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Title: Complex roles of TGF- signaling pathways in lung development and bronchopulmonary 22 

dysplasia 23 

Abstract  24 

As survival of extremely preterm infants continues to improve, there is also an associated increase in 25 

bronchopulmonary dysplasia (BPD), one of the most significant complications of preterm birth. BPD 26 

development is multifactorial resulting from exposure to multiple antenatal and postnatal stressors. 27 

BPD has both short-term health implications and long-term sequelae including increased respiratory, 28 

cardiovascular and neurological morbidity. Transforming growth factor beta (TGF-) is an important 29 

signaling pathway in lung development, organ injury and fibrosis and is implicated in the development 30 

of BPD. This review provides a detailed account on the role of TGF- in antenatal and postnatal lung 31 

development, the effect of known risk factors for BPD on the TGF- signaling pathway, and how 32 

medications currently in use or under development, for the prevention or treatment of BPD, affect 33 

TGF- signaling.  34 

 35 

  36 
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Introduction 37 

Bronchopulmonary dysplasia (BPD) was first described by Northway and colleagues in 1967 as a 38 

severe form of chronic lung disease affecting mostly preterm infants[1, 2]. Post-mortem lung samples 39 

of these infants showed hypertensive pulmonary vascular remodeling, large airway smooth muscle 40 

(ASM) hyperplasia and heterogeneity of the parenchyma with diffuse fibroproliferative changes[3, 4]. 41 

Commonly, such pathological changes are referred to as “old” or “classical” BPD. Recent advances in 42 

neonatal care have led to significantly improved survival for preterm infants, most markedly for those 43 

at <26 weeks gestation [5]. With this a “new” form of BPD has emerged, primarily related to extreme 44 

prematurity, due to the disturbance of lung development during the critical period of saccular lung 45 

development[1, 3]. Fibrosis is a less prominent feature and ‘new’ BPD is instead characterized by 46 

more homogenous lung parenchyma with a larger, simpler alveolar structure and mild airway muscle 47 

thickening[1, 3].  48 

The Transforming growth factor-β (TGF-β) superfamily of growth factors are widely expressed 49 

proteins with well-known and diverse roles in development, wound healing and fibrosis. TGF-β 50 

superfamily members have been implicated in various stages of lung development in utero and 51 

postnatally, and in the pathogenesis of many of the features of both “new” and “old” BPD including 52 

parenchymal fibrogenesis, remodeling of the pulmonary vasculature and ASM remodeling. In this 53 

review we aim to provide a comprehensive overview of the various roles of TGF-β proteins in normal 54 

lung development and BPD pathogenesis, with a particular focus on the isoforms of TGFβ1-3. By 55 

reviewing recently published research we will explore the relationship between some known risk 56 

factors that contribute to the development of BPD with TGF-β proteins and the pathological features 57 

of the disease. 58 

 59 

Consequences of BPD 60 

Despite survival for extremely preterm infants improving, rates of BPD amongst these infants have 61 

also increased, with an overall increase of 4.2% in a review of 11 high income countries[6]. There are 62 

numerous risk factors for BPD development, which are highlighted in Figure 1 [7-10]. Antenatal 63 

factors include male sex, being small for gestational age, genetics, maternal smoking and 64 

chorioamnionitis. At birth and postnatally, BPD risk is associated with extreme preterm birth, the need 65 

for cardiopulmonary resuscitation (<30 weeks), mechanical ventilation, exposure to hyperoxia or 66 
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volutrauma as a result of mechanical ventilation, as well as postnatal infection and/or inflammation [7-67 

10]. 68 

BPD can have significant health implications not just in the neonatal period but throughout childhood 69 

and adulthood. Long term sequalae include adverse respiratory, cardiovascular and neurological 70 

outcomes. Infants with BPD have increased risk of substantial airway impairment with airway 71 

obstruction on pulmonary function testing, higher risk of airway hyper-responsiveness and asthma-like 72 

symptoms, and reduced respiratory reserve persisting into adolescence and adult life[1, 11-14].  73 

Pulmonary hypertension (PH) affects 8-25% of babies with BPD and is characterized by abnormal 74 

vascular remodeling and vascular growth arrest resulting in increased pulmonary vascular 75 

resistance[15]. Crucially, it has been shown that early disruption of vascular growth contributes to 76 

reduced alveolarization, which is a feature of BPD [16], in addition to leading to the development of 77 

PH. The incidence of PH-associated BPD rises with increasing BPD severity [17]. This is of particular 78 

clinical importance given the associated increased mortality, need for tracheostomy, worse 79 

neurodevelopmental outcomes and feeding problems in these infants[12, 13, 15, 18]. Improved 80 

understanding of the mechanisms driving normal lung growth and the development of BPD are 81 

therefore essential.  82 

 83 

Normal lung development  84 

Lung development is typically divided into 5 stages consisting of embryonic (4-7 weeks), 85 

pseudoglandular (5-17 weeks), canalicular (16-26 weeks), saccular (24weeks-birth) and alveolar 86 

(from 36 weeks)[19] (Figure 1).  During branching morphogenesis, the lung bud undergoes a 87 

dichotomous pattern of division of the airways forming terminal bronchioles during the 88 

pseudoglandular stage, which further divide in the canalicular stage leading to the formation of 89 

respiratory bronchioles. The saccular stage is characterized by the development of the primitive lung 90 

saccules, lined by type 1 and 2 alveolar cells, thinning of the connective tissue between the airspaces 91 

and capillaries, and initiation of surfactant production [1, 12, 20]. Alveolar development is the final 92 

stage of lung development occurring from 36 weeks gestation until early childhood and is 93 

characterized by secondary septation of the primitive lung saccules leading to alveolarization. 94 

This branching morphogenesis acts as a template for pulmonary vasculature growth, which follows a 95 

similar branching process during embryological development. Vasculogenesis predominantly occurs 96 
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up to 17 weeks gestation with the formation of extrapulmonary, lobar and pre-acinar arteries. From 97 

the canalicular phase, angiogenesis occurs with the formation of intra-acinar arteries (18-25 weeks), 98 

alveolar arteries (25 weeks onwards) and capillary alveoli (30 weeks onwards)[21].  99 

The complex nature and relatively late timing of branching morphogenesis in both alveolar and 100 

vascular development is critical for babies who are born extremely premature. Crucially, 101 

alveolarization and angiogenesis are closely linked in lung development with inhibition of 102 

angiogenesis able to interrupt alveolarization[22]. Furthermore, the lungs of babies born extremely 103 

premature are exposed to a complex interaction of perinatal and postnatal stressors during their 104 

subsequent neonatal care, which may disrupt normal alveolar and pulmonary vascular development 105 

and promote BPD pathogenesis (Figure 1)[23]. 106 

 107 

Transforming Growth Factor Beta Signaling in Lung Development and BPD 108 

TGF- exists as 3 isoforms; TGF-β1, TGF-β2 and TGF-β3, which are encoded by distinct genes. 109 

They belong to the TGF- superfamily of proteins, which contains over 30 members including activins, 110 

bone morphogenetic proteins (BMPs) and growth and differentiation factors. TGF- superfamily 111 

members have diverse functions in development, homeostasis, repair and disease, which signal 112 

through canonical (Smad signaling) and non-canonical signaling pathways [24-26]. The Smad 113 

signaling pathway includes two distinct pathways 1) the TGF--Smad pathway, which is mediated via 114 

Smad 2 and Smad 3 phosphorylation, and 2) BMP-Smad pathway which involves Smad 1/5/8 115 

phosphorylation[27-29]. Both signaling pathways are critical for normal alveolar and pulmonary 116 

vasculature development[30-33] and have been implicated in the pathogenesis of BPD[34, 35].  117 

  118 

Animal studies have given insights into the roles of TGF- isoforms in lung morphogenesis. During 119 

normal lung development TGF- isoforms show different temporal expression patterns; TGF-1 and 120 

TGF-3 are expressed in early saccular development whilst TGF-2 is expressed later in more 121 

mature epithelium[28]. Furthermore, TGF- isoform-specific null mice have helped shed light on the 122 

functional consequences of TGF-β isoforms on lung development (Table 1)[25, 36]. TGF-β1 null mice 123 

have no overall lung developmental defects at birth[37] whereas TGF-β2 null mice have high perinatal 124 

mortality associated with dilated conducting airways and collapsed distal airways collapsed[38], and 125 

TGF-β3 null mice die within hours of birth exhibiting severely delayed lung development[39].  126 
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 127 

Other studies have suggested that correct temporal antenatal TGF- isoform expression is critical for 128 

lung development. Conditional mesenchyme-specific deletion of TGF-1 in the lung during early 129 

branching morphogenesis (Embryo day 7.5 (E7.5)) caused bilateral pulmonary hypoplasia with the 130 

pups dying within a few hours of birth, whereas deletion at the end of branching morphogenesis 131 

(E15.5) resulted in lungs that were of similar size and gross appearance to wild type lungs[40]. 132 

Conversely, in primates, adenoviral-induced TGF-1 overexpression during the later canalicular or 133 

saccular stages resulted in lung parenchymal hypoplasia and fibrosis of the interstitial reticulum, 134 

pleural membranes, and alveolar septa[41]. Together, these studies indicate that correct early 135 

expression of TGF-1 may be needed for normal lung development. It has been suggested that the 136 

lack of aberrant lung development in the TGF-β1 null mouse despite clear developmental effects in 137 

other models could be due to maternal transfer of TGF-β1[42]. In contrast, ex vivo tissue models have 138 

demonstrated that inhibition of TGF-β2 with anti-sense oligonucleotides can inhibit both early lung 139 

branching and secondary branching while inhibition of either TGF-β1 or TGF-β3 had no effect[43]. 140 

While it is clear that further research is needed to fully delineate the exact differential roles of the 141 

TGF-β isoforms in branching morphogenesis and lung development, the studies described above 142 

support the concept that tight temporal control of each isoform is critical.  143 

 144 

While temporal regulation of TGF- isoforms and associated signaling proteins is clearly important for 145 

normal lung development, spatial regulation of expression is also crucial. Expression of TGFBRII, a 146 

receptor that is fundamental to promoting signaling by TGF-β isoforms, is restricted to the airway 147 

epithelium in the early embryonic stage (E11.5) whereas by the pseudoglandular stage (E14.5) 148 

expression is found in both epithelial and mesenchymal cell compartments[44]. Additionally, in the 149 

pseudoglandular stage, TGF-β1 gene expression is found within the mesenchyme yet TGF-β2 150 

transcripts are largely absent in the mesenchyme yet present in the distal epithelial, and TGF-β3 151 

transcripts are found in the mesenchyme and mesothelium[45].  152 

 153 

Further, evidence of the importance of spatial regulation of TGF-β has been demonstrated in mice 154 

with cell-type specific knock outs of proteins crucial to TGF-β activation and signaling. The guanine 155 

nucleotide-binding proteins Gαq/11 are crucial for integrin-mediated TGF-β activation in lung epithelial 156 
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cells[46]. Mice lacking Gαq/11 in surfactant protein C (SpC)-positive type 2 alveolar epithelial (AT2) 157 

cells have significantly reduced active TGF-β1 and associated Smad2 signaling, and develop 158 

progressive postnatal alveolar inflammation and lung parenchymal abnormalities, including thickened 159 

alveolar walls and increased mean linear intercept (MLI) (analysis of airspace size, is inversely 160 

proportional to alveolar surface area), together with an obstructive lung function deficit[46]. This 161 

suggests a critical role for integrin-mediated TGF-β1 activation in maintaining lung homeostasis and 162 

normal development postnatally. Additionally, mesenchymal cell-specific deletion of Gαq/11 also 163 

impacts lung development with mice developing increased MLI, thickened alveolar walls, reduced 164 

numbers of secondary crests and abnormal pulmonary vessels by postnatal day 14, a phenotype that 165 

closely resembles BPD[47]. Early evidence suggests a role for TGF-β2 in the development of this 166 

phenotype since lung TGF-β2 levels were reduced and knockdown of Gq/11 in human lung 167 

fibroblasts reduces expression of TGF-β2[47]. Further research is needed to fully delineate the 168 

individual roles of TGF-β isoforms in normal lung development and the pathogenesis of BPD. 169 

 170 

In addition to roles for TGF-β isoforms in lung development, research demonstrates that other 171 

members of the TGF-β superfamily of proteins are critical during normal lung development and in the 172 

pathogenesis of BPD. BMP signaling is active during the later stages of lung development, particularly 173 

in the saccular and alveolar developmental stages, and has been heavily implicated in normal 174 

branching morphogenesis in the developing lung [30, 48-50]. BMP4 in particular has a critical role in 175 

normal lung development[32, 51, 52] but lung abnormalities have also been described in mice lacking 176 

other functional BMPs including Bmp5[53], and in the Bmp9/10 double knockout mouse[54]. Evidence 177 

from mouse models of BPD suggests that BMP expression and signaling is reduced[34, 55, 56], and 178 

recent data demonstrate an inverse correlation between protein levels of bone morphogenetic protein 179 

receptor type 2 (BMPR2) and the development of lung structural changes in preterm neonates[55]. 180 

Furthermore, BMP-9 can protect against impairment of alveolarization in a hyperoxia in vivo model of 181 

BPD[57].  182 

 183 

BMP signaling is heavily implicated in the development of pulmonary hypertension, which as 184 

previously discussed, is associated with BPD pathogenesis. Loss of function mutations in the BMPR2 185 

gene are involved in a large proportion of both familial and idiopathic cases of pulmonary arterial 186 
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hypertension[58] and genetic mutation of Bmpr2 in rats causes the spontaneous development of 187 

pulmonary and cardiac characteristics of pulmonary artery hypertension[59]. Functionally active 188 

BMPR2 signaling promotes pulmonary endothelial cell survival[60] and targeted delivery of BMPR2 189 

attenuates pulmonary hypertension in rats[61]. Crucially, there is crosstalk between TGF-β and BMP 190 

signaling pathways[62], meaning that alterations in either TGF-β or BMP levels are likely to 191 

dramatically impact both signaling pathways, which could be important in the pathogenesis of BPD. 192 

 193 

It is clear from the above discussed studies that TGF- isoforms, as well as other members of the 194 

TGF-β superfamily, must exist at a tightly controlled equilibrium with under or overexpression leading 195 

to impaired lung development and an abnormal lung phenotype, either directly or through interactions 196 

with other signaling pathways. Understanding the relationship between antenatal lung development, 197 

TGF- and risk factors in BPD development is therefore key. 198 

 199 

Link between antenatal BPD risk factors and altered TGF- signaling  200 

Although the association between fetal growth restriction or being small for gestational age (birth 201 

weight <10th centile) and BPD development is likely multifactorial, they are both recognized antenatal 202 

risk factors for the development of BPD [63]. Induction of intrauterine growth restriction (IUGR) in rats 203 

resulted in impaired alveolar development of the rat pups, which was associated with decreased TGF-204 

1 expression, downregulation  of the TGF- responsive gene plasminogen activator inhibitor-1 (PAI-205 

1) and dysregulation of the composition and remodeling of the ECM components [64]. Despite 206 

reintroduction of a normal diet at birth and pups displaying catch up growth, respiratory abnormalities 207 

including alveolar simplification and a 30% reduction in MLI persisted. This study supports a separate 208 

earlier study in rats showing that IUGR causes decreased TGF-β1 expression[65]. Moreover, human 209 

placental tissue from pregnancies affected by idiopathic fetal growth restriction have increased 210 

expression of transforming growth factor-β-induced factor (TGIF-1)[66], which is a known repressor of 211 

TGF-β signaling. Conversely, reports of increased TGF-β expression at postnatal day 21 in rats with 212 

IUGR exist [67] and IUGR in mice causes airway stiffening[68], which is linked with altered TGF-β 213 

signaling[69]. 214 

 215 
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Chorioamnionitis is another factor that increases the risk of BPD[70, 71]. The relationship between 216 

chorioamnionitis, TGF- and BPD was explored using intra-amniotic lipopolysaccharide (LPS)-217 

induced chorioamnionitis animal models. Rat pups, whose mothers were injected with LPS on 218 

embryonic day 16.5, demonstrated pathological features of BPD including fewer terminal air spaces 219 

and secondary septa by postnatal day 7[72]. In sheep, exposure of fetal lambs to intra-amniotic LPS 220 

caused an increase in lung TGF-1 protein and mRNA levels[73, 74] as well as increased Smad2/3 221 

signaling[74-76]. Additionally, levels of endoglin, a component of the TGF-β receptor complex, are 222 

increased in the amniotic fluid of women with chorioamnionitis and overexpression of endoglin in the 223 

amniotic fluid of pregnant rats causes decreased alveolarization and vascularization in the rat 224 

pups[77]. 225 

 226 

As discussed previously, tight control of TGF-β is required to maintain homeostasis and allow correct 227 

lung development. The above in vivo animal model studies together with known roles of TGF-β 228 

signaling in lung development provide an insight into how disrupted TGF-β signaling antenatally might 229 

contribute to aberrant lung development and therefore increased risk of BPD (illustrated in Figure 2). 230 

It is worthy of note that much of the above work has focused on the role of TGF-β1 and much less is 231 

known about the relationship between antenatal risk factors and expression and/or activity of TGF-β2 232 

and TGF-β3. 233 

 234 

Effect of postnatal BPD risk factors on TGF- signaling  235 

 Mechanical ventilation is an essential treatment strategy in the management of preterm infants, 236 

however there is increasing recognition that their lungs are particularly susceptible to ventilatory 237 

induced lung injury [7], and the need for mechanical ventilation is a well-known risk factor for the 238 

development of BPD[78, 79]. Early mechanical ventilation in neonatal mice recapitulates the BPD 239 

phenotype of abnormal alveolar development with larger, fewer alveoli, increased elastin redistribution 240 

throughout the distal airspaces, and increased apoptosis [80-83].  241 

 242 

There is now a wealth of evidence supporting a link between mechanical ventilation and altered TGF-243 

β activation in the lungs. Significant correlations between mechanical power of ventilation and levels 244 

of TGF-β1 in patients with acute respiratory distress syndrome are evident[84] Neonatal mice 245 
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exposed to 24 hours of mechanical ventilation exhibited a stretch-induced increase in TGF- 246 

activation and a dramatic increase in the TGF-β signaling protein pSmad2 protein in the lungs [80, 247 

82].  These effects were also seen in the developed lungs of adult mice who were subjected to 248 

volutrauma (expansion induced injury) outside the period of alveolar lung development[85, 86]. 249 

Moreover, applying mechanical stretch to ex vivo lung tissue strips activates TGF-β[87]. It is proposed 250 

therefore that the cyclical stretch of lung tissue involved in mechanical ventilation, a known activator 251 

of the TGF- signaling pathway, is responsible for increased TGF- signaling and the abnormal lung 252 

development and BPD phenotype seen in these animal studies. This is further supported through 253 

alveolar SpC specific deletion of Gq/11 in mice as described above[86]. Here, these mice were not 254 

able to generate the increase in TGF-1 in response to high pressure ventilation and were protected 255 

from ventilatory induced lung injury [86].  256 

 257 

Exposure to high amounts of oxygen is another key driver in BPD. Although adequate oxygen is 258 

critical for preventing hypoxia, a balance exists to provide adequate oxygen whilst minimizing 259 

oxidative stress[88]. Oxygen toxicity is crucial in understanding BPD development and has formed the 260 

basis of numerous animal studies. Northway demonstrated severe changes to pulmonary 261 

development following exposure of neonatal mice to 100% oxygen with progressive fibrotic lung 262 

tissue deposition, bronchitis, bronchiolitis, emphysema and inhibition of lung growth seen[89]. Since 263 

then, neonatal rodent models have repeatedly demonstrated abnormal lung development in response 264 

to hyperoxia with neonatal pups exhibiting alveolar simplification with increased MLI, decreased 265 

alveolar number, gas exchange and disordered elastin and collagen deposition[89-97]. Over 266 

prolonged exposure, animals also developed thickened alveolar septum, excessive alpha-smooth 267 

muscle actin (SMA) staining, increased myofibroblasts on the septal crests indicative of fibrotic 268 

changes [97, 98] and hindered pulmonary microvascular development[90, 96]. Recently single cell 269 

sequencing studies have demonstrated that hyperoxia causes dramatic changes in alveolar epithelial 270 

cell populations in the lung and alters the transcription profile of genes known to be associated with 271 

BPD development, including the protease inhibitor Slpi and the immune regulator Mif [99, 100]. 272 

Pathway analysis showed that pathways associated with lung, endothelial and alveolar development 273 

were downregulated in response to hyperoxia[99]. Crucially, similar RNA sequencing studies have 274 
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demonstrated that early life exposure to hyperoxia leads to lasting changes in the cellular composition 275 

of the lungs that persist into adulthood[101]. 276 

 277 

Numerous in vitro and in vivo studies have demonstrated a link between exposure to hyperoxia and 278 

TGF- signaling. Expression of TGF-1 was increased in vitro in A549 lung cells in a concentration 279 

dependent manner in response to varying oxygen concentrations (40%, 60% and 95%)[102]. 280 

Furthermore, multiple in vivo studies have also demonstrated TGF- overexpression in response to 281 

hyperoxia.  Mice pups exposed to 85% oxygen from postnatal days 1-20 exhibited increased TGF-1 282 

expression throughout the alveolar walls and increased pSmad2/pSmad3, suggesting increased TGF-283 

β1 activation. Importantly, administration of intraperitoneal TGF- neutralizing antibody subsequently 284 

dampened phosphorylation of Smad2/Smad3 and resulted in improvements in alveolarization and 285 

elastin deposition[93]. In separate studies, exposure of mice to 85% oxygen increased mRNA 286 

expression of all three TGF- isoforms, TGFR1+2 and pSmad2/3[103]. TGFR3, the co-receptor 287 

needed primarily for ligand binding of TGF-2 to the TGFR2, was reduced. In rats TGF-1 and ALK5 288 

(aka TGFR1) mRNA and protein increased alongside a significant reduction in ALK1 and Smad1/5 289 

pathway signaling, suggesting decreased BMP signaling[35].  290 

 291 

TGF-2 may also be affected by hyperoxia. Ahlfeld and colleagues demonstrated varying TGF-β 292 

isoform expression and signaling in mice exposed to 85% oxygen [95, 104] (Figure 3 for overview). 293 

Whilst all TGF-β isoforms were initially reduced, at day 2 of hyperoxia exposure TGF-1 was initially 294 

still the predominant isoform, however, by day 7 during peak alveolar development, TGF-2 was the 295 

predominant isoform. Interestingly here, following continuous oxygen exposure mice subsequently 296 

developed TGF-2, pSmad2, and TGFBI overexpression, as opposed to TGF-1 in alveolar tissue by 297 

day 14[104].  298 

 299 

Overall, these studies demonstrate that exposure of the postnatal lungs to hyperoxia results in 300 

alveolar growth abnormalities in rodents, and that there is a growing body of evidence showing a 301 

potentially fundamental role for dysregulation of TGF-β isoforms in hyperoxia-induced lung structural 302 

changes. 303 
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Further in depth understanding of this is key given the established risk of high oxygen exposure and 304 

development of BPD in preterm infants.   305 

 306 

Impact of BPD therapies on TGF-β signalling  307 

There are currently limited treatments in the prevention and treatment of BPD[105] and establishing 308 

the best treatment for lung damage in premature babies was identified as a research priority for 309 

preterm birth[106]. Improved understanding of the mechanism of action of drugs currently in use 310 

would help to optimize their use, improve them and develop more targeted therapies, to ultimately 311 

improve the care and treatment of patients with BPD. Current pharmacological therapies available in 312 

the prevention and treatment of BPD include caffeine citrate, postnatal steroids, diuretics, 313 

azithromycin and vitamin A[12, 107]. Although each has a broad spectrum of physiological and 314 

molecular consequences, some may interact with TGF- signaling.   315 

 316 

Caffeine citrate is one of the most widely prescribed drugs in neonatology[108] and reduces the rates 317 

of BPD, intraventricular hemorrhage and neurodevelopmental impairment amongst preterm 318 

infants[109]. The Caffeine for Apnea of Prematurity trial for the use of caffeine citrate in preterm 319 

infants attributed the increased incidence of BPD amongst its control group to the extended time this 320 

group required positive pressure ventilator support[110]. However, there are potentially other effects 321 

of caffeine which may explain the decreased BPD incidence with caffeine treatment. Caffeine has 322 

been shown to antagonize TGF--induced Smad signaling in a concentration dependent manner in 323 

lung epithelial cells and reduced collagen deposition in an ex-vivo precision-cut lung slice model of 324 

pulmonary fibrosis, suggesting that caffeine inhibits profibrotic effects of TGF-[111]. In animal studies 325 

of BPD, mouse lung cells exposed to caffeine demonstrated reduced expression of TGFR1, 326 

TGFR3, total Smad2, pSmad2 and downstream gene expression (CTGF and PAI)[94, 112, 113]. 327 

However, although caffeine normalized Smad2 phosphorylation in hyperoxia induced BPD mice 328 

studies it was not able to improve the impaired alveolar structure as a result of hyperoxia[94]. It is 329 

possible that caffeine’s mechanism of action may be multifactorial, working through a combination of 330 

reducing apneic events and time requiring mechanical ventilation (thus reducing cyclical stretch 331 

induced TGF- activation) as well as directly inhibiting the TGF- activation and signaling itself.  332 

 333 
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Steroids have a role in the antenatal management of preterm labor[114] and postnatally to reduce the 334 

incidence of respiratory disease and BPD in extremely preterm infants[115, 116]. Yet the relationship 335 

between the use of postnatal systemic corticosteroids, in particular dexamethasone and adverse 336 

neurological outcomes resulted in their use mainly being reserved for infants with severe BPD[117-337 

119]. However, a renewed more cautious approach has since begun using early prophylactic steroids 338 

to prevent BPD in high-risk infants. Recently a series of multicenter randomized controlled trials 339 

(RCTs) have examined the use of early prophylactic low dose hydrocortisone[120] or inhaled 340 

budesonide[121] in high-risk infants to prevent BPD. These both demonstrated a reduction in the 341 

incidence of BPD following prophylactic steroid administration[120-123]. The use of inhaled 342 

budesonide in conjunction with surfactant may offer additional benefits with lower rates of BPD or 343 

death compared to those given surfactant alone (42% vs 66%)[124] with an ongoing RCT 344 

(ACTRN12617000322336) further investigating this[125]. 345 

 346 

Steroids likely exert their effects through multiple biological pathways, including TGF- signaling. Mice 347 

embryonic fibroblasts stimulated with TGF-1 followed by a glucocorticoid (either dexamethasone, 348 

budesonide, fluticasone or methylprednisolone) exhibited attenuated TGF-1 activity, demonstrated 349 

through reduced activation of the downstream Smad3 binding element, CAGA. Dexamethasone also 350 

reduced Smad 2/3 signaling and increased signaling via the TGF-/Smad 1 axis[126]. 351 

Dexamethasone in particular may interact with multiple aspects of TGF- signaling. It was able to 352 

interrupt av6 integrin expression; a known activator of TGF-1 which is usually increased in fibrosis 353 

in a bleomycin induced fibrosis animal model[127], and may require TGFR3 interaction in order to 354 

act[126]. Using in vitro primary mouse lung fibroblasts, where ablation of the tgfr3 gene results in 355 

increased TGF-1 induced gene activation, dexamethasone loses its ability to dampen the effects of 356 

TGF-1 in the knockout cells[126]. 357 

 358 

However, conflicting results indicate that understanding this interaction is challenging, and that the 359 

different isoforms may respond differently to stimulation with steroids. Fehrholz and colleagues 360 

assessed the concurrent use of steroids and caffeine in human lung epithelial cells. Here no effect on 361 

TGF-1 mRNA expression was observed in cells treated with either dexamethasone, caffeine or in 362 

combination[128]. However, there was a small increase in TGF-2 and TGF-3 in the presence of 363 
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dexamethasone with a further rise in TGF-3 mRNA expression seen when caffeine and 364 

dexamethasone were used in combination[128]. Overall, dexamethasone appears to influence TGF- 365 

isoform expression, activation and downstream signaling, however its exact impact on TGF- isoform 366 

signaling and these translational effects in clinical practice are still to be fully understood. 367 

 368 

Retinoic acid and its biologically active form vitamin A are essential for induction of the primordial lung 369 

bud in lung development and moderating TGF- signaling. Disruption of retinoic acid resulted in 370 

inhibited lung bud development and increased intracellular pSmad2 and connective tissue growth 371 

factor (CTGF) in mice [129, 130]. Additionally, vitamin A was demonstrated to partially improve 372 

alveolar underdevelopment in preterm lambs exposed to mechanical ventilation. In this study, lambs 373 

who received daily intramuscular vitamin A developed a heterogenous lung appearance of both 374 

alveolar simplification and more appropriate alveolar formation. They had enhanced blood vessel 375 

growth, longer alveolar secondary septae, thinner air space walls and a greater alveolar number 376 

compared to controls. Furthermore, the vitamin A treatment group also had reduced TGF- activity 377 

with reduced pSmad2 on immunostaining and increased vascular endothelial growth factor mRNA 378 

(required for vascular development)[131]. Vitamin A therefore could be important in promoting correct 379 

lung and vascular maturation and reducing the risk of BPD development. In preterm infants, daily 380 

intramuscular vitamin A supplementation results in a small reduction in the risk of death and oxygen 381 

requirement in BPD[132]. However, although it may offer some protective effects against BPD, its 382 

intramuscular route of administration and modest clinical benefits likely accounts for this not 383 

translating into widespread clinical practice. More recently, inhaled administration has been explored 384 

in neonatal rat hyperoxia BPD models. This showed promising results by mitigating the effects of 385 

hyperoxia induced lung damage and enhanced alveolar maturation compared to the intramuscular 386 

route[133]. This has not been translated into clinical studies. 387 

 388 

Emerging treatments in BPD 389 

Azithromycin is a second-generation macrolide commonly used in the treatment of ureaplasma 390 

urealyticum; the most common organism causing chorioamnionitis, a risk factor for BPD development 391 

[134]. A systematic review and meta-analysis (n=3 studies) showed the use of prophylactic 392 

azithromycin at birth led to a significant reduction in the risk of developing BPD (Risk ratio 0.86 (95% 393 
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CI 0.77-0.97) with a number need to treat of 10[135]. Macrolides have well described anti-394 

inflammatory properties and may act via number of mechanisms[136]. In bleomycin induced fibrosis 395 

mouse models,  mice treated with azithromycin had significantly reduced fibrosis and restrictive lung 396 

deficits[137]. One mechanism which azithromycin acts may be through inhibition of TGF- induced 397 

myofibroblast differentiation[138]. Additionally, fibroblasts taken from adult patients with pulmonary 398 

fibrosis (IPF) exposed to a combination of both TGF-1 and azithromycin had enhanced anti-fibrotic 399 

and pro-apoptotic effects compared to TGF- stimulated IPF fibroblasts[139]. Although we found no 400 

published studies on azithroymcin and TGF- signaling in relation to BPD the above studies suggest 401 

there is merit in further research in this area. In the UK, a large multicenter randomized controlled trial 402 

has completed recruitment (ISRCTN11650227) assessing the effectiveness of a 10 day course of 403 

prophylactic azithromycin from birth in infants less than 30 weeks, with the primary outcomes of 404 

diagnosis of BPD and mortality at 36 weeks post-menstrual age[140]. 405 

 406 

Stem cells are a potentially exciting therapeutic strategy in regenerative medicine. Studies have 407 

moved over the last 10 years from initial proof of concept studies towards recruitment for RCTs 408 

(NCT03645525, NCT03392467)[141-144]. In humans, a phase 1 trial delivered intratracheal human 409 

umbilical cord blood-derived mesenchymal stem cells (MSCs) to preterm infants at high risk of 410 

developing BPD. Although this was a feasibility study with a small sample size, no infant in the 411 

treatment group was discharged home with supplemental oxygen (compared with 22% in the control 412 

group). Furthermore, a reduction in proinflammatory cytokines including TGF- was seen in tracheal 413 

aspirates of infants in the treatment group by day 7[145, 146]. A phase 2 trial also using intratracheal 414 

administration of MSCs showed similar promising results, with a reduction of severe BPD in infants 415 

born at 23-24 weeks gestation (19% BPD in the intervention group vs 53% BPD in the control 416 

group)[147]. Animal studies have shown improvements in the pulmonary architecture of animals 417 

following MSC administration. MSC administration reduced oxygen-induced lung damage, 418 

inflammation and fibrosis [148-150] whilst intraperitoneal administration of human amnion epithelial 419 

cells reduced alveolar simplification and improved body weight in mice[149]. Stem cells could also 420 

dampen TGF-1 expression and downstream signaling in BPD animal studies[148, 150].   421 

 422 

Conclusion 423 
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TGF- is a complex and important cell signaling pathway implicated in a number of respiratory and 424 

fibrotic disease pathways and plays a key role in BPD development. The correct balance of TGF- 425 

isoform expression, activation and downstream signaling is essential for normal lung development 426 

and can be influenced by multiple risk factors implicated in BPD development. Current treatments 427 

already in use in neonatology may exert their mechanisms of action, at least in part, through 428 

modulating TGF- signaling.  However, most of the research currently investigating this is limited to in 429 

vitro and rodent animal models with very few studies in larger animals or translated into clinical 430 

practice. More research and understanding of this important cell signaling pathway and its interaction 431 

with other related pathways could be further explored and aid in the development of more targeted 432 

treatment strategies for use in the management of BPD.   433 

 434 

 435 

List of abbreviations  436 

ALK: Activin receptor-like kinase (aka TGFβR1) 437 

ASM: Airway smooth muscle 438 

BMP: Bone morphogenetic proteins  439 

BMPR2: Bone morphogenetic protein receptor type 2 440 

BPD: Bronchopulmonary dysplasia  441 

CTGF: Connective tissue growth factor  442 

ECM: Extracellular matrix  443 

IUGR: Intrauterine growth restriction  444 

LAP: Latency associated peptide 445 

LCC: Large latent complex  446 

LPS: Lipopolysaccharide 447 

LTBP: Latent TGF-β binding protein 448 

MLI: Mean linear intercept 449 

MSC: Mesenchymal stem cells  450 

MV: Mechanical ventilation 451 

NICHD: National Institute for Child Health and Human Development  452 

PAI-1: Plasminogen activator inhibitor-1 453 

PH: Pulmonary hypertension 454 

PMA: Postmenstrual age  455 

RCT: Randomized control trial  456 

αSMA: alpha smooth muscle actin  457 

SGA: Small for gestational age  458 

SpC: Surfactant protein C 459 

TGIF-1: Transforming growth factor beta induced factor 460 
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TGF-β: Transforming Growth Factor beta  461 

TGFBI: TGF-β induced matricelluar protein  462 

TGFβR: Transforming Growth Factor beta receptor  463 

 464 
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Figure 1. Risk factors associated with the development of bronchopulmonary dysplasia. Image adapted 

from Davidson et al [23].  
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Antenatal TGF-β expression 

Increased TGFβ antenatally:  
- Impaired lung branching, secondary 

septae and alveoli number  
- Interstitial fibrosis  

- Increased ECM deposition  
- Increased myofibroblasts  

Reduced TGFβ antenatally:  
- Pulmonary agenesis/ hypoplasia 

- Impaired branching morphogenesis 
- Alveolar simplification   

Figure 2. Effect of antenatal under and overexpression of TGFβ on lung development  
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TGF-β decreased  

Reduced pSmad3 and TGFBI,  
Increased follistatin  

Increased ALK5, 
pSmad2,3, TGFBI 

TGF-β increased  

Reduced ALK1, Smad5 

Figure 3. TGF-β expression in response to hyperoxygenation. 
Initially TGF-β activity decreased in response to 
hyperoxygenation however following prolonged exposure, TGF-
β activity and downstream signalling increased with increased 
pSmad2/3.  
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Table 1. Expression of TGF- isoforms and associated KO phenotypes in mice [25, 36] 
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The role of TGF-β in bronchopulmonary 
dysplasia 

RESULTS

CONCLUSION The correct balance of TGF-β isoform expression, activation and signaling is 
essential for normal lung development and can be influenced by multiple risk factors implicated in 

BPD development.

Development of 
bronchopulmonary dysplasia and 

pulmonary hypertension 

Affect on 
TGF-β

Postnatal risk factors: 
High oxygen concentrations 
Mechanical ventilation

Under or overexpression of 
TGF-β antenatally and 

postnatally

Caffeine citrate
Postnatal steroids 
Retinoic acid and vitamin A
Azithromycin
Stem cell therapy  

Antenatal risk factors: 
Chorioamnionitis
IUGR
Maternal tobacco smoking  
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