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A B S T R A C T

As the Coronavirus 2019 disease (COVID-19) started to spread rapidly in the state of Ohio, the Ecology,
Epidemiology and Population Health (EEPH) program within the Infectious Diseases Institute (IDI) at The
Ohio State University (OSU) took the initiative to offer epidemic modeling and decision analytics support to
the Ohio Department of Health (ODH). This paper describes the methodology used by the OSU/IDI response
modeling team to predict statewide cases of new infections as well as potential hospital burden in the state.
The methodology has two components: (1) A Dynamical Survival Analysis (DSA)-based statistical method to
perform parameter inference, statewide prediction and uncertainty quantification. (2) A geographic component
that down-projects statewide predicted counts to potential hospital burden across the state. We demonstrate
the overall methodology with publicly available data. A Python implementation of the methodology is also
made publicly available. This manuscript was submitted as part of a theme issue on ‘‘Modelling COVID-19 and
Preparedness for Future Pandemics’’.
1. Introduction

The coronavirus 2019 (COVID-19) disease resulted in 580 million
confirmed cases and 6.4 million deaths reported globally as of July
2022 (Center for Systems Science and Engineering (CSSE) at the Johns
Hopkins University, 2021). As evidenced by epidemics in many coun-
tries, such as Italy and Spain, COVID-19 patient case loads have the
potential to overwhelm healthcare systems (Grasselli et al., 2020). In
the early stages of the COVID-19 pandemic in Ohio, the potential
demand for beds in hospitals and intensive care units was a primary
concern.
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The Infectious Diseases Institute (IDI) at the Ohio State University
working in conjunction with the College of Public Health (CPH), the
Department of Mathematics, and the Sustainability Institute (SI) es-
tablished a working relationship with the Ohio Department of Health
(ODH) to act as a service to the State, beginning in 2018. Based on
this initial collaborative relationship, the Ecology Epidemiology and
Population Health (EEPH) program within IDI took the initiative to
offer epidemic modeling and decision analytic support for the ODH
response to the COVID-19 pandemic within the state of Ohio. The most
immediate need was to predict the number of cases and the potential
load on the healthcare system.
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As in any computational modeling effort, there are many possi-
ble approaches and methods to model emerging epidemics. Modeling
approaches include compartmental models (Predictive Healthcare at
Penn Medicine, 2020; Childs et al., 2020; Weitz, 2020), statistical
models (IHME COVID-19 health service utilization forecasting team and
Murray, 2020), and agent-based simulations (Ferguson et al., 2020).
Different methods are suited to different situations in terms of available
data, potential scenarios, local conditions, urgency, and goals. For the
state of Ohio, the OSU-IDI group approached the modeling challenge
on two fronts by developing: 1) projected statewide estimates of a time
series of COVID-19 incidence, and 2) a geographic component that
transforms the output of the statewide model to hospital burden by
county or ‘‘hospital catchment’’ area.

2. Methods

2.1. Generalization of methods used

The predictive statewide model for Ohio comprises a dynamic net-
work model, where network edges (contacts between nodes in the
network) can interact with each other (Newman, 2018), but it has three
key distinguishing features:

1. The model considers a dynamic network where the edges can
be deactivated over time—supporting social distancing impacts
more accurately.

2. The law of large numbers yields a set of differential equations
describing the disease process on a large network (Jacobsen
et al., 2018) without requiring simulation methods.

3. The solutions of these differential equations can be used to es-
timate model parameters using a principled statistical approach
based on survival analysis. We write an explicit likelihood for the
parameters given data on times of illness onset (KhudaBukhsh
et al., 2020). Critically, this allows for accurate quantification of
the uncertainty in the model predictions.

The DSA approach retains the tractability of an analytic model while
incorporating complex human networks to better represent social inter-
actions and distancing.

The projected statewide model takes data on illness onset dates of
confirmed cases as input and produces estimates of COVID-19 incidence
(i.e., new cases) in Ohio over time. This output is not age-stratified,
but the age distribution of the new cases is assumed to match the
age distribution of confirmed cases when projecting the number of
hospitalizations in the next step of the model.

Estimates of the number of hospitalized COVID-19 cases are derived
in the geographic component of the model. Because illness severity
and the risk of hospitalization for COVID-19 patients vary according
to age and comorbidities (Verity et al., 2020; CDC COVID-19 Re-
sponse Team, 2020a), we use local age structure and population density
to distribute case counts from the statewide epidemic model across
smaller geographic areas within the state. Within each geographic unit,
we use its own age distribution to project hospitalization rates over
time. Consequently, counties or hospital catchment areas that have a
different demographic structure (e.g., older or younger populations)
will differ in their COVID-19 hospitalizations over time.

2.2. Detailed methods of the predictive model

There are challenges to using traditional compartmental models
(Niehus et al., 2020) to estimate future COVID-19 incidence. One of the
most fundamental challenges is that these methods require knowledge
of the size of the susceptible population. In our predictive model,
we use an approach called Dynamical Survival Analysis (DSA) (Khud-
aBukhsh et al., 2021; Somekh et al., 2022; Wascher et al., 2021), which
is an extension of survival dynamical systems (KhudaBukhsh et al., 2020;
Bastian and Rempala, 2020). Three key strengths of the DSA approach
for predicting the course of novel virus epidemics such as COVID-19
2

are:
• It does not require knowledge of the size of the susceptible
population,

• It does not require information on overall disease prevalence in
the population.

• It does not require prior knowledge of the shape of the epidemic
curve.

Details on this approach and the model development can be found in
Appendix A.

Since testing was initially focused on the most symptomatic and
severe cases, we started with almost no information on the number of
asymptomatic infections or those with less severe symptoms who are
not tested. Because of the novel nature of this virus and the resulting
pandemic, analysis of the epidemic curve cannot be based on previous
epidemics caused by other viruses (e.g., SARS-CoV-1, or influenza).
Because it relies on illness onset times rather than counts of new cases,
the DSA method can incorporate a partial epidemic curve like the one
produced by early testing for COVID-19 in Ohio, which was affected
by both limited testing capacity and undetected mild or asymptomatic
infections. The DSA method has been developed to handle incomplete
data in a manner that allows accurate quantification of uncertainty.
The method is strengthened by its simplicity as it requires only a
single differential equation. Parameters for the model are inferred using
empirical temporal data on new illnesses, and the target output is a time
series of expected future illnesses.

Initially, we used maximum likelihood estimates (MLEs) to fit the
DSA model to Ohio data. However, as a substantial amount of data be-
came available, we adopted a Hamiltonian Monte Carlo-based Bayesian
approach to parameter inference and uncertainty quantification. An im-
plementation of our inference method in the Python programming lan-
guage is available as a GitHub repository (Bastian and KhudaBukhsh,
2020).

Our projected statewide model provides robust estimates of cases
over time given partially observed daily counts of new illnesses. This
is ideal in a setting where testing capacity is limited or changing
due to constraints on lab capacity or detection limits. The counts of
new illnesses are often known as an observed epidemic curve in the
literature (Wu and McGoogan, 2020). Our approach is derived from the
general stochastic model of a pathogen spread across a contact network
where the nodes represent individuals in a community (Jacobsen et al.,
2018). As a working model of a contact network we use a type of
random graph called a dynamic configuration model (CM) (Bollobás,
1998). The mean-field approximation for epidemic processes on such
networks is sometimes referred to as a pairwise model (Kiss et al.,
2017).

Assumptions. All models have specific assumptions used to develop and
implement them. First, we assume that each individual in the network
(node) has a number of neighbors (their degree). Subsequently, a local
Markovian infectious pressure changes their status from susceptible (S)
to infective (I) to removed (R). We further assume that the R individuals
are no longer able to transmit the infection and cannot be reinfected.
For the dynamics of the network model, individuals transition between
the S, I, and R compartments based on the following principles that
allow the extraction of a mathematical model of the ongoing epidemic
based on observable data:

1. Disease spread occurs over a network of contacts. An infec-
tious individual can infect their immediate neighbors at a fixed
positive rate. The average number of a person’s contacts is
positive.

2. Each infected individual recovers from infection at a positive
rate or is restricted from contacting their network neighbors
through mandatory or voluntary isolation at a positive rate.

3. Each infected individual has an infectious period that is sampled
from an exponential distribution.

4. People who are ill remain infectious, and a partial count of new
illnesses is observed over time with a negligible chance of false

positives.
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Estimating transmission rates. The complete model description and de-
ailed development can be found in Appendix. In brief, the statistical
odel is used to estimate the number of people and timing of transfer

etween states S, I, and R. Then through substitution, a term 𝑆𝑡, the
umber of susceptible people at time t is developed. Embedded within
his 𝑆𝑡 is an improper survival function for the time to the onset of
llness in a randomly chosen susceptible person. Using this survival
unction, the time to infection of a randomly selected susceptible person
ithin a large population follows a temporal pattern determined by
robability laws. After we estimate the time series of susceptibles,
e can estimate the probability of a randomly selected susceptible

ndividual being infected during the lifetime of an epidemic. From this
e develop the conditional probability of remaining susceptible past

ime t.

stimating dropout and recovery rates. The impact of social distancing
s accomplished via a generalized approach to a person being dropped
rom the network. As has been visualized elsewhere, when a person
s removed from the network, their neighbors and contacts within the
etwork are removed, which limits transmission. This is accomplished
y estimating the rate of infectious contact within a network (𝛽 in the
ppendix) and then considering drop outs as a function of recovery rate

details in the Appendix).

hanges in parameters due to interventions. Introducing and then easing
estrictions on social distancing in the state has likely resulted in
hanges in parameters. The effect of such changes is incorporated into
he predictive model.

stimating hospitalization and ICU admission onset. After the statewide
odel produces time series estimates of cases across the state, these are

hen translated into estimates of hospitalizations and subsequent ICU
dmission. The complete derivation of this model is in Appendix B. In
hort, this is developed in three steps:

1. Estimate case onsets for each age group based on the population
and age distribution in each geographic area modeled.

2. Estimate the number of severe cases that will need hospitaliza-
tion based first on CDC data (CDC COVID-19 Response Team,
2020b) and then updated with Ohio-specific data as those data
become available in sufficient quantity to support predictive
modeling.

3. Estimate a probability distribution (details in Appendix B) for
the time from case onset to hospitalization as a function of
age, sex, and race. Using the same variables, we also estimated
the time from hospitalization to discharge or death and the
probability of being admitted to the ICU. This provides a means
to model hospital occupancy based on Ohio-specific data.

hese results are then integrated with the geographic modeling meth-
ds described next.

.3. Geographic modeling methods

The statewide model described above produces a time series of esti-
ated incident cases of COVID-19 illness. These outputs are then used

o assess hospital burden (e.g., hospitalizations and ICU admissions)
sing the age structure of the population and the estimated length
f time a patient will be in a hospital or ICU bed. This involved a
hree-step estimation process:

1. The proportion of the total Ohio population residing in each
geographic area (e.g., county or hospital catchment area) was
estimated from U.S. Census data. Daily case counts were dis-
tributed across geographic areas using this proportion, essen-
tially distributing cases by population density. This created a
time series of projected incident case counts by geographic area.
3

2. To account for age differentials in hospitalization and ICU use
noted by both the popular press and in the scientific literature,
we estimated the proportion of new cases expected to require
hospitalization or admission to the ICU using the age distribu-
tion in each geographic unit at each time step. Initially, we
used estimates from the Morbidity and Mortality Weekly Report
(MMWR) published by CDC (CDC COVID-19 Response Team,
2020b). These nationwide estimates of the age distribution of
hospitalization were used only while the number of hospitaliza-
tions and ICU admissions in Ohio remained too low to make
reliable forecasts. Ohio rates were substituted in subsequent runs
of the model. In counties with an older age structure, a larger
proportion of cases would convert into a hospitalization.

3. We used the estimated number of new hospitalizations and the
average length of stay (LOS) to estimate the total hospital burden
for each day in the time series. Initially, the average LOS was
derived from the literature, but we used observed LOS from
Ohio hospitals when enough COVID-19 cases were identified to
provide robust estimates. We used a bi-modal distribution, with
an average LOS of 5 days for non-ICU patients and 14 days for
those requiring ICU care. For each time step, the number of new
hospitalized cases estimated from the model was added to the
number of cases still in the hospital. The cases that ‘‘timed out’’
of their hospital stay due to the LOS parameter were subtracted
from the total. This created an estimated net number of patients
in the hospital for each day in the time series which accounted
for ‘‘patient stacking’’ over time.

nce daily hospital counts were estimated, we compared these to the
eported number of COVID available beds pooled across all hospitals
n a geographic area. This allowed us to understand when and where
ospital bed need might exceed current capacity.

.3.1. Description of data
emographic data. Demographic data on the age distribution for Ohio
ounties and ZIP Codes were obtained from the U.S. Census Bureau’s
-year American Community Survey 2014–2018 estimates (US Census
ureau, 2022a). The ACS data were used because the sample size was

arge enough for small geographies for reasonable standard errors and
table estimates. The Census Bureau does not develop data products
or the United States Postal Service (USPS) zip codes. Rather, ZIP Code
abulation Areas (ZCTAs) are generalized areal representations of USPS
ip code service areas. We mapped the Census ZCTAs to zip codes and
sed population estimates for ZCTAs. We used table B01001 that breaks
ut population counts by sex and 5 year age groups. Fig. 1 shows
he distribution of the high risk population (age 55+) by county and
ospital catchment area (see Section 2.3.2) in Ohio.

HA hospital and bed data. The Ohio Hospital Association (OHA) pro-
ided data on the location of all hospitals in the state and the number
f registered beds for each facility. Beds were broken out into several
ategories: Airborne Isolation, Critical Care, General Medical/Surgical
eds, and Extracorporeal Membrane Oxygenation (ECMO) beds. These
ed types represent two levels of care required for COVID-19 patients,
eneral hospital care for severe disease and ICU beds for patients re-
uiring ventilation. The OHA data contains information that constitutes
‘‘trade secret’’ under Ohio Revised Code Section 1333.61.

escription of OHA hospital market share data. The OHA provided data
n hospital market share derived from administrative hospital claims
rom the past year (January 2019–December 2019, inclusive). For
ach hospital, patient encounters were grouped by patient zip code. A
ospital’s market area included zip codes that represented the top 80%
f all encounters at that hospital.
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Fig. 1. Proportion of the population over the age of 55 in (A) counties and (B) hospital catchment areas.
2.3.2. Definition of hospital catchment areas
We developed small area estimates from state-level model pre-

dictions for counties and hospital catchment area (HCA). Boundary
files for the 88 Ohio counties were obtained from the U.S. Census
Cartographic Boundary Files (US Census Bureau, 2022b). We devel-
oped hospital catchment areas using an approach modified from the
Dartmouth Atlas Project (The Dartmouth Institute for Health Policy and
Clinical Practice, 2022). We define an HCA as a collection of zip codes
whose residents receive most of their hospital care from the hospital(s)
in that region. Fig. 1-B shows the HCAs developed and mapped. Note
that there are HCAs that cross over into neighboring states. This is
explained in more detail below.

HCA definitions depend on the integrated use of geospatial methods
that grouped each zip code in the state with the most geographically
proximate hospital and modified these groupings using data on hospital
market share by zip code. Only hospitals with acute care beds that
could be used for COVID-19 patients were included in the analysis.
We excluded facilities such as long-term acute care (LTAC), hospice,
orthopedic, rehabilitation or psychiatric/behavioral health hospitals
and freestanding ERs. We defined HCAs using three steps:

1. The location of all hospitals in Ohio, and those in Michigan,
Indiana, West Virginia, Kentucky and Pennsylvania located on
the border with Ohio, was used to generate a Voronoi diagram
with hospitals as generating points (Okabe et al., 2000). We
included hospital in neighboring states in the Voronoi analysis
to avoid edge effects, which would attribute patients to Ohio
hospitals that typically use hospitals in other states. This yielded
233 distinct areas, one for each hospital generator. Twenty-eight
areas were subsequently deleted because they included no area
within Ohio.

2. Voronoi polygons were overlaid with zip codes. ZIP codes were
assigned to the Voronoi polygon if their centroid fell within the
polygon. This ensured that each ZIP code was associated with
the most geographically proximate hospital and divided the state
into groupings of zip codes assigned to each hospital.

3. Using the OHA hospital market share file, we examined the level
of agreement between each Voronoi polygon and market share
zip codes for each hospital. In cases where adjacent Voronoi
polygons were generated by hospitals that also shared 60% or
4

more of their market share zip codes, we aggregated these poly-
gons to create one hospital catchment area. In large metropolitan
areas with many hospitals, we aggregated groupings of Voronoi
polygons to create regional catchment areas. In rural areas, this
typically resulted in aggregating two adjacent polygons.

Using this procedure, we generated 96 HCAs for the state of Ohio. Some
HCAs included zip codes from neighboring states, and some Ohio ZIP
codes were included in HCAs for non-Ohio hospitals. HCAs are shown
in Fig. 2.

3. Results

Here, we present a brief summary of our model fits and predictions.
One of the hallmarks of the COVID-19 pandemic has been the change
in human behavior due to various interventions throughout the course
of the pandemic. As a consequence, the COVID-19 epidemic curve in
Ohio deviated much from a typical epidemic curve. The Ohio curve
initially followed an exponential growth phase with high 𝑅0, then a
phase of steady linear growth and a decline with 𝑅0 close to one,
and then finally, due to reopening of the state, another phase of
exponential growth with 𝑅0 greater than one. As such, it is natural
to believe the parameters are potentially different in these different
phases. Therefore, we fit the DSA model with multiple change points
(see posterior distributions in Figs. 6 and 7 in Appendix A).

In Fig. 3, we compare actual counts of daily new infections against
model predictions. The fitted trajectories follow the observed epidemic
curve well. The inner confidence bound is the true posterior confi-
dence bound obtained point-wise. However, it is worth noting that
predicted trajectories underestimate the variance or over-dispersion in
the observed counts of daily new infections. Therefore, we adopted
an empirical variance adjustment method to account for this possible
underestimation. The broader confidence bound corresponds to the
variance-adjusted trajectories. More details on the variance adjustment
method and other diagnostic plots are in Appendix B.

The daily counts thus predicted are then down-projected into pre-
dictions of hospitalization surge across Ohio in the geographic com-
ponent of the model. During the early phase of the epidemic, only
short-term predictions (a few weeks) of hospitalizations were provided
to the ODH and the OHA. As more data became available, and the
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Fig. 2. Estimates of hospital burden mapped to hospital catchment areas for 12 days during the pandemic.
Fig. 3. Predictions based on the fitted model versus actual daily incidence in Ohio as reported by the Ohio Department of Health. We assumed three change points here
corresponding to four density segments. Day zero corresponds to March 1, 2020. The first change point is on March 17, 2020. The second change point is on June 1, 2020, after
which the state observed another phase of exponential growth. The third change point is on October 1, 2021, which marks the beginning of second wave characterized by a severe
exponential growth phase. The broader (outer) confidence bound corresponds to the variance-adjusted trajectories.
learnt model parameters became more robust and stable, slightly longer
term predictions were provided, and changes in the model parameters
were monitored regularly. When significant changes in the model pa-
rameter were observed, the prediction model was updated accordingly
and fresh predictions of hospitalizations were made available to the
5

ODH and the OHA. In Fig. 2, we show snapshots of predicted hospital-
izations across the 96 HCAs for the state of Ohio on 12 different days
from March 1, 2020 to February 1, 2021.

In Fig. 4, we compare the predicted total hospital admissions in
Ohio from October 2 with the true reported cases (Ohio Hospitals
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Fig. 4. (Left) Predictions of ICU admissions in Ohio after the third change point (October 1, 2021). (Right) Predictions of total hospital admissions in Ohio after the third change
point (October 1, 2021).
Association, 2022) during the second wave of the epidemic, i.e., af-
ter the third change point October 1, 2021. The figure shows good
agreement between our predictions and the reported cases. Additional
comparative figures on hospital admissions are provided in Appendix B.

4. Discussion

The susceptible–infectious–recovered (SIR) framework is the basis
for many COVID-19 epidemic models (Predictive Healthcare at Penn
Medicine, 2020; Childs et al., 2020; Li et al., 2020; Weitz, 2020).
Several websites provide implementations of the SIR framework and
present scenarios with different interventions such as social distancing
that affect the transmission parameter 𝛽 (Predictive Healthcare at Penn
Medicine, 2020; Childs et al., 2020). Recent work (Childs et al., 2020)
has attempted to extend the basic SIR model to include additional
compartments corresponding to incubation, presymptomatic infectious,
stages of symptomatic infectious, and hospitalization. An important
advantage of the DSA framework is that it can be extended to include
network-based models and non-Markov models by altering the form
of the likelihood, and choices between the models can be guided by
standard statistical methods.

Current SIR tools (Predictive Healthcare at Penn Medicine, 2020;
Childs et al., 2020) are suited for scenario exploration, like illustrating
the flattening of the curve under different levels of social distancing com-
pliance. Unfortunately, they are less suited for forecasts because model
parameters are not calibrated based upon case or outcome data. A re-
cent attempt at taking a meta-population approach with SEIR dynamics
in each patch, to estimate model parameters (including proportion of
asymptomatic infection) based upon case counts from China was given
in Li et al. (2020). This resulted in a spatially explicit model without
age-structure. Conversely, Weitz (2020) is an example of a nonspatial
model with age structure: Weitz extends the SEIR framework to include
age groups, and estimates model parameters based upon hospitalization
and death counts from Georgia. Further work from the University of
Washington uses mortality data as model inputs, but takes a purely
statistical approach in fitting a sigmoidal curve to cumulative COVID-
19 deaths using a mixed-effects model (IHME COVID-19 health service
utilization forecasting team and Murray, 2020). Another alternative
is an agent-based model such as that used in Ferguson et al. (2020).
Similar to Li et al. (2020), Ferguson et al. (2020) forecast a very large
number of infections with COVID-19.

Considering the level of uncertainty in the data being input into
all of these models, we believe that a model output of a time series
of illnesses, hospitalizations, and ICU admissions is a more reasonable
approach. Similarly, the simplified framework and structure of our
approach allow for greater flexibility under uncertain data inputs into
6

the model and a lack of information on key parameters such as the total
susceptible population and the proportion of cases that are subclinical
or asymptomatic. It turned out that the resulting predictions were
remarkably accurate.

A significant advantage of the DSA method is that it requires fewer
parameters and is usually less computationally expensive than the
agent-based models, such as Agrawal et al. (2020), Ferguson et al.
(2020), which are used quite successfully to run large-scale simulations
for the purpose of forward predictions and the analysis of what-if
scenarios. Barring dropping of edges, the DSA method does not provide
the flexibility to test arbitrary what-if scenarios involving individual
human behaviors because the method is based on population-level
equations.

Our approach is quite general and flexible. We have recently used
variations of the DSA method with encouraging results to model the
foot-and-mouth disease (FMD) outbreak in the United Kingdom in
2001 (Di Lauro et al., 2022), the spread of influenza A(H1N1) on
the Washington State University campus in 2009 (KhudaBukhsh et al.,
2020), and the Ebola epidemic in the Democratic Republic of Congo
(DRC) in 2018–2020 (Vossler et al., 2022).
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disease onset to hospitalization, length of stay, and probability of
admission to the ICU were based on analysis of non-public data from

ODH.
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Additional materials

A video presentation describing the methodology used for epidemic
size predictions is available from Rempała (2020).

Appendix A. Predicting statewide cases of COVID-19

This derivation is taken from Bastian et al. (2020). We will outline
the derivation of a simple but powerful general modeling framework
that provides robust estimates of the quantities relevant to monitoring
local outbreaks where only limited amount of information is available
through partially observed daily counts of new (symptomatic) infec-
tions. Our approach is derived from the general stochastic model of
a contagion spread across a contact network of nodes representing
individuals in a community (Jacobsen et al., 2018). As a working model
of a contact network we use a dynamic configuration model (CM)-type
random graph (see, e.g., Bollobás (1998)). Such a model is often also
referred to as a pairwise model (Kiss et al., 2017).

Briefly, we assume that each node has its degree and that the nodes
may change their status from the initial ‘‘Susceptible’’ (𝑆) to ‘‘Infective’’
(𝐼) (or ‘‘Infectious’’) and, finally, to ‘‘Removed’’ (𝑅), according to their
local Markovian infectious pressure (hazard of infection). We assume
that the ‘‘Removed’’ individuals are no longer able to pass infection
and cannot be reinfected.

A.1. Network dynamics assumptions

The dynamic model of individuals transition between the states 𝑆,
𝐼 and 𝑅 is based on several simple principles that allow to extract a
mathematical model of the ongoing epidemic and relate it to observable
data:

1. The spread occurs over a network of contacts, that is, an infec-
tious individual may only infect his/her immediate neighbors at
fixed rate 𝛽 > 0; it is assumed that the average number of node’s
contacts is 𝜇 > 0.

2. The infected individual may recover at rate 𝛾 > 0 or be
restricted from contacting his/her network neighbors either
through mandatory or voluntary quarantine at rate 𝛿 > 0.

3. The infected individuals have an infectious period that is a
random sample from an exponential distribution.

4. The symptomatic infectives are infectious and the partial count
of new infectives is observed over time with a negligible chance
7

of false positives.
We note that the model as described here extends previous work
studying epidemics on CM-random networks (e.g., Newman, 2003) and
that this formulation above can also account for extensions of the basic
SIR compartments to include a latent period (up to 14 days for COVID-
19, see Niehus et al., 2020), as well as more general staged progression
models (Hethcote, 2000).

Instead of directly analyzing the stochastic CM model described
above, which is challenging due to heterogeneity in the number of
contacts and the evolution of the connectivity structure (e.g., Bartlett,
1960; Kermark and Mckendrick, 1927), we make use of the general
results on the mean field approximation (Durrett, 2007; Ball and Neal,
2008) and the convergence of the random infection hazard in large
networks. Specifically, as shown in Jacobsen et al. (2018) under the as-
sumption of the Poisson-type (binomial, Poisson, or negative binomial)
degree distribution, the mean field approximation of the dynamics is
given by the following set of differential equations (where dots denote
time derivatives):

�̇�𝑆 = −𝛽𝑥𝐷𝑥𝑆
�̇�𝐼 = 𝛽𝑥𝐷𝑥𝑆 − 𝛾𝑥𝐼
�̇�𝐷 = 𝛽(1 − 𝜅)𝑥2𝐷 +

(

𝜅𝜇𝛽𝑥2𝜅−1𝑆 − �̃�
)

𝑥𝐷
(1)

where the pair (𝑥𝑆 , 𝑥𝐼 ) describes the relative number of susceptibles
and infecteds, 𝑥𝐷 = 𝑥𝑆𝐼∕𝑥𝑆 is the relative density of infectious connec-
tions, 𝜅 is the average contact network density,1 and �̃� = 𝛽 + 𝛾 + 𝛿. The
usual initial conditions are 𝑥𝑆 (0) = 1, 𝑥𝐼 (0) = 𝜌 > 0, and 𝑥𝐷(0) = 𝜇𝜌.

A.2. Likelihood and reproduction numbers

For the purpose of statistical analysis of the system (1) we make
an assumption that only the empirical counts of the new infected are
available in practice. Dividing the last equation in (1) by the first
one, solving for 𝑥𝐷 in terms of 𝑥𝑆 , and substituting back into the
first equation, we obtain a reduced system with only one equation
describing the decay of susceptibles. To simplify notation, denote 𝑆𝑡 ∶=
𝑥𝑆 (𝑡) to obtain

− �̇�𝑡 = 𝛽(1 − 𝑆𝐾
𝑡 )𝑆𝐾

𝑡 +
�̃�

1 −𝐾
𝑆𝑡(1 − 𝑆𝐾−1

𝑡 ) + �̃�𝑆𝐾
𝑡 (2)

here 𝑆0 = 1 and �̃� = 𝛽𝜇𝜌, �̃� = 𝛽 + 𝛾 + 𝛿, and 𝛽 = 𝜇𝛽. Note that Eq. (2)
is defined for 𝐾 = 1 by taking the limit 𝐾 → 1. The value of the basic
reproduction number is

𝑅0 = 𝜅𝛽∕𝛾.

for both the full (1) and reduced (2) systems.
The condition 𝜅 = 1 implies the Poisson degree assumption for the

pairwise model and reduces equation (2) to

− �̇�𝑡 = 𝛽
(

𝑆𝑡 − 𝑆2
𝑡
)

+ �̃� 𝑆𝑡 log
(

𝑆𝑡
)

+ �̃�𝑆𝑡 and 𝑆0 = 1. (3)

Instead of thinking about 𝑆𝑡 as a proportion of susceptibles it is con-
venient to think about 𝑆𝑡 as an improper survival function for the time
to infection of a single randomly chosen susceptible. Then 𝑆𝑡 has an
improper density −�̇�𝑡 (see KhudaBukhsh et al., 2020). It is improper
since ∫ ∞

0 −�̇�𝑡 d𝑡 = 1 − 𝑆∞ = 𝜏 < 1 where 𝜏 is defined below (see
also (Bastian and Rempala, 2020, Example 2)). Under this survival
function interpretation, the infection time for a randomly selected
initially susceptible individual (in an infinite population) follows a
temporal pattern according to the probability law 𝑆𝑡 given by (2) or (3).

When we observe only a partial epidemic trajectory, say until time
𝑇 , then the observed infection time is conditional on the infection
occurring by time 𝑇 , that is, on an event that has probability 𝜏𝑇 =
1 − 𝑆𝑇 . It is easy to show that as 𝑇 → ∞ then 𝜏𝑇 → 𝜏∞ = 𝜏, the

1 The network parameter 𝜅 > 0 is defined as the ratio of network mean
xcess degree and mean degree, see Jacobsen et al. (2018) for details. It is
nown that 𝐾 = 1 corresponds to the Poisson degree network whereas 𝐾 > 1

corresponds to the negative binomial one.
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Fig. 5. Estimated density of infection times in the four segments of the epidemic.
𝑔

probability of a randomly selected susceptible individual being infected
during the lifetime of an epidemic. One may also think of 𝜏 as the final
proportion of infected in the epidemic in infinite population. Then the
conditional density of symptom onset is

𝑓𝑇 (𝑡) = −�̇�𝑡∕𝜏𝑇 ,

which is simply the scaled derivative of the probability of staying sus-
ceptible past time 𝑡 (denoted 𝑆𝑡). Accordingly, setting 𝜃 = (𝜅, 𝛽, 𝛾, 𝜌), the
approximate likelihood of the joint symptom times (epidemic curve)
of 𝑛 observed new cases by current time 𝑇 in an infinite population
(see KhudaBukhsh et al., 2020) is given by

(𝜃|𝑡1,… , 𝑡𝑛, 𝑇 ) =
𝑛
∏

𝑖=1
𝑓𝑇 (𝑡𝑖). (4)

Although the expression above looks simple, note that the function
𝑓𝑇 (𝑡) depends upon the vector of parameters 𝜃 only implicitly through
the differential Eqs. (2) or (3).

A.3. Estimating dropout and recovery rates

Recall that �̃� = 𝛽+𝛾+𝛿. Given �̃�, we may estimate the recovery rate
𝛾 from the recovery density. Then we have the approximate expression
for drop-out

𝛿 ≃ �̃� − 𝛾

assuming 𝛽 is negligible.
To estimate 𝛾, we consider now the recovery density. As shown

in KhudaBukhsh et al. (2020), the density of daily recovery times is
given by

𝑔(𝑡) = ∫

𝑡

0
𝑓∞(𝑢)𝛾𝑒−𝛾(𝑡−𝑢) 𝑑𝑢.

For practical model fitting, a shift parameter 𝜀 ∈  may be needed as

�̄�𝜀(𝑡) =
𝑔(𝑡 + 𝜀 ∧ 0)

∫ ∞
0 𝑔(𝑢 + 𝜀 ∧ 0) 𝑑𝑢

.

The overall density of recovery is then the following mixture

�̃�(𝑡) = 1 �̄�𝜀(𝑡) +
𝜌

𝛾𝑒−𝛾𝑡.
8

1 + 𝜌 1 + 𝜌
Using the conditional recovery density

̆𝑇 (𝑡) =
�̃�(𝑡)

∫ 𝑇
0 �̃�(𝑡) 𝑑𝑡

for 𝑡 ∈ [0, 𝑇 ].

a likelihood analogous to Eq. (4) can now be produced:

(𝛾|𝑡1,… , 𝑡𝑘, 𝑇 ) =
𝑛
∏

𝑖=1
�̆�𝑇 (𝑡𝑖). (5)

This likelihood is used to estimate 𝛾 directly conditional on estimated
𝑆𝑡 (and thus 𝑓∞).

A.4. Incorporation of a change point

As outlined in an IDI blog post by the COVID-19 response modeling
team (OSU / IDI COVID-19 Modeling Response Team, 2020), the initial
exponential growth phase was followed by a plateau, a slow ascent, a
decline, and then, a second exponential growth phase. This pattern can
be attributed to changes in human behavior. As a consequence of the
unusual epidemic curve, we need to accommodate change points in the
model. Specifically, we assume the parameter vector 𝜃 takes different
values in different segments of the epidemic separated by the change
points. For the sake of simplicity, we illustrate the revised likelihood
function with a single change point.

Let 𝐴 = (0, 𝑇 ⋆], and 𝐵 = (𝑇 ⋆, 𝑇 ] denote the two segments of the
epidemic with a change point at 𝑇 ⋆ < 𝑇 . We assume the parameter 𝜃
takes value 𝜃𝐴 in segment 𝐴 and 𝜃𝐵 in segment 𝐵. Then, the conditional
densities in each of the segments are

𝑓𝐴(𝑡) =
−�̇�𝑡(𝜃𝐴)1𝐴(𝑡)
1 − 𝑆𝑇⋆ (𝜃𝐴)

,

𝑓𝐵(𝑡) =
−�̇�𝑡(𝜃𝐵)1𝐵(𝑡)

𝑆𝑇⋆ (𝜃𝐵) − 𝑆𝑇 (𝜃𝐵)
,

(6)

where 𝑆𝑡(𝜃𝐴) (or 𝑆𝑡(𝜃𝐵)) is the solution to either (2) or (3) with 𝜃 = 𝜃𝐴
(or 𝜃 = 𝜃𝐵). Write 𝜏𝑇 (⋅) = 1 − 𝑆𝑇 (⋅). Then, the conditional density over
the entire time interval [0, 𝑇 ] is

𝑓𝑇 (𝑡) =
𝜏𝑇⋆ (𝜃𝐴)

𝜏𝑇 (𝜃𝐵) − 𝜏𝑇⋆ (𝜃𝐵) + 𝜏𝑇⋆ (𝜃𝐴)
𝑓𝐴(𝑡)

+
𝜏𝑇 (𝜃𝐵) − 𝜏𝑇⋆ (𝜃𝐵) 𝑓𝐵(𝑡) .

(7)
𝜏𝑇 (𝜃𝐵) − 𝜏𝑇⋆ (𝜃𝐵) + 𝜏𝑇⋆ (𝜃𝐴)
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Fig. 6. Posterior densities of the fitted parameters in the first two segments of the pandemic. Here, 𝑎 = �̃�, and 𝑏 = 𝛽.
The final likelihood function looks exactly like (4) with the conditional
density 𝑓𝑇 given above in (7).

A.5. Estimating the final size of an outbreak

We assume that the size of an outbreak 𝑘∞ is a fixed integer repre-
senting the likely number of total infections in the contact network of
the confirmed cases only. Hence 𝑘∞ is not the prevalence of the disease
in the population but rather an estimate of the total outbreak size in
the community of 𝑛 individuals where we see infections. We estimate 𝑛
at any given time 𝑇 by the discount estimator �̂�𝑇 = 𝑘𝑇 ∕(1 − 𝑆𝑇 ) where
𝑘𝑇 is the number of cases observed by time 𝑇 . Then we estimate the
total number of cases by the end of an epidemic as

�̂�∞ =
𝜏𝑘𝑇

1 − 𝑆𝑇

where 𝜏 = 1 − 𝑆∞ is the final probability of infection defined in
Section 2.2.
9

A.6. Prediction and uncertainty quantification

We follow a Hamiltonian Monte Carlo-based Bayesian approach for
prediction and uncertainty quantification. We assume independent non-
informative priors for the parameters 𝛽, �̃� and �̃�. We approximate the
posterior density of 𝜃 by drawing posterior samples using the No U-Turn
Sampling (NUTS) method. As a point estimate of 𝜃, we take the mean
of the posterior density. The cumulative epidemic curve obtained as a
solution to either (2) or (3) corresponding to the point estimate defined
above gives us the most likely trajectory. The posterior samples of 𝛽, �̃�
and �̃� are used to generate a pointwise Monte Carlo confidence interval
around the most likely trajectory. In other words, we essentially gen-
erate predicted trajectories corresponding to the posterior samples and
then compute appropriate quantiles at desired time points to get the
confidence interval. However, as shown in Fig. 3, the confidence bound
obtained this way is narrow and suggests that the procedure might be
underestimating the variance or over-dispersion in the observed daily
new case counts. This over-dispersion could be a result of testing delays
or other systematic issues with data collection. Therefore, we adopt an
empirical variance adjustment method.
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Fig. 7. Posterior densities of the fitted parameters in the last two segments of the pandemic. Here, 𝑎 = �̃�, and 𝑏 = 𝛽.
In simple terms, the empirical variance adjustment could be ex-
plained as follows: We first smooth the observed counts using a kernel
smoother with span = 0.2. We used the function supersmoother
in R. Then, we estimate the variance inflation factor by averaging
the squared difference of the actual daily new case counts and the
smoothed ones. Finally, the variance adjusted confidence bounds are
obtained by multiplying the upper confidence bounds from the corre-
sponding a Gaussian approximation with the standard deviation of the
variance inflation factor and taking lower confidence bound from the
DSA fits.

A.7. Additional numerical results

Here, we present additional diagnostic figures for our model fit. In
Fig. 5, we show the estimated density of the infection times in the
three segments of the epidemic. This is the density that contributes to
the likelihood function (4). Fig. 5 shows the posterior densities of the
fitted parameters in the three segments. Fig. 8 shows the trace plots
of the fitted parameters as a diagnostic measure of the convergence
of the Hamiltonian Monte Carlo chains. In Fig. 9, we show how our
10
predictions compare against other methods. In particular, we compare
our results with the predictions provided by the Institue for Health
Metrics and Evaluation.

Appendix B. Estimating hospitalizations from predictions of stat-
ewide case numbers

Let 𝐶(𝑡) be the trajectory of case onset times as generated by the
statewide model. We wish to translate this to hospital census ℎ𝑖(𝑡) for
a geographic region 𝑖. Consider an age group 𝑎 ∈ . Let 𝑛𝑖,𝑎 be the
number of individuals in age group 𝑎 in geographic region 𝑖, and let
𝑛𝑖 =

∑

𝑎∈ 𝑛𝑖,𝑎 denote the total population size of 𝑖. Let 𝑁 =
∑

𝑖 𝑛𝑖 denote
the entire population size of Ohio. Converting 𝐶(𝑡) to ℎ𝑖(𝑡) involves the
following steps:

(i) Estimating the case onsets 𝑐𝑖,𝑎(𝑡) for age group 𝑎 in geographic
region 𝑖.

(ii) Deriving from this the onsets of severe cases 𝑠𝑖,𝑎(𝑡) that will
eventually require hospitalization by age group and geographic
region.
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Fig. 8. Trace plots of the fitted parameters in the four segments.
Fig. 9. In this figure, we compare our predictions from October 2 with predictions downloaded from Institute for Health Metrics and Evaluation (IHME) on November 29,
2022 (Institute for Health Metrics and Evaluation, 2022) and the true reported cases (Ohio Hospitals Association, 2022). It appears that both approaches are able to predict total
hospitalizations and ICU admissions reasonably well. The IHME credible intervals are generally narrower than those of our DSA method, but the two sets of predictions are not
directly comparable because they are using information from different time periods. (Left) Predictions of ICU admissions in Ohio after the third change point (October 1, 2021).
(Right) Predictions of total hospital admissions in Ohio after the third change point (October 1, 2021).
(iii) Using probability distributions for time from case onset to hos-
pitalization and length of stay to estimate the hospital census
ℎ𝑖,𝑎(𝑡).

Estimating case onsets by age group and region. We consider the fol-
lowing factors in estimating 𝑐𝑖,𝑎(𝑡) from total case onsets 𝐶(𝑡): the
population size of 𝑖, age structure of 𝑖, and the relative likelihood by
age of being identified as a COVID-19 case. We first compute the total
case onsets 𝑐𝑖(𝑡) ∶=

∑

𝑎∈ 𝑐𝑖,𝑎(𝑡) for 𝑖 in proportion to the population size
of 𝑖:

𝑐 (𝑡) =
𝑛𝑖 𝐶(𝑡). (8)
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𝑖 𝑁
To distribute these case onsets by age, define the relative susceptibility
𝑠𝑎 of age group 𝑎 as the ratio of the proportion of observed cases in 𝑎
relative to the proportion of the state’s population that is in 𝑎.

A relative susceptibility of one corresponds to the proportion of
observed cases across the state matching what would be expected if
cases were distributed uniformly at random across individuals. Relative
susceptibilities larger than one correspond to more cases identified in
𝑎 than would be expected at random, while relative susceptibilities
less than one correspond to fewer identified cases in 𝑎 than would be
expected at random. In the Ohio data, we observe far fewer cases in
youth (ages less than 21) than would be expected at random (𝑠𝑎<21 ≈
0.12), but more cases in the elderly (𝑠𝑎≥85 ≈ 1.7). We then compute
𝑐 (𝑡) by multiplying 𝑐 (𝑡) by a probability incorporating the relative
𝑖,𝑎 𝑖
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susceptibility of 𝑎 and the age structure of 𝑖:

𝑖,𝑎(𝑡) = 𝑐𝑖(𝑡)
𝑛𝑎,𝑖𝑠𝑎

∑

𝓁∈ 𝑛𝑖,𝓁𝑠𝓁
. (9)

nset of cases that will eventually require hospitalization. It has been
ocumented that case outcome varies strongly with age (CDC COVID-
9 Response Team, 2020b). We use the mean of the probabilities
eported in CDC COVID-19 Response Team (2020a) of severe case
utcome by age group. Let 𝑝𝑎 be the probability of severe case outcome
or age group 𝑎. Then

𝑖,𝑎(𝑡) = 𝑝𝑎𝑐𝑖,𝑎(𝑡). (10)

or simplicity, we do not include other demographic covariates such as
ender or comorbidities in the 𝑝𝑎.

ospital census over time. The trajectories 𝑠𝑖,𝑎(𝑡) correspond to onset
imes of cases that will eventually require hospitalization. To translate
hese into hospital census of COVID-19 patients, let 𝑤𝑎(𝑡) be the prob-
bility distribution for time between case onset and hospitalization,
nd 𝑞𝑎(𝑡) the probability distribution for length of stay in hospital
or age group 𝑎. Let 𝐴𝑖,𝑎(𝑡) and 𝐷𝑖,𝑎(𝑡) denote hospital admissions
nd discharges, respectively, for location 𝑖 and age group 𝑎 at time

𝑡. Then 𝐴𝑖,𝑎(𝑡) corresponds to the convolution of 𝑠𝑖,𝑎 with 𝑤𝑎, and
𝐷𝑖,𝑎(𝑡) corresponds to the convolution of 𝐴𝑖,𝑎 with 𝑞𝑎(𝑡). Let 𝐶𝑖,𝑎(𝑡)
enote the hospital census for location 𝑖 and age group 𝑎 at time 𝑡.
he difference between admissions and discharges corresponds to the
hange in hospital census, so integrating gives 𝐶𝑖,𝑎(𝑡):

𝐴𝑖,𝑎(𝑡) = (𝑠𝑖,𝑎 ∗ 𝑤𝑎)(𝑡)
𝐷𝑖,𝑎(𝑡) = (𝐴𝑖,𝑎 ∗ 𝑞𝑎)(𝑡)
𝐶𝑖,𝑎(𝑡) = 𝐶𝑖,𝑎(0) + ∫ 𝑡

0 𝐴𝑖,𝑎(𝜉) −𝐷𝑖,𝑎(𝜉) 𝑑𝜉.
(11)

For simplicity, we have not distinguished between hospital bed types
(e.g. ICU vs. non-ICU) above.
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