaviour (Thompson & Cords, 2020). Sex differences in bonding strength have 

appeared prior to sexual maturation (Cords et al., 2010; Jarrett et al., 2018; Lonsdorf et al., 2014; 

Nakamichi, 1989), where philopatric females have stronger social bonds than dispersing males 

(Andres et al., 2013; Cords et al., 2010; Frere et al., 2010; Kulik et al., 2015b; Nakamichi, 1989; 

Stumpf et al., 2009). Such sex differences are also found in play, with males playing more than 

females (Meredith, 2013). These early sex differences in social behaviour can be interpreted in 

light of the different life histories and reproductive strategies of males and females (Deputte, 

2000). For instance, the intense grooming behaviour exhibited by young females may foreshadow 

their integration and acceptance into their social group whereas the structure of the grooming 

patterns of young males can be viewed as a prelude to emigration from the natal group (e.g., 

Jarrett et al., 2018; Kulik et al., 2015a, 2015b). These findings show that juveniles play an active 

role in their own social integration and adapt their social behaviour by growing into the social 

roles typical of their adult lives (Kulik et al., 2015b; Widdig et al., 2016). Kulik et al. (2015b) 

suggested that, at approximately two years of age, rhesus macaques experience a "social 

revolution”, in which sex differences in social behaviour become stronger and individuals prepare 

for their sex-specific social roles (Kulik et al., 2015a; Nakamichi, 1989; Suomi, 2005). They 
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proposed that it may be a "milestone” in the development of sociality in this species, from which 

point individuals "start behaving more similar to adults”. 

As sex-specific social behaviours are an important aspect of adult behavioural 

competence, being linked to higher reproductive success, the juvenile period offers the possibility 

to look at the origins of social relationships, and more specifically, when sex-specific social 

behaviours emerge and how they develop through time. We hypothesize that these different 

developmental trajectories may lead to individual variation in behavioural flexibility. In turn, it 

may help explain how and why variation in sociality arises, and how this gives rise to variation in 

the fitness-related benefits of sociality. 

1.6 A mechanism: the case of social niche construction 

In this thesis, I adopt an approach that investigates behaviour in its broader social context. 

The "horizontal worldview” put forward by van Dijk and Withagen (2014) (HWV) captures this 

idea as it encourages us to look more closely at concrete situations in order to understand 

particular phenomena, rather than abstracting away to higher or lower levels of explanation, in a 

standard reductionist fashion. Wittgenstein (1969) attempted to rid his reader of the urge to 

overthink and intellectualise, by insisting they should look more closely at what is actually going 

on in the world. Adopting a horizontal attitude therefore forces us to acknowledge that animals 

are both constrained and offered opportunities by their broader physical and social environments. 

Consequently, it brings us closer to an understanding of the extent to which social life is 

controlled and constrained socially by larger social structures, and not just via an individual#s 

own inter-personal interactions. With this approach, I attempt to adopt the individual#s 

perspective to understand how it experiences its social environment.  
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Although variation in developmental trajectories is usually interpreted in terms of its potential 

influence on variation in adult social engagement and later fitness-related benefits (Barrickman et 

al., 2008), the actual processes by which integration is achieved are often left unspecified (but see 

Ilany and Akcay 2016). As already mentioned, juveniles are required not only to learn which 

relationships to form, but also how to cope with periods of change, by adapting their behaviours 

flexibly to situations (Borgeaud et al., 2017; Kaburu & Newton-Fisher, 2015), and by altering 

their own movement patterns to create favourable conditions for future interactions (Amici et al., 

2008; Kohn et al., 2011).  

This speaks directly to social niche construction (SNC), a domain within the field of niche 

construction theory (Odling-Smee et al., 2013). SNC is the process by which individuals 

influence the composition and dynamics of their own social environments (Odling-Smee et al., 

2013), with a focus on the production of social structures that facilitate survival for their 

members (Heras-Escribano & de Pinedo-García, 2018). For instance, depending on their sex, 

young individuals may flexibly use a variety of behavioural strategies to interact with their social 

partners, possibly to best fit the sex-specific social roles that are typical of their adult lives 

(Nakamichi, 1989). These niches can also arise through social assortment, where individuals 

aggregate according to specific phenotypic similarities (Blumstein, 2013; Deputte, 2000). In this 

regard, the social niche specialization hypothesis derives from SNC (Bergmüller & Taborsky, 

2010; Montiglio et al., 2013). It proposes that the presence of other group members causes 

individuals to behave differently from each other to reduce direct competition, thereby generating 

between-individual variation in behaviour (Wolf et al., 2008). Once individuals behave 

differently from one other, the presence of others increases the benefits of behaving predictably, 

thereby maintaining individual differences through positive feedback mechanisms (Montiglio et 
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al., 2013; Wolf et al., 2011). In an evolutionary context, this view is of particular interest as 

niches shape the social conditions under which juveniles develop and live. Through SNC, 

organisms not only shape the nature of their world, but also in part determine the selection 

pressures to which they and their offspring are exposed. Practically speaking, focusing on the 

social niches of individuals allows one to examine the effects of social interactions at a meta-

dyad level (Conradt & Roper, 2005), rather than being restricted to the local scale (i.e., dyadic 

level).  

 

In this thesis, I focus on juveniles’ socialisation and seek to understand how social 

relationships and sex-specific differences develop and evolve, while considering the wider social 

context of the interactions and associations across two different behaviours. To do so, I 

investigate SNC as a means for juveniles to make their immediate social environment more 

certain, hence facilitating the integration into their group. Putting this work into its broader 

context, I hope to get a better sense of social network emergence and maintenance, as well as a 

better understanding of how these processes might lead to later fitness-related benefits. The view 

proposed here sees social integration of juveniles as a result of a dynamic series of developmental 

processes where relationships are continually managed and renewed across contexts. This led me 

to develop and employ methods that can pick up these temporal dynamics. Constructing a 

dynamic time series of networks made me realize the many decisions that need to be taken 

related to the study of social dynamics, as well as the absence of a toolbox to help us out in this 

process. Consequently, I first built a R package that met my needs and provided guidelines to 

help researchers in their decision-making process. At the same time, when looking at juvenile 
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social development, the need to rank individuals arose, which led me to build another R package 

addressing the question of appropriate ranking methodologies. 

1.7 Methodological considerations 

1.7.1 The case of SNA 

At present, the use of both dynamic and multi-layer network approaches is not 

widespread. At the same time, anyone familiar with the field of behavioural ecology will have 

noticed the profusion of social network metrics that can be used to quantify and define sociality, 

the abundance of r packages, and the myriad decisions involved in addressing social dynamics. 

The improvements in our capacity to collect high-resolution data, coupled with rapidly improving 

computer software for analysis purposes, have been instrumental in the evolution and refinement 

of SNA and its application to animal societies. The slow uptake, then, is not that we are missing 

the necessary methods and tools. Rather, it seems to me that the rapid explosion of analytical 

methods has left researchers lagging behind as they try to understand and familiarise themselves 

with these new techniques and their applicability. 

One of the most concrete examples of this is choosing a scale that is both biologically 

meaningful and contains enough data to construct a network representative of the group. 

Although this decision is central to the design of any longitudinal research study, it is often 

overlooked (Uddin et al., 2017). Furthermore, the very flexibility of SNA means that its 

application is not straightforward, even when using monolayer networks. Therefore, SNA 

requires researchers to pay careful attention to (i) the design of their longitudinal studies, (ii) how 

they construct and analyse their networks and what they represent, (iii) which metrics they use to 

capture the biological phenomenon of interest, (iv) the potential impact of missing or incorrect 

data, and so on (Evans et al., 2020; Farine & Whitehead, 2015; Farine, 2017; Uddin et al., 2017; 
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Whitehead, 2009). Put simply, there are numerous examples of the decision-making processes 

involved in the effective application of SNA, which constitute critical steps that should not be 

overlooked. This overall progress in SNA observed in the last decades has resulted in diverse R 

packages to render this tool more accessible to everyone and to facilitate its application (e.g., 

"igraph” (Csardi & Nepusz, 2006), "statnet” (Handcock et al., 2008), "ANT” (Sosa et al., 2020), 

visNetwork (Almende et al., 2019)). While these packages offer high data flexibility, no package 

offers an all-in-one toolbox for animal research. I will expand on this in Chapter 3, where I 

introduce a custom r package (netTS) to ease the construction and analysis of time-aggregated 

networks, notably in choosing the appropriate time scale.  

1.7.2 The case of ranking methods 

It was surprising to me that, when deciding which ranking method would be most suitable 

for my study, I could not find any good justification for why a given method was used in a 

particular study. In fact, dominance hierarchies, with their associated benefits and costs for 

individuals, are a key aspect of primate societies (Isbell, 1991; Schaik, 1983; Sterck et al., 1997; 

Wrangham, 1980). For instance, occupying a high-rank position in a dominance hierarchy can be 

tremendously beneficial with respect to both priority of resource access and fitness consequences 

(Holekamp & Strauss, 2016). The popularity of dominance hierarchies, and the need to represent 

them accurately, drove the development of a variety of methods for inferring dominance 

hierarchies from observational data (reviewed in Bayly et al., 2006; Briffa et al., 2013; De Vries, 

1998). Owing to the immense proliferation and availability of dominance data, as well as their 

inherently dynamic nature, social ranks should be inferred in a robust and rigorous way. To do 

so, one needs to be able to choose the appropriate social ranking method for researchers' specific 

datasets. As no procedure was available, I developed a broad and dynamic tool with which to 
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conduct a reliability assessment of available ranking methods, and which is also flexible enough 

to be applied to any dataset. 

1.8 Outline of this thesis 

Following this introductory chapter, I present an overview of the study species and 

population in Chapter 2. I provide detailed reports of specific methods and analyses used in the 

relevant chapters.  

As mentioned earlier, there remain many analytical hurdles when implementing social 

network analysis. Chapter 3 presents an r package (netTS) to ameliorate this and offers three 

analytical steps for the construction and interpretation of time-aggregated networks. 

Chapter 4 addresses the overwhelming array of ranking methods to choose from by 

offering a complementary approach that assesses the reliability of calculated dominance 

hierarchies. This approach provides researchers not only with a means of determining the most 

reliable method for their dataset but also allows them to assess how rank reliability changes 

among age–sex classes in a social group, and so tailor their choice of method to the specific 

attributes of their study system. 

Chapter 5 presents findings on the process of network formation using data from three 

groups of wild vervet monkeys. I used a dynamic social network approach that allowed me to 

capture patterns of social change over time and to question whether juveniles followed Kohn#s 

(2019) socialisation steps.  

Chapter 6 follows on Chapter 5. Using the same approach, I investigated the formation of 

strong social ties, their composition, as well as the processes at play in their formation. 
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Chapter 7 forms a general discussion of my findings and allows me to re-contextualize 

my findings in the broader scope of sociality. It also frames my findings in light of their 

limitations and provides future directions. 
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CHAPTER 2: STUDY SPECIES AND POPULATION 

 

In what follows, I present a general overview of the study site and study species. Data 

collection protocols are presented separately in each chapter, along with the specific statistical 

modelling techniques used for each analysis. 

2.1 Study Species 

2.1.1 Taxonomy and Distribution 

Vervet monkeys (genus Chlorocebus; hereafter "vervets”) are the second-most widespread 

and abundant species of the Cercopithecidae family and are considered to be a sister taxon to the 

guenons (Cercopithecus; Mertz et al., 2019). Six species compose this African genus, five of 

which are widely distributed (Groves, 2001). Vervets are semi-terrestrial and distributed across 

sub-Saharan Africa, including West Africa, northern Kenya and Ethiopia, and the South African 

temperate regions (Turner et al., 2019b).  

 My study species, Chlorocebus pygerythrus, has the most extensive latitudinal distribution of 

the genus and has been well studied in the wild (Turner et al., 2019a).  

 2.1.2 Ecology 

Vervets are semi-terrestrial, territorial, and omnivorous. They feed on seeds, flowers, 

fruits, leaves, berries, gums, and insects. This dietary breadth underpins their broad distribution 

and allows them to occupy habitats that range from the margins of rain forest through to semi-

desert (Pasternak et al., 2013). Vervets are also water-dependent and are, therefore, found along 

rivers. They are the most widely distributed African primate, after the baboons.  
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In my study population, Vachellia karroo leaves, seeds, and flowers are a primary and 

critical food source (Pasternak et al., 2013). Succulents and roots (particularly Asparagus 

africanus), however, are favored during the dry season when water is scarce or even absent 

(Pasternak et al., 2013). 

2.1.3 Physical characteristics  

2.1.3.1 Adults 

 Adult vervets have a silver-grey coat with white fur surrounding a black face, as well as black 

feet and hands. Vervet adult males have brightly coloured genitalia, with a red penis and blue 

scrotum. Compared to males, females do not experience an adolescent growth spurt (Turner et 

al., 1997). Males are both larger and heavier than females, typically weighing between 3.9 to 8.0 

kg and averaging 5.9 kg at our study site (Pasternak et al., 2013). They have an average body 

length of 41 cm (Turner et al., 2019c). Females are approximately two-thirds the size of males, 

reaching masses of 3.4 to 5.3 kg, averaging around 3.3 kg at our study site (Pasternak et al., 

2013). 

 On average, vervet males reach sexual maturity at five years of age (Horrocks, 1986), while 

females typically have their first infant between three and five years of age (Fairbanks & 

McGuire, 1984). Females have ovarian cycles that can be irregular during the non-breeding 

seasons (Else et al., 1986). Infanticide has not been observed, likely due to the lack of male 

reproductive coercion (Seyfarth, 1980). 

Vervets are seasonal breeders, with the mating season typically falling between May and July 

in our region, and the birth season occurring between October and December. Gestation lasts 

between 163 to 165 days (Kavanagh et al., 2011; Seier et al., 2000) and inter-birth intervals vary 

between one to two years, dependent both on ecological conditions and whether the previous 
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offspring survived (Lee, 1984, 1987; Varsanyi, 2021). As at other locations (Butynski, 1988), 

vervet females in our study population experience a moderately circumscribed birth season 

predominantly between October and December (Figure 2.1) (Blersch et al., 2022, under review).  

 

 
Figure 2.1 The distribution of births between October 2013 and December 2018, Cohort 
2013 (red), Cohort 2014 (ochre), Cohort 2015 (green), Cohort 2016 (turquoise), Cohort 
2017 (blue) and Cohort 2018 (pink). 

 

2.1.3.2 Infants and juveniles 

 At birth, infants have black natal coats and pink faces (Figure 2.2). At one month of age, their 

faces begin to darken while their black coat gives way to the grey adult pelage at approximately 

three months of age (Lee, 1984, 1987; Seier, 1986). There is no sexual dimorphism in weight 

until 39 months of age (Lee, 1984, 1987; Seier, 1986), although growth rates can differ across 

birth cohorts as well as between wild and captive vervets (Jarrett et al., 2020). The juvenile 

period is said to begin with the cessation of suckling (Figure 2.3) and the emergence of 
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independent foraging between five (Sashaw, 2012) and seven months (Figure 2.3) (Lee, 1987; 

Blersch et al., 2022, under review). 

 

 
Figure 2.2 A female juvenile holds an infant, characterized by its natal pelt and 
pink face compared to the grey pelt and black face of the juvenile. 
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Figure 2.3 An infant suckling from its mother. 

 

2.1.3.3 Age 

 Throughout this thesis, subjects are categorized as juveniles from the emergence of 

independent foraging between five (Sashaw, 2012) and seven months (Figure 2.3) (Lee, 1987); 

Blersch et al., 2022, under review) to sexual maturity (~3.5 years for females and 5 years for 

males (Jarrett et al., 2018; Wrangham et al., 1999). Past their first birth (or miscarriage), females 

were considered as adults, while males were considered adults past 5 years of age. 
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2.1.4 Social organisation 

Vervets live in multi-male, multi-female troops, ranging in size between five to 76 

individuals (Horrocks, 1986; Pasternak et al., 2013). The tolerance of other males within a troop 

is unusual in the African forest monkeys, which has been ascribed to the constraints on male 

migration patterns imposed by linear territories along rivers (Isbell et al., 2004). Females remain 

in their natal group (i.e., they are the philopatric sex), whereas males emigrate from their natal 

group at sexual maturity. Thereafter, they move roughly every 2.5 to 3 years (Henzi & Lucas, 

1980; Young et al., 2019b), dependent upon their rank and integration into the female network 

(Young et al., 2019b). Dominance hierarchies are relatively stable in females, with daughters 

inheriting maternal rank—at least in small troops (Lee, 1983; Mertz et al., 2019). Males are co-

dominant with females and have more variable dominance ranks over time (Mertz et al., 2019; 

Young et al., 2017).  

The troops in our study population are much larger than the species!#average (Pasternak et al., 

2013). This may be because group fission is constrained due to the large contrast in food 

productivity between the acacia woodland along the river, which the study troops inhabit, and the 

considerably lower productivity away from the river (Figure 2.4) (Pasternak et al., 2013). The 

size of these troops has been shown to have important consequences for social dynamics, 

principally by reducing the impact of dominance rank (Henzi et al., 2013; Josephs et al., 2016). In 

our population, female dominance hierarchies are relatively shallow (Henzi et al., 2013) 

compared to those in smaller groups elsewhere (Seyfarth, 1980). 
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Figure 2.4 An aerial view of the study site that encompasses the territories of the 
three study troops and illustrates the sharp distinction between the riparian acacia 
woodland and the dwarf shrub-land away from the river. Photo taken from an 
helicopter by Graham Pasternak in 2011. 

 

2.2 Study site 

The study site lies within the ~ 10,000. Samara Private Game Reserve in the Karoo, 

Eastern Cape, South Africa (32°22#S, 24°52#E). Research on the vervet population here has been 

conducted since 2008. This protected area is located in the semi-arid karoo biome and dominated 

by Acacia (Vachellia karroo) woodland centered on the Milk River. This river constitutes the 

only source of water for the study animals and flows intermittently. The study area undergoes 

large spatio-temporal fluctuations in both food and water availability, with severe, periodic 

droughts (McDougall et al., 2010; Young et al., 2019a).  

The population is also subject to high predation from three species of territorial predators: 

caracal (Caracal caracal), black-backed jackal (Canis mesomelas) and reintroduced cheetah 
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(Acinonyx jubatus). Aerial predation is less common in this study area, including two aerial 

predators: Verroux's eagle (Aquila verreauxii) and Verroux's eagle-owl (Bubo lacteus). The site 

has also three species of venomous snakes: puff adder (Bitis arietans), cape cobra (Naja nivea), 

and boomslang (Dispholidus typus). Although they are not predators of monkeys, puff adders 

(Bitis arietans) and cape cobra (Naja nivea) are known to be responsible for the deaths of vervet 

monkeys at the study site (see Figure 2.5). Other common mammals include ungulates such as 

kudu (Tragelaphus strepsiceros), gemsbok (Oryx gazella gazella), red hartebeest (Alcelaphus 

buselaphus), duiker (Sylvicapra grimmia), springbok (Antidorcas marsupialis), eland 

(Taurotragus oryx), chacma baboons (Papio ursinus), cape buffalo (Syncerus caffer), white 

rhinoceros (Ceratotherium simum), aardvark (Orycteropus afer) and cape porcupine (Hystrix 

africaeaustralis). While baboons are known predators of vervets at other field sites (Enstam & 

Isbell, 2002), the vervets in our study population are not known to be predated by resident 

chacma baboons and do not alarm call when baboons are near (see Figure 2.6). 
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Figure 2.5 Juveniles vervet Monkeys and a cape cobra (Naja nivea) at the field site. 
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Figure 2.6 A Juvenile vervet monkey and chacma baboons (Papio ursinus) at the 
field site. 

 

2.2.1 Climate 

Climate data for the entire study period were available from an onsite weather station that 

provided information on daily ambient temperatures and rainfall. The area receives a declining 

average of 330 mm rain per annum. The field site#s wet season is October to March, and the dry 

season lasts from April to September (Pasternak et al., 2013). The coldest month is July when 

snow falls on the surrounding mountains and nocturnal temperatures fall well below zero 
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(Mcfarland et al., 2015), while December and January are the hottest months, with maximum 

diurnal ambient temperatures rising to 46C. 

2.2.2 Differential Resource availability 

Marked intra- and inter-annual variation in rainfall and temperature underpin temporal 

shifts in habitat productivity. The Normalized Difference Vegetation Index (NDVI) was used in 

my analyses, not only because it is a good proxy for net primary productivity (Rasmussen, 1998; 

Winnie et al., 2008), but also because it has been shown to correlate strongly with food available 

to vervet monkeys specifically (Willems et al., 2009). NDVI estimates were obtained using 

MODIS NDVI data downloaded from NASA#s Reverb|ECHO site (Didan, 2015). The Earth 

Observing System (EOS) satellites Terra (EOS AM-1) and Aqua (EOS PM-1) collect MODIS 

data with a return-to-site periodicity of 16 days (Didan, 2015). ArcGIS version 1.6.1 was then 

used to overlay the MODIS data onto the three territories, with each territory represented as a 

regular series of points 10-m apart. This led to the extraction of NDVI values from the MODIS 

rasters at each point. Area-weighted averages for each territory were generated for consecutive 

33-day windows (16 days post and prior to the date of each MODIS raster) by averaging all 

NDVI values for points falling within the territory#s 95% isopleth and weighted by the troop#s 

differential usage of its territory during that period (Figure 2.7) (Nord et al., 2021). 
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Figure 2.7 Plot of the NDVI values averaged within a 60-day window and used 
across the study period, by each troop. NDVI is an index value from 0 to 1.  

 

2.3 Study period and troop composition  

Data for this thesis were collected between June 2014 and July 2017, from three troops of 

vervet monkeys occupying adjacent and overlapping home ranges along the Milk River: 

Riverbend Mob (RBM), Picnic Troop (PT), and Riverside Troop (RST). These troops have been 

studied continuously since November 2008 (RST, RBM), and July 2012 (PT) as part of the on-

going Samara Vervet Monkey Project. All individuals are uniquely identifiable from natural 

markings. Group size and composition varied throughout the study periods and across the three 

troops (Figure 2.7). The study subjects comprised three birth cohorts from the 2013, 2014 and 

2015 birth seasons. 
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Figure 2.8 Variations in troop number and composition across years in (a) PT (b) RBM and (c) 
RST troops. The purple and orange lines show the fitted values of individual numbers for adult 
female and male respectively. The red and blue lines show the fitted values of individual numbers 
for juvenile female and male respectively. The grey bands represent the upper and lower 95% 
credible intervals. The dots show the raw data. 

 

2.4 Study species suitability 

Overall, vervet monkeys are an excellent model species for exploring questions regarding 

social integration (i.e., the development and maintenance of social networks). They have an 

extended juvenile period (Pereira & Altmann, 1985), are highly social and are easily observable. 

Furthermore, as vervet monkeys are seasonal breeders (i.e., most conceptions typically occur 

within the same 2- to 3-month period every year), this means that infants grow up with numerous 

same-age peers available as potential interaction partners. Consequently, every troop consists of 
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several separate matrilines, each typically encompassing three or more generations of close 

female kin. 

!  
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CHAPTER 3: CONSTRUCTING AND ANALYZING TIME-AGGREGATED 

NETWORKS: THE ROLE OF BOOTSTRAPPING, PERMUTATION, AND 

SIMULATION 

 
This data chapter has been published in Methods in Ecology and Evolution (December 24th, 
2019), under the title “Constructing and analyzing time-aggregated networks: The role of 
bootstrapping, permutation and simulation.” The authorship list for the published version is as 
below. Dr. Bonnell and I conceived the ideas and designed methodology. I collected the data. Dr. 
Bonnell analyzed the data and led the writing of the manuscript. Both authors contributed 
critically to the drafts and gave final approval for publication. 
 
Bonnell T.R.1,2, Vilette C.1,2  

1 Department of Psychology, University of Lethbridge, 4401 University Drive 

Lethbridge, Alberta, Canada, T1K 3M4 

2 Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa 

 

3.1 Abstract 

1. Animal social networks are often used to describe dynamic social systems, where individual 

behaviour generates network-level structures that subsequently influence individual-level 

behaviour. This interdependence between individual behaviour and group structuring is of 

central concern for questions concerning the evolution and development of social systems and 

collective animal behaviour more generally.  

2. Various statistical methods exist for estimating network changes through time. One approach, 

time-aggregated networks, takes repeated snapshots of interactions within windows of time to 

generate a time series of networks. However, there remain many analytical hurdles when 

implementing the time-aggregated approach. To ameliorate this, we introduce an R package 

netTS that focuses on three analytical steps for analyzing time-aggregated networks: choosing 
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appropriate time scale using bootstrapping, comparing patterns to relevant null models using 

permutation, and finally building and interpreting statistical models using simulated data. We 

use simulated data to first highlight these steps, then use observed grooming data from a group 

of vervet monkeys as an applied example.  

3.Our results suggest that the use of bootstrapping and permutation can accurately extract known 

patterns from simulated data. Using this approach with vervet data suggests that there is 

consistent social structuring, differing from what would be expected due to chance, and that 

some individuals are contributing to this structure more than others (i.e., keystone individuals). 

4. We demonstrate that bootstrapping, permutation, and simulation can aid in constructing and 

interpreting time-aggregated networks. We suggest that the use of time-aggregated networks to 

quantify patterns of network change can be a useful tool alongside process-based approaches 

that seek mechanistic descriptions. Ultimately, by looking at both patterns and processes, 

dynamic networks can be used to better understand how individual behaviour generates social 

structures, and in turn how individual behaviour can be influenced by social structures, 

ultimately leading to a better understanding of the evolution of social behaviour.  

 

3.2 Introduction 

Understanding the dependence between individuals in social groups has been enhanced by the 

use of network approaches. A network approach deconstructs a social group into nodes and 

edges, representing, respectively, individuals and the relationship between individuals (Newman, 

2010). This allows for the description of social dependence between two individuals (dyad scale), 

around the individual (ego scale), and at the entire group level (network scale). This approach has 

become a successful and common method in various research fields, with the result that many 

theoretical and empirical predictions are tied to measurements of networks (Chapman et al., 
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2016; Duboscq et al., 2016; Griffin & Nunn, 2012). In some cases, these theoretical and 

empirical concerns are temporal in nature, requiring some measure of how social networks 

change in time, i.e., viewing networks as dynamic rather than static (Aplin et al., 2015; Bonnell et 

al., 2019; Formica et al., 2016). For example, the magnitude of repeatability in social network 

position has direct implications for the selection of social phenotypes within a population (Aplin 

et al., 2015). Similarly, when populations experience demographic changes such as the birth of 

new individuals, the magnitude of a juvenile copying their mother’s social partners can have 

important consequences for the long-term stability of a population’s social structure (Ilany & 

Akcay, 2016; Jarrett et al., 2018). Thus, network measurements in time can have important 

implications (Farine, 2018). 

One particularly advantageous outcome of switching from static to dynamic social networks 

is the ability to address questions of process in collective behaviour. For example, to understand 

how shifts in one individual’s behaviour might cause a cascade of changes throughout a social 

group requires a dynamic network approach. A particular interest in collective behaviour is the 

feedback between individual- and group-level dynamics. Namely, how variation in individual-

level behaviour creates group level structures, which in return influence further development of 

individual behaviour (Sumpter, 2010). By treating networks as dynamic, it becomes possible to 

identify and quantify the processes driving these individual-group feedbacks to gain a better 

understanding of how individual level variation develops and what are the consequences for 

group level behaviour. Interestingly, this particular focus on individual variation has some 

parallels with work in population dynamics that might prove useful in social network contexts 

(Benton et al., 2006).  

Methodologically, time-ordered and time-aggregated network constructions have been introduced 

for analyzing dynamic networks (Blonder et al., 2012). On one hand, time-ordered networks are 
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networks that retain the order of interactions. These network constructions have been shown to be 

especially valuable when interested in questions about flow on a network (e.g., information, 

disease), as the timing of individual interactions can have important implications for the 

transmission between distant individuals (Blonder & Dornhaus, 2011), though see Farine (2018) 

for a discussion about when accounting for timing of interactions might be more/less justified. 

On the other hand, time-aggregated networks are constructed by aggregating data within a period 

of time and can be useful for addressing questions regarding changes in network topology. 

Depending on the scale of aggregation, these time-aggregated networks lose the ability to directly 

query when two individuals interacted. However, they can provide information about how those 

interactions change between time-aggregated networks and therefore, can be very useful in 

measuring structural changes in networks through time. For example, time-aggregated networks 

have been used to compare how density of social networks changes between mating and birthing 

seasons (Brent et al., 2013). 

There are a variety of software packages that enable the analysis of networks in time (Blonder 

et al., 2012; Fisher et al., 2017). In particular, the timeordered (Blonder & Dornhaus, 2011) 

package handles both time-ordered and time-aggregated network construction whereas the 

networkDynamic (Butts et al., 2014) one can be used to extract time-aggregated networks. Here 

we introduce a custom R package: netTS. Its purpose is to ease the construction and analysis of 

time-aggregated networks by: 1) facilitating window sizes choices by comparing i) how time-

series extracted from time-aggregated networks change with window size, as well as ii) how 

uncertainty in network measures change with window-size, 2) contrasting the observed time 

series against null models using network permutations, and finally, 3) simulating network data to 

test, refine, and interpret statistical models used to analyse time-aggregated networks. A critical 

step when constructing time-aggregated networks is choosing the window size, as it defines the 
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temporal scale at which networks are constructed and measured. Choosing a scale that is both 

biologically meaningful and contains enough data to construct a network that is representative of 

the group, can prove to be difficult. Similarly, comparing networks to a range of null network 

models is becoming standard practice to help identify and interpret structure in a network (Croft 

et al., 2011; Farine, 2017; Whitehead, 2008). Finally, simulations are becoming an essential part 

of good statistical practice and can be used to validate the use of a particular statistical tool 

(Gelman et al., 2013). The netTS package incorporates advances in these three areas to allow 

users to choose appropriate time scales, identify temporal structural changes, and to make 

informed inferences from statistical models. 

In this paper, we first give an overview of analyzing time-aggregated networks using the 

netTS package with simulated data. We then use grooming data from a group of vervet monkeys 

(Chlorocebus pygerythrus) to provide an example of using time-aggregated data to address 

questions concerning the temporal dimensions of social structuring in animal populations. Here, 

comparing the results of simulations to empirical data can be a useful way of inferring candidate 

mechanisms generating social structure (Farine et al., 2014; Sumpter et al., 2012). Given that 

social structure is generated by individual-level behaviours, we investigated whether some 

individuals were disproportionately responsible for the maintenance of social structure through 

time, i.e., are there keystone individuals driving group structuring through their grooming 

interactions? Here we focus on quantifying the variation in influence of individual grooming 

behaviour on the social structure of the group through time. This example targets only part of the 

collective behaviour framework (i.e., individual-level behaviour à group-level structuring, not 

group-level structuring à individual-level behaviour) and provides an example of how the time-

aggregated approach can be useful in studying collective animal behaviour more generally.   
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3.3 Methods 

To introduce the netTS package, we first present the moving window approach for 

constructing time-aggregated networks from relational data. We then use simulated datasets to 

showcase three analytical steps to choose temporal scales and interpret results from the time-

aggregated approach: 1) bootstrapping to choose lower limits to window size choices, 2) multi-

scale time-series analysis to check for natural temporal scales, and finally 3) the use of 

permutation to interpret network measures extracted from these time aggregated networks. We 

perform these steps with two sets of simulated data: one in which there is no structure, and a 

second one with structure. This allows us to test whether the proposed methods can accurately 

detect (i) the presence of an underlying network structure and (ii) when there is none. The full 

package code can be found on github (github.com/tbonne/netTS), along with tutorials, and the 

code used in the analyses presented here. 

After this introduction to the package using simulated data, we present an example using 

observed vervet grooming data. We first show how one can use bootstrapping and natural scales 

to help choose an appropriate temporal scale. We then show how network permutations can be 

used to identify network structures through time. Finally, we sought to quantify keystone 

individuals, i.e., individuals whose grooming behaviour has a larger impact on the overall 

network structure.  

3.3.1 The Moving window approach to aggregation 

Generally, when constructing social networks using time-aggregated networks to interrogate 

relational data, a careful consideration of scale is required, e.g., is it best to group data into 

daily/monthly/yearly networks (Blonder et al., 2012)? This package aims to help with this 

process using a moving window approach designed to work with any relational data accumulated 
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through time. The main input to the netTS package is a data frame with the first two columns 

defining who is interacting, a third column with a date time stamp, and an optional weight 

column specifying the duration or magnitude of each interaction. Therefore, data collected by ad 

libitum sampling, focal follows, scan sampling, or gambit of the group can be used, though 

careful consideration of how to control for variation in sampling effort must be considered for 

each type of sampling methodology (see controlling for sampling effort below). 

The moving window approach allows a user to define its size (e.g., windowsize = 1 month) and 

the amount to shift the window (e.g., windowshift = 1 day). This moving window subsets the 

relational data within a window and creates a network. It then shifts in time and repeats the 

process. By altering the size and shift of a moving window, it is possible to generate a time series 

of networks (Figure 1), which can be thought of as generating a multilayered network in which 

each network layer encodes the same type of interactions at different time points (Finn et al., 

2019).  
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Figure 1 Overview of using a moving window approach to extract network measures 
over time: a) the relational input data, b) generate the time series of networks using a 
moving window approach, and c) extract network measures at the dyadic, node, and 
network scales. 
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3.3.2 Simulated data 

To validate our proposed methods, we simulated interaction data following a scan sampling 

design. In these simulations, an observer will scan a group of individuals a number of times 

where each individual has the probability of interacting with another individual with probability 

A. Here we set the probability to 0.10 for all individuals. If during a scan an individual is to 

interact with another individual, it will choose from its neighbour based on a fixed underlying 

network. Here we simulate interactions with a fully connected network (i.e., everyone is as likely 

to groom everyone) and a network with a skewed degree distribution (i.e., everyone has a few 

grooming partners, and some have a lot). For the simulation with the skewed network, we 

additionally add a seasonal component to interaction probability, where there are seasonal 

fluctuations in probabilities in which individuals interact. The distance between peak interactions 

was set to 35 days with an increased interaction probability of 0.2. We provide the function used 

to simulate these data in the netTS package as the method sim.events.data (see vignette for more 

information). 

3.3.2.1 Identifying a lower limit to window size 

The ability to alter the window size introduces the possibility of multiple scales being chosen. 

The lower limit to window size choices can, to some extent, be specified by the fact that as 

window size gets smaller, less data is aggregated within each network and the network measures 

become progressively noisier, i.e., more dependent on the specifics of the remaining samples. 

This lower limit is likely to be a function of the rate of sampling and the biology of the behaviour 

under study (Farine, 2015).  

To identify the lower limit of window size choices, for a particular dataset, we take advantage 

of a bootstrap approach on the event data used to create the networks. Applying this method, it is 
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possible to take multiple bootstrap samples of the event data within a window, create a network 

with the bootstrapped sample, calculate a network measure, and then estimate the relative 

similarity between measures from the bootstrapped networks and the observed network 

(Costenbader & Valente, 2003; Farine & Strandburg-Peshkin, 2015; Lusseau et al., 2009). Highly 

similar estimates, and low variation in estimates, indicate that the network measure is robust to 

bootstrapped sampling, suggesting that the chosen window size is adequate to provide a good 

measurement. To test the efficacy of the bootstrapping approach, we provide a simulation test 

that suggests the relationship between bootstrapped networks and observed networks can provide 

useful information about the relationship between observed networks and a network constructed 

with all interactions (i.e., a complete network) (Figure S1). 

Additionally, given that the bootstrap can only sample from the observed interactions, there is the 

possibility that missing interactions can drastically alter the network measure. In order to estimate 

the sensitivity of the network to missing data, we additionally estimate the effect of subsampling. 

To do so, we perform the bootstrapping procedure but on a subsampled portion of the observed 

data and compare the resulting bootstrapped networks to the measures in the observed network 

(Carter et al., 2019; Costenbader & Valente, 2003). This combination of bootstrapping and 

subsampling provides the user with the ability to assess uncertainty in a network measure under 

different window size choices. We implement this test in the check.windowsize function in netTS 

allowing users to experiment with potential window size choices. We further caution that there 

remains much work to be done in estimating network measure uncertainty (Farine & Strandburg-

Peshkin, 2015).  

This approach of using bootstrapping and subsampling is meant to test if the observed sample 

used to generate the network is sufficient to reliably capture network structure, i.e., if you had a 

slightly different observed sample, would the network structure come out roughly the same? 
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Applying this approach to the simulated datasets, we found that, for the unstructured simulated 

dataset, increasing the window sizes (even at a 60-day window), the similarity did not increase, 

and the effect of subsampling was comparably high (Figure 2a, c, e). Whereas for the structured 

dataset, increasing the window sizes led to higher similarity between bootstrapped samples and 

observed samples (Figure 2b, d, f). It also reduced the effects of subsampling. This suggests that 

using bootstrapping to estimate uncertainty can help distinguish between unstructured and 

structured networks and identify lower limit to possible window size choices.  

 

Figure 2 Estimating the lower bound of window size choice using bootstrapping and 
subsampling. Examples are shown for the unstructured (a, c, e) and structured (b, d, f) simulated 
datasets. Lines represent mean cosine similarity, shaded region the 95% quantiles, from 100 
bootstrap comparisons between node degree in the observed and bootstrapped networks. Time 
series of observed networks were constructed using window size choices of 10, 30, and 60 days. 
To estimate the sensitivity to missing edges, this procedure was repeated using a random 
subsample of the original dataset (i.e., 1, 0.8, and 0.6 of the original data). 
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3.3.2.2 Choosing a window size 

The choice of the upper limit to potential window sizes, apart from the maximum time scale 

of the dataset, has no a prior limit and will increasingly capture longer-term trends. In some 

cases, depending on the temporal dynamics of the systems of interest, “natural” scales can 

potentially exist (Caceres et al., 2011). To aid in looking for natural scales we introduce the use 

of sample entropy as an approach that works well with many types of time series data (Richman 

& Moorman, 2000). This measure is maximized when the time series is either completely 

random, or completely static, and minimized as the time series becomes more structured. Sample 

entropy is calculated by looking at sequences of values in a time series and comparing how many 

times each sequence of length n appears in the time series to how many times the sequence n+1 

appears. The ratio between the two provides an estimate of predictability, e.g., if the first two 

values in the time series are 2.5 and 4.6, how many times do you find this sequence of 2, and if it 

is followed by the value 3.2, how many times do you find this sequence of 3 (i.e., n+1). By 

looking at how temporal scale alters this ratio, it is possible to identify potential natural scales, 

and provide a sense of how a particular network measure changes with temporal scale (Costa et 

al., 2002). The netTS package provides a function (check.timescale) to plot how sample entropy 

in a particular network time series measure changes with window size choices (i.e., scale). As the 

identification of temporal scales is an area of active research, we also provide the ability to input 

user defined functions to assess how temporal scale alters network time series measures (e.g., 

how does total coefficient of variation in the time series change with time scale?) (see vignette: 

choosing window size). 

When we apply this approach to the simulated data, we see that in the case where there is no 

structure (full network) and where interaction probabilities remain constant, we find high sample 
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entropy values (compared to the structured simulated dataset) with a shallow decrease in sample 

entropy as window size increases (Figure 3a). We also find large divergences between 

bootstrapped replicates. For the dataset with a structured network (skewed degree distribution and 

a seasonal change in interaction probabilities), we find lowest sample entropy at the true seasonal 

time scale as well as high agreement between bootstrapped replicates (Figure 3b).  

  

 

Figure 3 Sample entropy by window size for a) a simulated dataset constructed with no 
imposed temporal scale, b) a simulated dataset with a temporal scale imposed. The sample 
entropy from the observed data, along with 5 bootstrapped datasets, is calculated for each 
window size choice. The dashed line in b) indicates the imposed seasonal component in the 
simulated data. 

 

Overall, the question of interest and knowledge of the study system are likely to play a large 

role in choosing the temporal scale to measure network change. In general, apart from attempting 

to identify one optimal window size, it is likely the case that the way a pattern of interest changes 

depending on the time scale chosen will itself be of great interest (Costa et al., 2002; Levin, 

1992). 
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3.3.3 Extracting Network measurement through time 

Once a window size has been selected and a time series of networks generated, it is possible 

to use network metrics at the scale of the network, node, or dyad (Newman, 2010). Although a 

few common metrics are built into the netTS package, the network measure required is a user-

specified function. This function takes a network as input and returns a value, or vector of values 

in the case of node or dyadic measures. By using user-generated functions, the package can take 

advantage of the wide range of network measures available, without constraining users to a pre-

specified list of options (see vignette: Introduction to netTS). 

3.3.3.1 Controlling for sampling effort/time 

Given the time series nature of the data, as well as the potential for variation in data collection 

methods through time, it is important to consider how changes in sampling effort might impact a 

potential measure (Davis et al., 2018; Franks et al., 2010). In some cases, the ability to use scaled 

or transformed measures, such as the simple-ratio index (SRI), can facilitate comparisons 

between networks in time (Farine & Whitehead, 2015). Another option, that keeps the measure 

on the observed scale, would be to directly control for sampling effort over time. This approach 

converts the observed social behaviour to a rate (e.g., interactions/hours of observation, or 

interactions/number of scans). For example, to construct an interaction network in Thronbills 

(genus Acanthiza), (Farine, 2015) divided the number of observed interactions between 

individuals by the time observed in the same flock. The netTS package offers the possibility to 

include a sampling effort function in order to help the user to control for a certain type of 

sampling effort. These functions take as input an event’s data frame and returns a single value of 

effort. The netTS package provides three functions. The first approach sums the total time 

(effort.time), based on the first and last sample time of each day within a window. This method 
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assumes equal sampling effort throughout the day, i.e., ad libitum data collection. The edges in 

network are divided by the time spent observing (number of interactions observed / number of 

hours observed). The second approach (effort.scan) uses a data frame, supplied by the user, 

containing the number of scans during sampling periods, e.g., number of scans per day. This 

approach is useful when observations are captured within set scanning periods and would be 

suitable for sampling regimes where periodic scans are used to collect data. Here, the edges in 

networks are divided by the number of scans within a window. Finally, the third effort function is 

designed to correct for variation in effort with focal data (effort.focal). This method requires a 

user supplied data frame with times and durations of focals. Each edge of the constructed 

network is divided by the amount of time it could have been observed, e.g., an interaction 

between A and B can only be observed when either A or B is the focal. In other words, if A and 

B are focalled for 10 and 5 minutes respectively, then 15 minutes is the total amount of time 

where A and B could have, potentially, been seen interacting. As sampling effort will vary by 

dataset and collection method, it is also possible to construct user defined effort functions to 

correct for sampling effort when estimating network measures (see vignette: controlling for 

sampling effort). Given our simulated data do not have variation in sampling effort, we present 

some examples using these methods below with our field data on vervet monkeys. 

Because variation in sampling effort can have a large impact on the network structure, it 

needs to be considered carefully (Davis et al., 2018; Whitehead, 2008). Here we suggest the use 

of network indices (e.g., simple-ratio index) tailored in reducing variation in sampling effort, as 

well as the conversion of dyad weights to ratios by dividing interactions by sampling effort 

directly. We also propose the use of null network models, that can incorporate variation in 

sampling effort, to better distinguish what network structures might simply be a result of 

variation in sampling effort (Croft et al., 2011; Farine, 2017).   
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3.3.4 Interpreting measures through time using null models 

Given the ability to compare how a network changes in time, it can also be useful to contrast 

how this changing network relates to a null model using network permutations. The exact 

specification of the null model, i.e., how it is constructed, can aid in understanding the structure 

of the observed network. For example, it is possible to construct a time series of centrality 

measures within a grooming network and look for trends over time. However, if we want to 

compare centrality measure to what might be expected if grooming partners are chosen at 

random, we would want to use a null model. The aim of the null model is to create replicated 

datasets in which the aspect that is of most interest to us, often who is observed with who, is 

randomized (Farine, 2017). Here, the choices of the null model can help refine how the observed 

pattern is different (Croft et al., 2011; Farine, 2017; Whitehead, 2008). You could decide to take 

all grooming events and randomly distribute them between nodes to generate a null model. 

Similarly, you could retain the fact that some individuals are more present in grooming events 

than others by permuting individuals between grooming events. You could then compare the 

observed network to those null models to make inferences about how it differs, or not. The way 

that the observed networks differ from the permuted networks and the specific choices of how 

permutations are carried out, can help highlight important structure in the observed networks. In 

netTS, by performing permutations for each time-aggregated network, it allows for estimations of 

how the network diverges from a null model through time (e.g., is it consistently different, or are 

there only certain times/seasons where there is a difference?). We provide some predefined 

permutation methods in netTS, but also allow for user-specified permutation functions that will 
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take an event data frame as input and return a range of network measurement values (see 

vignette: Using network permutations). 

With the simulated data, we show that using permutations can distinguish between the 

structured and unstructured datasets (Figure 4). The measures of eigenvector centrality and out-

degree, for the unstructured simulated dataset, are well within the range expected due to 

randomized interactions (Figure 4c). However, in the case of the structured simulated dataset, we 

find that out-degree is well outside the range expected due to random, and for eigenvector 

centrality some values fall inside and outside the range expected due to chance interactions 

(Figure 4b, d). Given that the permutation used kept the number of times each individual was 

seen in an interaction, it then also retained the skewed degree distribution in the structured 

simulated dataset. The difference between the permuted and observed networks are then only 

driven by the difference in the arrangement of the edges beyond degree distribution. This, 

therefore, suggests only slightly more centralization than expected beyond what is expected given 

the skewed degree distribution.   
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Figure 4 Eigenvector centrality extracted from networks generated using a, c) unstructured and b, 
d) structured simulated datasets. Permutations of individuals between simulated interactions were 
used to generate the range of eigenvector centrality values expected due to random interactions, 
while retaining individual differences in the amount of interactions. 

 

3.4 Using netTS: an example of a primate social network 

3.4.1 Input data 

We use grooming data from a fully habituated group of vervet monkey in the Eastern Cape of 

South Africa (Josephs et al., 2016), e.g., Table 1. These gregarious primates occupy a semi-arid 

environment with large seasonal fluctuations of both temperature and rainfall, and similarly show 

seasonal breeding patterns (Lubbe et al., 2014; McFarland et al., 2014, 2015). These data were 

collected by scan samples taken twice every hour for 10 minutes, during 10-hour days, 

approximately 3-5 days per week between July 2015 and July 2016. The group consisted of 9-13 

males and 11-16 females over the study period. 
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Table 1 Example data used as input for the netTS package. 

from 

<chr> 

to 

<chr> 

date 

<S3: POSIXct> 

Laur Malc 2015-07-01 12:32:19 

Malc Laur 2015-07-01 12:33:01 

Ubun Wall 6:08:26 

 
 

3.4.2 Correct for changing sampling effort 

Given that sampling effort can vary between time periods, it is important to control for it 

when comparing certain network measures over time, with some measures being more sensitive 

to sampling effort than others: e.g., node strength vs. node degree. Here, we demonstrate how 

controlling for the number of scans alters average strength of a network over time (Figure 5). All 

subsequent analyses use these corrected network measures. 
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Figure 5 Mean network strength over time for a group of vervet monkeys: a) without 
correcting for sampling effort in the field, and b) after correcting for sampling effort. 

 

3.4.3 Assess window size choice 

We first use the bootstrap test to identify the lower end of possible window size choice 

(Figure 6). The results show that, given the temporal resolution of the vervet data network, 

measurement accuracy is reduced in window sizes below 30 days. By looking at estimates of 

similarity across the study period, it can also help to identify time periods where sampling effort 

was not adequate for a particular window size. For this vervet dataset, the consistently high 

similarity between the bootstrapped and observed networks, using a 60-day window, suggests 

that the window size results in robust networks. 
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Figure 6 Results of the bootstrap test to quantify the uncertainty in networks 
constructed using a) 10 day, b) 30 day, and c) 60 day window sizes. For each 
window size, cosine similarity values between observed and bootstrapped 
estimates of node degree are presented for the full data and subsampled datasets to 
assess sensitivity of network structure to missing data. Higher similarity estimates 
and lower variability around these estimates, indicated by the shaded areas in b-e 
(95%CI), suggest more robust network measurements. 

 

We then vary the window size from 10 days to 150 days to see how sample entropy changes 

(Figure 7). In this case, sample entropy showed a quick decrease similar to the shape of the 

unstructured simulated dataset, though with a lower entropy and higher agreement between 

bootstrap samples. We also found a smaller scale oscillation of 7 days, picking up that data was 

not collected on our study population on the weekends. Given the bootstrap and sample entropy 

results, we choose a window size of 63 days, meeting the bootstrap minimum, and accounting for 

the temporal effect of weekend in our data. 

It is also important to note that, when looking at how a time series changes with temporal 

scale (i.e., window size), the results will depend on the particular network measure used to 
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construct the time series, e.g., mean network strength/degree, or eigenvector centrality might 

show very different responses to changes in temporal scale. In this case, we used mean strength 

of the network due to our interest in how changes in individual network strength impacts group 

level structures. 

 

Figure 7 The relationship between window sizes used to create networks (i.e., temporal scale), 
and sample entropy of the resulting time series. Observed sample entropy measures are presented 
along with measures calculated on five bootstrapped samples from the observed data. 
 

3.4.4 Assessing network structure through time 

We used a permutation approach to assess the consistency of mean out-degree (the number of 

partners groomed) and mean eigenvector centrality of the network (magnitude to which the 

grooming interactions concentrate on a few well-connected individuals) (Figure 8). 

 



 

62 

 

Figure 8 Permutation across time: a) mean out-degree of grooming, and b) mean eigenvector 
centrality. The observed values are presented as blue points, and the 95% quantiles generated 
through permutations are presented as a pink ribbon. 

 

We can see from Figure 8 that, within the group, out-degree is consistently lower than expected 

with random grooming interactions, i.e., individuals are more selective with whom they groom 

compared to random. Whereas, in the case of mean eigenvector centrality, there is less 

differentiation between random and observed networks, with only occasional times when mean 

eigenvector centrality is not lower than expected by chance. In these examples, the null network 

had a higher mean out-degree and mean eigenvector centrality compared to the observed. It is 

also important to note that, in netTS, it is possible to compare networks to null network models, 
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however there is no function at the moment to compare two networks directly to each other using 

permutation.  

3.4.5 Identifying keystone individuals 

To identify keystone individuals, we look to see how individual changes in out-grooming 

behaviour influenced the centrality of the group as a whole. Here, we are interested in answering 

the question: do some individuals influence the social structure of the group more than other 

individuals when they groom? If certain network structures have beneficial effects for individual 

fitness within a social group, are some individuals more responsible for the maintenance of this 

structure, and how does that relate to who benefits most from a particular social network structure 

(Alberts, 2019; Brent, 2015; Schülke et al., 2010)? An example of this is that eigenvector 

centrality has been shown to be a better predictor of offspring survival in female baboons than 

dyadic-level connections (Cheney et al., 2016).  

With the netTS package, we extracted individual out-grooming strength and eigenvector 

centrality of the network over time. We then used a generalized additive mixed model to estimate 

how changes in individual out-grooming influenced the eigenvector centrality of the network. We 

allowed this effect to vary by individual by using a random slope for the effect of out-grooming. 

If this random slope turns out to be negligible, it would suggest that changes in out-grooming 

behaviour for all individuals has the same effect on mean eigenvector centrality. We also control 

for seasonal effects via a circular basis spline on day-of-year, and model dependence in the 

residuals using an AR1 process. We fit the model with the brms package following a Bayesian 

approach (Bürkner, 2017). 

The model suggests that there are some differences between individuals in the effect of their 

grooming on centrality of the group (standard deviation in the effect of grooming: sd(grooming) 
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= 0.16, 95%CI: 0.10,0.24) (Table S1). Running the model with and without a random slope 

(∆WAIC = -24.38, se = 15.26) suggests that there is some evidence for individuals that are 

associated with increases/decreases in centrality when their out-grooming increases, and points to 

potential keystone individuals (Figure 9).  

 

 

Figure 9 Model estimating how changes in out-strength by nodes influence the centrality of the 
network as a whole: a) overall mean effect of out-grooming on network eigenvector centrality, 
and b) individual level effect of out-grooming on network eigenvector centrality. Individual lines 
represent the effects of particular nodes (individuals) and are coloured based on their deviation 
away from the mean effect: i.e., blue is lower than the mean, and red is above the mean effect. 
Shading indicates the 95% credible intervals for each line. Each line is also given labels based on 
the name of the individual to aid in identifying those individuals having either a more positive or 
negative effect on eigenvector centrality. 



 

65 

To better interpret and make inferences from these results, we use the unstructured and structured 

simulated datasets. Running the same regression model on simulated data, with a fully connected 

grooming network, suggests that when individual grooming is not constrained, i.e., all individuals 

have equal probability of receiving grooming, the model found little difference in individual 

influence on group eigenvector centrality (sd(grooming) = 0.04, 95CI: 0.00, 0.08) (Table S2). 

However, in the case where individuals show constraints in their grooming behaviour (i.e., there 

was a skewed distribution), the model found differences in the effect of node out-strength on 

centrality of the group (sd(grooming) = 0.09, 95CI: 0.05, 0.14) (Table S3). Given these simulated 

data were constructed with a fixed network structure, and no between individual differences in 

grooming probability, the result suggests that certain positions within the network can have more 

of an impact on eigenvector centrality. In the case of the observed data, where the network 

structure is dynamic and there are individual differences in grooming, we see larger estimates of 

individual differences in their impacts on eigenvector centrality.  This suggests that variation in 

individual contribution to group structuring is more prominent in the observed dataset, though 

more work would be needed to tease apart the role of individual differences in network position 

and interaction rates on group level structure. This example, however, does highlight that the use 

of simulated data can be used effectively to better interpret results from observed data. 

3.5 Conclusions 

Time-aggregated networks are a promising approach for quantifying patterns of structural 

change in animal social networks. Taking a dynamic view of social structure can address recent 

questions in the animal social network literature. For example, if certain network positions or 

characteristics provide fitness benefits (Alberts, 2019), a dynamic approach to networks can be 

used to quantify the consistency to which individuals maintain these positions/characteristics and, 
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potentially, could reveal the mechanisms behind these processes (Ostner & Schülke, 2018). 

Similarly, in a more applied context, given social structuring has the potential to influence 

population dynamics (Alberts, 2019; Benton et al., 2006; Cantor et al., 2019), a dynamic 

approach might be used to better understand how environmental changes influences social 

structuring, providing further insights into population dynamics of social species in response to 

climate or landscape changes. The construction of time-aggregated networks, however, requires 

careful consideration of measurement and temporal scale. Similarly, the choice, parameterization, 

and interpretation of statistical models employed to analyse the resulting time-series of networks 

require careful inspection. We advocate for the use of bootstrap, permutation, and simulation to 

facilitate decision-making regarding these choices, and have introduced the netTS package for 

this purpose. We suggest that the patterns of change in social networks can be a used in 

combination with process-based approaches, e.g., stochastic actor-oriented networks, or relational 

event models, which seek mechanistic descriptions (Butts, 2008; Snijders et al., 2010). This 

combination of pattern and process is vital for understanding both the drivers behind social 

structuring and the subsequent consequences of these structures in social groups, leading to a 

better understanding of the dynamics of social structuring in animal populations. 
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3.7 Supplementary material 

Results from the keystone analysis: 

Table S1 Parameter estimates for the keystone model predicting individual level out-grooming 
effects on group level eigenvector centrality. Due to the use of splines in this model, Figure 3 in 
the main text is provided to aid in the interpretation of the table. The delta WAIC is presented for 
the comparison between the full model, random intercept and slope, to the random intercept only 
model. Negative values for this delta WAIC suggest a better fit for the full model. 

Parameter Estimate lower-95%CI upper-95%CI 

Intercept -0.64 -0.81 -0.48 

Sigma 0.21 0.21 0.22 

Linear: out-grooming -1.15 -2.56 0.36 

sd(Intercept) 0.05 0 0.13 

sd(out-grooming) 0.16 0.1 0.24 

cor(Intercept, out-grooming) -0.3 -0.99 0.82 

Smooth: out-grooming 0.99 0.46 1.93 

Smooth: Day of Year 0.95 0.57 1.67 

ar[1] 0.98 0.98 0.99 

R2 marginal 0.43 0.38  0.49 

R2 conditional 0.45 0.45 0.50 

∆WAIC   -24.38 (se = 15.26) 
 

 

 

 

Table S2 Parameter estimates for predicting individual level out-grooming effects on group level 
eigenvector centrality using an unstructured simulated dataset, i.e., a fully connected grooming 
network. The delta WAIC is presented for the comparison between the full model, random 
intercept and slope, to the random intercept only model. Negative values for this delta WAIC 
suggest a better fit for the full model. 
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Parameter Estimate Lower 95%CI Upper 95%CI 

Intercept 0.02 -0.02 0.06 

Sigma 0.43 0.42 0.43 

Linear: out-grooming -0.68 -2.22 0.97 

sd(Intercept) 0.02 0.00 0.05 

sd(out-grooming) 0.04 0.00 0.08 

cor(Intercept, out-grooming) 0.06 -0.95 0.95 

Smooth: out-grooming 0.85 0.34 1.85 

Smooth: Day of Year 1.01 0.58 1.84 

ar[1] 0.85 0.85 0.86 

R2 marginal 0.33 0.30 0.35 

R2 conditional 0.33 0.30 0.36 

∆WAIC   -2.34 (se = 4.02) 
 

 

Table S3 Parameter estimates for prediction of individual level out-grooming effects on group 
level eigenvector centrality using a structured simulated dataset, i.e., a skewed degree distribution 
grooming network. The delta WAIC is presented for the comparison between the full model, 
random intercept and slope, to the random intercept only model. Negative values for this delta 
WAIC suggest a better fit for the full model. 

Parameter Estimate Lower 95%CI Upper 95%CI 

Intercept 0.03 -0.03 0.09 

Sigma 0.35 0.34 0.35 

Linear: out-grooming 0.81 -0.18 1.45 

sd(Intercept) 0.02 0 0.07 

sd(out-grooming) 0.09 0.05 0.14 

cor(Intercept, out-grooming) -0.11 -0.96 0.89 

Smooth: out-grooming 0.12 0 0.41 

Smooth: Day of Year 0.38 0.22 0.65 
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ar[1] 0.92 0.91 0.92 

R2 marginal 0.23 0.19 0.28 

R2 conditional 0.24 0.19 0.28 

∆WAIC  -22.55 (se = 9.99) 
 

 

 

Simulation test for the use of bootstrapping to measure network uncertainty: 

Here we used simulated data to test if the sample of our observed sample (i.e., bootstrap) 
can provide an estimate of the adequacy of our observed sample compared to the “complete” set 
of interactions. To do so we first created a “complete” network representing all the interactions 
within a group, then sampled from these interactions to create an observed network. We then took 
1000 bootstrap samples from this observed network and calculated similarity between the 
observed and bootstrap networks. We then varied the rate of sampling and plotted the relationship 
between the true similarity between our observed network and the complete network, and the 
similarity between the bootstrap and observed networks. We show that the similarity between the 
bootstrap and observed networks does provide information about the similarity between the 
observed network and the complete network. We also show that perhaps the variability in the 
bootstrap similarity is more informative than mean similarity, and that using node level values 
performs better than using full network comparisons (Figure S1). 
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Figure S1 Performance of the bootstrap sampling method on estimating the relationship 
between an observed and complete network: i.e., can the bootstrapped networks help 
identify when the observed network is not representative of the complete network? 
Dashed lines indicate the relationship between the observed and complete networks. Solid 
lines represent the relationship between the bootstrapped networks and the observed 
network, and the grey shading represents the uncertainty in that relationship.
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CHAPTER 4: COMPARING DOMINANCE HIERARCHY METHODS USING A DATA-

SPLITTING APPROACH WITH REAL-WORLD DATA 

 

This data chapter has been published in Behavioral Ecology (September 11th, 2020), under the 
title "Comparing dominance hierarchy methods using a data-splitting approach with real-world 
data.” The authorship list for the published version is as below. I contributed to the study 
concept/design, data collection, data analysis and drafting the manuscript. Dr. Henzi and Dr. 
Barrett contributed to funding acquisition, supervision and the drafting and critical revision of the 
manuscript. Dr. Bonnell contributed to data analysis, supervision and helped draft the manuscript. 
All authors approved the final version of the manuscript. 
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4.1 Abstract 

The development of numerical methods for inferring social ranks has resulted in an 

overwhelming array of options to choose from. Previous work has established the validity of 

these methods through the use of simulated datasets, by determining whether a given ranking 

method can accurately reproduce the dominance hierarchy known to exist in the data. Here, we 

offer a complementary approach that assesses the reliability of calculated dominance hierarchies 

by asking whether the calculated rank order produced by a given method accurately predicts the 

outcome of a subsequent contest between two opponents. Our method uses a data-splitting 

"training-testing” approach, and we demonstrate its application to real-world data from wild 

vervet monkeys (Chlorocebus pygerythrus) collected over three years. We assessed the reliability 
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of seven methods plus six analytical variants. In our study system, all 13 methods tested 

performed well at predicting future aggressive outcomes, despite some differences in the inferred 

rank order produced. When we split the dataset with a 6-month training period and a variable 

testing dataset, all methods predicted aggressive outcomes correctly for the subsequent 10 

months. Beyond this 10-month cut-off, the reliability of predictions decreased, reflecting shifts in 

the demographic composition of the group. We also demonstrate how a data-splitting approach 

provides researchers not only with a means of determining the most reliable method for their 

dataset, but also allows them to assess how rank reliability changes among age-sex classes in a 

social group, and so tailor their choice of method to the specific attributes of their study system. 

4.2 Introduction 

Dominance hierarchies are key to understanding social structure across many animal taxa. 

Recognition of their importance, and the need to represent them accurately, has driven the 

development of a variety of methods for inferring dominance hierarchies from observational data 

(Bayly et al., 2006; Briffa et al., 2013; De Vries, 1998). Given the array of options available, 

selecting the method that best fits a given dataset can thus prove challenging. So, how does one 

choose? One obvious possibility is to refer to the existing literature in order to assess which 

method is most commonly used for the particular study system or species on which one works, 

determine how and why such a choice was made, how it was justified, and then follow suit with 

one#s own data. The flaw with this strategy, as we have discovered, is that there is wide 

variability in the methods used within and between study systems and species, and researchers 

rarely, if ever, provide any justification for their choice. 

This is not to say that researchers have not assessed ranking methods in a systematic 

fashion. Indeed, there is a substantive literature that has focused on determining the validity of 
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ranking methods. However, these studies do not provide all the resources needed to enable 

researchers to make a fully informed choice for their own datasets as they carry their own 

limitations, a point on which we now expand. In one set of studies, a number of ranking methods 

have been applied to an empirical dataset, and greater levels of agreement between methods have 

been taken to indicate that the methods are accurate and robust (Balasubramaniam et al., 2013; 

De Vries, 1998; Gammell et al., 2003; Neumann et al., 2011). Sánchez-Tójar et al. (2018) argue, 

however, that similar results across methods could also mean they suffer from a common bias, 

rather than necessarily providing an index of the methods!#robustness. As such, they do not 

necessarily offer guidance on which method should be selected: they could all be as bad as each 

other if common flaws cannot be identified. 

Consequently, Sánchez-Tójar et al. (2018) have recommended the use of simulated data, 

where the dominance hierarchy is created by, and thus known to, the researchers. Validity can 

then be assessed by correlating the hierarchy produced by different ranking methods to the 

known hierarchy. Simulations can therefore test for and identify flaws in ranking methods and 

give researchers confidence that a method is actually measuring what it claims to be measuring. 

However, simulation studies make the implicit assumption that their results will apply equally to 

real-world empirical datasets. This can be misleading because simulated data are much cleaner 

and less noisy than real-world data. The latter will always contain a certain amount of noise, as 

well as a degree of uncertainty with respect to the outcomes of agonistic interactions, and both of 

these contribute to the underlying structure of the dataset. Furthermore, while most ranking 

methods focus almost exclusively on dyadic interactions, this does not preclude the possibility 

that contest outcomes are influenced by the presence of other individuals, whether through tacit 

or overt support (Bissonnette et al., 2015; Higham & Maestripieri, 2010). Again, this generates 
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potential noise in real-world empirical datasets. Finally, in the real-world, one is forced to 

acknowledge that the true hierarchy can never be known. Thus, no matter how high the validity 

of a method tested on simulated data, it is impossible to determine whether an inferred hierarchy 

does, in fact, map onto the true hierarchy in an empirical real-world example. 

Given this, we suggest that, in addition to simulation studies of validity, there is also 

value in assessing the reliability of different ranking methods when applied to real-world 

datasets. Specifically, one can use the hierarchy generated by a particular method to test whether 

it will correctly predict the outcome of future dyadic aggression between two opponents. This, we 

feel, is the closest one can get to determining if any given method produces reliable and, 

therefore, useful measures in the real world. Here, we offer a means by which researchers can 

compare different ranking methods and determine which offers the greatest reliability for their 

specific dataset. This will allow researchers to offer a clear justification for their choice of 

method, improve transparency and increase the rigour of behavioural research.  

We base our argument for the value of reliability on the notion that dominance hierarchies 

reduce uncertainty about the outcomes of contests between group members (Beaulieu et al., 2014; 

Mendonça-Furtado et al., 2014), and the assumption that the state of the hierarchy at a given time 

will be predictive of future interactions (Drews, 1993; Hinde, 1976; Roney & Maestripieri, 2003; 

Rowell & Olson, 1983; Strauss & Holekamp, 2019). Here, "prediction” (Bernstein, 1981) alludes 

to the confidence with which the statistical asymmetry in dyadic contests predicts the outcome of 

any subsequent conflict within the same dyad. Thus, it follows that, if the inferred relative rank 

position of two animals can predict the outcome of a later aggressive interaction, then we have 

good evidence to suggest that a method is reliable.  
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To estimate a method#s reliability, we developed a "data-splitting” approach. Splitting a 

dataset into two distinct components—typically referred to as the training and testing datasets—is 

a common technique in predictive modelling and machine learning (Dupuy & Simon, 2007; 

Kuhn & Johnson, 2019; Liu et al., 2016; Liu & Cocea, 2017). In machine learning, one of the 

main requirements is to build computational models with high predictive and generalization 

capabilities (Mitchell, 1997). When an appropriate model for data is not completely known, the 

data themselves can be used to select the appropriate model using data-splitting. Here, the 

training dataset is used to build a model (Faraway, 1998). Once trained, the predictive power of 

the model can be assessed by running it on the testing dataset (Dupuy & Simon, 2007; James et 

al., 2013; Liu & Cocea, 2017; Oghaz et al., 2017; R Ho, 2020; Siva, 2018). In our case, the model 

outputs are the dominance hierarchies (comprised of each individual rank, rating or score) 

produced by each ranking method. We then assess whether these outputs correctly predict the 

outcome of aggressive dyadic encounters in our testing dataset.  

To demonstrate how data-splitting can be used with a real-world dataset, we make use of 

a three-year dataset of aggressive interactions in vervet monkeys (Chlorocebus pygerythrus), a 

gregarious primate species. We investigate the performance of seven alternative ranking methods. 

Each method#s performance was assessed by determining whether individual ranks/ratings/scores 

obtained from the training dataset could successfully predict the outcome of the aggressive 

interactions that occurred in the testing dataset. Given the time period covered by our dataset and 

the possibility of large changes in rank structure over time, we were particularly interested in 

comparing the performance of ranking methods that are characterized as non-sequential (i.e., 

where interactions are aggregated over time), to those characterized as sequential (i.e., where the 

data are not aggregated and thus the sequencing of interactions is retained in the data). Given 
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that, over time, changes in both demographic and ecological variables will give rise to changes in 

the dynamics of social groups, we predict that sequential approaches will perform better than 

non-sequential ones in our dataset (Goffe et al., 2018; Neumann et al., 2011; Williamson et al., 

2016).  

Finally, we highlight the use of the "data-splitting” approach as an opportunity to quantify 

how reliability decays within particular age-sex classes of opponents. Focusing first on the whole 

group, we look at the overall trend in reliability across time. Due to the likelihood of 

demographic and ecological change mentioned above, we expected to see an overall decay in 

reliability. We then go on to investigate reliability at the adult sex-specific dyad level. In vervet 

monkeys, females are the philopatric sex, and (often) inherit a rank position just below their 

mothers’ (Fairbanks & McGuire, 1984). Thus, we predicted that reliability in predicted outcomes 

for females would remain stable through time. In contrast, we anticipated a decay in reliability at 

the adult male dyad-level due to migration between groups, which generates variation in male 

cohort composition, and hence greater rank instability. This analysis also allows us to determine 

whether some dyads are over-presented in the dataset, which could in turn have an impact on 

rank order computation and, hence on a method#s reliability when applied to group as a whole.  

It is important to note that our aim here is not to determine the most reliable ranking 

method in any absolute sense. We also acknowledge that the use of a single real-world dataset to 

assess the reliability of a method holds its own problems. As such, we recognize the necessity of 

repeating these analyses on other populations and/or species to determine which patterns 

generalize, and which are highly specific to a given dataset. However, the goal of this study is to 

demonstrate the value of a training-testing approach that will enable researchers to identify the 

most reliable method for their particular dataset. That is, we present a "proof of concept” to 
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illustrate that our approach has value and make no claims for the generality of findings with 

respect to the relative performance of each specific method. However, we consider the training-

testing approach itself to be widely applicable precisely because it is not tied to any specific data 

requirements (e.g., no minimum amount of data required or specific length of study period 

needed) or to any particular assumptions (e.g., regarding age-sex classes of individuals, linearity 

of the hierarchy, or the nature of the interactions included). Our method thus offers researchers a 

useful tool with which to conduct a convenient systematic reliability assessment of available 

methods. Adopting this approach will increase the reliability of the literature as a whole, by 

ensuring selected methods are offered with appropriate justification. 

4.3 Methods 

4.3.1 Study site and subjects  

Data used for these analyses were collected between January 2015 and December 2017 as 

part of a long-term field project at the Samara Private Game Reserve, South Africa (32o22#S, 

24o52#E). We used data from one of our three study groups (RBM). All animals were fully 

habituated and individually recognizable. The study group occupied semi-arid riverine woodland 

(Pasternak et al., 2013), and group composition varied across the study period (Males: 20-6, 

Females: 13-8; Juveniles: 33-9; Infants: 11-2).  

4.3.2 Behavioural data collection  

Agonistic behaviours, identities of participants and interaction outcomes were recorded ad 

libitum on all group members (i.e., across all sex and age categories). We wished to make use of 

the most diverse and complete dataset and chose to leave our dataset in its original form, hence 

we retained agonistic encounters with juveniles and infants as well as those that involved 

coalitions (i.e., where one or more animal comes to the aid of another against a common 
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opponent). Only unknown outcomes were discarded. We decided on this approach as we wanted 

our dataset to include uncertainty and noise to ensure we would not artificially increase the 

reliability of a given method by training and testing on a circumscribed and clearly determined 

array of interactions. By training the ranking methods with a noisy dataset, we can get a better 

sense of how well they can generate a reliable set of ranks without any form of pre-screening of 

“acceptable” interactions. Agonistic behaviours included displacements, threats, chases and bites. 

The visibility of the habitat, together with the modal presence of more than one observer (Henzi 

et al., 2013; McFarland et al., 2014), means it is unlikely that there was any systematic bias in the 

recording of agonism. We recorded 11,323 agonistic interactions between 66 individuals across 

the 36-month period. The initial training dataset comprised 8,308 interactions, with the testing 

dataset accounting for the remaining 3,031 interactions. For more details on the training dataset 

structure, see Supplementary Material (S1). 

4.3.3 Methods used to infer ranks and ratings 

Among the tested ranking methods, it is possible to distinguish two families that differ in 

their overall approach (see Table 1). The first family is based on the sequence in which 

interactions occur (which we refer to here as sequential methods). It includes the Elo-rating 

method (Elo, 1978), as well as two of its variants: the Bayesian Inference (BI) approach (Goffe et 

al., 2018) and the modified Elo-rating (Newton-Fisher, 2017). 

The second relies on interaction matrices and comprises the David#s score method (David, 

1987; Gammell et al., 2003), the Inconsistencies and Strength of Inconsistencies (I&SI) method 

(De Vries, 1998), and the Percolation and Conductance (P&C) method (Fujii et al., 2015). 

Finally, the randomized Elo-rating (Sánchez-Tójar et al., 2018) was also included to the non-

sequential methods. Despite being derived from a sequential approach, the changes implemented 
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mean that this method shares many common features with non-sequential methods. For a general 

introduction to each method#s background, see Supplementary Material (S2). 

As noted above, several different statistical packages and options are available for the 

David#s score, thus we assessed 13 methods in all. Regarding the computation of David#s scores, 

we used the functions offered within each package. These functions differed in their input and/or 

their way of dealing with draws (i.e., undecided interactions where there were no unambiguous 

winners and losers), hence potentially leading to differences in inferred scores. 

We used R to conduct all rank-order estimations and subsequent analyses. Reliability was 

calculated using a custom package “rankReliability”. This package provides researchers with the 

opportunity to estimate how reliable their inferred ranks are through time, while giving them the 

freedom to choose their preferred ranking-method, the dataset of their choice (e.g., including 

juveniles/polyadic interactions, keeping/excluding draws …), as well as how to split the data. The 

code can be found at https://github.com/tbonne/rankReliability.  

 
Table 1 Summary of the different methods tested in this study 

Method Outcome Analytical details 

I&SI Ordinal rank order Package: compete 

Function: isi13 with nTries= 450  

David#s score Individual overall success  
Packages: compete, steepness & 

EloRating 

Indices: Pij and Dij 

Percolation & 

Conductance 
Rank order + dominance uncertainty Package: Perc 

MaxLength= 2 and 4 
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Randomized Elo-

rating 

Individual overall success + the 

uncertainty around the estimates 
Package: aniDom with n.rand= 1 000 

Original Elo-rating Individual overall success Package: EloRating 

Initial scores: 1 000 and k=100 

Modified Elo-

rating 
Individual overall success 

Newton-Fisher (2017) code 

4 categories of aggression intensity. 

Lowest starting at k= 200, with k 

increasing by 25 per aggression 

intensity 

Bayesian 

Inference 

Individual overall success, start 

ratings, the Elo-rating winning/losing 

shift coefficient (k) + the uncertainty 

around the estimates 

Goffe et al., (2018) code 

 

While the I&SI and P&C approaches produce ordinal ranks and David#s score gives 

cardinal scores, the rest of the methods produce ratings as outputs. For simplicity, we refer to 

ranks, scores and ratings as outputs. The choices made regarding the analyses of each method are 

detailed in the Supplementary (S3). 

4.3.4 Construction of training and testing datasets and comparison of methods 

To assess the performance of each method we estimated i) the average percentage of 

future interactions correctly predicted, ii) the amount of data required to make reliable 

predictions, and iii) the rate of decay in prediction accuracy. The first measure of performance 



 

84 

evaluates the overall ability of each method, while the second looks at the sensitivity to training 

sample size, and the third captures the temporal stability in each method#s future predictions (i.e., 

does the accuracy of predicted outcomes decline through time and, if so, how fast). 

4.3.4.1 Determining the method’s average reliability: how do non-sequential and 

sequential methods compare? 

Data splitting ratios often vary across studies, making it difficult to offer uniform 

guidelines on how data should be partitioned. Although some authors recommend using 70% of 

the data as the training set and 30% as the testing set (Liu & Cocea, 2017), others prefer a ratio of 

75:25 (Oghaz et al., 2017) or 80:20 (Siva, 2018). Whatever the ratio chosen, there are two 

conditions that should be kept in mind when splitting the dataset: the training set must be large 

enough to estimate meaningful ranks, and the testing dataset must be long enough to estimate 

mean predictive performance. This excludes any extreme cuts, e.g., 99/01. 

Here, we chose to use the first 80% (2.1.2015 – 25.4. 2017) of our data to train the 

methods, with testing undertaken on the remaining 20% (26.4.2017 – 31.12. 2017. Figure 1a) 

(Shah, 2017). This ensured that we always had a training dataset with a sufficient number of 

observations to infer reliable outputs. We also excluded from analysis any animals that were 

present only during the testing phase of the dataset, but retained those present only in the training 

dataset, as the latter are able to provide information about their opponents. For each method, we 

calculated dominance hierarchies from our training dataset. As the estimated outputs are 

measured on different scales (e.g., ratings, scores), we converted these to ordinal ranks and used 

these new outputs for the rest of our study. 
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Figure 1 (a) Original approach used to assess methods!#reliability. (b) Modified approach to 
assess the length of time period required for inferring reliable ranks. (c) Modified approach to 
assess the time period over which aggressive outcomes can be correctly predicted. 
 

The first step in our analysis was to compare the ranking structure of each method. To do 

so, we visualized the data using a hierarchical clustering approach, which assembled results 

according to their similarity. Initially, each method was assigned to its own cluster. The 

algorithm then proceeded, joining the two most similar clusters at each stage and continuing until 

there was just one single cluster. In this way, methods that were most similar to each other were 

combined into branches, which were then fused higher up in the clustering process. Euclidean 

distance was used to measure the dissimilarity between each pair of methods. The hclust R 

function (stats package) was used to generate this hierarchical clustering. 

Following this initial comparison, rank orders were then used to assess how well they 

matched the outcome of dyadic aggressive interactions in the testing dataset (matched =1 or no 

match=0). In other words, did the winner of the interaction in the testing dataset have a higher 

inferred rank than the loser? In the case of tied interactions in the testing dataset, the outcome 
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was correctly predicted only if both individuals had been assigned the same ordinal rank. The 

proportion of correctly predicted outcomes was then translated into a percentage to determine 

which methods achieved better results than others. Finally, we applied a multilevel Bernoulli 

model to investigate how these correctly predicted outcomes (matched = 1, not matched =0) 

varied across each ranking method. We then visualized the average percentage of correctly 

predicted outcomes for each method, along with the variance, using a violin plot.  

4.3.4.2 Determining the optimal amount of data required for inferring reliable 

ranks 

Our second aim was to estimate the amount of data needed to infer reliable outputs.  To 

do so, we kept our testing dataset constant and modified the length of the training dataset. 

Specifically, we maintained the same end date for the training dataset, while varying its start date. 

Thus, as the training dataset decreased in size, only the most recent observations were included. 

Our original training dataset comprised 28 months, which we reduced sequentially by two 

months, until only two months were left (i.e., we truncated the dataset starting from January 2015 

towards April 2017: Figure 1b).  

At each reduction in size, we computed the methods!#output, converted them into ordinal ranks 

and assessed these against the interaction outcomes in the testing dataset. The same procedure 

outlined in section (i) was used to calculate the percentage of correctly predicted outcomes. These 

percentages were then plotted in order to determine the amount of data needed to predict reliable 

ranks (i.e., ranks that were used to predict the outcome of future interactions). 
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4.3.4.3 Determining the time period over which an inferred rank order can be 

used  

To determine the length of time needed to correctly predict aggressive outcomes from 

obtained outputs, we performed the reverse procedure to that used above. That is, we gradually 

increased the size of our testing dataset and looked at its impact on the percentage of correctly 

predicted outcomes. Based on the results obtained in the previous analysis, we calculated the 

average optimal training dataset length across all methods. Using the average in this way meant 

that the training dataset could be kept constant, thus easing comparisons between the different 

methods. We used the remaining data as our testing dataset, and systematically varied its length. 

We began with the 2-month period that followed directly from the training phase (July-

September 2015) and then sequentially increased the testing dataset by 2 months until the 30-

month limit was reached in December 2017 (Figure 1c).  

Using the ordinal ranks inferred from the training dataset, we looked to see whether they matched 

the observed outcomes for each testing dataset. The percentage of correctly predicted ranks was 

plotted as a function of the testing dataset length to give us an insight into the rate of decay of 

each method#s reliability (i.e., over what period can we use a given set of inferred ranks without 

any loss of reliability).  

4.3.5 Using the testing dataset to probe reliability changes 

To look at reliability changes in predicted aggressive outcomes, we made use of our 

testing dataset and the I&SI method, as the latter produced the most reliable outcomes for our 

dataset. We used the optimal training dataset length (i.e., 6 months) based on the results of our 

previous analysis (ii). This ensured that we could compute reliable rank order while maximizing 

the size of the testing dataset (i.e., 30 months). Using the same approach as above, we looked to 
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see whether the inferred ranks matched the observed outcomes in our testing dataset. We also 

determined whether the adult dyad participants were females or males for each observed 

outcome. 

In this analysis, we first plotted the observed values of predicted outcomes at the group level to 

give a picture of the overall trend in reliability changes over the entire testing period. We then 

took our investigation down to the dyad level by plotting the observed values from the adult 

female-female and male-male dyads. We used the plotting function from the "rankReliability” 

package to plot the changes in outcome predictions over time at the group and sex-specific dyad 

level.  

4.3.6 Ethical note 

All protocols were non-invasive and adhered to the laws and guidelines of South Africa 

and Canada. Procedures were approved by the University of Lethbridge Animal Welfare 

Committee (Protocols 0702 and 1505). 

4.4 Results 

4.4.1 Determining the method’s average reliability: how do non-sequential and 

sequential methods compare? 

 Our dendogram identified the extent to which the methods provided similar estimates of 

rank order in our study group (Figure 2a). The output from the BI approach, the modified and the 

original Elo-rating cluster was the most different from the others, followed by the I&SI. The blue 

cluster, comprising all the David#s scores methods, was the most similar in its outputs, followed 

by the cluster including the P&C and the randomized Elo-rating methods. Overall, the non-

sequential methods produced a set of rank orders that were more similar to each other than to 

those produced by the sequential methods. 
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We visualized the average percentage of correctly predicted outcomes in the testing dataset in 

Figure 2b. While the dendogram indicates how similar the methods were in their outputs (rank 

order), Figure 2b shows the variance in the percentage of correct predictions produced by each 

method. In other words, they give us a sense of the "confidence” in the rank outputs produced 

(i.e., how effective were they at predicting future aggressive outcomes?). If we look at the red 

cluster (BI, the original and modified Elo-rating), for example, we see that these methods 

produced similar outputs (Figure 2a) and yet they differed in their reliability (Figure 2b): the BI 

approach had a higher percentage of correct predictions than the modified Elo-rating. Another 

intriguing pattern is that the P&C/randomized Elo-rating (pink cluster) and the I&SI (green 

cluster) differed in their outputs (Figure 2a), but the randomized Elo-rating method#s reliability 

was more similar to the I&SI than it was to the P&C methods (Figure 2b). 
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Figure 2 (a) Similarity between the rank orders produced by each method. The height of 
the split, on the vertical axis, indicates the similarity of rank order between two methods. 
The higher the split, the less similar the methods were in terms of their outputs. (b) 
Similarity of methods!#reliability. Distribution of the percentage of correctly predicted 
outcomes across the methods used. Each cross represents the average estimate of the 
percentage of correctly predicted outcomes. Each colour represents a dissimilarity cluster. 
Red, cluster represented the sequential approaches while pink, blue and green ones were 
non-sequential methods. Blue corresponded to the David#s score variants. 

 

 The overall percentage of correctly predicted outcomes for each method is given in Table 2. 

These indicated that all methods did well in inferring reliable ranks (i.e., those that predicted 

future interaction outcomes). The BI method provided the best fit to the data, predicting 82.2% of 

aggressive outcomes, followed by the original Elo-rating method (81.0%). The two P&C variants 

(maxLength4 and maxLength2) produced an identical value of 80.6%, followed by the I&SI with 
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79.6%. The David#s score obtained from the three different packages, and via the two different 

functions (Dij and Pij), were the lowest performing with values ranging from 76.4% to 79.3%, 

along with the modified and randomized Elo-rating with respectively a percentage of predicted 

outcomes of 79.2 and 79.1. The David#s scores from the "EloRating” package and those from the 

"steepness” package (Pij and Dij function) gave the exact same percentage outcomes. Compared 

to Dij function, the Pij predicted a higher number of reliable outcomes across all three packages 

used. Moreover, the "compete” package had a higher efficiency than the "EloRating” and 

"steepness” packages (as the “EloRating” and “steepness” packages presented the same global 

percentage of reliability, as well as the same patterns throughout the rest of the analysis. We only 

use the “steepness” package in what follows from here). In general, and rather to our surprise, the 

family of sequential approaches was not more reliable with respect to predicting future aggressive 

outcomes. Taken together, these results showed that, despite these methods differing in their 

approach and the nature of their outputs, they all showed a high level of reliability when 

predicting the outcomes of future aggressive interactions. 

 

Table 2 Percentage of correctly predicted aggressive outcomes over an 8-month testing dataset 
for our vervet monkey’s troop (RBM). 

Method Package Option 

% 

prediction 

RBM 

I&SI Compete isi13 79.6 

Compete Dij 78.6 
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David#s scores Pij 79.3 

Steepness/ 

EloRating 

Dij 76.4 

Pij 77.5 

Percolance & 

Conductance 
Perc 

maxLength4 80.6 

maxLength2 80.6 

Elo-rating 

EloRating default 81.0 

Newton-

Fisher#s 

code 

K variation 79.2 

Bayesian Inference Goffe#s 

code 
Rstan 82.2 

Randomized elo-

rating 
aniDom n.rands=1000 79.1 

 

4.4.2 Determining the optimal amount of data required for inferring reliable ranks 

We found that our original assumption was borne out: the reliability of predicted 

outcomes was not greatly affected by the length of the training dataset (Figures 3 and 4). The 

non-sequential approaches (Figure 3), however, did show more variation in the percentage of 

correctly predicted outcomes depending on the length of the training dataset. Despite this 

sensitivity, a maximum value for reliability could be found for each method. On average, these 

peaks occurred at 6 months, which we suggest represents the optimal length of time period 

needed to correctly predict future outcomes in this dataset. As the number of months in the 
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training dataset increased, the non-sequential methods showed more of a decay in reliable 

prediction compared to the sequential methods (as one would expect). Moreover, the I&SI 

method displayed the highest percentage of correctly predicted outcomes when the training 

dataset spanned the period of 4 to 16 months. 

 

 
Figure 3 Variation of the percentage of outcome prediction with the non-sequential 
methods in function the number of months included in the training dataset. 

 

Figure 4 presents the family of sequential approaches and shows that the length of the 

training dataset did not have any impact for two of the three methods: the original Elo-rating and 

the BI. In fact, both methods performed well regardless of the length of the training dataset. 

There is some evidence to suggest, however, that the original Elo-rating method and the BI 

approach produced slightly more reliable predictions once the training dataset exceeded four 

months, and 10 months respectively. As for the modified Elo-rating method, it shows a 

sensitivity to the amount of data in the training dataset. A first peak in reliable prediction 

appeared at training dataset lengths between four and 12 months. Beyond 12 months, reliability 

decreased and then stagnated as the training dataset length increased.  
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Figure 4 Variation of the percentage of outcome prediction with the sequential methods 
as a function the number of months included in the training dataset. 

 

With the exception of P&C and randomized Elo-rating, all methods from the non-

sequential approaches produced an optimal percentage of correct prediction with a 6-month 

training set. The sequential approaches reached saturation sooner at 4 months, although the BI 

approach showed a temporary decrease at 8 months. In our next analyses, we used a 6-month 

period for the training dataset as this represented the best compromise in terms of enabling 

comparison across all methods. Shortening the training set in this manner gave us a larger testing 

set of 30 months in total (2.5 years) to assess our third question. 

4.4.3 Determining the time period over which an inferred rank order can be used 

The percentage of correct predictions for each testing dataset length is plotted in Figure 

5a-c. At first sight, all methods showed the same pattern. First, a decline in outcome 

predictability occurred at four months, which was then followed by a peak in prediction 
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reliability, corresponding to a testing dataset of eight to 10 months in length (Figure 5a). Past 10 

months, the reliability of predicted outcomes showed a constant and slow decay.  

The I&SI, as well as the P&C approach, stood out as the methods that led to the highest 

percentage of correctly predicted outcomes over the whole testing dataset#s length (Figure 5a), 

followed by the BI approach. The remaining methods were clustered with a lower percentage of 

correctly predicted outcomes throughout the testing dataset#s length.  

Moving away from the general pattern, Figure 5a highlights the differences between non-

sequential and sequential approaches. Again, the latter were no more reliable than non-sequential 

approaches. However, they distinguished themselves in the sense that all the tested methods were 

good at correctly predicting outcomes (i.e., they clustered in the centre of the range of 

performance), whereas the non-sequential methods showed a much wider range of variation.  

In order to examine these patterns in more detail, we separated the non-sequential and 

sequential approaches to enable the similarities and differences – between and within each family 

– to be seen more easily. With regard to the non-sequential approaches (Figure 5b), both the I&SI 

and P&C methods displayed a pattern of fluctuation, whereas David#s score showed a smoother 

curve with a constant decrease in reliability once past a testing dataset of 2 months. The 

"compete” package appeared to perform better than the "steepness” package; both packages 

produced similar curves. The randomized Elo-rating also presented fluctuations and was the 

method showing the lowest reliability through time. Finally, the I&SI and P&C methods 

displayed a higher percentage of correctly predicted outcomes compared to the sequential 

methods throughout the whole testing dataset length, except for P&C with maxLength 2 past 26-

months of the testing dataset.  
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With respect to sequential approaches (Figure 5c), the BI and the original Elo-rating 

displayed the general pattern described above. The modified Elo-rating showed the same pattern 

in prediction reliability until 12 months, where its percentage of correctly predicted outcomes 

started increasing with the length of the testing dataset. 

 
Figure 5 Variation of the percentage of correct predictions as a function of testing dataset length 
across (a) all methods, (b) sequential approaches only, (c) non-sequential approaches only. 
 

4.4.4 Using the testing dataset to probe reliability changes 

The reliability changes in the predicted outcomes of aggressive interactions over the 30-

month testing dataset are plotted in Figure 6a-c. Looking at the global trend (Figure 6a), we 

found that our original assumption did not hold. Instead of a predicted decay in reliability of 

predicted outcomes, the overall reliability remained very stable across the 30 months.  
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In order to examine these reliability changes in more detail, we looked at the predicted 

outcome patterns at a finer scale: the adult sex-specific dyad level. We separated the adult female 

and adult male dyads to enable the patterns to be seen more easily (Figure 6b, c). With respect to 

the adult female dyads (Figure 6b), our assumption held: reliability remained stable throughout 

the whole testing dataset. Regarding the adult male dyads, a stable pattern in the reliability was 

observed for the first five months, followed by a peak in over the next three months (Figure 6c). 

Past this peak, reliability showed a quick decline.  

 
Figure 6 Variation of the fitted (line with 95% confidence interval) and observed (jittered 
points) values of outcome predictability (correct prediction =1, not correct =0) as a 
function of time at the (a) group-level, (b) adult female dyad-level, (c) adult male dyad-
level. 

 

4.5 Discussion 

We have presented a training-testing procedure, and associated code, that will allow 

researchers to determine the most reliable method for calculating dominance ranks for their 
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particular dataset. We used data from our own long-term study of vervet monkeys to demonstrate 

the utility of the method.  Overall, we found that all methods tested performed well at correctly 

predicting future aggressive outcomes in our dataset, i.e., all methods were reliable. With respect 

to the impact of the length of the training dataset, all methods again displayed high reliability 

from the very start (i.e., with little to no training period), but all showed improvement as the 

length of the training period increased. With respect to the length of the testing dataset, we found 

that (with a fixed training period of 6 months), all methods could correctly predict aggressive 

outcomes for the subsequent 10 months. Finally, looking at changes in predicted outcomes over 

time, adult male dyads showed more variability than adult female dyads. 

More specifically, our first analysis revealed that, despite some differences in obtained 

rank order, all methods succeeded at inferring reliable ranks. We suspect this may be because 

individuals whose ranks were inaccurately assigned were those that did not interact frequently; 

hence they did not appear often in the testing dataset, and so did not have an impact on the 

reliability of a given method. This finding goes against our prediction that sequential methods 

would perform better than non-sequential ones. Our prediction here was based on the 

assumption—built into the non-sequential family of methods—that all individuals represented in 

a matrix were co-resident at some point (i.e., all had the chance to interact). With an original 

training dataset of 28 months length, we predicted that this assumption would most likely be 

violated and hence lower the performance of non-sequential methods relative to sequential ones. 

Contrary to our prediction, the non-sequential family performed well at producing reliable ranks, 

suggesting that violation of this assumption was of minor significance. In this study, we analysed 

data from a species in which stable ranks tend to persist through time, and in which few rank 

reversals occur. This specific social dynamic may have enhanced the reliability of the non-

sequential methods due to the large amounts of data included (i.e., more agonistic interactions to 
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work with). If this were so, however, we would have expected to see poorer performance over 

shorter time frames (investigated in the second part of the analysis), and this was not the case. 

In our second analysis, we found that only a short training period was necessary to infer 

reliable ranks across all methods. The sequential methods, however, were less sensitive to the 

amount of data present in the training dataset, and hence showed a constant efficiency regardless 

of the length of training, compared to the non-sequential approaches. This is not unexpected 

given that sequential approaches track rate variations continuously and update the ratings after 

each interaction. From the non-sequential perspective, the combination of high overall reliability 

with some temporal fluctuation suggested that, in our study species, individual position in the 

rank order shows a form of "regression to the mean”. That is, individuals may experience very 

mild shifts in relative rank position up or down the hierarchy across time, but nevertheless 

occupy more or less the same "absolute” position. This, in turn, suggests that rank changes may 

reflect the ecological and demographic contexts in which they occur, rather than pointing to 

genuine changes in inherent power. We should also highlight that, when the training dataset did 

not exceed 22 months, it was the non-sequential I&SI and P&C methods that produced the 

highest percentage of correctly predicted outcomes.  

Finally, the training-testing procedure gave us greater insight into the working of the 

randomized Elo-rating method. When applied to a short training dataset (i.e., 6 months), the 

sequence of interactions clearly did not matter, and the method#s reliability was high. As the 

training dataset increased up to 28 months, however, there was a decline in reliability, which 

reflects the fact that, over this period, demographic change was inevitable, and the order of 

interactions may well have begun to exert an influence on the structure of the hierarchy. Given 

this outcome with our data (and assuming this holds true across other datasets), this suggests that 
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the randomised Elo-rating method will indeed prove useful in determining when interaction order 

matters in a given dataset, as originally suggested by Sánchez-Tójar et al. (2018). 

We also found that, with the exception of the randomized Elo-rating, all methods 

correctly predicted aggressive outcomes for at least 10 months. Past this threshold, however, 

reliability in prediction decreased as the testing dataset increased in length. The decay was rather 

shallow, however, and there was still high predictability in aggressive outcomes, indicating 

overall rank stability during the period covered by our sample. This is not to say, however, that 

rank predictability did not fluctuate as the length of the training period increased, and it was 

apparent that the degree of fluctuation was dependent on the method used. The sequential 

methods produced more fluctuations than the non-sequential methods. This is probably because 

the former are likely to catch small shifts in rating position as they constantly update, whereas the 

non-sequential methods are more likely to produce a rank order that captures the overall social 

dynamic. The fluctuations observed suggest that rank shifts were occurring in the study group 

during particular periods, and so another advantage of using a training-testing procedure is that it 

provides researchers with a way to home in on periods of rank instability, which may prove 

useful when attempting to answer questions relating to the effects of dominance on various 

behaviours and in relation to ecological variables. 

It is important to note here that the intention behind the data-splitting approach was to 

enable a better understanding of rank structure within a particular dataset, not to determine which 

method was absolutely the most reliable. That is, the specific results we have presented here may 

not generalize to other datasets. Indeed, differences may well be expected because other species 

and populations will vary in their frequency of agonistic interactions, the steepness of their 

hierarchy and the (a)symmetry in aggressive outcomes. Shizuka & McDonald (2015), for 

example, have shown that differences in dominance hierarchy structure across animals may be a 
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consequence of the study design (e.g., how many animals to observe and how much interaction 

data to collect). Hence, our goal was to show that a training-testing approach can be applied to 

any dataset to determine the most reliable ranking method, and thus we consider this approach to 

be useful in and of itself. Having said this, it will be interesting to see whether any commonalities 

do, in fact, emerge across different datasets. It is therefore necessary to repeat these analyses on 

other populations and other species to determine what patterns might be more general, and which 

are highly specific to a given dataset. At present, we can say that the data-splitting approach 

allows researchers to assess which method will work best for their dataset, given the size of their 

sample, and the length of time over which the study was conducted.  

For the purposes of comparison across methods, we converted all model outputs to 

ordinal ranks. Although we agree with Strauss and Holekamp (2019) that such conversion is 

useful for identifying hierarchy dynamics, we consider this to be a limitation of our study. In fact, 

we did not consider how the magnitude of rank differences might affect reliability, nor did we 

consider any uncertainty around rank calculations. These components may very well matter, 

especially in species where a linear rank order may not be representative of the social hierarchy. 

This point also serves to highlight the true advantage of methods like the BI, randomized Elo-

rating and the P&C approach, which enable researchers to look at the uncertainty around ranks, 

and thus gain a more complete understanding of the social hierarchy.  

We also acknowledge that the use of empirical data does not allow us to distinguish 

between the two sources of error that could explain differences in the methods!#performance: (i) 

inadequacies of the method, and (ii) real biological change. Thus, to reiterate and emphasize the 

point made above, our findings are only valid with respect to our data and cannot be assumed to 

apply to other datasets. Within our dataset, however, we think it is safe to assume that variation in 
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a method#s reliability compared to others does, in fact, reflect something about the method itself. 

Given that we tested all methods on the same training/testing datasets, any potential biological 

changes within the dataset should have been detected by at least some of the methods. This, of 

course, is where the usefulness of simulated data comes into play, as simulation allows one to 

tease apart these two sources of error more effectively, as well as gaining some more general 

insights into each method (Sánchez-Tójar et al., 2018). Our suggestion here is that the most 

informative approach will involve comparing simulation studies of methods using constructed 

datasets with reliability studies of methods applied in real-world settings; in this way, we can 

determine whether methods that show high validity also show high reliability in real-world 

contexts. In fact, one of the latest studies to date (Strauss & Holekamp, 2019) used both 

simulated and empirical data from a long-term field study of spotted hyenas (Crocuta crocuta) to 

assess the performance of the modified and unmodified methods in inferring longitudinal 

hierarchies. 

Finally, using the testing dataset to investigate reliability changes in predicted outcome, at 

the group and dyad level, allowed us to get a better understanding of social dynamics. Adult male 

dyads displayed most variation, which was not detectable at the group level, while the adult 

female dyads remained stable across the entire study period (30 months). Thus, the data-splitting 

approach can also help to achieve a better understanding of how dominance ranks vary within a 

given group over time in relation to factors like sex and age class. A multi-scale approach can 

thus provide a more comprehensive perspective on the temporal dynamics in outcome 

predictions, and hence the social ranks, through time. In other words, we consider that data-

splitting provides researchers with an excellent tool to probe the social dynamics of their study 

species in more depth, rather than simply offering a means of determining the most reliable 
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ranking method. It would be also interesting (and possible) to look at the outcomes of aggressive 

encounters that do not match the ranks assigned to each participant, when both were extracted on 

the same day. This would give us a better idea of the true degree of outcome unpredictability, 

allowing us to assess whether uncertainty in rank assignment is due to the nature of the 

aggressive interaction itself or whether it reflects something about the context in which it takes 

place.  

In conclusion, a data-splitting approach gives researchers the power to tailor the selection 

of a dominance-ranking method to the particular nature of the dataset they are using. In addition, 

it provides insights into group dynamics, which can enable researchers to home in on regions of 

their dataset that will permit analyses into how and why rank shifts occur and discover the 

underlying causes of both rank stability and unpredictability across time. 
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4.7 Supplementary material 

Table S1 Details on the original training dataset structure. 

Parameters Training dataset 

Total number of interactions 8308 

Number of individuals 
excluded from testing dataset 

4 

Number of draws 307 

Number of coalitions 1108 

Number of counter-aggressions 2014 

Number of aggressions lost by 
the aggressor 

500 

Number of Adult-Adult 
aggressive interactions 

4658 

Number of Adult-Juvenile 
aggressive interactions 

2588 

Number of Juvenile-Juvenile 
aggressive interactions 

1062 

Number of deaths 21 

Number of individuals 
recruited into the group 

6 new males and 30 
new juveniles 

Average monthly troop size 33.1 sd=3.5 
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S2: Methods’ introduction and backgrounds 

Among the tested ranking methods, it is possible to distinguish two families that differ in 
their overall approach. The first relies on interaction matrices and comprises the David’s score 
method (David, 1987; Gammell et al., 2003), the Inconsistencies and Strength of Inconsistencies 
(I&SI) method (De Vries, 1998), and the Percolation and Conductance (P&C) method (Fujii et 
al., 2015). These methods use all observed interactions within a particular timeframe to determine 
average measures of dominance rank single quasi-static ranking. As a result, one cannot 
differentiate if the ranks obtained depend directly on the number of individuals present in the 
matrix itself. Thus, any observed fluctuation in ranks across time periods may simply be from the 
consequence of a demographic event, or from the variation in an animal’s competitive abilities. 
Consequently, these methods cannot provide information about the mechanisms by which ranks 
either change or are maintained over time. As such, non-sequential methods are not always easy 
to apply to highly dynamic animal societies, or to sparse datasets (Neumann et al., 2011). 

The second family is based on the sequence in which interactions occur (which we refer to 
here as sequential methods), with wins and losses continuously updated, giving rise to a rating for 
each individual. All these methods are based on the Elo-rating method used to rank chess players 
(Elo, 1978). As this approach involves a more dynamic assessment of the hierarchy over time, it 
can more easily accommodate changes in group-composition. The Elo-rating’s variants are the 
modified Elo-rating (Newton-Fisher, 2017), the Bayesian Inference (BI) approach (Goffe et al., 
2018) and the randomized Elo-rating (Sánchez-Tójar et al., 2018). All address various difficulties 
associated with the application of original Elo-rating to animal societies (Foerster et al., 2016; 
Goffe et al., 2018; Newton-Fisher, 2017; Sánchez-Tójar et al., 2018). 

Newton-Fisher (2017) presents two developments of Neumann et al. (2011)’s R function to 
improve its efficiency: (i) the incorporation of prior history and (ii) the recognition of differing 
intensities of aggression in agonistic interactions (the “k” variable). When rating subjects, k is 
used to determine the degree to which each interaction influences the future rank trajectory of 
both winner and loser (Ibid.). Goffe et al. (2018) modification, by contrast, deals with limitations 
related to the “burn-in” period: the time needed to accumulate sufficient observations and thus 
enable the computation of reliable ratings (Albers & De Vries, 2001; Neumann et al., 2011). To 
do so, the authors use “partial pooling”, an approach that rests on the assumption that all initial 
ratings are sampled from the same distribution with a shared variation parameter, σ. Finally, 
Sánchez-Tójar et al. (2018) suggested a modification to the original Elo-rating whereby they 
randomized the order in which interactions occurred. This was based on the assumption that, in 
societies with a stable social structure, the sequence of interactions will be less relevant to the 
determination of ranks than in systems where social structure is more volatile. Despite being 
derived from a sequential approach, the changes implemented mean that this method shares many 
common features with non-sequential methods. For this reason, the randomized Elo-rating is 
presented as being part of the non-sequential family. 

- Inconsistencies and Strength of Inconsistencies method (I&SI): (De Vries, 1998) 
The dominance matrix is reorganized iteratively to minimize (1) number of inconsistencies (I) 

and (2) strength of inconsistencies (SI). The output is ordinal rank order. 
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Because this method is matrix-based, the obtained ranks depend directly on the number of 
individuals present in the matrix itself. Static methods implicitly assume stable dyadic 
relationships in order to generate a meaningful result. 

Finally, it seeks to find a nearly linear, hence it is most appropriate if the assumption of linearity 
is statistically supported (De Vries, 1995, 1998), that is, if the degree of linearity in the set of 
dominance relationships is significantly higher than expected on the basis of random 
relationships (Schmid & De Vries, 2013). However, dominance hierarchies with linear structures 
have now appeared to be less prevalent in animal groups than was once assumed (Douglas et al., 
2017). 

- David's score: (David, 1987; Gammell et al., 2003) 
It is a matrix-based approach in which the relative strength of opponents is taken into 

account. Static methods implicitly assume stable dyadic relationships in order to generate a 
meaningful result and the obtained ranks depend directly on the number of individuals present in 
the matrix itself. 

It seeks to provide a suitable measure of individual overall success, determined by weighting 
each dyadic success measure by the un-weighted estimate of the opponent’s overall success and 
from which a rank order can be derived directly. Here, the outputs are non-integer indices of 
success.Every dyadic interaction is independent of every other dyadic interaction. The paired 
comparison paradigm (David, 1988) requires that the number of records for each dyad should 
roughly be the same. 

- Percolation and Conductance (P&C): (Fujii et al., 2015) 
Given that dominance relations do not always fulfil the criteria for linearity (Signe & Van 

Schaik, 2000; van Hooff & Wensing, 1987), this network-based method permits nonlinear 
structure to emerge via estimates of network directional consistency in the flow of dominance 
interactions, and the detection of blocks of dominance ambiguity that are indicative of nonlinear 
segments of a hierarchy. This technique uses paths within the agonistic network to generate an 
individual’s probability of winning against all other individuals. It measures the consistency of 
information flow through the network (Fushing et al., 2011). In other words, it combines 
information from direct win/loss interactions and from indirect pathways to create a matrix of 
probabilities. The network transitivity determines how much to weigh the indirect ‘wins’ from 
these pathways. 

It still relies on interaction matrices. Static methods implicitly assume stable dyadic relationships 
in order to generate a meaningful result. 

It makes the assumption that we have independence among the collection of conflict outcome 
data. Non-overlapping dominance paths independently provide degrees of stochastic transitive 
dominance potential. 

- Elo-rating: (Elo, 1978; Neumann et al., 2011) 
Elo-ratings are based on the sequence in which interactions occur, with ratings continuously 

updated. It enables the rating process to continue despite changes in group-composition. No 
matter whether the critical linearity assumption is satisfied or not, this approach always provides 
a ranking sequence. That is to say, it becomes extremely convenient because of its easy 
application, even though the resultant ranking sequence might be poorly supported by the data 
(Shev et al., 2012). 
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It seeks to provide a suitable measure of individual overall success (non-integer indices), from 
which a rank order can be derived directly. It makes the assumption that all agonistic interactions 
entered into the model are equivalent in their potential influence on rank trajectories. In rating 
subjects, the variable k is used to determine the degree to which each interaction influences the 
future rank trajectory of both winner and loser. In other words, it determines the number of rating 
points that an individual gains or loses after a single encounter (Neumann et al., 2011). Newton-
Fisher (2017) argues that holding k constant makes the implicit assumption that, as long as a 
clear winner and loser can be identified, variation in the intensity of aggression does not 
influence social dominance rank or rank trajectories.  

In the absence of any knowledge of prior dominance relationships, the method assigns all 
individuals the same initial Elo-rating score, which is then updated as interactions are added 
across the observation period. Consequently, a “burn-in” period is necessary so that sufficient 
observations can accumulate and enable the modelled rankings to catch up with the computation 
of reliable ratings of dominance relationships (Albers & De Vries, 2001; Neumann et al., 2011). 
Both Albers & De Vries (2001) and Neumann et al. (2011) are vague about how long this process 
might take, probably because the duration of the burn-in will vary with the frequency of agonistic 
interactions (Newton-Fisher, 2017).  

- Modified Elo-rating: (Newton-Fisher, 2017) 
This method brings two developments: (i) the incorporation of prior history and (ii) the 

recognition of differing intensities of aggression in agonistic interactions. 

- Bayesian Inference approach (BI): (Goffe et al., 2018) 
This approach facilitates the estimation of initial ratings, as well as the value of k. It estimates 

both the most probable rank order as well as the posterior probability of that order. It uses “partial 
pooling”, which rests on the assumption that all initial ratings are sampled from the same 
distribution with a shared variation parameter σ. 

- Randomized Elo-rating: (Sánchez-Tójar et al., 2018) 
This method is based on randomizing the order in which interactions occur. It makes the 

assumption that if the individual dominance ranks are relatively stable over time, the sequence in 
which interactions occur shouldn’t affect the inferred ranks. 

S3: Analysis details 

The following sections explain in more detail the choices made regarding the analyses for 
each method. 

The I&SI method 
It is recommended to find the matrix with the lowest SI associated with a certain number 

of iterations (nTries). To do so, we performed an optimization to find the nTries that best fit our 
data. We used the DEoptim package (Mullen et al., 2011). The DEoptim function searches for the 
global optimum of the objective function (fn) between lower and upper bounds on each 
parameter to be optimized. It is important to emphasize that the result of DEoptim is a random 
variable, i.e., different results may be obtained when the algorithm is run repeatedly with the 
same settings. In our case, the function fn with the highest percentage of accurately predicted 
outcomes was kept, along with the optimized parameter corresponding to the number of iterations 
(nTries). We assigned to this parameter the lower bound of 50 and the upper bound of 1000. 
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Once the optimal parameter value had been extracted, individual ranks were calculated using the 
latest function version "isi13” from the R package "compete”. 
The use of this optimization led us to modify our training/testing approach into a 
training/validation/testing one. Specifically, we divided the original 80% training dataset in two 
datasets, commonly called training and validation. The training dataset (i.e., the first 80%) was 
used to attribute the nTries value, leading to the calculation of individual ranks based on this 
value (Figure 5). The remaining 20%, the validation dataset, allowed us to see how well these 
ranks did in predicting the aggressive outcomes. Depending on the percentage of accurately 
predicted outcomes, the nTries value was updated accordingly in the training dataset. Once the 
optimized nTries value was obtained, it was used to calculate the ranks from the entire, original 
80% training dataset. The testing dataset then allowed us to test the efficiency of the calculated 
ranks in predicting future aggressive outcomes. Here nTries= 449 was chosen. 

David’s Score 
This approach proposes two alternative indices to compute David’s scores: Pij and Dij. Pij 

represents the winning proportion of individual i against j, which leads to a matrix of observed 
win proportions as an output. For the Dij index, a matrix is obtained where the observed 
proportion of wins (Pij) is corrected for the chance occurrence of this observed outcome. 
Balasubramaniam et al. (2013) argued that Pij might be a better choice for species with high 
levels of directional asymmetry (i.e., despotic species), whereas Dij may be a better choice for 
species with low levels of directional asymmetry (i.e., tolerant species). We compared both these 
indices. Furthermore, the David’s score method can be calculated with the aid of three different R 
packages. The decision was made to include them all in the analysis, producing two calculated 
scores per package. This allowed us to assess whether the calculated ratings were the same across 
all packages and if not, which package led to the highest percentage of accurate predictions. 

Percolation and Conductance 
The parameter maxLength helps find all indirect pathways of a particular length and then 

update the conflict matrix. Examining information gained through indirect pathways provides 
information that can be used to decide on the appropriate maxLength for a dataset. To assist with 
this decision, the Perc package offers a transitivity function as a way to estimate an alpha value, 
which is used to weight the information from the indirect pathways to give an indication of the 
extent to which we can trust information from indirect pathways. Greater transitivity is associated 
with assigning higher weight to information from indirect pathways (Fushing et al., 2011). We 
tested MaxLengths of 2 and 4. 

Elo-rating method 
In the original method, k is held constant, and all individuals receive the same elo-rating at 

the initiation of the burn-in period. Elo-ratings were calculated with 1000 as the initial value and 
k set to 100 (Neumann et al., 2011). 

Derivations of the Elo-rating methods 
Modified Elo-rating (k variation) 
In this method, each dominance interaction is classified according to the most intense 

level of aggression displayed by the winner (Newton-Fisher, 2017). This being required, we 
excluded behaviours recorded as “unknown” from the analyses and distinguished among non-
aggressive, stationary, active and physical threats. This classification is based on our inter-troop 
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encounter protocol (Barrett, L. & Henzi, S.P., unpublished data). Non-aggressive behaviours 
included supplants (i.e., where the aggressor takes the victim’s place) and displacements (i.e., 
when one animal submissively moved away when approached within 10 meters). Any aggressive 
behaviour that did not include a forward movement was considered a stationary threat, such as 
lunge, facial and vocal threats. Active aggression involved ongoing forward movement (i.e., 
chase or charge) but where no physical contact was made with the target of aggression. Physical 
aggression was scored in instances where body contact was made (e.g., a bite or slap). We 
assigned a different K value to each of these categories, using the default value of 200 (Neumann 
et al., 2011) for the most commonly observed form of aggression (i.e., the non-aggressive 
interactions of displace and supplant) and scaling up in multiples of 25 to distinguish varying 
intensities. This led to the creation of a modified training data set and its detailed composition is 
given in Table 3.  

 
Table S2 Modified training data set for the modified Elo-rating method (Newton-Fisher, 2017). 

 Modified training data set 

Aggression 

Number 
Total Physical Active Stationary Non-aggressive 

RBM 

Troop 
8083 886 1644 1625 3934 

K value - 300 250 225 200 

 

 
Bayesian inference (BI) approach 

We implemented this method using Goffe et al. (2018) code (with no additional analytical 
choices or justification required). 

Randomized Elo-rating 
By randomizing the order of observed interactions, this approach allows the creation of K 

replicated datasets, where K corresponds to the number of randomisations performed. In this 
study we were only interested in obtaining the final scores (return.as.ranks =TRUE). The function 
returns a NxK matrix that gives the final scores for each individual (rows) after each 
randomisation of the order. In order to use the information contained in all the iterations, we 
extracted the mean ratings for each individual. 
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We followed the same procedure as Sánchez-Tójar et al. (2018) and randomized the order in 
which interactions occurred 1000 times.  
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CHAPTER 5: NETWORK FORMATION DURING SOCIAL INTEGRATION IN 

JUVENILE VERVET MONKEYS 

 

This data chapter has been published in Animal Behaviour (September 7th, 2022), under the title 
"Network formation during social integration in juvenile vervet monkeys.” The authorship list for 
the published version is as below. I contributed to the study concept/design, data collection, data 
analysis and drafting the manuscript. Dr. Henzi and Dr. Barrett contributed to funding 
acquisition, supervision and the drafting and critical revision of the manuscript. Dr. Bonnell 
contributed to data analysis, supervision and helped draft the manuscript. Dr. Dostie contributed 
to data extraction. All authors approved the final version of the manuscript. 
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5.1 Abstract 

Understanding the development of social relationships, or the process of socialization, can 

provide insights into the processes by which social network structures emerge and vary across 

species. In this analysis, we investigated the process of network formation from a developmental 

perspective using data from three groups of wild vervet monkeys, Chlorocebus pygerythrus. We 

used a dynamic social network approach that allowed us to capture patterns of social change over 

time. Specifically, we considered the temporal dynamics of two separate interaction networks, 

spatial and grooming associations, and investigated these patterns between the sexes. We used 

these data to test predictions derived from a developmental framework on relationship formation 

put forward by Kohn (2019, Animal Behaviour, 154, 1–6). We found that females and males 

differed in their grooming patterns but were similar in their spatial associations. Furthermore, 
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spatial proximity ego-networks showed seasonal patterns, whereas grooming ego-networks did 

not. When all relevant centrality measures were considered in concert, we found evidence to 

suggest that a distinctive network structure forms across the course of development, with ego-

networks composed of few strong ties and many weak ties, regardless of behaviour and sex. 

However, these networks were not produced according to the processes described by Kohn 

(2019), perhaps because Kohn’s framework is concerned mainly with network composition and 

not structure. Overall, our results provide evidence for social niche construction across 

development, with the formation of a core social ‘bubble’ of strong ties that can provide a 

consistent and predictable immediate social environment. More broadly, these patterns suggest 

that network formation is a process of ongoing adjustment to the social environment, and not an 

attempt to meet an optimal end goal.  

 

5.2 Introduction 

Social network analysis provides a powerful quantitative framework for measuring 

individual social phenotypes and social structure (Wey et al., 2013). A particular topic of interest 

has been the identification of the costs and benefits associated with different social network 

positions, and how these might link to fitness (Croft et al., 2016; Sih et al., 2009; Wey et al., 

2008). Such efforts have produced evidence suggesting that the structure of networks, and 

individuals’ position within them, can influence both adult and offspring longevity as well as 

offspring survival (Brent, 2015; Cheney et al., 2016; McFarland et al., 2017; Ostner & Schülke, 

2018; Snyder-Mackler et al., 2020). At the same time, however, we still lack a comprehensive 

theory to explain how different network structures are generated and maintained, and why 

network diversity varies within and between species (Ilany & Akçay, 2016). 
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Initial efforts to construct such a theory have been made by Ilany and Akçay (2016), who 

investigated whether the emergence of network structure could be explained by a process of 

intergenerational inheritance, where offspring acquire network connections from their parents 

(Ilany & Akçay, 2016). Proximately, this can be explained as a consequence of newborns staying 

close to their mothers, which leads them to interact initially, and primarily, with their mother’s 

social partners (Deputte, 2000). These initial associations come to constitute the core of the 

developing infant’s own social network (i.e. ego-network). There is evidence for this kind of 

network inheritance among taxa that form stable social groups and that contain multiple 

generations (Goldenberg et al., 2016; Ilany et al., 2020; Ward & Hart, 2003; Whitehouse & 

Lubin, 2005). Such patterns raise the possibility that social inheritance is a general mechanism 

for network maintenance among group-living species. However, in wild vervet monkeys, 

Chlorocebus pygerythrus, Jarrett et al. (2018) found that, although there was some evidence for 

network inheritance by juveniles, the adult grooming network could not be replicated by the 

inheritance of maternal contacts alone. This appeared to be a consequence of two factors. First, 

maternal networks were insufficiently stable to support the inheritance of social partners and 

thereby to recreate the overall network (see also Schino et al., 2004, for Macaca). That is, 

maternal network composition seemed to represent a moving target for offspring, such that 

matching was unavoidably imprecise. Second, simulations showed that a greater number of 

associations with nonmaternal contacts was needed to replicate the global network, suggesting 

that the formation of bonds with age cohort peers and other immatures, in addition to bonds with 

adults, were key to network formation, maintenance and variation over time. Functionally, it 

makes intuitive sense for juveniles to develop advantageous connections with peers who share a 

similar life expectancy and a greater probability of continued presence in the group, and not rely 

on contacts with older individuals alone. If this interpretation is accurate, we might anticipate that 
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juveniles will actively structure their interactions to achieve a network containing both inherited 

contacts and connections formed independently of the mother. 

In this regard, Kohn (2019) proposed that juvenile social relationships develop according 

to three temporally structured phases: exploration, pruning and consolidation. That is, as 

juveniles explore their social environment, their social connections go through an initial period of 

overproduction, followed by attrition and then consolidation. This process is argued to allow 

juveniles to converge on species-typical relationships first, by exploring many potential social 

connections in the group, and second, by responding to contingent behavioural feedback from 

others to guide the formation of longer-lasting relationships (Deputte, 2000). Thus, juveniles 

should initially explore their social environment widely and then become more selective in their 

choice of social partners over time (Ward & Webster, 2016). Furthermore, species sex 

differences have been found to appear prior to sexual maturation (Cords et al., 2010; Jarrett et al., 

2018; Lonsdorf et al., 2014; Nakamichi, 1989), whereby the philopatric females have stronger 

social bonds than dispersing males (Andres et al., 2013; Cords et al., 2010; Frere et al., 2010; 

Kulik et al., 2015; Nakamichi, 1989). These early sex differences in social behaviour can be 

interpreted in light of the different life histories and reproductive strategies of males and females 

(Deputte, 2000). Therefore, Kohn’s developmental steps may allow us to detect the emergence of 

behavioural sex differences and to track their development through time. 

Kohn’s (2019) mechanistic framework speaks directly to the idea of social niche 

construction (SNC). SNC describes the way in which individuals, singly or collectively, 

influence the composition and dynamics of their social environments (Laland et al., 2016). While 

this definition of SNC is consistent across the literature, the definition of the “social niche” itself 

varies considerably (Saltz et al., 2016). Authors have defined social niches (both explicitly and 

implicitly) as social groups, social environments and/or patterns of social interactions 
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(Bergmüller & Taborsky, 2010; Flack et al., 2006; Kohn et al., 2011; Ryan, 2011) that can be 

stable (Kohn et al., 2011), and which exert an influence on individual’s phenotype and/or fitness 

(Bergmüller & Taborsky, 2010; Laskowski & Bell, 2014; Montiglio et al., 2013; Ryan, 2011; 

Saltz et al., 2016). This imprecision is reflected in the lack of empirical attempts to characterize 

social niches in concrete, empirical terms (but see Kohn et al., 2011). One possible solution is to 

characterize a social niche using social networks. For instance, Flack et al. (2006) suggested that 

social niches could be represented graphically as the local connections of an individual’s network 

(ego-network) in multiple, overlapping social networks (‘interaction networks’, in Barrett et al., 

2012). In other words, the different types of social interactions that characterize an individual's 

engagement with others constitute the components of a social niche. These components can each 

be represented as individual social interaction networks (Barrett et al., 2012). Here, we begin an 

exploration of social niche formation via an investigation of two social niche components. More 

specifically, we use a dynamic social network approach that allows us to capture the processes of 

exploration, pruning and consolidation at the individual level. 

To do so, we consider the temporal dynamics of two separate interaction networks, spatial 

association and allogrooming, in three groups of wild vervet monkeys. Spatial association and 

grooming represent two key components of an individual’s social niche, as both offer the means 

by which animals can exert control over the individuals found in their immediate vicinity. These 

components also provide a useful contrast, as grooming generally requires mutual attraction 

between partners, whereas spatial proximity can often be achieved unilaterally. In addition, we 

compare these patterns between the sexes, as the development of enduring social relationships 

should be more advantageous for females, who remain in their natal group for life, than for 

males, who are the migrating sex. 



 

119 

Regarding both spatial and grooming associations, and following Kohn (2019), we 

predicted that juvenile social interactions would translate into large (high network degree) and 

dense (high network strength) ego-networks during the exploration phase (Fig. 1a). As this phase 

is expected to be characterized by a lack of structure and stability in juveniles’ ego-networks, we 

also predicted that social interactions would be distributed equally among the focal animal’s 

partners (low skewness), and that networks should lack a consistent composition (low cosine 

similarity). During the pruning (Fig. 1b), and consolidation (Fig. 1c) phases, juveniles should 

develop and strengthen preferred social interactions. Consequently, we predicted a decline in 

individual ego-network size and density, followed by a stabilization of the network at this new 

size and strength distribution. Simultaneously, we expected social interactions to become 

increasingly concentrated on fewer partners that remained consistent over time. That is, we 

predicted an increase in skewness and cosine similarity across the developmental period, 

followed by a stabilization at this new level. Although we predicted that spatial and grooming 

associations would display the same patterns across time, we expected them to differ in 

magnitude in ways that would reflect the level of control an individual could exert over its 

associates. That is, grooming behaviour is more precisely targeted toward specific individuals, 

whereas spatial associations combine such active elements with more passive forms of 

association, where individuals demonstrate mere tolerance of others rather than choice. 

Consequently, we expected spatial ego-networks to be larger and more dense than grooming 

networks, and we predicted that spatial ego-network structure and stability would be lower than 

for grooming ego-networks. In addition to a test of Kohn’s (2019) framework, then, our study 

aimed to demonstrate the general utility of social network analysis for characterizing aspects of 

social niche formation.  
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Figure 1 Kohn’s (2019) phases of socialisation translated into ego-networks, associated with the 
predictions for degree, strength, skewness and cosine similarity during juveniles’ development. 
1a. Exploration - degree/strength are predicted to be high and skewness/cosine similarity should 
be low; 1b. Pruning - degree/strength are predicted to decline and skewness/cosine similarity 
increase; 1c. Consolidation - degree/strength are predicted to be low and skewness/cosine 
similarity are high. 
 

5.3 Methods 

5.3.1 Study population and subjects 

 The data used for this study were collected between June 2014 and June 2017 from three 

troops of vervet monkeys occupying adjacent and overlapping home ranges in the Samara Private 

Game Reserve in the semi-arid Karoo biome, Eastern Cape, South Africa (Pasternak et al., 2013). 

The three study groups (mean ± SD group size: PT group: = 39 ± 8; RBM group: 49 ± 6; RST 

group: 57 ± 7) were fully habituated, and all animals were individually identifiable from natural 

markings. Vervets live in multi-male, multi-female troops, ranging in size between five and ~ 75 

individuals (Horrocks, 1986; Pasternak et al., 2013). The troops in our study population are much 

larger than the species’ average (Pasternak et al., 2013). It is possible that group fission is 
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constrained because there is a large contrast in food productivity between the acacia woodland 

along the river, within which the study troops inhabit, and the considerably lower productivity 

away from the river (Pasternak et al., 2013). On average, vervet males reach sexual maturity at 5 

years of age (Horrocks, 1986) and females typically have their first infant between 3 and 5 years 

of age (Fairbanks & McGuire, 1984). Females are philopatric, whereas males emigrate from their 

natal group at sexual maturity. Thereafter, they move roughly every 2.5–3 years (Cheney et al., 

1988; Henzi & Lucas, 1980), dependent upon their rank and integration into the female network 

(Young et al., 2019b). 

Vervets are seasonal breeders who give birth to a single offspring. Birth season occurs during the 

rainy months of the austral spring (Butynski, 1988), i.e. between October and December. The 

study subjects comprised three birth cohorts from the 2013, 2014 and 2015 birth seasons. The 

number of juveniles, as well as the representation of each sex varied across cohorts and years (see 

Table 1). 

Table 1 Size of cohorts at birth and at end of the study, as well as their composition. 

 

5.3.2 Data collection 

We began data collection when all cohort members were nutritionally independent of 

their mothers and classified as juveniles (Jarrett et al., 2018), which corresponded to an age of 

approximately 7 months (± 1 months) for the 2013 and 2014 cohorts. Data collection started later 
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for the 2015 cohort, around 11 months (± 1 months), due to logistical reasons. Each troop was 

followed on foot by one or more researchers on each 10 h study day, 3–5 days a week (PT: 583 

days; RBM: 601 days; RST: 613 days). We used electronic hand-held data loggers and 

commercial software to record data from all visible animals using scan samples conducted every 

30 min (see Young et al., 2017, for more detail). Each scan was conducted over a period of 10 

min, and we collected data on each animal’s activity (feeding, moving, resting and grooming) and 

all spatial associates within 3 m. When animals were recorded as grooming, we noted the identity 

of their partners. For agonistic interactions, data were collected ad libitum, with the identity of 

the individuals involved recorded, along with the direction of the aggression and the outcome of 

the encounter (i.e. methods follow Young et al., 2017). 

5.3.3 Ethical Note  

All protocols were noninvasive and adhered to the laws and guidelines of South Africa 

and Canada. Procedures were approved by the University of Lethbridge Animal Welfare 

Committee (Protocols 0702 and 1505).  

5.3.4 Data extraction 

Grooming and spatial data were treated separately in our analyses. Using the ‘netTS’ 

package (Bonnell & Vilette, 2020) in R version 3.5.2 (R Core Team, 2017), both data sets were 

aggregated over a 60-day window that was then shifted successively by 30 days (see 

Supplementary material S1 for sampling effort). We estimated the convergence of our measures 

in both the grooming and spatial proximity networks, using the ‘check.windowsize’ function of 

the ‘netTS’ (Bonnell & Vilette, 2020) package in R and 1000 iterations. The ‘check.windowsize’ 

function also allowed us to measure the sensitivity of this subsampling. We found high similar 

estimates (i.e. converged) and low variation in estimates (i.e. robust to subsampling) using a 60-



 

123 

day window for degree, strength, and grooming cosine similarity. This means that the chosen 

window size was able to provide good measures. The estimates were not as robust for skewness 

and spatial cosine similarity, suggesting the potential for noise in our predicted patterns. 

Although skewness measures showed a relatively larger amount of noise, a window size of 60 

days (2 months) appeared to be a good compromise between desired temporal aggregation and 

noise in our estimated network measures (Supplementary Figs. S2.1, S2.2). Within each window, 

spatial association and grooming interactions were aggregated to construct weighted, nondirected 

networks at the node level (i.e. ego-networks). In other words, each juvenile present within the 

window had an ego-network created that consisted of its direct connections. The age in days of 

each juvenile was registered at the start of each time block, as were the number of scans and the 

mean size of each troop. Applying a temporal dynamic approach allowed us to detect the points 

at which potential patterns emerged. 

To extract ordinal ranks, we used the Percolation and Conductance (P&C) method (Fujii 

et al., 2015) from the ‘Perc’ package in R. We chose this method following the training-testing 

procedure described in Vilette et al. (2020), and included agonistic interactions between all 

individuals (males, females and juveniles). We used a 4-month burn-in period, specific to each 

troop, and calculated ordinal ranks for each juvenile within each 60-day window, across the 

entire study period. 

5.3.5 Social Network structure 

To capture Kohn’s (2019) phases, we extracted the following four measures of network 

centrality. (1) Degree, which is the sum of each node’s connections. This captures the number of 

partners a focal subject has and indicates the extent of its connectedness to other nodes (Farine & 

Whitehead, 2015). (2) Strength, which is the sum of each node’s connections weighted by the 
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frequency of the interaction with other nodes. An individual with high strength is either weakly 

associated with many other group members and/or strongly associated with a few group members 

(Farine & Whitehead, 2015). (3) Skewness, which measures the extent to which the distribution 

of the edge weights distribution is symmetrical. Positive (right-skewed) values identify 

individuals that are weakly associated (low strength/weak ties) with many group members (high 

degree), while having strong associations (high strength/strong ties) with only a small subset (low 

degree). Negative (left-skewed) values indicate juveniles that are disproportionately placing 

effort into many partners (degree) with whom they associate very frequently (strength). A 

skewness of zero indicates that animals are distributing their effort equally across all partners (see 

Supplementary Fig. S3). To capture the distribution accurately, we calculated skewness only 

when the number of partners was greater than two. (4) Cosine similarity is used to measure the 

extent to which the patterning of values in two vectors (a, b) is similar (Newman, 2010). Here, 

cosine similarity assesses the similarity of the edge weights between two consecutive ego-

networks, with values that range between 0 and 1. An individual whose social partners (ego-

network) change markedly between time t and t + 1 will have a low cosine similarity, whereas 

individuals whose social partners are similar at t and t + 1 will be associated with a high cosine 

similarity. More details on calculating cosine values are given in the Supplementary material (see 

Cosine Similarity Measure S4). 

5.3.6 Environmental conditions 

As food availability may well contribute to the structuring of juvenile associations, we 

measured troop level estimates of resource availability using the Normalized Difference 

Vegetation Index (NDVI) (Willems et al., 2009). NDVI data were collected from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite images using Google Earth 
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Engine (Gorelick et al., 2017). The satellites Aqua and Terra (this is the MODIS constellation) 

collect electromagnetic reflectance from the surface of the earth. NASA uses these two parts of 

the spectrum to calculate NDVI for any given point on the Earth every 16 days, so the NDVI 

raster is a derived bitmap image that is created from data collected by the satellite. In this study, 

area-weighted averages for each territory were generated for consecutive 33-day windows (16 

days following and prior to the date of each MODIS raster) by averaging all NDVI values for 

points falling within the territory’s 95% isopleth and weighted by the troop’s differential usage of 

its territory during that period (see Young et al., 2019a, for details of the data extraction 

procedures). NDVI scores, which range between -1 and 1, are higher in more photosynthetically 

active areas, and are therefore considered to indicate increased plant food availability. 

5.3.7 Statistical analyses 

We analysed our data within a Bayesian framework, using the ‘brms’ package (Bürkner, 

2017) in R version 3.5.2 (R Core Team, 2017). We used hierarchical generalized additive mixed 

models (HGAM), which allow the relationships between the explanatory variables and the 

response to be described by smooth curves (Pedersen et al., 2019). This approach is useful as it 

does not assume a fixed trend but, instead, estimates a nonlinear trend without a theoretically 

prespecified shape. In other words, a smooth curve gives the opportunity for nonlinear trends, if 

any, to emerge, hence giving further freedom for the model to fit the data. We ran all models with 

four chains and 1000 iterations after specifying weakly informative priors (normal (0,1)). We 

performed prior predictive checks to ensure that these priors did not drive the patterns obtained 

from our predictions (see Supplementary material, Prior Predictive Checks Compared to the 

Predicted Patterns, Fig. S5). Model diagnostics confirmed MCMC convergence, with all R̂<1.1 
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(Gelman & Shalizi, 2012). We used the ‘posterior predictive check’ (pp_check function) from the 

‘bayesplot’ package (Gabry et al., 2019) to determine the quality of the model fit to the data.  

For each measure of network centrality (strength, degree, skewness) and temporal partner 

consistency (cosine similarity), we constructed two models: one for grooming and one for spatial 

associations, generating a total of eight models. For all eight models, the model structure was 

constant. Our data set structure consisted of repeated measures within individual, mother, cohort 

and troop identity, as well as sex. As such, we let the effect of age vary by these five grouping 

variables, using factor smooths (Pedersen et al., 2019). We also allowed the effect of ordinal rank 

to vary by individual, using a factor smooth. Factor smooths implicitly incorporate group-specific 

intercepts. That is, it creates an estimate for each level of the grouping variable, but only 

estimates one smoothing parameter for all groups of this grouping variable. Put simply, these 

grouping variables deviate from the mean and hence vary in their pattern. We expected each 

grouping variable to vary in its ability to maintain a certain network structure as juveniles aged. 

Each of these interactions was added as a single smooth. We controlled for variability in 

environmental conditions by including NDVI as single smooth to the model. Additionally, a 

single smooth for troop number was included to address variation in troop size, along with one 

for age, to account for developmental variation. Continuous variables were scaled and mean-

centred (see Supplementary material S6 for model structure). Apart from the number of spatial 

partners (i.e. spatial degree), a Poisson model was run for all our count variables (three in total). 

As dispersion issues are common with Poisson models, we ran an analysis of residuals from the 

models to detect any dispersion issues (‘DHARMa’ Package). We addressed dispersion issues 

present in our three models by running models with a negative binomial distribution. When this 

approach did not remove the dispersion issue, hurdle models were run (Hilbe, 2017). To 

determine which model to report in the main text, we used three approaches in concert: (1) 
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Models were compared using leave-one-out cross-validation (‘LOO’; Vehtari et al., 2016) with 

the ‘loo_compare’ function of ‘brms’; (2) We looked at the magnitude of the dispersion, from the 

analysis of residuals; (3) We used the posterior predictive checks. Once the model that fitted best 

our data set was found, we compared its estimates with the estimates of our simpler original 

Poisson model. This was used to assess whether the influence of the dispersion issue affected our 

results. As this was not the case for any of our three models, we report the simpler Poisson 

models in the main text and provide the necessary details regarding the other models in the 

Supplementary material (Figs. S8–S10). As such, when considering the influence of age and sex 

on the number of partners, we constructed a binomial for spatial associations as the maximum 

number of spatial partners was known. That is, we used a binomial model (Hilbe, 2017) with 

troop size as the number of trials to model the number of partners. We specified a Poisson 

distribution for the number of grooming partners, as well as the frequency of spatial and 

grooming associations. Finally, for all models run with a Poisson distribution (degree and 

strength), the log of the total number of observation sessions within the aggregated sample period 

was included as an offset in the model to account for differences in observation effort. When 

using the distribution of edge weights (skewness) as our response variable, we constructed a 

skew-normal model for spatial and grooming associations, as the response values were all 

positive with a skewed distribution. For both types of interaction, a zero-one inflated beta model 

was constructed to look at partner preference (cosine similarity), due to the presence of a large 

proportion of zeros. All the model summary tables are presented in the Supplementary material 

(Figs. S7–S14), accompanied by Dharma nonparametric dispersion tests and posterior predictive 

distribution plots, when required. 

Given the nature of the statistical models, as well as the inclusion of interaction effects, 

direct interpretation of model estimates is not straightforward from a summary table. To aid 
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interpretation, we generated whole model predictions using the ‘fitted()’ function, from the 

‘brms’ package, to extract the fitted values of our models. Variables that were not of direct 

interest were fixed to their mean (e.g. troop size, NDVI, rank), while predictions were made for 

the variables of interest (i.e. age and sex). These predictions were then used to construct 

predictive posterior plots with the ‘ggplot2’ package (Wickham, 2009). These plots allowed us to 

see how males and females differed in their response to the average effect of our response 

variables. Given their interpretative familiarity, we specified the 95% credible intervals (CI) in 

our plots to assess whether the sexes differed meaningfully in the structure of the revealed 

patterns. That is, we considered whether the CIs for females and males overlapped completely 

(i.e. no detectable difference between the sexes) or not at all (i.e. a meaningful quantitative 

difference between the sexes). The raw data, plotted with the predicted patterns, are presented in 

the Supplementary material (Figs. S15–S16), and are excluded here to make the patterns easier to 

see. Model main effects are presented as summary statistics (Tables S7–S14 in supplementary 

material) for posterior means, standard errors, 95% CIs, along with conditional R2 values for 

each model, estimated using the ‘bayes_R2’ function (Gelman & Shalizi, 2012). 

5.4 Results 

5.4.1 Social network structures 

5.4.1.1 Spatial ego-network structure 

Neither degree nor strength displayed the predicted pattern of high initial values followed by a 

decline and levelling off (Fig. 2a, b). Instead, both sexes displayed an overall decline in the 

number of partners as they aged. This overall pattern was interspersed with a more dramatic drop 

in the number of partners at around 2.5 years of age, followed by an increase in both sexes, with 

males showing a more precipitous drop and greater subsequent increase than females. Predictions 
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were estimated with a mean troop size fixed at 48 individuals, revealing that at a very young age, 

both sexes were spatially associated with almost the whole troop (mean degree = ~ 44). For 

strength, the general trend, for both sexes, was a cyclical pattern of peaks and troughs that aligned 

with the annual birth season, with higher strength during the birth season, accompanied by an 

overall and constant decrease (Fig. 2b). Despite the general similarity in the pattern shown, 

female strength values were higher than those of males throughout the developmental period. As 

might be expected, given these results, neither skewness nor cosine similarity showed the 

predicted increase over time. Instead, both sexes displayed fluctuating positive skewness values 

across birth seasons (Fig. 2c), with a more nuanced increase for the third birth season. During the 

second birth season, females displayed much higher skewness values than males. Spatial cosine 

similarity values declined over time for both sexes, with the deceleration being more pronounced 

for males (Fig. 2d). Nevertheless, both sexes sustained high cosine values overall. Lastly, this 

overall decrease was interspersed with a slight increase in cosine similarity values during the 

second birth season. 
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Figure 2 Variation in the (a) degree (b) strength (c) skewness and (d) cosine similarity of spatial 
associations by age and sex for juvenile vervets. The blue and red lines show the global smooth 
for the average female and male respectively, with upper and lower 95% credible intervals 
(bands). Grey areas delimit the average annual birth season. Predictions were estimated with 
mean troop size fixed at 48 individuals. 
 

5.4.1.2 Grooming network structure  

Again, observed patterns did not support our predictions. Rather, the mean number of 

grooming partners steadily increased over time for both sexes. The increase was, however, slower 

for males, with the result that divergence between the sexes also increased over time (Fig. 3a). 

There was an increase in grooming strength observed in females, before settling down following 

the first birth season. A peak in strength was then observed between the second and third birth 

season. This overall increase in strength was not mirrored by males, where strength declined with 

age (Fig. 3b). Yet, the same peak was observed, to a lesser magnitude, between the second and 

third birth season. The sexes thus displayed meaningfully different patterns in their grooming 
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associations. With respect to skewness, females showed a fluctuating positive pattern over time, 

which reached a somewhat bumpy plateau between ~ 1.5 and 2.5 years of age, followed by a 

decrease (Fig. 3c). This pattern was mirrored by males, although at a distinctively lower level. In 

the case of cosine similarity in grooming, both sexes began with high mean cosine values, 

followed by a consistent decline in partner similarity as they grew older (Fig. 3d), with the 

decrease being somewhat more pronounced for males. 

 

 
Figure 3 Variation in (a) degree (b) strength (c) skewness and (d) cosine of grooming 
associations by age and sex for juvenile vervets. The blue and red lines show the global smooth 
for the average female and male respectively, with upper and lower 95% credible intervals 
(bands). Grey areas delimit the average annual birth season. Predictions were calculated with a 
mean troop size fixed at 49 individuals. 
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5.5 Discussion 

Taken together, our results did not show convincing evidence for the developmental 

patterns of social engagement predicted by Kohn (2019). That is, for both spatial proximity and 

grooming networks, the high initial observed values of degree and strength were not followed by 

a period of consistent decline that eventually reached a plateau, representing the formation of a 

stable network comprising a subset of similar contacts.  

If we consider spatial proximity first, we found that, for both sexes, although it underwent 

an overall decline, degree nevertheless remained high across development, and did so despite a 

dramatic drop observed around the 2.5-year mark. In the case of strength, both sexes showed a 

striking cyclical pattern corresponding to the annual birth season, with an overall decline in 

strength across time. We also did not find the patterns expected for skewness and cosine 

similarity. Instead, values for both skewness and cosine similarity were high initially and 

remained so over time. However, this is not to suggest there was no variation at all. In the case of 

skewness, there was again evidence for a cyclical pattern corresponding to each birth season, but 

at a lower magnitude during the third. For cosine similarity, although we found a decline over 

time, the magnitude of this shift was small, and values remained high across the entire period.  

In social network terms, these results suggest that, for both sexes, spatial ego-networks 

became smaller and also diminished in density (i.e. juveniles were less frequently in proximity to 

other individuals). The skewness measure suggested that these ego-networks were composed of 

numerous weak ties and a few strong ones, with the strong ties remaining similar through time 

(which accounts for the sustained high cosine values). In other words, individuals were not 

distributing their effort equally. This finding comes as a surprise for two reasons. First, we 

initially assumed that individuals would find it harder to structure their spatial interactions 

consistently. Second, given the observed seasonal variations in the frequency of interactions, we 
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would have expected to observe a loss of structure at some point (i.e. the distribution no longer 

being positively skewed). This suggests that the arrival of a new cohort of newborns into the 

group led to changes in size, composition and dynamics of the group, to which juvenile 

interactions were sensitive. Previous work has shown that attraction to newborns may promote 

close spatial associations with mothers (Silk, 1999, 2009; Silk et al., 2003), leading spatial social 

structure topologies to become more centralized. This is indeed what we observed with spatial 

associations, where the upward shifts in strength during the birth season (Fig. 2b) combined with 

the positive fluctuations in skewness (Fig. 3c), suggest that these associations become centred on 

a subset of individuals at this time (i.e. the surplus of effort put on fewer strong ties increases the 

contrast between weak and very strong ties, leading to an increase in skewness). Future studies 

might helpfully investigate whether the birth of a new infant draws juveniles back to their 

mothers and her associates, and also how strength and skewness relate to each another. In other 

words, it would be useful to address whether the increase in frequency of associations leads 

juveniles to focus more tightly on a subset of their partners (increase in skewness) or whether is it 

the change in their ego-network structure (high skewness) that allows them to then increase their 

association frequency. 

If we now turn to grooming patterns, although we also found distinctive patterns across 

time, once again these did not conform to Kohn’s (2019) developmental model. We found that 

juvenile females were characterized by low degree at the beginning of the study period followed 

by a consistent increase in the number of partners (from around five partners at the beginning of 

the period up to 15 partners at the end) and their frequency of interaction over time. This raises 

issues concerning time budget constraints and social coordination. Among cercopithecines, adult 

females can groom across the entire female cohort (i.e. the total number of females in the group) 

as long as this cohort remains below some threshold size (e.g. seven for female mountain 
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baboons, Papio cynocephalus ursinus: Henzi et al., 1997; five to six for vervet monkeys: Henzi et 

al., 2013). Above this level, grooming cliques become smaller due to problems that arise with 

respect to social coordination. As such, the large grooming cliques acquired by juvenile females 

seem anomalous. However, the increase in grooming partners was also accompanied by an 

increase in positive skewness values until 2.5 years of age. This suggests that the average female 

frequently groomed a small subset of partners (strong ties), while the remainder of her partners 

were groomed infrequently (weak ties). Furthermore, throughout the first 2.5 years, the contrast 

between weak and strong ties increased, suggesting that juvenile females were not forced to 

reduce or cap the number of partners in their grooming cliques, but instead underwent a shift in 

how they distributed their grooming within their networks as degree increased. Around 2.5 years 

of age, however, a decrease in skewness was observed, although values remained positive. This 

decrease was accompanied by an increase in degree, which suggests that the contrast between 

strong and weak ties became less stark. That is, some compromises may take place on strong 

partners, rather than on the number of partners, where juveniles invest less in their strong ties. 

Therefore, it would be interesting to further investigate how degree and skewness respond in 

relation to variation in troop size.  

In contrast to the female pattern, males showed a much shallower rise in degree over time, 

along with a decrease in the frequency of interactions (Fig. 3a, b). Males also showed generally 

high skewness values, with an increase across the first 2.5 years, while their values were 

nevertheless consistently lower than those for females (Fig. 3c). Thus, although male ego-

networks showed the same structure of weak and strong ties, this was not as pronounced as it was 

for females. Males were, however, similar to females with respect to cosine estimates, again 

showing a constant decline in partner similarity over time (Fig. 3d). Taken together, these 

patterns suggest that males were less strongly integrated into grooming networks than females 
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(Fig. 3a, b)—a pattern also found in previous studies (Blaszczyk, 2018; Cords et al., 2010; Jarrett 

et al., 2018). This sex difference may arise because males migrate at sexually maturity and are 

less likely to invest in the development of enduring social relationships.  

Although we have treated spatial proximity and grooming as two separate components of 

the animals’ social niche, examining these patterns in concert can help our understanding of the 

process by which juveniles build their niches. First and foremost, spatial proximity ego-networks 

showed seasonal patterns, whereas grooming ego-networks did not. As predicted, juveniles 

associated more frequently with spatial partners than with grooming partners (Figs. 2, 3b) and 

they associated with more spatial partners (Figs. 2, 3a) than they did grooming partners. One 

possible interpretation, then, is that juveniles have different interaction styles (passive versus 

active) across behavioural contexts. It may be that, for juveniles, regulating who is within 3m of 

them may be challenging. A grooming interaction, in contrast, involves two willing partners, 

allowing a more active, controlled choice of association, in terms of the effort invested and the 

partners targeted. Against our predictions, however, spatial proximity associations showed higher 

partner stability and revealed ego-networks composed of many weak ties and few strong ties. One 

possible explanation here is that spatial ego-networks may be less robust to large-scale changes at 

the level of the group, such as the arrival of the birth season, where the sudden influx of multiple 

newborns may lead juveniles to be in proximity to others more frequently due to the increased 

attention received by their mothers and new siblings. In contrast, grooming interactions are less 

likely to be affected by such large-scale shifts in group dynamics because juveniles can control 

partner choice. However, they may be more likely to respond to smaller-scale, more continuous 

fluctuations, such as shifts in time budget demands with increasing troop size. Indeed, adult 

patterns of grooming in our population respond to contingent ecological and demographic 

conditions in just this way (Henzi et al., 2013; Young et al., 2019a). 
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Although our patterns did not resemble those predicted by Kohn (2019), a common 

pattern was observed in the structure of the networks (i.e. social niche components) for both 

sexes. This finding, we believe, allows us to explain why Kohn’s (2019) model apparently does 

not describe social integration in our population. Our data suggest that individuals’ ego-networks 

are composed of many weak ties and few strong ties. While the focus of many network studies 

often falls on the identity and traits of the individuals (the “who”) that comprise an ego-network, 

we suggest that, in this case, it is the structure of the network itself that is of developmental 

relevance (the “how”). Kohn’s (2019) model is largely focused on the “who”, where the third and 

final step is based on the establishment of preferred relationships. What our findings suggest is 

that juveniles are also building a network of a particular structure, as well as establishing 

preferred relationships. We interpret the formation of this subset of strong ties as a way to create 

a more secure social space for an individual, which we can characterize as a “social bubble”. 

Having found this additional “level” of structure, it raises the possibility that, by considering the 

overall ego-network, we have focused on the wrong level, and that it is within the layer of strong 

ties that Kohn’s (2019) proposed phases operate. Taking a closer look at social bubble formation 

and composition over time is therefore warranted, as it seems likely that this sets the social 

conditions to which juveniles are exposed (see Kohn et al., 2022). For example, in terms of 

spatial proximity, an animal that is broadly spatially integrated, with numerous weak ties, may 

ensure enhanced protection against predators, while a more consistent social bubble of strong ties 

may guarantee protection against potential conspecific competitors. In a grooming setting, 

infrequent grooming partners may translate into more opportunistic grooming that serves 

immediate goals (Barrett & Henzi, 2006), while a social bubble of frequent grooming ties, 

perhaps with kin, may serve other fitness-related goals (Josephs et al., 2016; Silk et al., 2006). 
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Therefore, our findings point to the necessity of better understanding the relative role of strong 

and weak ties in predicting primate fitness, as suggested in other recent work (Ellis et al., 2019; 

Ostner & Schülke, 2018; Schülke et al., 2022). 

Finally, another component likely to have had an impact on our observed patterns is the 

chosen timescale. Kohn did not explicitly consider temporal dynamics and did not give details of 

the period over which these phases were believed to occur, and many possible timescales are 

possible, from days to weeks to, as we have considered here, years. With regard to social 

integration in our population, questions about its duration and whether individuals all integrate at 

the same pace remain unanswered. It is possible that Kohn’s (2019) three phases may, in concert, 

operate over a shorter timescale than we have considered here. It is also possible that each phase 

may have its own particular duration, and that this may vary individually. For example, in species 

where juveniles can explore their social group without being socially at risk (e.g. where there is 

no infanticide), it may be that the exploration phase takes longer than the other two phases. In 

addition, as relationships in a social group represent a dynamic negotiation between dyads in 

response to ecological factors and other aspect of group dynamics, it is also possible that Kohn’s 

(2019) phases may recur, at least to some degree, each time the social group undergoes a change 

in size and composition. That is, such changes may disrupt and relaunch the network formation 

process, resulting in a series of network formation cycles, rather than a singular, clean, linear 

progression. Investigating individual variation may therefore help us understand the pace at 

which juveniles integrate into the group, and hence the appropriate time frame needed to cover 

the entire process of integration 

 

Overall, consideration of developmental social dynamics has allowed us to get a more 

detailed appreciation of how social networks and social niches are constructed over time. One 



 

138 

obvious point to make is that both spatial proximity and grooming patterns did not reveal any 

shift, either gradual or sudden, that marked the end of the juvenile period and the emergence of 

an adult pattern. This contrasted with gross sex differences in patterning, where a clear 

differentiation between male and female social engagement became increasingly apparent. This 

suggests that the former pattern does not simply reflect a methodological failure to detect a 

pattern that was, in fact, there. Consequently, our findings do not indicate any kind of “social 

revolution” occurring at a key point in development as suggested for other species (Kulik et al., 

2015), whereby a typical juvenile form of engagement is discarded in order to commence the 

daily business of adulthood. The early and distinct behavioural sex differences found in our 

population also suggest that the migrating males and philopatric females may adopt different 

social strategies as soon as they become independent of their mothers and do not arise as a result 

of sexual maturity. It seems much more likely that, as we have seen, there are no large-scale 

shifts in social engagement, but rather continuous multiple small adjustments that result in the 

formation of a beneficial network structure. Thus, ongoing social dynamics may promote only 

short-term stability that can be expected to shift over time, and juveniles form the network 

structures that serve them best for the time being (i.e. they are not engaging in suboptimal 

patterns of engagement as part of the process of working towards a more beneficial end-goal). 

That is, being able to coordinate activities and sustain proximity with specific partners calls for 

individuals to be able to flexibly adjust to temporal shifts in their social network structure 

throughout the developmental period. Hence, it seems reasonable to consider the possibility that 

social integration, in general, may be a process of ongoing continual adjustment achieved through 

SNC among highly social species. In turn, SNC offers a mechanism by which individuals can 

form the network structures that best serve their needs given the ecological and social conditions 

they face. Here, SNC apparently enables young animals to embed themselves in more secure ego-
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network structures (social bubbles), while retaining the benefits of broader integration in the 

group through the presence of weak social ties (McFarland et al., 2017). 
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5.7 Supplementary material  

S1: Sampling effort across our study period, by troop 

 
Figure S1 Variation in the average number of scans per window, by troop. 
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S2: Determining Stability and Robustness of Network Window Size 

 



 

146 

Figure S2.1 Results of estimating the lower bound of window size choice using bootstrapping 
and subsampling for the spatial proximity networks across 60-day sampling windows for each 
troop (rows) and each of our measures (columns). The y-axis is the correlation between the 
network level measures of nodes in the observed and bootstrapped networks. The lines and points 
represent the mean cosine similarity, while the shaded areas represent the 95% CI calculated from 
1000 bootstrapped samples. Cosine similarities were estimated for subsamples of the data: 100%, 
80%, and 60% to quantify the influence of potential missing data on network measures. 
 

 
Figure S2.2 Results of estimating the lower bound of window size choice using bootstrapping 
and subsampling for the grooming networks across 60-day sampling windows for each troop 
(rows) and each of our measures (columns). The y-axis is the correlation between the network 
level measures of nodes in the observed and bootstrapped networks. The lines and points 
represent the mean cosine similarity, while the shaded areas represent the 95% CI calculated from 
1000 bootstrapped samples. Cosine similarities were estimated for subsamples of the data: 100%, 
80%, and 60% to quantify the influence of potential missing data on network measures. 
 

S3: Skewness measure 
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Skewness is a measure of the lack of symmetry observed in a distribution. Here, we are 
looking at the weight distribution.  
Positive values for the skewness indicate right skewed data, which means that the right tail is 
long relative to the left tail (Figure S3.1). The mean (red) of positive skewed data is greater than 
the median (green). More concretely for us, a positive skewness means that most of the weight 
distribution is on low values while the tail of the distribution is on higher values. This means that 
a juvenile with a positive skewness is predominantly associated with many partners (high degree) 
infrequently (low strength). The rest of their associations concentrates on a subset of few partners 
(low degree), but at high frequency (high strength). 

 

Figure S3.1 Distribution of weights with a positive skewness. The mean is represented in red. 
The median is in green. 
 

The skewness for a normal distribution is zero (Figure S3.2). In this scenario, juveniles distribute 
their effort equally among their partners. 
 

 

Figure S3.2 Distribution of weights with a null skewness. The mean is represented in red. The 
median is in green. 
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Negative values for skewness indicate data that are skewed left, meaning that the left tail is long 
relative to the right tail (Figure S3.3). In a negative skewed distribution, the median is greater 
than the mean. Concretely, a juvenile with a negative skewness is distributing predominantly its 
effort into a high number of partners (degree) with whom they associate very frequently 
(strength). The rest of the juvenile’s effort goes into a few partners (low degree) with which the 
focal barely interacts (low strength). 
 

 

Figure S3.3 Distribution of weights with a negative skewness. The mean is represented in red. 
The median is in green. 
 

Note that without a distribution (e.g., less than 3 weights measures, and hence three partners), the 
measure cannot capture the distribution (= undefined skew). Therefore, skewness was only 
inferred when the number of partners (degree) was above 2. 
 
S4: Cosine similarity measure  

Cosine similarity assesses the extent to which the patterning of values in two vectors (a, 
b) is similar, making it appropriate for differing sample sizes (Newman, 2010). This metric is a 
measurement of orientation/style, not one of magnitude like Euclidean distance, and is expressed 
as the cosine of the angle between two vectors. 

 

𝑐𝑜𝑠𝜃 =
𝑎. 𝑏

∥ 𝑎 ∥∥ 𝑏 ∥ 

In our case, a vector is a suite of weights, each weight corresponding to the number of times a 
distinct dyad (the focal and its partner) was seen interacting. Cosine similarity offers the 
possibility to center the variable (i.e.., the suite of weights) by subtracting the mean of the 
variable to every value of the variable. 

When doing so, cosine similarity becomes the equivalent of the Pearson correlation. 
When not centred, the measure is called cosine similarity.  
Regarding the Pearson correlation, the values range from −1 to 1. A value of exactly 1 implies 
the juvenile’s partners between time t and time t+1 are exactly the same. Graphically speaking, in 
this case, all data points lying on a line. The correlation sign is determined by the slope of the 
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line. A value of 0 implies that there is no linear dependency between the partners at time t and 
time t+1. A value of -1 would tell us that we see the opposite relationship observed at time t.  
Cosine similarity, however, looks at the angle between two vectors of points, and not the slope. If 
the direction is similar (low angle), then the two vectors are similar. If the two vectors point in 
opposite direction (large angle), then they are dissimilar. In our case, the cosine similarity values 
range between 0 and 1 as frequencies of interactions can’t be negative. 
As correlation estimates similarity based on how weights have changed relative to other 
grooming partners, while cosine estimates similarity assesses similarity based on how direction 
of weights of all the partners have shifted overall. As such, we chose not to center our variable 
and used cosine similarity measure.  
 

S5: Prior predictive checks compared to the predicted patterns 

 

 
Figure S5.1 Comparison between prior predictive checks (on the left) and the predicted variation 
in the degree, strength, skewness, and cosine similarity of spatial associations by age and sex for 
juvenile vervets. The blue and red lines show the global smooth for the average female and male 
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respectively, with upper and lower 95% credible intervals (bands). Predictions were estimated 
with mean troop size fixed at 48 individuals. 

 

Looking at the prior predictive checks for strength, we see a pattern for age. This is common 
when using models with splines and weakly informative priors entered on zero. However, when 
comparing the prior predictive checks with their respective observed variation through age, they 
are different, which tells us that the way the model updates from those priors is not being 
impacted by our priors. For degree, skewness and cosine similarity, there are no patterns for age, 
which means that our data are driving the observed patterns and not our priors. 
 

 
Figure S5.2 Comparison between prior predictive checks (on the left) and the predicted variation 
in the degree, strength, skewness, and cosine similarity of grooming associations by age and sex 
for juvenile vervets. The blue and red lines show the global smooth for the average female and 
male respectively, with upper and lower 95% credible intervals (bands). Predictions were 
estimated with mean troop size fixed at 49 individuals. 
 

Looking at the prior predictive checks for degree, we see a pattern for age in females, and 
none for males. The same goes for strength, with our prior predictive check, where we see a 
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pattern at a very young age for females, and a slight indication of a pattern for males. Again, this 
common to see when using models with splines and weakly informative priors centred on zero. 
However, when comparing the prior predictive checks with their respective observed variation 
through age, they are different, which tells us that the way the model updates from those priors is 
not being impacted by our priors. For both skewness and cosine similarity, there are no patterns 
for age, which means that our data are driving the observed patterns and not our priors. 
 

In a second phase, we showed that our model results were not sensitive to the priors, by 
changing our weakly informative priors (normal (0,1)) to more informative ones (normal (0, 0.1) 
and then normal (-4, 4)). By restricting the range of values that the outcome is likely to take, we 
sought to see whether the results of our models would change. Here, we focused on the three 
count variables that had originally showed prior predictive checks that revealed that the models 
predicted a wide range of values (i.e., grooming degree, spatial and grooming strength). 

 
When constraining our priors (normal (0, 0.1)), we observe prior predictive checks (on the 

left) and the predicted variation in the spatial strength, grooming degree and grooming strength 
by age and sex for juvenile vervets (Figure S5.3). When comparing the model results using 
weakly and informative priors, we see no difference in our results. 
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Figure S5.3 Comparison between prior predictive checks (on the left) and the predicted 
variation in the degree, strength, skewness, and cosine similarity of grooming associations 
by age and sex for juvenile vervets using normal (0, 0.1) priors. The blue and red lines 
show the global smooth for the average female and male respectively, with upper and 
lower 95% credible intervals (bands). Predictions were estimated with mean troop size 
fixed at 49 individuals. 

 

 Finally, when using priors even more constrained (normal (-4, 4)), we still observe the 
same results (Figure S5.4). As such, we feel confident that our models are not sensitive to our 
choice of priors. 
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Figure S5.4 Comparison between prior predictive checks (on the left) and the predicted variation 
in the degree, strength, skewness, and cosine similarity of grooming associations by age and sex 
for juvenile vervets using normal (-4, 4) priors. The blue and red lines show the global smooth 
for the average female and male respectively, with upper and lower 95% credible intervals 
(bands). Predictions were estimated with mean troop size fixed at 49 individuals. 
 

S6: models’ structures 
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S7: Degree in spatial proximity associations 
S7.1 Under-Dispersion in the Binomial Model for the number of spatial partners 

Summary of the model parameters used in hierarchical generalized additive models 
(HGAMs) to assess the influence of age and sex factors and our response variables. All 
independent variables and interactions had a smooth term around them. All continuous 
predictor variables were mean-centered and standardized by two standard deviations to 

allow for effect size comparisons across continuous and dichotomous variables (Gelman 
2008).

Interaction type Response 
variable Fixed effects Interactions Distribution

Spatial proximity

Degree Age 
Scan.nb 
NDVI

Age by juvenile ID 
Age by cohort ID 

Age by sex 
Age by troop ID 

Age by mother ID 
Rank by ID 

Binomial

Strength Age 
NDVI 

Troop.nb

Same as above Poisson

Skewness Age 
Scan.nb 
NDVI 

Troop.nb

Same as above Skew-normal

Cosine similarity Age 
Scan.nb 
NDVI 

Troop.nb

Same as above Zero-one-
inflated beta

Grooming

Degree Age 
NDVI 

Troop.nb

Same as above Poisson

Strength Age 
NDVI 

Troop.nb

Same as above Poisson

Skewness Age 
Scan.nb 
NDVI 

Troop.nb

Same as above Skew-normal

Cosine similarity Age 
Scan.nb 
NDVI 

Troop.nb

Same as above Zero-one-
inflated beta
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S7.2. Summary table of the Binomial Model for the number of spatial partners 
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S7.3. Comparing the observed outcome variable (degree) to datasets simulated from the 
posterior predictive distribution of the number of spatial partners model, using a Binomial 
distribution 

Summary statistics of a Bayesian hierarchical generalized additive mixed 
model (HGAM) for the number of partners (degree) in spatial associations, 

using a binomial distribution. CI = credible interval; SD = standard 
deviation; s() = spline. Smooth-term sds() = spline “wiggliness” (spline 

variance parameter)

Effect Parameter Estimate Estimate 
Error

Lower 
95 CI

Upper 
95 CI

Population-
Level Effects

Intercept 1.60 0.50 0.51 2.50

s(age) -0.35 0.90 -2.09 1.30

s(scan.nb) 0.88 0.80 -0.74 2.40

s(NDVI) -0.15 0.57 -1.50 0.88

Smooth Terms

sds(age)     0.84 0.70 0.03 2.53
sds(age ID1) 0.85 0.10 0.64 1.03
sds(age ID2) 0.43 0.32 0.02 1.18
sds(age cohort1)  1.86 0.38 1.27 2.75
sds(age cohort2)  2.05 1.82 0.07 6.67
sds(age troop1)   1.68 0.30 1.19 2.37
sds(age troop2)   3.72 1.91 1.52 8.65
sds(age mumID1)   0.26 0.18 0.01 0.64
sds(age mumID2)   1.47 0.74 0.18 2.94
sds(scan.nb)      2.18 0.63 1.25 3.65
sds(age sex1)     0.32 0.21 0.01 0.79
sds(age sex2)     1.28 1.41 0.04 5.39
sds(NDVI)         0.40 0.44 0.01 1.67
sds(rank ID1) 0.52 0.07 0.40 0.66
sds(rank ID2) 0.40 0.30 0.02 1.14

Estimate Estimate 
Error Q2.5 Q97.5

R2 marginal 0.91 0.00 0.90 0.91
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S8: Degree in grooming associations 
S81.1. Under-dispersion in the Poisson Model for the number of grooming partners 
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S8.1.2. Summary table of the Poisson Model for the number of grooming partners 
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S8.1.3. Comparing the observed outcome variable (degree) to datasets simulated from the 
posterior predictive distribution of the number of grooming partners model, using a Poisson 
distribution 
 

Summary statistics of a Bayesian hierarchical generalized additive mixed 
model (HGAM) for the number of partners (degree) in grooming 

associations, using a poisson distribution. CI = credible interval; SD = 
standard deviation; s() = spline. Smooth-term sds() = spline “wiggliness” 

(spline variance parameter)-1

Effect Parameter Estimate Estimate 
Error

Lower 
95 CI

Upper 
95 CI

Population-
Level Effects

Intercept -4.04 0.43 -4.92 -3.18

s(age) 1.27 0.80 -0.42 2.69

s(NDVI) 0.14 0.55 -1.02 1.18

s(troop.nb) -0.42 0.54 -1.58 0.53

Smooth Terms

sds(age)     0.55 0.52 0.02 1.96
sds(age ID1) 0.43 0.09 0.24 0.58
sds(age ID2) 0.54 0.34 0.03 1.24
sds(age cohort1)  0.74 0.22 0.40 1.22
sds(age cohort2)  1.61 1.38 0.06 5.29
sds(age troop1)   0.18 0.11 0.01 0.42
sds(age troop2)   1.91 1.28 0.51 5.27
sds(age mumID1)   0.18 0.11 0.01 0.41
sds(age mumID2)   0.83 0.36 0.13 1.54
sds(age sex1)     0.18 0.11 0.01 0.44
sds(age sex2)     3.27 2.13 1.08 8.80
sds(NDVI)         0.39 0.25 0.07 1.02
sds(troop.nb)     0.41 0.35 0.02 1.31
sds(rank ID1) 0.06 0.04 0.00 0.16
sds(rank ID2) 0.48 0.31 0.02 1.15

Estimate Estimate 
Error Q2.5 Q97.5

R2 marginal 0.76 0.01 0.74 0.78
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S8.2.1. Under-dispersion in the Negative Binomial Model for the number of grooming partners 
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S8.2.2. Summary table of the Negative Binomial Model for the number of grooming partners 
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S8.2.3. Comparing the observed outcome variable (degree) to datasets simulated from the 
posterior predictive distribution of the number of grooming partners model, using a negative 
binomial distribution 
 

Summary statistics of a Bayesian hierarchical generalized additive mixed 
model (HGAM) for the number of partners (degree) in grooming 

associations, using a negative binomial distribution. CI = credible interval; 
SD = standard deviation; s() = spline. Smooth-term sds() = spline 

“wiggliness” (spline variance parameter)

Effect Parameter Estimate Estimate 
Error

Lower 
95 CI

Upper 
95 CI

Population-
Level Effects

Intercept -4.32 0.45 -5.22 -3.39

s(age) 1.62 0.89 -0.15 3.35

s(NDVI) 0.01 0.56 -1.14 1.11

s(troop.nb) -0.25 0.54 -1.39 0.80

Smooth Terms

sds(age)     1.15 0.72 0.12 2.85
sds(age ID1) 0.62 0.10 0.41 0.81
sds(age ID2) 0.57 0.38 0.03 1.42
sds(age cohort1)  0.57 0.31 0.07 1.23
sds(age cohort2)  1.16 1.21 0.03 4.38
sds(age troop1)   0.28 0.18 0.02 0.72
sds(age troop2)   2.23 1.39 0.59 5.95
sds(age mumID1)   0.28 0.16 0.01 0.59
sds(age mumID2)   1.13 0.47 0.14 2.02
sds(age sex1)     0.18 0.17 0.01 0.60
sds(age sex2)     3.67 2.09 1.33 9.56
sds(NDVI)         0.40 0.26 0.08 1.08
sds(troop.nb)     0.50 0.44 0.02 1.67
sds(rank ID1) 0.07 0.05 0.00 0.20
sds(rank ID2) 0.52 0.35 0.02 1.31

Family-specific 
Parameters Shape 405.62 143.81 199.78 737.86

Estimate Estimate 
Error Q2.5 Q97.5

R2 marginal 0.77 0.01 0.75 0.79
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S9: Strength in spatial proximity associations 
S9.1.1. Over-dispersion in the Poisson Model for the frequency of spatial interactions  
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S9.1.2. Summary table of the Poisson Model for the frequency of spatial interactions 
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S9.1.3. Comparing the observed outcome variable (strength) to datasets simulated from the 
posterior predictive distribution of the spatial interaction frequency model, using a Poisson 
distribution 
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S9.2.1. Under-dispersion in the Hurdle Model for the frequency of spatial interactions, using a 
Negative Binomial distribution 
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S9.2.2. Summary table of the Hurdle Model for the frequency of spatial interactions, using a 
Negative Binomial distribution 
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S9.2.3. Comparing the observed outcome variable (strength) to datasets simulated from the 
posterior predictive distribution of the spatial interaction frequency hurdle model, using a 
Negative Binomial distribution 

 

 

S10: Strength in grooming associations 
S10.1. Under-dispersion in the Poisson Model for the frequency of grooming interactions  
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S10.2. Summary table of the Poisson Model for the frequency of grooming interactions 
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S10.3. Comparing the observed outcome variable (strength) to datasets simulated from the 
posterior predictive distribution of the grooming interaction frequency model, using a Poisson 
distribution 

 

 

S11: Skewness in spatial proximity associations 
S11.1. Summary table of the Skew-Normal Model for the distribution in frequency of spatial 
interactions 
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S11.2. Comparing the observed outcome variable (skewness) to datasets simulated from the 
posterior predictive distribution of the distribution in frequency of spatial interactions model, 
using a skew-normal distribution 

Summary statistics of a Bayesian hierarchical generalized additive mixed 
model (HGAM) for the distribution of edge weights (skewness) in spatial 

associations, using a skew-normal distribution. CI = credible interval; SD = 
standard deviation; s() = spline. Smooth-term sds() = spline “wiggliness” 

(spline variance parameter)

Effect Parameter Estimate Estimate 
Error

Lower 
95 CI

Upper 
95 CI

Population-
Level Effects

Intercept 1.49 0.26 0.94 2.05

s(age) -0.10 0.76 -1.58 1.39

s(scan.nb) -0.06 0.53 -1.25 0.94

s(NDVI) -0.90 0.79 -2.37 0.73

s(troop.nb) -0.07 0.64 -1.44 1.07

Smooth Terms

sds(age)     0.47 0.42 0.02 1.57

sds(age ID1) 1.26 0.10 1.08 1.46

sds(age ID2) 0.62 0.44 0.03 1.63

sds(age cohort1)  0.97 0.27 0.54 1.60

sds(age cohort2)  1.51 1.35 0.05 5.00

sds(age troop1)   0.36 0.15 0.07 0.68

sds(age troop2)   0.87 0.90 0.03 3.25

sds(age mumID1)   0.27 0.19 0.01 0.67

sds(age mumID2)   1.78 0.47 0.82 2.70

sds(scan.nb)      0.48 0.39 0.03 1.46

sds(age sex1)     0.18 0.13 0.01 0.52

sds(age sex2)     1.32 1.41 0.04 5.08

sds(NDVI)         1.33 0.56 0.61 2.72

sds(troop.nb)     0.71 0.45 0.16 1.86

sds(rank ID1)         0.18 0.10 0.01 0.37

sds(rank ID2)     0.63 0.46 0.02 1.68

Family-specific 
Parameters

Sigma     0.41 0.01 0.39 0.43
Alpha     5.25 1.04 3.67 7.73

Estimate Estimate 
Error Q2.5 Q97.5

R2 marginal 0.60 0.02 0.57 0.63



 

173 

 

 

S12: Skewness in grooming associations 
S12.1 Summary table of the Skew-Normal Model for the distribution in frequency of grooming 
interactions 
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S12.2. Comparing the observed outcome variable (skewness) to datasets simulated from the 
posterior predictive distribution of the distribution in frequency of grooming interactions model, 
using a skew-normal distribution 
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S13: Cosine similarity in spatial associations 
S13.1 Summary table of the zero one inflated Beta Model for the similarity in spatial partners 
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S13.2. Comparing the observed outcome variable (cosine similarity) to datasets simulated from 
the posterior predictive distribution of the similarity in spatial partner model, using a zero-one-
inflated beta distribution 

Summary statistics of a Bayesian hierarchical generalized additive mixed 
model (HGAM) for the similarity in spatial partners (cosine), using a zero-

one-inflated beta distribution. CI = credible interval; SD = standard 
deviation; s() = spline. Smooth-term sds() = spline “wiggliness” (spline 

variance parameter)

Effect Parameter Estimate Estimate 
Error

Lower 
95 CI

Upper 
95 CI

Population-
Level Effects

Intercept 2.43 0.55 1.29 3.44

s(age) 0.53 0.93 -1.21 2.34

s(scan.nb) 1.60 0.85 -0.11 3.26

s(NDVI) -0.46 0.88 -2.23 1.26

s(troop.nb) -0.27 0.74 -1.31 1.44

Smooth Terms

sds(age)     4.09 1.74 1.24 7.99
sds(age ID1) 0.63 0.08 0.46 0.79
sds(age ID2) 0.58 0.38 0.03 1.39
sds(age cohort1)  1.74 0.57 0.82 3.03
sds(age cohort2)  4.59 2.70 0.78 11.43
sds(age troop1)   0.47 0.21 0.11 0.95
sds(age troop2)   1.05 1.01 0.04 3.64
sds(age mumID1)   0.17 0.12 0.01 0.45
sds(age mumID2)   0.66 0.43 0.04 1.61
sds(scan.nb)      2.09 0.69 1.06 3.79
sds(age sex1)     0.49 0.28 0.08 1.16
sds(age sex2)     2.21 1.99 0.26 7.22
sds(NDVI)         2.08 0.79 0.95 3.88
sds(troop.nb)     0.47 0.57 0.01 2.16
sds(rank ID1) 0.73 0.10 0.53 0.94
sds(rank ID2) 0.49 0.35 0.02 1.31

Family-specific 
Parameters

Phi    52.81 2.44 48.28 57.87
Zoi    0.00 0.00 0.00 0.01
Coi    0.67 0.18 0.30 0.95

Estimate Estimate 
Error Q2.5 Q97.5

R2 marginal 0.53 0.02 0.49 0.58



 

177 

 

 
S14: Cosine similarity in grooming associations 
S14.1 Summary table of the zero one inflated Beta Model for the similarity in grooming partners 
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S14.2. Comparing the observed outcome variable (cosine similarity) to datasets simulated from 
the posterior predictive distribution of the similarity in grooming partner model, using a zero-
one-inflated beta distribution 

Summary statistics of a Bayesian hierarchical generalized additive mixed 
model (HGAM) for the similarity in grooming partners (cosine), using a 
zero-one-inflated beta distribution. CI = credible interval; SD = standard 
deviation; s() = spline. Smooth-term sds() = spline “wiggliness” (spline 

variance parameter)

Effect Parameter Estimate Estimate 
Error

Lower 
95 CI

Upper 
95 CI

Population-
Level Effects

Intercept 1.90 0.31 1.27 2.56

s(age) -1.09 0.96 -2.91 0.85

s(scan.nb) 1.64 0.58 0.23 2.55

s(NDVI) 0.23 0.58 -0.83 1.46

s(troop.nb) -0.09 0.72 -1.34 1.45

Smooth Terms

sds(age)     1.00 0.62 0.11 2.49
sds(age ID1) 1.43 0.20 1.04 1.83
sds(age ID2) 0.82 0.61 0.04 2.32
sds(age cohort1)  0.38 0.30 0.01 1.09
sds(age cohort2)  1.24 1.26 0.04 4.53
sds(age troop1)   0.57 0.34 0.03 1.31
sds(age troop2)   1.46 1.31 0.06 4.75
sds(age mumID1)   0.60 0.33 0.02 1.19
sds(age mumID2)   2.74 0.77 0.97 4.20
sds(scan.nb)      0.31 0.38 0.01 1.29
sds(age sex1)     0.44 0.24 0.05 0.96
sds(age sex2)     1.50 1.53 0.06 5.43
sds(NDVI)         0.38 0.38 0.01 1.36
sds(troop.nb)     0.83 0.91 0.02 3.49
sds(rank ID1) 0.47 0.20 0.05 0.83
sds(rank ID2) 0.84 0.59 0.04 2.26

Family-specific 
Parameters

Phi     9.99 0.46 9.12 10.93
Zoi     0.03 0.00 0.02 0.03
Coi     0.71 0.07 0.57 0.83

Estimate Estimate 
Error Q2.5 Q97.5

R2 marginal 0.43 0.02 0.40 0.46
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S15: Raw data from spatial interactions plotted with predicted patterns 
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Figure S15 Variation in the (a) degree (b) strength (c) skewness and (d) cosine similarity of 
spatial associations by age and sex for juvenile vervets. The blue and red lines show the global 
smooth for the average female and male respectively, with upper and lower 95% credible 
intervals (bands). The grey dots show the raw data. Predictions were estimated with mean troop 
size fixed at 48 individuals. 
 
S16: Raw data from grooming interactions plotted with predicted patterns 
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Figure S16 Variation in the (a) degree (b) strength (c) skewness and (d) cosine similarity of 
grooming associations by age and sex for juvenile vervets. The blue and red lines show the global 
smooth for the average female and male respectively, with upper and lower 95% credible 
intervals (bands). The grey dots show the raw data. Predictions were estimated with mean troop 
size fixed at 49 individuals.
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CHAPTER 6: INSIGHTS INTO STRONG TIES FORMATION, COMPOSITION AND 

PROCESSES AT PLAY IN JUVENILE VERVET MONKEYS 

 

This data chapter has been submitted in Animal Behaviour (September 30th, 2022), under the title 
"Insights into strong ties formation, composition and processes at play in juvenile vervet 
monkeys.” The authorship list for the published version is as below. I contributed to the study 
concept/design, data collection, data analysis and drafting the manuscript. Dr. Henzi and Dr. 
Barrett contributed to funding acquisition, supervision and the drafting and critical revision of the 
manuscript. Dr. Bonnell contributed to data analysis, supervision and helped draft the manuscript. 
Dr. Dostie contributed to data extraction. All authors approved the final version of the 
manuscript. 
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2 Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, 
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6.1 Abstract 
 

Understanding the development of social relationships can provide insights into the 

processes by which social network structures emerge and vary across species. In this analysis, we 

follow up on a previous analysis where Kohn#s (2019) model of social relationship formation was 

tested on three groups of wild juvenile vervet monkeys, in grooming and spatial behaviours. 

While developmental patterns did not conform to the exploration, pruning and consolidation 

phases identified by Kohn (2019), it revealed the formation of a core social “bubble” of strong 

ties across social development. Here, we ask whether Kohn’s phases rather apply only to the 

strong ties that constitute the females’ and males’ social bubbles. Both bubble composition and 



 

183 

formation are also investigated to understand the influence of social bubbles on juveniles!#

development as well as the role of maternal behaviour in this process. Once again, spatial and 

grooming social bubbles did not develop following Kohn#s (2019) framework, nor did the 

potential processes at play in their formation. Spatial bubbles were composed mostly of juveniles 

with an increase in rate of associations with family members during birth seasons. Grooming 

bubbles, on the contrary, displayed a stable composition through time, with their mothers making 

up the entirety of their bubbles. Lastly, we found that a mother and her offspring#s weak ties 

remained similar as juveniles developed.  

Overall, our results suggest that the particular structure and composition seen in social bubbles 

emerges as a result of the type of the behaviour under consideration (grooming or spatial 

proximity) and group demography. Considering the processes at play, juveniles did not groom 

their spatial associates but distributed their grooming toward specific partners. Lastly, maternal 

grooming network instability provided juveniles with enough time to interact with mother#s 

grooming partners, but not long enough for these relationships to be consolidated. 

6.2 Introduction  

Richard Alexander (1990) famously stated that juvenile primates have two main 

functions: “to get to the adult stage without dying, and to become the best possible adult”. With 

respect to the latter, many authors have suggested that juveniles become good adults by using 

their extended developmental period to acquire the social knowledge needed to navigate their 

social groups, negotiate their social environments, and establish and sustain fitness-enhancing 

social relationships (Archie et al., 2014a; Bray et al., 2021; Cameron et al., 2009; Cheney et al., 

2016; Deputte, 2000; Fairbanks, 2002; Feldblum et al., 2021; Frere et al., 2010; Schülke et al., 
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2010; Silk et al., 2003, 2009, 2010a; Stanton & Mann, 2012). In this regard, sex differences in 

social engagement also become relevant, given that these have been shown to develop prior to 

sexual maturation (Cords et al., 2010; Jarrett et al., 2018; Lonsdorf et al., 2014; Nakamichi, 

1989), and vary with social structure. For example, where females are philopatric and males 

disperse at maturity, young females develop stronger social bonds than do males (spatial and 

grooming associations: Kulik et al., 2015; grooming associations: Cords et al., 2010; spatial 

associations: Frère et al., 2010; Stumpf et al., 2009; maternal association: Andres et al., 2013; 

Nakamichi 1989). Males, conversely, play more than females do (Kulik et al., 2015; Meredith, 

2013). 

 

Although such findings support the idea that social relationships are established in the 

juvenile period and prepare animals for their sex-specific social roles (Kulik et al., 2015; 

Nakamichi, 1989; Suomi, 2005), we still lack a detailed understanding of the processes by which 

early life social engagement leads to the establishment of enduring social relationships (Kohn, 

2019). Recent studies have argued for the importance of: (i) parents’ social connections (Ilany & 

Akçay, 2016), (ii) siblings’ social influence (Kohn et al., 2022), and (iii) the structure of 

juveniles’ ego-networks (Vilette et al., in press). Yet, an empirical assessment of Ilany and 

Akçay’s (2016) model by Jarrett et al. (2018) found only limited evidence for social inheritance 

of maternal bonds in vervet monkeys (Chlorocebus pygerythrus)—that is, there was relatively 

little overlap between mother and offspring grooming partners. Jarrett et al. (2018) suggested that 

the mismatch between maternal and offspring grooming social bonds could be accounted for by 

the fact that juveniles are exposed to, and must learn to cope with, temporal shifts in maternal 

network structure. In other words, their findings indicated that maternal social networks represent 

too much of a moving target for offspring to match effectively, as well as suggesting that, in 
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order to replicate and sustain the group-level network structure over time, juvenile animals 

should seek to form bonds with non-maternal associates. Thus, the stability of mothers’ networks, 

combined with the demography of social groups, will regulate the availability of potential 

partners into which juveniles can invest their social effort. In turn, this investment will lead to the 

strengthening of certain social relationships with other individuals (Kohn, 2019; Schülke et al., 

2010; Silk et al., 2003, 2006b), and to variation in the structure of both ego and global networks 

across time and between groups. 

Social effort is known to vary across, and within, social relationships, leading to the 

notion of strong and weak ties (or relationships). Weak ties are characterized by interactions that 

are infrequent, while strong ties represent frequent and sustained levels of social interaction. 

Differentiating between social ties in this way is important as females with stronger social 

relationships have been shown to experience fitness-related benefits such as increased longevity 

(Archie et al., 2014b; Silk et al., 2010b), enhanced likelihood of surviving extreme events 

(Lehmann et al., 2015; McFarland & Majolo, 2013), enhanced infant survival (wild baboons: Silk 

et al., 2003, 2009) and increased individual reproductive performance (Kulik et al., 2012; 

Schülke et al., 2010). By the same token, however, some studies have also shown that there are 

advantages to having a wide range of partners. For instance, the number of weak bonds a female 

possessed predicted infant 12-month survival and infant longevity in baboons (McFarland et al., 

2017), while vervet monkey females that invested in grooming a wider array of partners were at 

lower risk of predation (Josephs et al., 2016) and less susceptible to nocturnal hypothermia 

(Mcfarland et al., 2015). 

 

Weak and strong ties qualitatively characterize the two ends of the relationship spectrum, 

where both can deliver fitness-related benefits, and where the relative merits of each are likely to 
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be contingent on particular demographic and ecological conditions, which may shift over time. 

This means that juveniles would benefit from having both strong and weak associations at their 

disposal. Whereas strong social ties might soften the impact of stressful interactions with novel 

individuals (Kohn et al., 2022), weak ties may aid in predator avoidance or thermoregulation 

(Josephs et al., 2016; Mcfarland et al., 2015; Ostner & Schülke, 2018). In line with this, we have 

found that, through social niche construction, juvenile vervet monkeys embed themselves in 

secure ego-network structures composed of strong ties, while retaining the benefits of broader 

integration in the group through the presence of weak social ties (Vilette et al., in press). As 

expected, sex differences emerged early on (~ 8 months), with females putting more effort into 

grooming interactions and maintaining a tighter subset of strong grooming partners than did 

males. This sex difference may have foreshadowed females’ integration and acceptance into their 

social group, whereas males grooming patterns may be viewed as a prelude to emigration from 

their natal group. In other words, during their juvenile period, females and males may adapt their 

social behaviour in ways that enable them to grow into the social style typical of their adult lives 

(Kulik et al., 2015; Widdig et al., 2016). 

 

The formation of these ego-network structures, however, did not conform to Kohn’s 

(2019) proposed model of social relationship formation, whereby individuals explore their social 

environment forming many social connections in the group, and then subsequently prune and 

consolidate a sub-set of these connections, leading individuals to maintain preferred connections 

with certain partners (Kohn, 2019). Rather, these ego-network structures—a core of strong ties 

constituting a “social bubble”, and a periphery of weaker ties—were formed early and remained 

fairly stable over time (Vilette et al., in press). One explanation for why this should be is that the 

exploration, pruning and consolidation phases apply only to the formation of the social bubble of 
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strong ties, and not to the overall ego-network. Here, we consider this possibility and investigate 

Kohn’s (2019) socialisation steps at the social bubble level. 

We then go on to consider the composition of social bubbles and their formation in order 

to investigate whether these bubbles are likely to provide social benefits to juveniles. In 

Spectacled parrotlets (Forpus conspicillatus), for example, juveniles form strong relationships 

with siblings immediately after fledgling, which then offers them a stable social position during 

their transition from the family group to the wider flock (Wanker et al., 1996). Kohn (2022) also 

found similar evidence in Gouldian finches (Erythrura gouldiae). In vervets, we hypothesize that 

a social bubble provides individuals with the chance to hone their social strategies in the context 

of a secure environment, as well as reducing the number of unpredictable, and potentially more 

risky, social encounters. That is, a stable bubble represents a low-risk network of predictable 

partners that buffer juveniles from potentially stressful situations. For example, in terms of 

proximity, an animal with a more consistent social bubble of strong spatial ties may increase 

protection against unfamiliar conspecific competitors (Kohn et al., 2022). In a grooming setting, 

a social bubble may allow individuals to have lower glucocorticoid levels (Crockford et al., 

2008). As socialisation is heavily influenced by the availability of social partners and group 

composition, the specific characteristics of available group members can have a significant effect 

on the social development of infants (Deputte & Quris, 1997; Pereira & Leigh, 2003; Rosenblum 

& Coe, 1977). Therefore, a social bubble is likely to set the social conditions to which juveniles 

are exposed (Kohn et al., 2022). This raises the prospect that useful insights may be gained into 

the socialisation process by investigating the composition and stability of social bubbles over 

time, and how this relates to the nature of the social environment and reflects individual social 

preferences (Snyder-Mackler et al., 2020). 
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In what follows, we investigate social bubble formation in male and female juvenile 

vervet monkeys in both the spatial and grooming domains. These provide a useful contrast, as 

grooming generally requires mutual attraction between partners—and therefore more active 

social engagement, in the effort invested and the partners targeted—whereas spatial proximity 

can often be achieved unilaterally, as a more passive social engagement that requires animals to 

be merely tolerant of each other. Our analysis is comprised of three parts. The first part 

investigates Kohn’s (2019) socialisation steps at the social bubble level. To do so, we study the 

spatial and grooming social bubble structures by looking at their size, the effort invested in them 

and the similarity in partners through time. In a second part, we then examine composition of 

bubbles in order to assess the proportion of group members to which juveniles are exposed over 

their development, and how varied their exposure is to both kin and non-kin adults and juveniles. 

Taken together, these two first parts address the question of whether social bubbles provide a 

stable and predictable social environment for juveniles during their development.  

 

The last part of our analysis considers the processes at play in the formation of social 

bubbles. We address two main issues. (3a) As spatial and grooming bubbles are confounded to 

some degree (Henzi et al., 2013), we ask how the grooming bubble compares to the spatial 

bubble. To do so, we seek to see whether juveniles develop distinct spatial and grooming bubbles 

following Kohn’s (2019) socialisation steps. (3b) We reconsider Jarrett et al. (2018) and Ilany 

and Akçay’s (2016) findings by investigating the similarity between the grooming partners of 

mothers and offspring. Based on Jarrett et al.’s (2018) findings, we expect maternal networks to 

represent a moving target (i.e., to shift in composition over time) hindering the ability of 

offspring to prune and consolidate strong relationships with maternal contacts and hence being 

part of their own social bubbles. This instability, however, may lead mothers’ grooming 
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associates to be found outside of juveniles’ social bubbles (i.e., they will comprise juveniles’ 

weak ties). We therefore assess the extent to which a mother’s weaker grooming ties overlap with 

her offspring’s weaker grooming ties. 

6.3 Methods 

6.3.1 Study population and subjects 

Data were collected between June 2014 and June 2017 from three troops of vervet 

monkeys occupying adjacent and overlapping home ranges in the Samara Private Game Reserve 

in the semi-arid Karoo biome, Eastern Cape, South Africa (Pasternak et al., 2013). The three 

study groups (PT: x-bar = 39 ± 8 SD; RBM: x-bar= 49 ± 6 SD; RST: x-bar = 57 ± 7 SD) were 

fully habituated from 2008 for RST and RBM and from 2012 for PT. All animals were 

individually identifiable from natural markings. The study subjects comprised three birth cohorts 

from the 2013, 2014 and 2015 birth seasons. The number of juveniles, as well as the number of 

each sex varied across cohorts and years (see Table 1). 

 

Table 1 Size of cohorts at birth and at end of the study, as well as their composition. 

 

6.3.2 Data collection 

We began data collection when all cohort members were nutritionally independent of 

their mothers and classified as juveniles (Jarrett et al., 2018), which corresponded to an age of 
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approximately 7 months (+/- 1 months) for the 2013 and 2014 cohorts. Data collection began 

later for the 2015 cohort, at around 11 months (+/- 1 months), due to logistical reasons. Each 

troop was followed on foot by one or more researchers on each 10-h study day, 3 to 5 days a 

week (PT: 583 days; RBM: 601 days; RST: 613 days). We used electronic data loggers and 

commercial software to record data from all visible animals, using scan samples conducted every 

30 minutes (Young et al., 2017). Each scan sample lasted 10 minutes, during which we collected 

data on each animal’s activity (feeding, moving, resting and grooming) and the identity of all its 

neighbours within 3m. When animals were recorded as grooming, we noted the identity of their 

partners. Agonistic data were collected ad libitum, with the identities of the participants and the 

initiator, and the outcome (winner/loser) recorded (Young et al., 2017). 

6.3.3 Ethical Note  

All protocols were non-invasive and adhered to the laws and guidelines of South Africa 

and Canada. Procedures were approved by the University of Lethbridge Animal Welfare 

Committee (Protocols 0702 and 1505). 

6.3.4 Data extraction 

Grooming and spatial data were treated separately in our analyses. Using the ‘netTS’ 

package (Bonnell & Vilette, 2020) in R version 3.5.2 (Team, 2017), both datasets were 

aggregated over a 60-day window that was then shifted successively by 30 days. We used this 

period in line with our previous analyses. However, we used the ‘check.windowsize’ function, 

specifying 1000 iterations, of the ‘netTS’ package to estimate the convergence of our measures in 

both the grooming and spatial proximity networks. The ‘check.windowsize’ function also 

allowed us to measure the sensitivity of this subsampling. With spatial associations, we found 

highly similar estimates (i.e., convergence) and low variation in estimates of degree and strength 
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using a 60-day window. This means that the chosen window size was robust to subsampling and 

able to provide good measures. The estimates were not as robust for cosine similarity, suggesting 

the potential for noise in our predicted patterns. With grooming associations, degree, strength and 

cosine similarity showed lower estimates and higher variations. Although grooming associations 

showed a relatively larger amount of noise, a window size of 60 days nevertheless appeared to 

offer a good and usable compromise (Supplementary S1). Within each window, spatial 

association and grooming interactions were separately aggregated to construct weighted, non-

directed networks at the node level (i.e., ego-networks). In other words, each juvenile present 

within the window had a grooming and a spatial ego-network that consisted of its direct 

connections. The age in days of each juvenile was registered at the start of each time block, as 

were the number of scans and the mean size of each troop. Applying a temporal dynamic 

approach allowed us to detect the points at which potential patterns emerged. 

 

To extract ordinal ranks, we used the Percolation and Conductance (P&C) method (Fujii 

et al., 2015) from the ‘Perc’ package in R. We chose this method following the training-testing 

approach (Vilette et al., 2020), as it presented the best trade-off between the optimal amount of 

data required to infer reliable ranks and how good this method was at inferring reliable ranks. 

Therefore, we used a 4-month burn-in period, specific to each troop, and calculated ordinal ranks 

for each juvenile within each 60-day window, across the entire study period. We included 

agonistic interactions between all individuals (males, females, juveniles). 

6.3.5 Strong ties extraction 

To extract strong ties, it is common practice to select a user-determined number of social 

bonds (Schülke et al., 2020; Silk et al., 2006a). This approach means that all individuals are, in 
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essence, arbitrarily allocated a certain number of strong bonds (i.e., partners with whom they 

interact most frequently) regardless of the actual frequency of interactions (i.e., the choices here 

are not based on any biologically or statistically principled criteria) (Schülke et al., 2010; Silk et 

al., 2010b). Furthermore, restricting the analysis to a predetermined number of bonds eliminates 

the possibility of examining variability in the number of bonds formed by individuals. To address 

this issue, some studies have simply used higher than average composite sociality index (CSI) 

scores and lower than average CSI scores to identify strong and weakly bonded partners as a 

continuous measure (Mcfarland et al., 2015; Silk et al., 2006b). Others have used several 

thresholds to identify a strong tie from observational data alone and counted the number of strong 

ties with strength above (1) the 0.9 percentile, (2) the 3rd quartile, and (3) the mean value 

(Schülke et al., 2022). Yet, this approach also fails to consider the distribution of the data itself 

and more specifically, whether a clear distinction between weak and strong ties exists (i.e., 

whether there is a skewed distribution). In our analyses, we therefore developed an algorithm to 

model the distribution of edge weights on the assumption that, if strong ties (relatively large edge 

weights) were present, then the distribution of edge weights would be skewed. The code can be 

found at https://github.com/ChloeVilette/strong_ties_algo.  

 

For each juvenile our model-based function proceeded as follows:  

1 - The weight distribution was extracted for a given time period, representing the total 

number of times the focal animal was recorded as interacting with each of its partners.  

2 – We ran two models (weights ~1), using the ‘brms’ package (Bürkner, 2017), specifying a 

skewed-normal and a normal distribution respectively. The priors for the mean weight (i.e., 

intercept) were adjusted in order to reflect the observed weak ties distribution (normal (1,2) and 

normal (1,1) for the skewed-normal and normal distribution respectively) and can be tailored to 
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what is thought to be weak ties based on prior information. We also specified priors (normal 

(0,10) and normal (0,1) for the skewed-normal and normal distribution respectively) on the sigma 

parameter, which defines the range of weak tie values around the mean weight. Lastly, we also 

set a weakly informative prior with mean 0 and standard deviation 4 on the magnitude of skew in 

the data: i.e., alpha. To then check which distribution fitted the extracted weight distribution 

better, we compared the skewed-normal and normal distribution models using leave-one-out 

cross-validation (Vehtari et al., 2016), which computed a formal difference score between the 

two models, with the ‘loo_compare’ function of ‘brms’. The presence of small sample sizes (i.e., 

when an individual has only 1 or 2 partners), however, meant that the information present in the 

weight distribution alone was inadequate, leading to a very small and unreliable difference 

between a skewed and a normal distribution. To address this, we used a parameter “min_diff” to 

indicate how much evidence we were willing to accept in the difference score, computed using 

the leave-one-out cross-validation, between models with a skewed and a normal distribution in 

ties. This min_diff parameter constrained the algorithm to select only models for which there was 

strong evidence of a skewed distribution. It was set to a different value, based on the studied 

behaviour, in order to make the selection of strong ties more conservative (see below). 

3.a - If a skewed distribution fit the data better, the largest weight within the distribution 

was classified as a strong tie. To search for the number of strong ties, we ran a model predicting 

weight using the classification of strong or weak tie. This model fitting approach compared, again 

using loo, possible classifications of strong versus weak ties, starting with the largest weight 

being the only one classified as a strong tie, followed by the strongest and second strongest being 

strong ties, and so on. Once model comparison had found the best model, we used that 

classification of strong versus weak ties to define our strong and weak ties. 
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3.b - If the normal distribution was a better fit to the focal’ animal’s weight distribution, 

then no strong ties were recorded. 

  

Overall, this algorithm follows the logic of a semi-supervised classification where some 

small bit of information (1-priors about what a weak tie looks like, and 2-those strong ties should 

result in a skewed distribution) is then used to help perform unsupervised classification. To 

assess our algorithm’s accuracy, we performed two tests. In the first, we simulated a normal 

distribution (i.e., no strong ties present) and recorded how many false positives (i.e., strong ties) 

our function detected. The second test consisted of adding one strong tie to a normal distribution. 

We then inferred how many times that strong tie was detected (i.e., true positives). Both tests 

were conducted on varying sample sizes (N = 2-50 interactions), with each sample size tested ten 

times. These simulations helped us tune our priors and the “min_diff” parameter to get the best 

results on simulated data before applying it to our real data. Using these two tests, we compared 

our built function to commonly used methods for the extraction of strong ties, such as counts of 

strong ties (strength > 0.9 percentile) and strength of strong ties (top 3* ties of individual) (see 

Supplementary S2). As our function was more reliable in detecting strong ties, we proceeded to 

extract the strong ties present in our data using this model-based approach. While this algorithm 

performed better than measures previously used, it still needs work as some flaws remain. For 

instance, by setting our “min_diff” parameter to 5 it enables the algorithm to distinguish between 

strong and weak ties. Yet, the higher this parameter is set, the bigger the difference between a 

weak and strong tie must be when the sample size is small (e.g., with this weight distribution (1, 

3,15) no strong tie was detected). This was an issue in this analysis as the sample size between 

spatial and grooming behaviour differed (average interaction per individual across the study 

period: x-bar_spatial = 33.03 ± 11.43 SD; x-bar_grooming= 10.87 ± 2.91 SD). Therefore, we set 
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the “min_diff” parameter differently based on the studied behaviour. That is, when extracting 

strong ties in spatial associations, we set “min_diff” to 5 as the sample size per individual was 

higher than the grooming interactions where the parameter was lowered to 2. Doing so allowed 

us to make the extraction of strong ties more conservative, based on the behaviour under analysis. 

 

Using these isolated strong ties, spatial and grooming networks were created, where nodes 

corresponded the focal individual’s partner ID, while edges indicated the number of times the two 

individuals were recorded interacting, as well as the nature of the interaction (spatial or 

grooming). From these networks, we extracted the following measures.  

6.3.6 Social Bubble Structure 

We extracted three measures to capture the size, overall social engagement, and partner 

similarity in social bubbles. 1. Degree, which is the sum of each node’s strong connections. It 

captures the number of strong ties a focal subject has and therefore indicates the size of a social 

bubble. 2. Strength, which is the sum of each node’s connections weighted by the frequency of 

the interaction with other nodes. This measure specifies the overall effort invested in these strong 

ties. 3. Cosine similarity, which is used to estimate similarity in the patterning of values in two 

vectors (Jarrett et al., 2018; Newman, 2010; Vilette et al., in press,). Here, we used the measure to 

assess the similarity of the edge weights between two consecutive ego-networks, with values that 

range between 0 and 1. An individual whose social bubble (strong ties) changes markedly 

between time(t) and t+1 will have a low cosine similarity, whereas individuals whose social 

bubbles are similar at t and t+1 will show high cosine similarity. More details on calculating 

cosine values are given in the supplementary material (S3). 
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6.3.7 Social Bubble Composition 

To investigate social bubble composition, two measures were extracted. 1. Rate of 

association with adults, which varies between 0 and 1. After their first birth (~ 3.5 years), females 

were considered to be adults, while males were considered adults at above 5 years of age. 2. Rate 

of association with family members, composed of the mother and any siblings. This measure also 

varies between 0 and 1. 

6.3.8 Processes at play - Social bubbles comparison 

To investigate the similarity between strong ties in juveniles’ spatial and grooming 

networks at time t, we used cosine similarity as a multi-layer network measure. That is, spatial 

and grooming networks were compared at the individual level, within each two-month time-

aggregated window. We applied the same reasoning for the similarity between ties outside of the 

mother’s and offspring’s total grooming bubbles, where the mother’s and the offspring’s 

grooming ego-networks were compared at time t. When comparing the mother’s and offspring’ 

grooming partners, the mother-offspring dyad was taken so that the mother did not appear as the 

juvenile’s tie and the juvenile did not appear as its mother’s partner. 

6.3.9 Environmental conditions 

As food availability contributes to the structuring of social associations (Bonnell et al., 

2022), we measured troop-level estimates of resource availability using the Normalized 

Difference Vegetation Index (Willems et al., 2009). Area-weighted NDVI averages for each 

territory were generated for consecutive 33-day windows (16 days post and prior to the date of 

each MODIS raster) by averaging all NDVI values for points falling within the territory’s 95% 

isopleth and weighted by the troop’s differential usage of its territory during that period (Young 
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et al., 2019). NDVI scores, which range between -1 and 1, are higher in more photosynthetically 

active areas, and are therefore considered to indicate increased plant food availability.  

6.3.10 Statistical Analyses   

We analyzed our data within a Bayesian framework, using the ‘brms’ package (Bürkner, 

2017) in R version 3.5.2 (R-Core-Team, 2017). We used hierarchical generalized additive mixed 

models (HGAM), which allow the relationships between the explanatory variables and the 

response to be described by smooth curves (Pedersen et al., 2019). This approach is useful as it 

does not assume a fixed trend but, instead, estimates a non-linear trend without a theoretically 

pre-specified shape. In other words, a smooth curve gives the opportunity for non-linear trends, if 

any, to emerge, hence giving further freedom for the model to fit the data. We ran all models with 

four chains and 1,000 iterations after specifying weakly informative priors (normal (0,1)). We 

performed prior predictive checks to ensure that these priors did not drive the patterns obtained 

from our predictions (see supplementary material S4). Model diagnostics confirmed MCMC 

convergence, with all R̂<1.1 (Gelman & Shalizi, 2012). We used the ‘posterior predictive check’ 

(pp_check function) from the ‘bayesplot’ package (Gabry et al., 2019) to determine the quality of 

the model fits to the data.  

Regarding the first part of our analyses, we constructed two models for each of our 

measures (cosine similarity, degree, strength and our two rates of association): one for grooming 

and one for spatial associations. This generated 10 models. For the second part of our analysis, a 

model was run for each of our two cosine similarity measures. For all 12 models, the model 

structure was constant (see supplementary material S5 for model structure). Our dataset structure 

consisted of repeated measures for individual, mother, cohort and troop identities, as well as for 

sex. We therefore let the effect of age vary by these five grouping variables, using factor smooths 
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(Pedersen et al., 2019). We also allowed the effect of ordinal rank to vary by individual, using a 

factor smooth. Factor smooths implicitly incorporate group-specific intercepts. That is, they 

create an estimate for each level of the grouping variable, but only estimate one smoothing 

parameter for all groups of this grouping variable. Put simply, these grouping variables deviate 

from the mean and hence vary in their pattern. We expected each grouping variable to vary in its 

ability to maintain a certain network structure as juveniles aged. Each of these interactions was 

added as a single smooth. We controlled for variability in environmental conditions by including 

NDVI as single smooth to the model. Additionally, a single smooth for troop number was 

included to address variation in troop size, along with one for age, to account for developmental 

variation.  

Continuous variables were scaled and mean centred. For the count variables (i.e., 

spatial/grooming degree and strength), a Poisson model was run, with the log of the total number 

of observation sessions within the aggregated sample period included as an offset variable to 

account for differences in observation effort. As dispersion issues are common with Poisson 

models, we ran an analysis of residuals from the models (‘DHARMa’ Package).  We addressed 

dispersion issues present in our models by running models with a negative binomial distribution. 

When this approach did not remove the dispersion issue, hurdle models were run (Hilbe, 2017). 

To determine which model to report in the main text, we used three approaches in concert: 1. 

Models were compared using leave-one-out cross-validation (Vehtari et al., 2016) with the 

‘loo_compare’ function of ‘brms’; 2. We looked at the magnitude of the dispersion, from the 

analysis of residuals; 3. We used the posterior predictive checks. We then compared the estimates 

of the best models with the estimates of our simpler, original Poisson models. This was used to 

assess whether the influence of the dispersion issue affected our results. With our grooming/ 

spatial degree and spatial strength models, the dispersion issue was influential, hence weare 
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reporting the results from our negative binomial model in the main text for these three variables. 

With respect to our grooming strength model, the dispersion issue did not affect our results. As 

such, we report the simpler Poisson models in the main text and provide the necessary details 

regarding the other model in the supplementary material (S9). 

When using the rates of association with adults and family members as our response 

variables, we constructed zero-one inflated beta models for spatial and grooming associations, as 

the response values varied between zero and one. We also used a zero-one inflated beta model 

when we looked at spatial and grooming partner similarity as well as when we investigated the 

similarity between grooming and spatial strong partners. A zero-one inflated beta model was also 

run when comparing ties outside of the mother’s and offspring’s grooming bubbles. All the 

model summary tables are presented in the supplementary materials (S6-S17), accompanied by 

Dharma nonparametric dispersion tests and posterior predictive distribution plots, when required. 

Given the nature of the statistical models, as well as the inclusion of interaction effects, 

using a summary table on its own to interpret model estimates is not straightforward. We 

therefore generated whole model predictions using the fitted() function, from the ‘brms’ package, 

to extract the fitted values of our models. Variables that were not of direct interest were fixed to 

their mean (e.g., troop size, NDVI, rank), while predictions were made for the variables of 

interest (i.e., age and sex). These predictions were then used to construct predictive posterior 

plots with the ‘ggplot2’ package (Wickham, 2009). These plots allowed us to see how males and 

females differed in their response to the average effect of our response variables. Given their 

interpretative familiarity, we specified the 95% credible intervals (CI) in our plots to assess 

whether the sexes differed meaningfully in the structure of the revealed patterns. That is, we 

considered whether the CIs for females and males overlapped completely (i.e., no detectable 

difference between the sexes) or not at all (i.e., a meaningful quantitative difference between the 
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sexes). Model main effects are presented as summary statistics (Table S6-S17 in supplementary 

material) for posterior means, 95% CIs, along with conditional R2 values for each model, 

estimated using the ‘bayes_R2’ function (Gelman et al., 2019). 

6.4 Results 

6.4.1 Social Bubble Structure 

6.4.1.1 Spatial ego-network structure 

 

Figure 1 Variation in the (a) degree (b) strength and (c) cosine similarity of spatial associations 
by age and sex for juvenile vervets. The blue and red lines show the global smooth for the 
average female and male respectively, with upper and lower 95% credible intervals (bands). Grey 
areas delimit the average annual birth season. Predictions were estimated with mean troop size 
fixed at 48 individuals. 
 

As they aged, both sexes displayed a general decline in the number of partners within 

their spatial social bubble (Fig. 1a). There were, nevertheless, fluctuations, with slight temporary 

increases that aligned with each annual birth season. There were no sustained sex differences. 
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Although more pronounced, the same overall pattern was observed for mean strength (Fig. 1b). 

Finally, for both sexes, the observed pattern in the similarity of spatial partners present within 

juveniles’ social bubbles was one of overall stability, although values were quite low. There was, 

however, a peak that aligned with the first birth season (Fig. 1c). 

6.4.1.2 Grooming ego-network structure 

With respect to the number of grooming partners (degree) in their social bubble (Fig. 2a), 

both sexes showed a pattern of stable, but low values, with increasing uncertainty in the estimates 

of the mean over time. In contrast, mean strength declined over time, although birth season 

seemed to exert a clear effect in one year (Fig. 2b). Finally, both sexes displayed a consistent 

pattern of very high values in the similarity of their grooming partners within their social bubble 

over time (Fig. 2c). 
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Figure 2 Variation in the (a) degree (b) strength and (c) cosine similarity of grooming 
associations by age and sex for juvenile vervets. The blue and red lines show the global smooth 
for the average female and male respectively, with upper and lower 95% credible intervals 
(bands). Grey areas delimit the average annual birth season. Predictions were estimated with 
mean troop size fixed at 46 individuals. 
 

6.4.2 Social Bubble Composition 

  6.4.2.1 Spatial Social Bubble Composition 

 

Figure 3 Variation in the (a) rate of spatial associations with adults and (b) rate of spatial 
associations with family members by age and sex for juvenile vervets. The blue and red lines 
show the global smooth for the average female and male respectively, with upper and lower 95% 
credible intervals (bands). Grey areas delimit the average annual birth season. 
 

For spatial association with adults over time, both sexes displayed a pattern of stable, but 

low, association over time (Fig. 3a). With respect to the rate of spatial association with kin, the 

general trend, for both sexes, was a cyclical pattern of peaks and troughs that aligned with the 

annual birth season, with rates increasing during the birth season (Fig. 3b). 

6.4.2.2 Grooming Social Bubble Composition 
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Figure 4 Variation in the (a) rate of grooming associations with adults and (b) rate of grooming 
associations by age and sex for juvenile vervets. The blue and red lines show the global smooth 
for the average female and male respectively, with upper and lower 95% credible intervals 
(bands). Grey areas delimit the average annual birth season. 

 

Both sexes displayed very consistent and high levels in their grooming association rates 

with adults (Fig. 4a) and family members (Fig. 4b) over time, with association rates with adults 

being slightly higher than with family members.  

6.4.3 Processes at play - Social bubbles comparison 

  6.4.3.1 Comparison between spatial and grooming social bubbles 
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Figure 5 Variation in mean cosine similarity between spatial and grooming partners by age and 
sex for juvenile vervets. The blue and red lines show the global smooth for the average female 
and male respectively, with upper and lower 95% credible intervals (bands). Grey areas delimit 
the average annual birth season. 
 

Although spatial-grooming cosine similarity was generally low, there was a slight 

increase over time for females, whereas the general trend for males was a pattern of slightly 

fluctuating low values (Fig. 5). 

6.4.3.2 Comparison between the mother’s and the offspring’s ties outside of the 
grooming bubble 
 

0.1

0.2

0.3

0.4

0.5

250 500 750 1000
Age (days)

C
os

in
e 

si
m

ila
rit

y 
be

tw
ee

n 
sp

at
ia

l a
nd

 g
ro

om
in

g 
pa

rtn
er

s



 

205 

 

Figure 6 Variation in mean cosine similarity between mothers’ and their offspring’ weak 
grooming ties by age and sex for juvenile vervets. The blue and red lines show the global 
smooth for the average female and male respectively, with upper and lower 95% credible 
intervals (bands). Grey areas delimit the average annual birth season. 

 

The similarity between the grooming ties outside the bubbles of the mothers’ and 

juveniles’, for both sexes, showed a fairly stable pattern of high values in cosine similarity. 

6.5 Discussion 

Contrary to our prediction, we found that the structure of spatial proximity bubbles did 

not develop following Kohn’s (2019) socialisation steps. In the case of degree, spatial bubbles 

showed an overall decline with age (Fig. 1a), interspersed with two bumpy periods during the 

birth season, between each decrease. Strength displayed the same pattern, although this was more 

pronounced and was of greater magnitude (Fig. 1b). Cosine similarity was low and quite stable 

over time for both sexes (Fig. 1c). Taken together, these results suggest that, for both sexes, 

juveniles’ spatial bubble became more concentrated, in terms of size and social engagement, 
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focusing on fewer changing partners they more strongly associate with. While the patterns 

displayed did not follow our predictions, the end result compares with Kohn’s (2019) 

socialisation phases, where juveniles narrowed and strengthened certain social relationships. Yet, 

an important distinction here is that Kohn’s (2019) framework was couched in terms of network 

composition (i.e., that exploration, pruning and consolidation was conducted with respect to 

particular individuals). In our case, juveniles do not appear to go through a process of pruning 

and consolidation with particular consistent partners; rather, they seem to prune and consolidate 

the social bubble structure itself. 

With regard to grooming social bubble structure, our patterns did not conform to Kohn’s 

(2019) framework either. Instead, the number of grooming partners (degree) remained very low 

and stable across development, while the overall effort invested in grooming (i.e., strength) 

decreased (Fig. 2a, b). Lastly, for both sexes, similarity in grooming partners remained very high 

and stable over time (Fig. 2c). As such, we see that, for both sexes, the majority of their social 

effort is placed into a single strong grooming partner, and that this effort diminishes over time. 

That is, juveniles maintain a single and consistent unique strong tie, without having to maintain 

their initial high grooming frequency with this partner. Focusing on female juveniles, we suspect 

that reducing grooming investment in this strong tie gives them time to invest in ties outside of 

their grooming bubble, as demonstrated by the increase both in grooming frequency and in the 

number of grooming partners in our previous analyses (i.e., female juveniles went from grooming 

5 to ~15 individuals) (Vilette et al., in press). For males, by contrast, our current and previous 

analysis suggest they are less engaged and more scattered in terms of grooming effort and their 

overall number of grooming partners, where they went from 5 to 7 partners and engaged in less 

grooming through time (Vilette et al., in press). By reducing overall grooming investment, they 
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may increase the time available to engage in other kinds of social behaviour (e.g., locomotor or 

social play), which may be more beneficial to their development in other respects. 

As predicted, juveniles associated with more spatial partners (Fig. 1a and 2a) and showed less 

partner stability (Fig. 1c) than they did with their grooming partners (Fig. 2c). While this aligns 

with our previous study and the idea that juveniles have different interaction styles (passive 

versus active) across behavioural contexts, a more focused and stable grooming bubble may 

provide juveniles with the safety needed to explore their social environment and learn how to 

navigate it. In other words, by having a stable and predictable grooming partner to return to, 

juveniles may be able to spatially associate more freely with partners and begin to build their own 

ego-networks made of weak and strong ties. This directly speaks to the importance of having a 

secure attachment for the social development of immatures (Bowlby et al., 1989). 

If we now turn to the composition of spatial and grooming social bubbles, we find 

opposing results. Rates of spatial association with adults and family members showed fluctuating 

patterns, with family members showing a cyclical pattern of peaks that aligned with the yearly 

birth season (Fig. 3a, b). Although we predicted a mix of individuals within spatial bubbles, we 

found instead that, for both sexes, young vervets mostly associated with other juveniles. The 

absence of association with adults reveals that the structuring of spatial interactions is unlikely to 

result from a passive consequence of spatial association patterns mediated by kinship (here, the 

mother), shown in adult vervets (Josephs et al., 2016). In other words, juveniles appear to be 

building their own spatial networks’ structure rather than integrating into existent adult networks. 

One possible explanation is that associating with immatures may provide juveniles with other 

kind of social engagement (e.g., play) and/or with partners that have similar time budgets. 

Regarding association rates with adults and family members (Fig. 4a, b), both sexes showed very 
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high and constant patterns through time. Taken together, this means that juveniles have very 

small but stable grooming bubbles, composed, almost exclusively, of adults and family members 

(that is, their mothers), supporting previous studies (Silk et al., 2006a, 2006b).  

When we consider the structure and composition of spatial proximity and grooming 

bubbles in concert, the clearest contrast between them, in addition to size, is seasonal variation: 

spatial bubbles revealed clear seasonal patterns, whereas grooming bubbles did not. The observed 

sensitivity to changes in group composition for spatial behaviour was also seen in our earlier 

analysis (Vilette et al., in press), which did not distinguish between weak and strong ties. 

Focusing on the birth season, the upward shifts in association rate with family members, 

combined with the positive fluctuations in strength and degree, suggest that juveniles’ spatial 

bubble structure is sensitive to the arrival of newborns. Here, the increase in number of strong 

partners and the effort they place into them is reflected in the increase in association rate with 

family members. Whether the observed fluctuations result from an active or passive process 

remains, however, to be determined. For instance, the increases in size and social effort may 

reflect an active choice by juveniles seeking proximity near specific individuals, whereas it could 

also manifest as a passive consequence of the social group becoming more centralized during 

birth season, and hence juveniles being more spatially engaged. With regard to the increase in 

rate of association with family members, previous work has shown that attraction to newborns 

promotes close spatial associations with mothers (Fairbanks, 1990; Johnson et al., 1980; Silk et 

al., 2003, 2009; Silk, 1999), an attraction that could also result from an active or a passive 

process. The absence of seasonal variation in grooming bubbles may indicate that juveniles 

control their choice of partners, and/or that this choice results from the mother herself, who 

controls her grooming. Investigating the direction of interactions further will allow us to 

distinguish who controls social engagement and how it is distributed among different partners. 
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That is, whether juveniles are actively shaping their social bubbles or whether the secure 

attachment provided by their mother is enough for them to be more passive in the process of their 

socialisation. Furthermore, one way to get a better understanding of the mechanisms at play 

would be to see how the different components of the juvenile social bubble (i.e., its size, social 

engagement, composition and stability) drives one another (e.g., does the increase in bubble size 

lead to an increase in social engagement, or vice versa?). Answering these questions would give 

us a better sense of whether juveniles are rehearsing or if they are already living the life of an 

adult monkey. 

Lastly, despite displaying fluctuating patterns in their structure, spatial social bubbles are 

consistently composed of a particular class of individuals (here, immatures), implying that the 

structure itself may allow juveniles to associate with peers who share similar time budgets. With 

regard to grooming social bubbles, the absence of sex differences within strong ties, and the fact 

that only juveniles’ mothers composed their grooming bubbles, suggests that sex-specific social 

variability may arise within their weak ties, rather than the strong tie of their social bubble.  

Overall, the difference observed between spatial and grooming bubbles suggests that the 

particular structure seen in social bubbles emerges as a result of the nature of the behaviour under 

consideration (grooming or spatial proximity) and group demography. The socialisation process 

of juveniles can therefore be seen as a continuous ongoing process of behavioural adjustment by 

which animals achieve and sustain integration into an existing group (Deputte, 2000). 

 

Considering the potential processes at play in the formation of social bubbles, we again 

did not find the predicted pattern where spatial and grooming bubbles overlap at first and then 

slowly become more distinct. Instead, the similarity in these spatial and grooming bubbles 

remained consistently low over the juvenile period (Fig. 5). This was not surprising, considering 
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that we observed a spatial bubble made of non-related juveniles (Fig. 3a, b) and a grooming 

bubble composed of the juvenile’s mothers (Fig. 4a, b). This corroborates Henzi et al.’s (2013) 

observation that adult vervet monkey females did not simply groom their spatial associates but 

distributed their grooming more actively toward specific partners. Future analyses might well 

consider whether the grooming bubble shapes the structure of the spatial bubble, or vice versa. In 

asking about the similarity of ties outside of mother’s and offspring’s grooming bubbles, we 

investigated whether juveniles acquired the same partners as their mothers among their weak ties. 

We found that juveniles showed a continuous stable pattern of high similarity (Fig. 6), suggesting 

that a mother and her offspring’s weak ties remained similar as juveniles developed. In other 

words, maternal grooming network instability may not allow immatures to develop strong ties 

with their mother’s grooming partners. They may, however, have enough to time to interact with 

their mother’s partners, even if these relationships cannot be consolidated. While mothers clearly 

play a role in juveniles’ social bubble formation and more broadly, in their social integration, 

future work investigating the size and composition of the mother’s grooming bubbles through 

time will give us a better idea of the social bubble structuring process and the extent to which 

juveniles’ and adults’ bubbles differ.  
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6.7 Supplementary material 

S1: Determining Stability and Robustness of Network Window Size 
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Figure S1.1 Results of estimating the lower bound of window size choice using bootstrapping 
and subsampling for the spatial proximity networks across 60-day sampling windows for each 
troop (rows) and each of our measures (columns). The y-axis is the correlation between the 
network level measures of nodes in the observed and bootstrapped networks. The lines and points 
represent the mean cosine similarity, while the shaded areas represent the 95% CI calculated from 
1000 bootstrapped samples. Cosine similarities were estimated for subsamples of the data: 100%, 
80%, and 60% to quantify the influence of potential missing data on network measures. 
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Figure S1.2 Results of estimating the lower bound of window size choice using bootstrapping 
and subsampling for the grooming networks across 60-day sampling windows for each troop 
(rows) and each of our measures (columns). The y-axis is the correlation between the network 
level measures of nodes in the observed and bootstrapped networks. The lines and points 
represent the mean cosine similarity, while the shaded areas represent the 95% CI calculated from 
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1000 bootstrapped samples. Cosine similarities were estimated for subsamples of the data: 100%, 
80%, and 60% to quantify the influence of potential missing data on network measures. 
 

S2: Strong tie algorithm  
 The figure below (Fig. S2.1) shows the rate of false positives detected using three 
different approaches and different sample sizes. Here, a normal distribution of varying size was 
simulated. This way, it was known that no strong ties were present in the distribution. The left 
column focuses on small sample sizes ranging from 2 to 10 interactions, whereas the right 
column represents bigger samples ranging from 15 to 50 interactions. These columns seek to 
reflect the sample size we have between grooming (less interactions) and spatial behaviour. As 
such, with small sample size (left column) the “min_diff” parameter was set to 2, whereas it was 
set to 5 for with bigger sample size (right column). Each line represents a different used 
approach. The first approach used is the count of strong ties where strength is superior to the 0.9 
percentile. We see that this approach performs very well on small sample sizes where no false 
positives are detected. When the sample size gets bigger, however, the approach consistently 
detects false positives. 
The second approach extracts the top 3 strongest ties present in the sample. Regardless of the 
sample size, this approach continuously detects strong ties, which is not surprising given its 
definition.  
Lastly, the third approach that we offer in this analysis performs well at not detecting false 
positives regardless of the sample size. 
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Figure S2.1 Performance at detecting false positives of the strength >0.9 percentile, top 3 
ties approaches and our model-based function on small and big sample sizes. 

 
 

The figure below (Fig. S2.2) assesses how well the three approaches detect the presence 
of one strong tie. Here a normal distribution was simulated, and a strong tie added to it. The 
layout of the figure follows the previous one with column representing small and big sample 
sizes whereas lines correspond to the different tested approaches. Overall, the first approach fails 
at detecting the strong tie across the varying sample sizes. The second approach automatically 
detects three strong ties instead of one, hence failing throughout the different sample sizes. Lastly 
the model-based approach shows high rate of detection when the sample size is small and an 
increasing success rate as the sample size gets larger (15 interactions and more).   

 

 

Figure S2.2 Performance at detecting true positives of the strength >0.9 percentile, top 3 
ties approaches and our model-based function on small and big sample sizes. 

 

S3: Cosine similarity measure  
Cosine similarity assesses the extent to which the patterning of values in two vectors (a, 

b) is similar, making it appropriate for differing sample sizes (Newman, 2010). This metric is a 
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measurement of orientation/style, not one of magnitude like Euclidean distance, and is expressed 
as the cosine of the angle between two vectors. 

 

𝑐𝑜𝑠𝜃 =
𝑎. 𝑏

∥ 𝑎 ∥∥ 𝑏 ∥ 

In our case, a vector is a suite of weights, each weight corresponding to the number of times a 
distinct dyad (the focal and its partner) was seen interacting. Cosine similarity offers the 
possibility to center the variable (i.e.., the suite of weights) by subtracting the mean of the 
variable to every value of the variable. 

When doing so, cosine similarity becomes the equivalent of the Pearson correlation. 
When not centred, the measure is called cosine similarity.  
Regarding the Pearson correlation, the values range from −1 to 1. A value of exactly 1 implies 
the juvenile’s partners between time t and time t+1 are exactly the same. Graphically speaking, in 
this case, all data points lying on a line. The correlation sign is determined by the slope of the 
line. A value of 0 implies that there is no linear dependency between the partners at time t and 
time t+1. A value of -1 would tell us that we see the opposite relationship observed at time t.  
Cosine similarity, however, looks at the angle between two vectors of points, and not the slope. If 
the direction is similar (low angle), then the two vectors are similar. If the two vectors point in 
opposite direction (large angle), then they are dissimilar. In our case, the cosine similarity values 
range between 0 and 1 as frequencies of interactions can’t be negative. 
As correlation estimates similarity based on how weights have changed relative to other 
grooming partners, while cosine estimates similarity assesses similarity based on how direction 
of weights of all the partners have shifted overall. As such, we chose not to center our variable 
and used cosine similarity measure. 
 
S4: Prior predictive checks compared to the predicted patterns 
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Figure S4.1 Comparison between prior predictive checks (on the left) and the predicted variation 
in the cosine similarity, degree, strength, and association rates with adults and family members of 
spatial associations by age and sex for juvenile vervets. The blue and red lines show the global 
smooth for the average female and male respectively, with upper and lower 95% credible 
intervals (bands). 
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Figure S4.2 Comparison between prior predictive checks (on the left) and the predicted variation 
in the cosine similarity, degree, strength, and association rates with adults and family members of 
grooming associations by age and sex for juvenile vervets. The blue and red lines show the global 
smooth for the average female and male respectively, with upper and lower 95% credible 
intervals (bands). 
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Figure S4.3 Comparison between prior predictive checks (on the left) and the predicted variation 
in the cosine similarity between spatial and grooming partners, as well as cosine similarity 
between mother’s and offspring’s weak grooming partners by age and sex for juvenile vervets. 
The blue and red lines show the global smooth for the average female and male respectively, with 
upper and lower 95% credible intervals (bands). 
 
S5: models’ structures 
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S6: Degree in spatial proximity associations 
S6.1. Under-dispersion in the Negative Binomial Model for the number of spatial partners 
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S6.2. Summary table of the Negative Binomial Model for the number of spatial partners 
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S6.3. Comparing the observed outcome variable (degree) to datasets simulated from the 
posterior predictive distribution of the number of spatial partners model, using a Negative 
Binomial distribution 
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S7: Degree in grooming associations 
S7.1. Under-dispersion in the Negative Binomial Model for the number of grooming partners 
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S7.2. Summary table of the Negative Binomial Model for the number of grooming partners 

 
 
S7.3. Comparing the observed outcome variable (degree) to datasets simulated from the 
posterior predictive distribution of the number of grooming partners model, using a Negative 
Binomial distribution 
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S8: Strength in spatial proximity associations 
S8.1. Under-dispersion in the Negative Binomial Model for the frequency of spatial interactions  

 
S8.2. Summary table of the Negative Binomial Model for the frequency of spatial interactions 
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S8.3. Comparing the observed outcome variable (strength) to datasets simulated from the 
posterior predictive distribution of the spatial interaction frequency model, using a Negative 
Binomial distribution 
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S9: Strength in grooming associations 
S9.1.1. Under-dispersion in the Poisson Model for the frequency of grooming interactions  

 
 
S9.1.2. Summary table of the Poisson Model for the frequency of grooming interactions 
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S9.1.3. Comparing the observed outcome variable (strength) to datasets simulated from the 
posterior predictive distribution of the grooming interaction frequency model, using a Poisson 
distribution 
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S9.2.1. Under-dispersion in the Negative Binomial Model for the frequency of grooming 
interactions 
 

 
 
S9.2.2. Summary table of the Negative Binomial Model for the frequency of grooming 
interactions 
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S9.2.3. Comparing the observed outcome variable (strength) to datasets simulated from the 
posterior predictive distribution of the grooming interaction frequency model, using a Negative 
Binomial distribution 
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S10: Association rate with adults in spatial proximity associations 
S10.1. Summary table of the zero one inflated Beta Model for the association rate with adults in 
spatial associations 
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S10.2. Comparing the observed outcome variable to datasets simulated from the posterior 
predictive distribution of the spatial association rate with adults model, using a zero one inflated 
Beta distribution 
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S11: Association rate with adults in grooming associations 
S11.1. Summary table of the zero one inflated Beta Model for the association rate with adults in 
grooming associations 
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S11.2. Comparing the observed outcome variable to datasets simulated from the posterior 
predictive distribution of the grooming association rate with adults model, using a zero one 
inflated Beta distribution 
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S12: Association rate with family members in spatial proximity associations 
S12.1. Summary table of the zero one inflated Beta Model for the association rate with family 
members in spatial associations 
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S12.2. Comparing the observed outcome variable to datasets simulated from the posterior 
predictive distribution of the spatial association rate with family members model, using a zero 
one inflated Beta distribution 
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S13: Association rate with family members in grooming associations 
S13.1. Summary table of the zero one inflated Beta Model for the association rate with family 
members in grooming associations 
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S13.2. Comparing the observed outcome variable to datasets simulated from the posterior 
predictive distribution of the grooming association rate with family members model, using a zero 
one inflated Beta distribution 
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S14: Cosine similarity in spatial proximity associations 
S14.1. Summary table of the zero one inflated Beta Model for the similarity in spatial partners 
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S14.2. Comparing the observed outcome variable to datasets simulated from the posterior 
predictive distribution of the similarity in spatial partners model, using a zero one inflated Beta 
distribution 
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S15: Cosine similarity in grooming associations 
S15.1. Summary table of the zero one inflated Beta Model for the similarity in grooming partners 
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S15.2. Comparing the observed outcome variable to datasets simulated from the posterior 
predictive distribution of the similarity in grooming partners model, using a zero one inflated 
Beta distribution 
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S16: Cosine similarity between spatial proximity and grooming partners 
S16.1. Summary table of the zero one inflated Beta Model for the similarity between spatial and 
grooming partners 
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S16.2. Comparing the observed outcome variable to datasets simulated from the posterior 
predictive distribution of the similarity between spatial and grooming partners model, using a 
zero one inflated Beta distribution 
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S17: Cosine similarity between the mother’s and the offspring’s weak grooming partners 
S17.1. Summary table of the zero one inflated Beta Model for the similarity between the mother’s 
and the offspring’s weak partners 
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S17.2. Comparing the observed outcome variable to datasets simulated from the posterior 
predictive distribution of the similarity the mother’s and the offspring’s weak partners model, 
using a zero one inflated Beta distribution
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CHAPTER 7: DISCUSSION 

 

This thesis had two aims: (1) to contribute to the development of analytical techniques to 

capture temporal variation within a variety of datasets and (2) to use this approach to offer 

insights into the formation and maintenance of social networks across juveniles!#social 

development. In what follows, I summarize the key findings of my thesis and situate them within 

the literature on primate juvenility and social dynamics. In addition, I reflect on my analyses!#

limitations while providing future research directions. 

7.1 Methodological considerations 

7.1.1 Longitudinal approach using social network analysis (SNA) 

Throughout my work, I chose to consider the social integration of juveniles to be the 

result of a dynamic series of developmental processes during which relationships continuously 

change across time and contexts. I therefore adopted a longitudinal approach to capture the 

temporal dynamic structure of my data. The need to construct a dynamic time series of networks 

led me to first collaborate on the development of an R package. By doing so, my coauthor and I 

made use of a time-aggregated network approach that generated a time series of networks, using 

repeated snapshots of interactions within time windows. The extraction of continuous measures 

through time gave me the opportunity to detect shifts in the patterns of social interactions. The 

construction of these networks, however, gives rise to a large number of decisions to be made on 

the part of the researcher, depending on the question asked, the studied species and the method(s) 

of data collection. Consequently, flexible analytical steps to facilitate this process are needed. 

With this R package, I offered three steps for the implementation of this time-aggregated network 

approach: (1) bootstrapping to choose the appropriate window of time, (2) permutations to 
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compare observed patterns to null models and (3) simulations to build and interpret statistical 

models. More concretely, with the use of simulated data, I showed that the bootstrap test could be 

used to identify the lower end of time window size choice, while permutations could be used 

successfully to interpret network measures (i.e., identify non-random network structure).  

Although the offered framework is recent and helped me tackle my questions of interest, 

it already seems, in retrospect, to be outdated with respect to what it offers. For instance, a recent 

study has shown that permutation tests do not inherently account for the non-independence of 

data points, nor do they account for confounds when estimating effect sizes (Hart et al., 2021). 

My own work also showed limitations in the offered bootstrap test where sampling effort, within 

bootstrap tests, should be accounted for. As always, this calls for further methodological 

developments to improve the performance of permutation/bootstrap tests or, in the case of 

permutation-based methods, to move away from them altogether. It is apparent that analytical 

methods and tools improve rapidly, and such developments can quickly become overwhelming. 

During my PhD, I have come to realize that a constant effort is required to stay updated on 

findings related to one’s own research and to new analytical advances. 

Reading the literature, notably on social networks, it becomes obvious that comparisons 

across studies can be difficult due to the lack of consistency in terms of the tools, measures 

and/or modelling approach used. Although a myriad of available network measures and 

techniques for analysis offers great flexibility, the downside is that it reinforces a lack of 

consistency. For example, my analyses used a dynamic temporal approach. That is, rather than 

dividing data into seasonal blocks (Rondón et al., 2017; Teichroeb et al., 2009), I sought to 

capture the variation that is present within social relationships, and which is likely to be 

responsive to, for example, ecological and demographic change across seasons. Such variation is 
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unlikely to be captured with a categorical variable. As such, this thesis benefited from using 

additive models, which meant I did not need to make any assumptions about the shape of the 

curve, so permitting the consideration of non-linear annual variation in a continuous manner. The 

use of hierarchical generalized additive models (Pedersen et al., 2019) in such cases is of great 

utility but not many have made the commitment to adapt to such approaches, as they require 

powerful computer software and are less straightforward to interpret than linear regression 

models. Furthermore, despite the necessary statistical software being more accessible, the use of 

long-term data requires computing power to which not everyone has access. Nevertheless, the 

development of new analytical methods and tools acknowledges the dynamic aspect of social 

systems, opening the door to theoretical and empirical questions of a temporal nature. Asking 

such questions led me to realize decisions made during data collection (e.g., sampling method, 

sampling effort etc.) may have downstream effects on later analyses, hence the importance of 

providing a detailed description of the study design (Ferreira et al., 2020). That is, time spent on 

(re)assessing ways of collecting data is essential in order to ensure that one’s research questions 

can be properly addressed analytically. For instance, the qualitative categories used to 

characterize socio-ecological structures illustrate that the use of social descriptors (e.g., juveniles 

versus adults or a troop identity versus another one) may not be appropriate due to the inherent 

temporal component in their definition. That is, an individual identified as a juvenile may be 

sampled in a different manner to an adult, creating difficulties for later comparisons across the 

same individuals.  

Finally, while a desire on the part of researchers to produce cutting-edge and striking 

studies may encourage a focus on the latest analytical tools, the use of such tools does not protect 

users from the methodological gaps already present in more basic approaches. For example, 
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deciding what the network layers should represent and how to construct such layers remains a 

critical and underestimated step in the construction of any single or multilayer network. That is, 

different behaviours may each convey information when considered separately, and this may be 

lost when behaviours are pooled (Beisner et al., 2020; Beisner, 2015). van der Marel et al. (2021) 

have offered a data-driven approach to facilitate decisions about pooling data to help researchers 

in their decision-process. Another important step – and again one that needs further consideration 

– is the choice of the appropriate time scale over which to conduct analyses. The selection of an 

appropriate timeframe is important, as the failure to do so means that one does not adequately 

capture variation in a dataset and can thus result in inappropriate inferences. As such, we need to 

understand the impact of different time scales on the questions we ask, and how these relate to 

variation in behavioural patterns and to fitness outcomes. My stance is that we should remain 

attentive to where the need for improvement lies and not assume that an established technique is 

fit for purpose; improvements are ongoing, and what was usable today may not be tomorrow (as 

seen in Chapter 6 regarding the extraction of strong ties). Furthermore, when methods have been 

around and used for a while, there is the risk of falling into the habit of selecting methods without 

providing any justifications (as shown in Chapter 4 on social ranking methods). As such, this 

chapter joins with other voices in the discipline in calling for greater transparency, more detailed 

justification regarding the use of particular approaches/methods, and for making the data and R 

code publicly available.  

7.1.2 Social ranking methods 

The lack of justification in the choice of ranking methods is what led me to conduct the 

analyses presented in Chapter 4. I was surprised to see so many different methods being used, but 

without any justification for why a particular method had been chosen nor why the method was to 
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be preferred over similar methods. The training-testing approach I advocate for is the kind of 

analysis that all researchers should be conducting. Looking back, I believe this kind of analysis 

represents the perfect example of the ‘extra’ steps researchers are not (consciously) willing to 

take. In fact, the lack of any decent information on reliability across methods is what led me to 

develop my own method, in the hope that others might find it useful; not least because social 

status plays an important part in the description of social structure in many animals (Snyder-

Mackler et al., 2016). The aim of this analysis was thus to offer an approach that was data-driven 

and could be applied across a variety of datasets and species. In other words, my goal was not to 

determine in any absolute sense which method was most reliable, but to enable an assessment of 

the method that would produce the best results for a given dataset, based on the species, sampling 

effort and length of the data collection period. The training-testing approach meets these criteria 

as it is not tied to any specific requirements (like a minimum amount of data or study period 

length needed) or to any particular assumptions. Furthermore, this approach shifts the focus back 

to the raw data itself: that is, who interacts with whom and who wins?  

While this analysis was conducted to address my own “selfish” needs, its broader purpose 

was to shed light on the way in which, when reading about an analysis, or even when conducting 

our own, we are sometimes not fully cognizant of the decisions that lie behind it and the 

consequences that follow. Ideally, researchers should try to stay away from arbitrary choices. 

Nevertheless, this is not an easy thing to do, and may be inevitable to some degree: many 

decisions made during my own analyses were done so arbitrarily. However, being conscious of 

them, rather than ignoring them, is the first step to encouraging change. The construction of my 

own method to extract strong ties is another good example of the need to question the use of 
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particular methodological approaches, and not just adopt them unthinkingly simply because 

others have used them. 

7.2 Juveniles ’social development 

Having addressed certain methodological shortcomings, I shifted my focus to more 

theoretical questions, revolving around the development of juvenile social networks. Despite the 

juvenile period being recognized as a distinct developmental stage, there are still few long-term 

detailed studies of juvenile behaviour in wild primates. We also know relatively little about the 

processes behind the development and maintenance of social relationships (but see Kohn 2019). 

This is largely due to the fact that data must be collected over a long period of time, combined 

with immatures being harder to identify compared to adults. Therefore, projects of this nature 

require sustained and consistent long-term monitoring and are demanding of both time and 

resources. Such long-term data, however, are crucial to move the study of social dynamics to a 

deeper level of understanding with respect to early social experiences and how these influence 

the development of social relationships, as well as how social relationships, in turn, shape 

survival and reproductive success. Our studied population offered me the ideal opportunity to 

gain such an understanding of the process by which early life social engagement leads to the 

establishment of enduring social relationships and sex-specific social strategies. 

7.2.1 Development of ego-networks: testing Kohn’s (2019) framework 

In Chapter 5, I investigated a theoretical framework put forward by Kohn (2019) to 

account for the process by which juveniles build and maintain adaptive social networks. Contrary 

to the predictions of this framework, juveniles in our population did not display evidence of a 

clear process of exploration, pruning and consolidation. Social niche construction (SNC) did, 

however, appear to play a role in the establishment and maintenance of ego-networks composed 
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of both weak and strong ties. This is of particular interest, from an evolutionary perspective, as 

social niches (i.e., ego-networks) shape the social conditions under which individuals live 

(Laland & Feldman, 2003), and so influence the likelihood of survival and reproduction. This is 

especially true with regard to the subset of strong ties composing juveniles’ ego-networks, which 

reveals higher frequency of interactions with some partners. Being surrounded by more frequent 

partners may serve as social support, creating more predictability within social interactions and 

more stability in the juvenile’s immediate social environment (Cohen & Wills, 1985; Lakey & 

Orehek, 2011).  

Overall, this analysis revealed the constant presence of a subset of strong ties (a “social 

bubble”) throughout juveniles’ development. The notion of a social bubble is not new as female 

baboons have been shown to maintain a tight core of close associates with whom they form stable 

and equitable relationships, although it should be noted that, in many cases, the identification of 

such close associates has been assigned via an arbitrary cut-off (Schülke et al., 2010; Silk et al., 

2003, 2006b, 2009, 2010a). In primates, individuals with more tightly knit social networks have 

lower baseline levels of cortisol metabolites in their feces (Brent et al., 2011b; Crockford et al., 

2008). Given this, the presence of a social bubble suggests the existence of another level of 

structure within juveniles’ ego-networks and raises the question of whether I focused initially on 

the wrong structural level and whether Kohn’s phases occurred within these bubbles rather than 

across the ego-network as a whole. 

7.2.2 Development of social bubbles 

This possibility naturally led me to take a closer look at social bubbles. To do so, I 

investigated their formation and composition to get a better understanding of the influence of 

social bubbles on juveniles!#development and to investigate the mother#s involvement in this 
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process. Once again, spatial and grooming social bubbles did not develop following Kohn#s 

(2019) framework. Instead, spatial bubbles tended to reduce both in size and level of social 

engagement across time and were composed of varying spatial partners. Grooming social bubbles 

were of constant size and composition through time, while social effort decreased. Even though 

spatial partner identities differed through time, spatial bubbles showed a consistent composition 

with respect to age-sex class, as juveniles were found to associate consistently with other 

immatures. In addition, they displayed seasonal variation in their association rates with family 

members, which increased during birth seasons. The grooming bubbles composition showed 

contrasting results as they were mostly composed of an adult and a family member (i.e., the 

mother). It was also apparent that spatial and grooming partners consistently differed through 

time, and did not converge in a manner suggestive of Kohn#s processes of pruning and 

consolidation. Finally, juveniles displayed high similarity with their mother#s weak grooming 

ties.  

Although my analysis did not provide support for Kohn#s (2019) framework in structural 

terms regardless of the level of focus, the possibility remains that I focused on the wrong time 

scale. Indeed, it seems possible that Kohn#s (2019) phases may occur, to some degree, each time 

a change in size and composition occurs in the social group. That is, such changes may disrupt 

and relaunch the network formation process, reinforcing my original stance that social integration 

is a process of ongoing continual adjustments. Again, this can be achieved through SNC, which 

offers a mechanism by which individuals can form social bubble structures that best serve their 

needs given the ecological and social conditions they face. 
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7.3 Development of ego-networks and social bubbles – what do we know? 

Taking the two social development chapters together, the marked seasonal variation seen 

in juveniles!#spatial social bubbles and their overall ego-networks contrasts with the lack of 

variation in grooming behaviour, regardless of the structural level of observation. Another clear 

contrast between spatial and grooming behaviours is the size of their social bubbles and their 

overall ego-networks, where the size in spatial associations was much bigger than in grooming. 

Lastly, in spatial social bubbles, both sexes displayed variation in their partner similarity while in 

grooming they sustained relationships with a constant and unique individual over time. Given 

these results, juveniles seem to display more flexibility in the structure of spatial associations, 

while their grooming structure appears to be more robust to large-scale changes. Such a clear 

contrast raises the question of whether these social bubbles result from an active process, where 

juveniles actively build their own network, or from a passive consequence of being associated 

with their mother, where juveniles let themselves go with the flow of their social group life.  

One way to approach this question would be to first determine whether the structure of 

the juvenile grooming social niche emerges via spatial proximity first and foremost, or whether 

patterns of active social engagement (grooming) determine the structure of the spatial social 

niche. As of now and given my results, both views can be supported. That is, an active process 

would support Jarrett et al#s (2018) conclusion that juveniles not only develop the ability to cope 

with changes in the composition of their social world, but also play an active role in determining 

how and when they integrate socially. The flexibility displayed by juveniles in social associations 

also aligns with the proposals of Biological Market Theory (BMT) that individuals are predicted 

to behave differently depending on what they are trading and with whom (Barrett & Henzi, 

2006). The observed seasonal fluctuations that align with the birth season help illustrate that 
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individuals do indeed vary in value depending on the presence of other individuals. Juveniles!#

ability to respond flexibly to changes in spatial social dynamics may help them to sustain a more 

robust grooming ego-network/bubble structure (i.e., social connections with their preferred 

grooming partner). Supporting this view is the finding that, despite the size of spatial bubbles 

offering immatures the opportunity to develop additional strong grooming ties, they apparently 

do not seize it, and grooming bubbles remain constrained. This suggests that a grooming bubble 

provides juveniles with a secure base from which to explore their spatial social world (i.e., a 

pattern in line with Bowlby#s attachment theory: Bowlby et al. 1989) and they then invest their 

remaining social effort into weak grooming ties that offer different kinds of benefits (seen in 

Chapter 5). Alternatively, a passive process would entail that these juveniles are too young to 

impose their partner preferences on other group members. This would mean that it is the mother 

that controls the frequency of grooming interactions with offspring, and changes in effort 

therefore reflect the mother#s shift in focus to other individuals, including younger siblings. This 

would also explain why juveniles have a restricted grooming bubble composed of their mother, 

while their spatial bubbles, which are much harder for their mothers to control, are mostly 

composed of other immatures (who are more likely to engage in other forms of social behaviour, 

e.g., social play). 

With respect to the emergence of sex-specific social behaviours, grooming associations 

displayed continuous sex differences in juveniles!#overall ego-networks (also found Fairbanks, 

1993; O#Brien, 1990; Jarrett et al., 2018), which disappeared when looking at their grooming 

bubbles. This suggests that sex differences, and potential variation in social strategies, may arise 

principally amongst a juveniles!#weak ties. These weak ties also showed high similarity with the 
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mother#s grooming weak ties. The emphasis on weak ties in Chapter 6 confirms that the value of 

sociability may also lie in the formation of a more extended social network (McFarland et al., 

2017), and not just in the formation of a small number of strong and consistent social 

relationships (Silk et al., 2003, 2009, 2010a, 2010b). In this case, weak grooming ties may 

provide the flexibility to use different social strategies whereas having focused grooming bubbles 

may not provide the possibility to make any adjustments. Regardless of such speculations, these 

results raise a number of questions regarding the influence of mothers on their offspring!#social 

development. While mothers!#network instability may not provide juveniles with the social 

conditions needed to prune and consolidate other grooming relationships beyond the mother 

herself, greater variation in the stability of maternal social networks within and between groups, 

and across different cohorts, may promote the development of higher levels of behavioural 

flexibility. This may explain why patterns of social behaviour in adulthood are variable across 

females, and why these differences link to fitness components (McFarland et al., 2017; Silk et al., 

2003, 2009). Future studies should investigate individual variation to get an idea of whether, how 

and why juveniles differ in their behavioural flexibility as they age. 

7.4 Limitations and future directions 

Given my results, many questions remain to be addressed if we are to gain a clearer 

picture of juveniles’ social integration in this population. Investigating how a strong grooming tie 

is replaced after it is lost (e.g., following a death), and determining whether the replacement 

partner is drawn from the juvenile’s existing weak ties, may help us to understand further how 

strong and weak ties relate to one another. In addition, the identity of the replacement tie will also 

bring clarity to whether the juvenile’s new strong tie is likely to be kin or whether it will be one 

of the juvenile’s mother’s non-kin associates. Lastly, to deepen our understanding of strong ties, 
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we could investigate how social effort is distributed within each dyad and whether some dyads 

stand out in terms of invested effort and stability. In other words, within social bubbles, can we 

find stronger ties than others (i.e., another additional level of structure)? This then would go back 

to my initial question concerning the differentiation of weak and strong ties: is the distribution of 

weights amongst strong ties skewed?  

  

From a more global perspective, my thesis sought to identify how juveniles integrate into 

their social groups by studying spatial proximity and grooming social networks. This strong focus 

on socio-positive interactions represents a clear limitation in my thesis as socio-negative 

interactions may also influence social integration and, ultimately, fitness outcomes. For instance, 

in rhesus macaques, established social niches of particularly high or low aggression led to better 

survival outcomes (Brent et al., 2013b), while Barbary macaques that showed more aggression 

toward partners that themselves had nonaggressive relationships also experienced increased 

survival (Lehmann et al., 2015). The lack of such aggressive behaviours in this thesis reinforces 

the fact that they are rarely studied from a developmental perspective. However, their inclusion is 

sorely needed if one is to understand the complex interplay of aggressive and affiliative 

behaviours in the development of primate social relationships. The inclusion of aggressive 

interactions would also allow us to verify the hypothesis that social bubbles provide a more 

predictable environment. The same argument can be made with respect to play behaviour. One 

could look at whether social effort invested in play is converted into other social behaviours 

(grooming) as juveniles develop, and whether these play partners can be found within juveniles' 

grooming bubbles.  
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To tackle such questions, a multi-layered approach could be used to investigate the 

different dimensions of juveniles’ social relationships (e.g., grooming, playing, aggression, 

spatial proximity). This would enable us to understand how these behaviours work in concert 

over the course of development, as well as determining whether the structure and composition of 

ego-networks/social bubbles in certain behavioural dimensions are more critical than others. By 

treating networks as dynamic, it also becomes possible to identify feedback loops – something 

we have yet to do for our population. For instance, dynamic networks can be used to better 

understand how individual behaviour generates social structures, and in turn how these social 

structures influence individual behaviour, ultimately leading to a better understanding of network 

development over time. More concretely, linking social structure and demography could provide 

a more complete understanding of how social structure changes as populations change (Shizuka 

& Johnson, 2020) and how different social systems evolve. For instance, the effect of 

demographic changes (e.g., troop size, as an index of social instability at the group level) on the 

development of social bubbles could be considered. The effect of social instability could also be 

studied in relation to the level of aggression displayed within these social bubbles. This would 

allow us to test the social niche specialization hypothesis, which posits that the presence of other 

group members causes individuals to behave differently from each other to reduce direct 

competition. 

!  
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