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Dynamic, adaptive sampling during 
nanopore sequencing using Bayesian 
experimental design
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Ewan Birney    1, Matthew Loose    2 & Nick Goldman    1 

Nanopore sequencers can select which DNA molecules to sequence, 
rejecting a molecule after analysis of a small initial part. Currently, selection 
is based on predetermined regions of interest that remain constant 
throughout an experiment. Sequencing efforts, thus, cannot be re-focused 
on molecules likely contributing most to experimental success. Here we 
present BOSS-RUNS, an algorithmic framework and software to generate 
dynamically updated decision strategies. We quantify uncertainty at each 
genome position with real-time updates from data already observed. 
For each DNA fragment, we decide whether the expected decrease in 
uncertainty that it would provide warrants fully sequencing it, thus 
optimizing information gain. BOSS-RUNS mitigates coverage bias between 
and within members of a microbial community, leading to improved variant 
calling; for example, low-coverage sites of a species at 1% abundance were 
reduced by 87.5%, with 12.5% more single-nucleotide polymorphisms 
detected. Such data-driven updates to molecule selection are applicable to 
many sequencing scenarios, such as enriching for regions with increased 
divergence or low coverage, reducing time-to-answer.

Long-read sequencing provides the ability to generate reliable reads 
consisting of multiple kilobases or even megabases1. Such ultra-long 
reads are highly useful for many genomics applications—for exam-
ple, increasing assembly contiguity, even allowing the construction 
of telomere-to-telomere assemblies2,3; interrogating variation in 
hard-to-decipher regions of a genome, such as repeats, centromeres 
or segmental duplications4; or generating chromosome-level  
epigenetic maps5.

One way of generating long reads is through the use of nanopo-
res. This concept, first explored in the 1980s, was commercialized by 
Oxford Nanopore Technologies (ONT)6. It relies on the idea of using 
a protein nanopore as a biosensor, permitting measurement of fluc-
tuations of an ionic current across the pore caused by the presence of 
nucleotides of a translocating DNA or RNA molecule. Single-molecule 

sequencing is possible without the need for prior amplification and can 
also be used to directly read RNA without reverse transcription7. The 
generation of sequencing reads in real time, which, in combination with 
fast library preparation, immensely reduces the time needed to go from 
biological sample to data analysis, enables (for example) intraoperative 
decision-making8, improved global food security by rapid identifica-
tion of plant viruses9 and portable genomic surveillance10. Over the 
past years, nanopore sequencing error rates have decreased to ~1%11, 
approaching the accuracy of short-read platforms.

A unique feature of nanopore sequencing is the possibility 
to reverse the voltage across the pores to reject fragments before 
reading them in their entirety, termed adaptive sampling or ‘Read 
Until’12,13. This enables selection of molecules for sequencing based on 
real-time assessment of a small initial part of a read rather than complex 
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from a sequencing read. This is based on starting location and orien-
tation as well as the distribution of previously observed read lengths  
(Fig. 1d). Ultimately, a sequencing read that is expected to give a higher 
sum of scores—that is, a greater reduction in the uncertainty of geno-
types at the positions it covers—will be considered more useful than a 
read with limited potential to alter the site-wise posterior probabilities.

Using the expected benefit of reads, we can define criteria for 
making decisions about which fragments to sequence fully and which 
to reject from nanopores. Note that, in line with common usage, we 
refer to DNA molecules and their translation into sequence space inter-
changeably as ‘fragments’ and ‘reads’. Our aim is to optimize the rate 
of accumulation of information—that is, of expected benefit—across 
all pores and over time. As we collect data throughout the sequencing 
experiment, the value of reads at different positions will change, and, 
therefore, the decision strategy adapts to these changes dynamically 
in real time. The strategies are found by ranking sites according to 
their expected read benefit, taking into account the expected time of 
sequencing them (Fig. 1f). This way, we can calculate the optimal sub-
set of sites to accept reads from, to increase the gain of benefit at that 
moment in the experiment. Resulting strategies are stored as Boolean 
vectors, indicating the intended decision about a read starting at any 
genomic position (Fig. 1e).

We call our approach of finding an optimal strategy BOSS-RUNS: 
‘Benefit-Optimising Short-term Strategy for Read Until Nanopore 
Sequencing’. Further methodological details, overview of parameters 
and variables in the model and proof of optimality are given in the 
Methods, in Supplementary Methods and in Supplementary Table 1.

Real-time implementation. BOSS-RUNS is implemented in Python, 
available at https://github.com/goldman-gp-ebi/BOSS-RUNS, and 
interacts with the sequencing device through readfish14 and the Read 
Until API13. BOSS-RUNS periodically includes all new data by mapping 
newly observed basecalled reads to one or more reference genomes 
using minimap2 (ref. 19).

Dynamic enrichment of differentially abundant species
Experimental setup. Enrichment of ROIs by rejecting unwanted reads 
was previously demonstrated12,14,20. BOSS-RUNS can be applied more 
generally and makes use of targeted rejections even in the absence 
of specific ROIs. Here, we consider a scenario of whole-genome rese-
quencing where the entire genome is considered of interest, and we 
showcase a scenario with ROIs in Supplementary Results, Section 2.

One situation where the possibility of redistributing data is very 
effective is in the presence of coverage bias, either within or across 
genomes. Our first experiment has two major goals: to mitigate cov-
erage bias across multiple differentially abundant genomes and to 
demonstrate that our ‘dynamic’ approach can increase sampling from 
variant or difficult-to-resolve sites without prior knowledge of their 
location. Therefore, we sequenced eight bacterial species of the Zymo-
BIOMICS microbial mixture (ZymoBIOMICS DNA Standard II D6311, 
Zymo Research) with logarithmically distributed abundances (the most 
abundant species comprising 90% of total DNA, the second most abun-
dant species comprising approximately 9%, the third most abundant 
species comprising 1%, etc.; Fig. 2a). To measure the performance of 
BOSS-RUNS against a control sequencing run, we divided the available 
pores on a single flowcell into two sets and ran BOSS-RUNS on one set, 
whereas we performed no rejections on the other.

To mimic a realistic sequencing experiment where the exact bacte-
rial strains are unknown, we used reference assemblies of closely related 
strains (Methods). This also allowed us to evaluate how our method 
focuses on sites that differ between reference and experimental sample.

BOSS-RUNS strategy. During sequencing, we can observe how the 
decision strategy changes over time. As the genomes of individual 
bacteria are continuously resolved—that is, we become more certain 

sample preparation. Initially, identifying fragments’ genomic origin 
was achieved by matching the electrical signal directly to reference 
genomes translated into simulated current traces. Recent improve-
ments, however, harness the computing power of GPUs for real-time 
basecalling, making it possible to use optimized bioinformatics tools 
for further processing—for example, read mapping14. This has led to 
much interest in experiments that can be aided by real-time selection 
of molecules for sequencing (see, for example, refs. 15–18).

In current implementations, decisions about which fragments to 
read or reject are based on a priori decisions—for example, of regions of 
interest (ROIs) in a genome12,14. This restricts their application to a narrow 
range of problems where sufficient information is available in advance of 
sequencing a potentially poorly characterized sample. We hypothesized 
that such decisions could also incorporate information obtained from 
already sequenced fragments generated in the current sequencing run.

During a sequencing experiment, the distribution of coverage 
depth might not correspond well to the requirements of the experi-
ment—for example, when determining variant sites (Fig. 1). Commonly, 
at present, the overall coverage would have to be increased to ensure 
sufficient sampling throughout, causing wasteful data acquisition in 
regions that are not of continued interest. We address this issue by 
generating dynamic decision strategies that redistribute coverage 
to positions of greatest value at any time during an experiment. Our 
method can focus sequencing on variant sites, without a priori knowl-
edge of their location, increasing the accuracy of called genotypes. 
Furthermore, it can divert sequencing resources away from regions 
with high coverage toward regions with low coverage, leading to more 
homogeneous distribution of sequencing reads.

To summarize, our approach of dynamic, adaptive sampling allows 
us to change what is sampled during sequencing in light of the already 
observed data, maximizing the information gain and ultimately leading 
to various potential advantages, such as reduced time-to-answer and 
increased confidence in called genotypes. We demonstrate our method 
by mitigating coverage bias in a microbial mock community, leading 
to higher coverage depth of low-abundance species, an increased limit 
of detection and improved variant calling.

Results
Model and implementation
Probability distributions of genotypes quantify uncertainty. We 
present a method that enables dynamic decision strategies during 
sequencing using nanopores. By calling it ‘dynamic’, we emphasize our 
extension of current approaches, which are limited to a priori choice of 
target regions. In this section, we give an overview of the methodology, 
with further details and formal explanations provided in the Methods 
and Supplementary Methods.

First, we capture the amount of information at each site of one or 
multiple genomes by considering a probability distribution over all 
possible genotypes. The prior of this distribution can be informed by 
reference genomes (in the sense of any assembly) and is subsequently 
updated as we collect data throughout the experiment—that is, we 
calculate a posterior probability distribution based on the observed 
nucleotides at that position. Additionally, ploidy and sequencing error 
probabilities are taken into account. This allows us to calculate the 
remaining uncertainty about the genotype at each site and how much 
information we might gain from one further read covering that site, 
which we call the ‘positional benefit score’ (Fig. 1c). Broadly speaking, 
positions that are already covered by many agreeing reads will receive a 
low score; conversely, positions covered by few, or contradictory, reads 
will score highly, as individual observations have higher potential to 
influence the posterior distribution.

Quantifying the information content of sequencing reads. Reads are 
derived from contiguous sections of a genome, so we combine these 
scores over adjacent sites to estimate the expected information gain 
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about the genotype at many sites—the proportion of positions at 
which we still require more information decreases. Due to the dif-
ferential abundance of the sample species, Listeria monocytogenes 
is considered mostly resolved after only a few minutes, followed 
later by Pseudomonas aeruginosa and Bacillus subtilis (Fig. 2b). 

Accordingly, the proportion of accepted reads demonstrates that the 
focus switches from the most abundant bacteria toward rarer species  
(Fig. 2c). As in ref. 14, all species’ abundances can still be accurately 
quantified by considering the total number of observed reads per 
species (Supplementary Fig. 1).
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Fig. 1 | Methodological overview of dynamic, active sampling. a, Different 
sites might require different levels of coverage; for example, sites lacking 
variation are resolved by few reads, and sites of particular interest require more. 
Accumulation of coverage beyond that necessary (observed coverage in gray, 
exceeding ideal coverage in orange) is wasteful, whereas other sites would 
benefit from observing more data (observed < ideal). b, Local fluctuations in 
the distribution of fragment origins also result in uneven coverage and reduced 
efficiency of sequencing. c, We quantify the genotype uncertainty at each site 
based on prior probabilities and data observed so far. The expected shift in 
uncertainty caused by observing a new read at that position is expressed as 
‘positional benefit score’. d, The expected benefit of a hypothetical read starting 
at each location is computed as the sum of accumulated positional scores, 

weighted by the probability of reaching those positions, illustrated for forward 
and reverse reads starting at two positions. e, A Boolean decision strategy for 
each position instructs the sequencer to either continue sequencing (1) or reject 
from the pore (0) a read that starts at that position. Stages c–e are updated and 
iterated throughout the sequencing experiment. f, Overview of our model of 
the sequencing process. A novel read is acquired, and, after sequencing its initial 
bases, its starting position and orientation are identified, determining its fate 
according to the current decision strategy (e). Upon rejection (upper path), the 
pore is freed, a new read is acquired and the model iterates from the beginning. 
Conversely, upon acceptance (lower path), the molecule translocates through 
the pore until all of its nucleotides are read. New read acquisition and model 
iteration then proceed as before.
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Fig. 2 | BOSS-RUNS strategy adapts during sequencing of the Zymo 
bacterial mixture. a, We sequenced eight bacterial species of the 
ZymoBIOMICS mixture with logarithmically distributed abundances covering 
seven orders of magnitude. Colors correspond to species as in b,c and e,f.  
b, After initially accepting any read from any considered genome, we quickly 
observe rejections from the most abundant bacteria, L. monocytogenes, 
followed by P. aeruginosa and B. subtilis. The plot shows the proportion 
of accepted positions in each speciesʼ genome over the duration of the 
experiment. c, The proportion of accepted fragments that derive from each 
bacterial strain demonstrates the effect of the changing decision strategy.  

The inset plot shows how the strategy rejects almost all L. monocytogenes reads 
after the first 10 minutes. d, The distribution of read lengths confirms that 
BOSS-RUNS rejects most sequencing reads, with a clear peak corresponding to 
rejected reads. Coverage distribution using BOSS-RUNS (e) shows depletion 
of DNA from more abundant genomes in turn for enrichment of rare species 
when compared to the control section on the flowcell (f). Accumulation of 
coverage over time is shown by the distributionsʼ shift to the right within 
panels. Results from the three least abundant species are omitted owing to 
non-obvious differences in this type of visualization.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01580-z

The rate at which individual genomes are resolved is not equal 
across all bacteria. For example, the proportion of accepted sites in 
L. monocytogenes or B. subtilis decreases to values close to 0, whereas 
P. aeruginosa approaches a level of ~5.8% and does so at a slower rate. 
In other words, some sites of P. aeruginosa require more data to be 
confidently resolved, and a portion of sites remains uncertain despite 
sampling data throughout the run. This is due, in part, to different levels 
of large-scale variants—that is, insertions and deletions—between the 
strains in the Zymo community and the reference genomes we used 
and, in part, to differential coverage bias within each species’ genome.

Given the large difference in abundance and the prompt resolu-
tion of L. monocytogenes, we expect most sequencing reads to be 
rejected throughout the experiment. Indeed, BOSS-RUNS ejects most 
molecules after initial assessment, resulting in a peak of observed read 
lengths at ~480 bp (Fig. 2d). When splitting the sequencing data by 
target species, we observe a separation of the read length distribution 
into rejected and full-length reads that corresponds to expectations 
given the proportion of rejected reads from each species (Supple-
mentary Fig. 2). The presence of a similar peak, even for rare species, 
indicates that some reads are also rejected. Most of these false rejec-
tions (84%) were due to inability to determine the source species from 
the initial fragment.

Improved sequencing of bacterial species. The effect of the changing 
decision strategy becomes evident when looking at the distribution of 
coverage depth over time. Coverage from the most abundant species is 
effectively redistributed to the scarcer species compared to the control 
(Fig. 2e,f). For example, for Escherichia coli and Salmonella enterica, 
which comprise only 0.1% of the input DNA, we achieve 3.9 and 4.0 times 
higher total yield compared to the control.

Changes in mean coverage over time confirm these observa-
tions. Sacrificing data from heavily sampled organisms enables us to 
obtain more DNA from rare species (Fig. 3a). For example, BOSS-RUNS 
achieves between 4.1 and 5.8 times higher average coverage of the 
scarce bacteria. The proportion of low-coverage sites (<5×) also high-
lights the advantage of our method. This quantity decreases quicker, 
and reaches lower final levels, compared to the control for all but the 
most abundant genome (Fig. 3b). The redistribution of data from 
regions already well covered to areas of low coverage is one of the main 
features of BOSS-RUNS. In the case of B. subtilis, for example, this leads 
to less than 5% of sites with coverage less than 5× with BOSS-RUNS, 
against ~44% for the control. In rare species, this improvement in sites 
at coverage >5× was not caused by reads mapping to repeats or other 
low-complexity regions (Supplementary Table 2).

Classifying individual sites as resolved when the posterior prob-
ability of one genotype at a site surpasses 0.99, we can count the sites 
that still require more data to reach that level of certainty. Again, 
BOSS-RUNS shows better performance by reaching lower numbers of 
unresolved sites in a shorter time (Fig. 3c).

Balancing coverage bias across genomes is not the only benefit: 
data are also redistributed within individual genomes. This effect is 
partly responsible for the gains described so far but may be some-
what concealed by species abundance differences. Using a measure 
of evenness that describes the uniformity of coverage distribution 
and is relatively independent of the absolute coverage21, we observe 
that BOSS-RUNS not only boosts the coverage of rare species but also 
ensures that coverage is more uniform within species, including those 
of higher abundance (Fig. 3d; for example, P. aeruginosa and B. subtilis). 
Even in cases where the total collected coverage of a strain is lower, it 
is possible that more uniform distribution of coverage could achieve 
a more desirable outcome of the experiment. Although in our experi-
ment this effect is not readily visible in Fig. 3 for L. monocytogenes, we 
note that the improved precision of single-nucleotide polymorphism 
(SNP) detection for this species (see below; Fig. 4b) could be due to 
these effects.

Redistributing coverage to undersampled sites. Another way to 
explore the redistribution of data within genomes is to examine the 
already observed coverage at the sites that a read maps to when the 
decision about that read was made. Because our method focuses on 
reads from areas of highest uncertainty, we expect the mean and mini-
mum coverage at sites spanned by accepted reads to be lower than 
at sites spanned by rejected reads. Indeed, these expectations were 
confirmed, emphasizing that BOSS-RUNS focuses on reads not only due 
to the abundance difference but also due to coverage variation within 
genomes and continues to sample from uncertain areas even after 
most of a species’ genome has been resolved (Supplementary Fig. 3)

Focused sequencing leads to improved variant calls. Next, we 
sought to perform variant calling for five of the bacterial species. (We 
excluded the three least abundant species, as we did not collect enough 
data to make reliable calls.) With this analysis, we tried to answer (1) 
whether we could successfully sample data from rare species to better 
identify variants and (2) whether BOSS-RUNS can effectively focus on 
sites where we observe variation and, therefore, increased uncertainty.

Our analysis is based on comparing inferred variants from data 
accumulated using BOSS-RUNS (or the control) to a ground truth 
derived from deep, short-read sequencing of the same strains  
(Methods). By making comparisons at multiple timepoints, we show 
how knowledge of variants accumulates over time (Fig. 4), which, in the 
future, could be used to optimize the duration of experiments needed 
to achieve particular levels of accuracy. For the most abundant species, 
L. monocytogenes, the decreased coverage with BOSS-RUNS leads to 
marginally lower sensitivity than for the control case. Nevertheless, 
high sensitivity is achieved in a very short time, and the effective redis-
tribution of coverage within this species’ genome leads to increased 
precision. In turn, however, for all other species, the increased and 
better-targeted coverage means that more variants are discovered, with 
improved sensitivity and precision compared to the control sequencing 
without read rejections.

Even for the two bacteria, P. aeruginosa and B. subtilis, which are 
considered mostly resolved by our method, leading to most reads being 
rejected, we still see an increase in sensitivity at later stages of the run 
(Fig. 4a). This is due to BOSS-RUNS’ ability to sample more data specifi-
cally at positions where this is conducive to reducing uncertainty. For 
example, after 600 minutes of sequencing, BOSS-RUNS finds 26,481 var-
iant sites in P. aeruginosa (sensitivity 0.79), whereas we observe 23,541 
SNPs from control data (sensitivity 0.68), despite the decision strategy 
rejecting fragments from >80% of the genome after the first 180 min-
utes. At the same time, the precision of variant calls on BOSS-RUNS’ data 
is either moderately higher or at a similar level to the control (Fig. 4b). In 
the rarer species, the advantage of BOSS-RUNS simply collecting more 
data is evident, as we are able to call SNPs at least in some regions (119 
and 80 SNPs after 600 minutes for E. coli and S. enterica, which make up 
0.1% of total input DNA, respectively), whereas the control data do not 
contain enough reads to produce any variant calls.

Finally, we found no evidence that repeatedly rejecting molecules 
would have a negative impact on the performance of the section on the 
flowcell running BOSS-RUNS (Supplementary Figs. 4 and 5)

Discussion
Our approach to dynamic, adaptive sampling for nanopore sequencing, 
implemented in BOSS-RUNS, provides a mathematical framework and 
fast algorithms to generate decision strategies that optimize the rate 
of information gain during resequencing experiments in real time. 
This leads to an increase in the sequencing yield of on-target regions, 
specifically at positions of highest uncertainty, and can effectively 
mitigate abundance bias or other sources of non-uniform coverage—for 
example, from enrichment library preparation procedures,— leading to 
smaller proportions of sites at low coverage depth and greater evenness 
of coverage. Furthermore, our methods lead to improved discovery of 
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more data from rarer species. As other genomes become resolved, a change 
in the rate of data accumulation is visible—for example, after ~180 minutes for 
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variants by both sampling more data from negatively biased regions or 
species in the input material and by focusing the sequencing on sites 
where the underlying genotype is not clear from the data observed up 
to that point in time.

Unlike existing adaptive sampling methods, our dynamic 
approach can change targets throughout an experiment to collect data 
where it is most useful. In common with any resequencing experiment, 
the only piece of prior knowledge that we require is a reference genome 
related to the organism(s) that we expect to observe in the sequenced 
material. Our method is, thus, potentially applicable to a wide array of 
biological problems, including studies of epigenetic modifications, 
which are now analyzable in real time with nanopore sequencing22,23. 
Additionally, it could harness the possibility of sequencing material 
other than genomic DNA, such as cDNA or RNA—for example, to cor-
rect abundance bias of transcripts. However, the shorter nature of 
fragments in these experiments and the presence of polyA tails at the 
start of sequenced fragments might reduce the potential benefit of 
BOSS-RUNS. Lastly, it could be used to overcome biases introduced by 
library preparation methods, such as exome pull-downs24.

The experiments presented have a mean read length of 3.11 kbp 
after amplification to achieve sufficiently high-molecular-weight DNA. 
This serves as a proxy for the challenging nature of extracting DNA 
from metagenomic samples, which often relies on harsh, multi-step 
procedures to ensure that cells from all contained species are lysed 
and genomic material is available for sequencing25. It was recently 
shown that average read length is a major determinant of the maximum 
level of enrichment using Read Until, with longer reads giving larger 
enrichment over the range of read lengths studied26. We would expect 
even greater benefits from dynamic adaptive sampling in experiments 
where longer reads were possible.

Depending on the underlying research question, a dynamic 
approach to adaptive sampling might not always be useful.  

For example, whereas our method inherently skews relative coverages 
in a mixture, accurate quantification remains possible by consider-
ing observed read counts instead (Supplementary Fig. 1). However, 
some experiments, such as detection of copy number variation, might 
require the preservation of underlying coverage information. Addition-
ally, our current model does not account for complex variants, such as 
large insertions or deletions or low-frequency variants, and, thus, the 
potential benefit of sampling additional data at such sites might not 
be captured accurately. We, therefore, note that experiments with dif-
ferent aims might require different models within BOSS-RUNS, and we 
anticipate development of these in future extensions to our method.

Computational complexity of our algorithmic framework cur-
rently restricts the real-time application to prokaryotic or small 
eurakyotic genomes if every site of the genomes is modeled. Together 
with aforementioned anticipated improved models, generating 
strategies for entire genomes, while modeling and calculating posi-
tional expected benefit scores only for a priori known variant sites, 
might enable the use of our method during sequencing of much 
larger genomes.

In some scenarios, the need for reference genomes could also be a 
limitation. We are, therefore, working on extending our framework in a 
reference-free implementation that performs de novo assembly of the 
observed sequencing reads in real time. Dynamic strategies of such an 
approach could be used to fill gaps and extend the contiguity of existing 
assemblies or allow for true de novo enrichment of unknown genomes.

In conclusion, BOSS-RUNS expands the applicability of adaptive 
sampling and can improve the information gain in many standard 
scenarios. Using such data-driven strategies to ensure more homo-
geneous coverage and focusing on biologically interesting sites leads 
to improved efficiency of sequencing using nanopores. The resulting 
reduction in the time-to-answer or increased information gain might 
be critical in a clinical setting or in pathogen surveillance.
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Fig. 4 | Dynamic, adaptive sampling leads to improved SNP discovery. We 
compared the variants called from data collected by the control (dashed lines) 
and by BOSS-RUNS (solid lines) to ground truth variants from deep, short-read 
sequencing of the same strains. Performing variant discovery at different 
timepoints gives further insight into the advantages of our method. a, Whereas 
the sensitivity of BOSS-RUNS is slightly lower for the most abundant species,  

we observe a larger number of discovered true positives in all remaining 
genomes. To highlight differences, we set the y-axis ranges to 0–0.95 for the first 
three species and 0–0.035 for the remaining two. b, The precision of variants 
called from data generated using BOSS-RUNS is at a similar level to the control or 
moderately higher.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01580-z

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-022-01580-z.

References
1.	 Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical 

viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 35, 
2193–2198 (2019).

2.	 Jain, M. et al. Nanopore sequencing and assembly of a human 
genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

3.	 Miga, K. H. et al. Telomere-to-telomere assembly of a complete 
human X chromosome. Nature 585, 79–84 (2020).

4.	 Shafin, K. et al. Haplotype-aware variant calling with 
PEPPER-Margin-DeepVariant enables high accuracy in nanopore 
long-reads. Nat. Methods 18, 1322–1332 (2021).

5.	 Lee, I. et al. Simultaneous profiling of chromatin accessibility and 
methylation on human cell lines with nanopore sequencing.  
Nat. Methods 17, 1191–1199 (2020).

6.	 Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore 
sequencing. Nat. Biotechnol. 34, 518–524 (2016).

7.	 Garalde, D. R. et al. Highly parallel direct RNA sequencing on an 
array of nanopores. Nat. Methods 15, 201–206 (2018).

8.	 Djirackor, L. et al. Intraoperative DNA methylation classification of 
brain tumors impacts neurosurgical strategy. Neurooncol. Adv. 3, 
vdab149 (2021).

9.	 Boykin, L. et al. Real time portable genome sequencing for global 
food security. F1000Research 7, 1101 (2018).

10.	 Quick, J. et al. Real-time, portable genome sequencing for Ebola 
surveillance. Nature 530, 228–232 (2016).

11.	 Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing 
enables the generation of near-finished bacterial genomes from 
pure cultures and metagenomes without short-read or reference 
polishing. Nat. Methods 19, 823–826 (2022).

12.	 Loose, M., Malla, S. & Stout, M. Real-time selective sequencing 
using nanopore technology. Nat. Methods 13, 751–754 (2016).

13.	 Oxford Nanopore Technologies. Read Until-API, https://github.
com/nanoporetech/read_until_api (2020)

14.	 Payne, A. et al. Readfish enables targeted nanopore sequencing 
of gigabase-sized genomes. Nat. Biotechnol. 39, 442–450 (2021).

15.	 Miller, D. E. et al. Targeted long-read sequencing identifies 
missing disease-causing variation. Am. J. Hum. Genet. 108, 
1436–1449 (2021).

16.	 Marquet, M. et al. Evaluation of microbiome enrichment and 
host DNA depletion in human vaginal samples using Oxford 
Nanopore’s adaptive sequencing. Sci. Rep. 12, 4000 (2022).

17.	 Patel, A. et al. Rapid-CNS2 : rapid comprehensive adaptive 
nanopore-sequencing of CNS tumors, a proof-of-concept study. 
Acta Neuropathol. 143, 609–612 (2022).

18.	 Stevanovski, I. et al. Comprehensive genetic diagnosis of 
tandem repeat expansion disorders with programmable targeted 
nanopore sequencing. Sci. Adv. 8, eabm5386 (2022).

19.	 Li, H. Minimap2: pairwise alignment for nucleotide sequences. 
Bioinformatics 34, 3094–3100 (2018).

20.	 Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Targeted 
nanopore sequencing by real-time mapping of raw electrical 
signal with UNCALLED. Nat. Biotechnol. 39, 431–441 (2021).

21.	 Mokry, M. et al. Accurate SNP and mutation detection by targeted 
custom microarray-based genomic enrichment of short-fragment 
sequencing libraries. Nucleic Acids Res. 38, e116 (2010).

22.	 Simpson, J. T. et al. Detecting DNA cytosine methylation using 
nanopore sequencing. Nat. Methods 14, 407–410 (2017).

23.	 Leger, A. et al. RNA modifications detection by comparative 
Nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021).

24.	 Barbitoff, Y. A. et al. Systematic dissection of biases in 
whole-exome and whole-genome sequencing reveals major 
determinants of coding sequence coverage. Sci. Rep. 10,  
2057 (2020).

25.	 Quick, J., Nicholls, S. & Loman, N. The ’Three Peaks’ faecal DNA 
extraction method for long-read sequencing V.2. https://www.
protocols.io/view/the-39-three-peaks-39-faecal-dna-extracti
on-method-kqdg34m9pl25/v2 (2019)

26.	 Martin, S. et al. Nanopore adaptive sampling: a tool for 
enrichment of low abundance species in metagenomic samples. 
Genome Biol. 23, 11 (2022).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-022-01580-z
https://github.com/nanoporetech/read_until_api
https://github.com/nanoporetech/read_until_api
https://www.protocols.io/view/the-39-three-peaks-39-faecal-dna-extraction-method-kqdg34m9pl25/v2
https://www.protocols.io/view/the-39-three-peaks-39-faecal-dna-extraction-method-kqdg34m9pl25/v2
https://www.protocols.io/view/the-39-three-peaks-39-faecal-dna-extraction-method-kqdg34m9pl25/v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01580-z

Methods
Probability distribution of genotypes at genomic sites
We define a probability distribution of possible genotypes at each posi-
tion of one or multiple genomes. In brief, the genotype probability distri-
bution takes both prior information about the genotype—for example, 
from a reference genome—and already observed bases at a position 
into account. Throughout, we use ‘reference genome’ to describe the 
assembly used for reference during a resequencing experiment and 
not necessarily the exact genome sequence of the investigated species.

Given already observed read data D, containing n reads covering 
position i, we denote by dj,i ∈ B, with B = {A, C, G, T}, the nucleotide in 
read j that maps to i. For a haploid genome, the set of possible geno-
types is G = B, whereas, for diploid genomes G, instead consists of 
unordered pairs g = {b1, b2}, with b1, b2 ∈ B. We define prior probabilities 
for genotype g at position i as πi(g), and the probability of calling base 
dj,i assuming genotype g as ϕ(dj,i∣g), which represents a matrix of obser-
vation probabilities given assumptions about ploidy and sequencing 
errors (details in Supplementary Section 1.1). For simplicity, we present 
the case of genetic diversity and sequencing errors only occurring as 
SNPs—an extension that includes deletions and is used in our applica-
tions is provided in Supplementary Section 1.2. The posterior prob-
ability of genotype g ∈ G at i, conditional on D, is then

fi(g|D) =
πi(g)∏

n
j=1 ϕ(dj,i|g)
Zi(D)

, (1)

where Zi(D) represents a normalizing constant—that is, the likelihood 
of the data—that ensures the posterior probabilities sum to 1.

This model allows us to quantify the uncertainty about the geno-
type at each site (Fig. 1c) and, in turn, makes it possible to calculate the 
expected reduction in uncertainty resulting from observing a newly 
sequenced read. We call this expected reduction of uncertainty the ‘posi-
tional benefit score’ of a site. This quantity summarizes the expected 
change in the genotype probability distribution given one additional 
observation at that position and is calculated as follows: given the cur-
rent data (D), we imagine that we observe one additional nucleotide n at 
position i—that is, dn+1,i—calling this augmented data D′. We then meas-
ure the difference between the distribution of genotype probabilities 
resulting from D and D′ by the Kullback–Leibler divergence (DKL; ref. 27).

Lastly, we sum over the different possible nucleotides dn+1,i, weight-
ing their contributions by the estimated probability of observing them 
in the next read, to compute the expected reduction in uncertainty:

Si = ∑
dn+1,i∈B

P(dn+1,i|D)DKL(fi(g|D′) || fi(g|D)), (2)

where the estimated probability of observing nucleotide dn+1,i in the 
next read is given by

P(dn+1,i|D) = ∑
g∈G

fi(g|D)ϕ(dn+1,i|g). (3)

A practical way of calculating the positional benefit scores and some 
examples at different coverage patterns are given in the Supplementary 
Material (Supplementary Section 1.3 and Supplementary Fig. 6). This 
technique of defining the information gain in terms of the Kullback–Lei-
bler divergence of two distributions is used in Bayesian experimental 
design28 and is equivalent to evaluating the expected reduction in 
Shannon entropy29 brought by a new read.

Estimating the expected benefit of sequencing reads
To quantify the potential information gain of future sequencing reads, 
we combine the positional benefit scores across sites that a sequencing 
read might span, to evaluate the expected benefit of such a read  
(Fig. 1d). We assume that a sequenced read will cover a number of 

consecutive sites of a reference genome equal to the molecule’s length 
l. The expected benefit is then calculated as the sum of consecutive 
positional scores, beginning from the read’s mapping starting position 
i, weighted by the distribution of previously observed read lengths, 
L(l). In other words, we form the sum Sli,o of consecutive positional 
benefit scores of a read of length l starting at position i with orientation 
o (o = 1 indicating a read in the forward direction relative to the refer-
ence genome and 0 indicating the reverse direction); and then we 
combine these, weighted by the probability that the read will reach 
that position (Fig. 1d). For a forward-oriented read, Sli,1 will be

Sli,1 =
i+l−1
∑
j=i

Sj (4)

(see Supplementary Section 1.4 for the reverse-oriented case), leading 
to the expected benefit

Ui,o = ∑
l∈𝒟𝒟L

L(l)Sli,o. (5)

Here, 𝒟𝒟L represents the domain of L(l)—that is, all read lengths observed 
so far. In practice, we use a truncated normal distribution as a prior for 
read lengths, which we continuously update with observed lengths of 
full-length sequencing reads throughout an experiment. More details 
about Sl and L(l) are given in Supplementary Section 1.4.

With this, we can quantify the expected information gain of a 
sequencing read solely on the basis of its genomic origin and orienta-
tion. We provide an approximation to calculate this quantity based 
on a piece-wise approximation of the read length distribution in Sup-
plementary Section 1.4.

Optimal strategies to maximize rate of information gain
To define our decision strategies, we parameterize the duration of 
individual steps in the sequencing process. As our time unit, we use the 
amount of time it takes one base to translocate through a pore (Fig. 1f). 
Analogous to Read Until and readfish, we start sequencing a DNA frag-
ment and use μ initial bases to determine its genomic origin and orien-
tation. The value of μ is assumed constant in our model and can be 
adjusted to ensure mappings of sufficient quality—for example, 
depending on the complexity or repeat content of the used reference 
genome. In practice, μ depends on the size of individual data chunks 
used for real-time basecalling. The smallest useful setting is 0.4 seconds 
of input data, which corresponds to ~180 nt, assuming a translocation 
speed of 450 nt s−1. In our applications, we used 0.8 seconds of data and 
observed a mean length of 348 nt for real-time basecalled data chunks 
used to determine the origin of fragments. We further assume that 
some constant time is needed to effect the rejection of a read (ρ) and 
to acquire a new read at a pore (α). In line with measurements from 
sequencing experiments, our model assumes ρ = 300 and α = 300 by 
default. If a fragment is sequenced fully, time equal to its length l passes, 
and benefit Sli,o is accrued (with expectations λ = E[L] and Ui,o, respec-
tively); by rejecting a read, time equal to l − μ − ρ can be saved, and the 
expected gain of benefit is limited to the positional scores of its initial 
fragment—that is, Sμi,o (Fig. 1f and Supplementary Fig. 7).

With this parameterization of the sequencing process, we determine 
an optimal sequencing strategy that maximizes the expected benefit per 
unit of sequencing time given the currently available data. Such a strategy, 
denoted as 𝒮𝒮, can be seen as an indicator function that returns 0 (reject) 
or 1 (accept) for all combinations of genomic position and fragment 
orientation—for example, I𝒮𝒮i,1 = 0 indicates the rejection of a 
forward-oriented read at position i, and I𝒮𝒮i,0 = 1 is the acceptance of a 
reverse-oriented read. Our aim is, therefore, to find an optimal strategy 
𝒮𝒮  that maximizes the benefit per unit time U

𝒮𝒮
/ ̄t𝒮𝒮 given the current data D:

𝒮𝒮 = argmax
𝒮𝒮

U
𝒮𝒮

̄t𝒮𝒮
. (6)
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Here, U
𝒮𝒮

 is the average expected benefit. Given a genome with a total 
length N and the average expected benefit of the initial parts of reads—
that is, the benefit ̄Sμ accrued from the initial fragment used in the 
decision process—it takes the form

U
𝒮𝒮
= ̄Sμ + 1

2N ∑
o=1,0

N
∑
i=1
I𝒮𝒮i,o (Ui,o − S

μ
i,o) . (7)

In other words, it is the sum of the average expected benefit from a read 
of μ bases and the average of a fully sequenced read, which adds further 
benefit of Ui,o − Sμi,o  if the indicator function for that position– 
orientation combination returns 1. Then, ̄t𝒮𝒮 is the expected time needed 
to complete the processing (whether accepted or rejected) of a read:

̄t𝒮𝒮 = α + μ + ρ + |𝒮𝒮𝒮
2N (λ − μ − ρ) , (8)

where |𝒮𝒮𝒮 denotes the size of the strategy—that is the number of posi-
tion–orientation pairs for which the indicator function will return  
1—and λ is the mean read length (E[L], as above).

For simplicity, here we assume uniformity of the distribution of 
read origins; we present a generalization used in our implementation 
in Supplementary Sections 1.5 and 1.6.

To compute the optimal strategy, we rank all of the position–ori-
entation combinations (i, o) in decreasing order of Ui,o − Sμi,o, the 
expected benefit gain from sequencing them in their entirety. Starting 
with an empty strategy (one that rejects all reads), we successively 
include the ranked sites and test after each one whether its contribution 
results in an improvement over the previous strategy—that is, whether 
the current iteration achieves higher gain of benefit per time unit (U

𝒮𝒮
/ ̄t𝒮𝒮) 

than the preceding strategy that included one fewer site (position–ori-
entation pair). For an overview of parameters and variables in the model 
and proof of optimality, see Supplementary Sections 1.5 and 1.7 and 
Supplementary Table 1.

Implementation details
Effecting decisions about reads is performed by a modified version of 
readfish14, which uses our dynamically updated strategies throughout 
an experiment. It is available at https://github.com/LooseLab/readfish/
tree/BossRuns/V0.0.2.

For taking newly observed reads into account, we consider only 
one possible mapping to the reference(s). Therefore, if a read maps to 
more than one position, the best alignment is chosen based on mapping 
quality or the alignment score of the dynamic programming algorithm 
in case of a tie. Observed lengths of fully sequenced reads and their 
mapping positions are continuously used to update the empirical dis-
tributions of read lengths L(l) and read start locations and orientations 
(Supplementary Section 1.6). To prevent the strategy from getting too 
greedy, updates are applied only when a region surpasses a threshold 
of average coverage (default: ≥5× in 20-kb windows). To keep pace with 
the real-time data stream and to ensure optimality of the strategy at 
any point in time, new results need to be calculated quickly. We use 
several optimizations, including an algorithm to find approximate 
decision strategies, which are described in Supplementary Section 1.8.

Our method can use either single or multiple reference chromo-
somes/genomes as input and optional masks to indicate initial ROIs, 
similarly to current approaches to adaptive sampling14,26. In that case, 
the scope of the dynamically updated strategies is limited to the ROIs 
and flanking regions around them; reads originating outside these 
regions will always be rejected. If multiple references are considered, 
the expected benefit of reads is calculated separately per reference and 
then used to derive a common decision strategy across all considered 
references. This ensures that we can account for differences in the dis-
tributions of read lengths and read starting positions between genomes 
while also sequencing the most informative reads of a mixture, instead 

of focusing on the most informative reads of each individual genome 
or chromosome.

BOSS-RUNS is implemented in Python and available at https://
github.com/goldman-gp-ebi/BOSS-RUNS. We provide a conda environ-
ment for its dependencies (with most recent tested versions denoted): 
readfish14, ONT’s MinKnow API 5.0.0.1 (ref. 30), numpy 1.22.4 (ref. 31), 
numba 0.55.2 (ref. 32), scipy 1.9.0 (ref. 33), mappy 2.24 (ref. 19), pandas 
1.4.3 (ref. 34), toml 0.10.2 (ref. 35) and natsort 8.1.0 (ref. 36).

Configuration of sequencing experiments
Sequencing was conducted on an ONT GridION using R9.4 flowcells. 
Because the quality and number of active nanopores can vary between 
flowcells, it would be difficult to compare experiments involving adap-
tive sampling performed on multiple flowcells. Therefore, we separated 
a single flowcell by assigning 256 channels to each of two different 
conditions. One of these two regions used a decision strategy that 
continuously accepts any encountered read—that is, a control sector 
not performing any adaptive sampling—whereas the other was acting 
according to the decision strategies provided by BOSS-RUNS. A heat 
map of the yield per channel as well as spatial autocorrelation statistics 
confirm that the loading and splitting of the flowcell did not influence 
the results of our experiment (Supplementary Fig. 8).

Readfish was configured to reject reads from the sector analyzed 
using BOSS-RUNS if they did not map or mapped to (one or more) 
off-target sites—that is, sites not included in the current decision 
strategy—or if no sequence was obtained from a fragment. For all our 
experiments, we used 0.8 seconds of data to infer the genomic origin 
and orientation of fragments before making decisions—that is, roughly 
350 bp (corresponding to μ in our model; Fig. 1f), which results in a 
mean read length of 482 bp for rejected reads due also to the additional 
time (ρ) taken to process and effect decisions. BOSS-RUNS deposits new 
strategies as compressed Boolean numpy arrays for each genome or 
chromosome, which are subsequently reloaded by readfish upon file 
modification. Communicating rejection signals to the sequencing 
device is performed by readfish.

Sequencing of the ZymoBIOMICS microbial reference
Input DNA from the ZymoBIOMICS Microbial Community DNA Stand-
ard II (Log Distribution D6311, Zymo Research) was prepared using 
SQK-LSK110 (ONT) and PCR-amplified using the PCR expansion kit 
EXP-PCA001 (ONT). BOSS-RUNS and readfish depend on reference 
genomes to infer the origin of sequencing reads. To mimic a more realis-
tic scenario where we do not know the exact bacterial strains, we elected 
not to use reference genomes from the strains contained in the microbial 
mixture but, instead, used closely related reference genomes identified 
in ref. 37. We measured their divergence in terms of the percentage of 
aligning nucleotides and ANI values using JSpecies38, which range from 
86.07% to 99.70% and 98.82% to 99.92%, respectively (Supplementary 
Fig. 9). The employed assemblies are available in the European Nucleo-
tide Archive (ENA) under accession numbers ASM14656v1, ASM584v2, 
ASM400627v1, ASM39716v1, ASM30761v1, ASM51030v1, ASM25313v1 
and ASM810v1. Software used during data collection included Min-
KNOW (21.05.25), MinKNOW core (4.3.12), MinKNOW api (5.0.0.1) and 
Bream (6.2.6). Basecalling was performed using Guppy (5.0.16), set to 
high-accuracy mode. The sequencing data generated in this study are 
available in the ENA database under accession number PRJEB51967.

To test whether increased coverage of rare species was due to 
repeats or low-complexity regions, we used RepeatMasker 4.1.2 with 
default parameters39.

Variant calling of bacterial species
To perform variant calling, we used sequencing reads separated by 
their species of origin (using minimap2 (ref. 19)) and further parti-
tioned them to comprise the cumulative data from the beginning of 
the experiment up to and including 20 individual timepoints, each 
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separated by approximately 30 minutes of sequencing (using custom 
Python scripts).

To create a set of high-confidence variants, we used publicly avail-
able deep coverage short-read sequencing of the ZymoBIOMICS micro-
bial community with evenly distributed abundances, which contains the 
same strains as the logarithmically distributed mixture (Zymo Research, 
D6306). These data are available in the ENA under accession number 
SRR13224035. In brief, we mapped the separated reads to their respec-
tive assemblies (see previous section) using minimap2 2.22 (ref. 19) and 
samtools 1.12 (ref. 40), marked duplicates using picard 2.26.6 (default 
parameters)41 and called variants—that is, the differences between the 
assemblies that we used and the strains contained in the sequenced 
microbial community —with freebayes 1.3.5 (default parameters)42. 
Variants were filtered by minimum depth of coverage of 20 and quality 
score of 20, transformed into their primitive constituents (vcflib 1.0.2  
(ref. 43)) and sorted using bcftools 1.12 (ref. 40). Variant calling from nano-
pore data of the Zymo microbial mixture was done using medaka 1.4.3 
(default parameters, model r941_prom_hac_variant_g507)44. For subse-
quent comparisons of vcf files, we used vcfeval (rtg-tools 3.12.1 (ref. 45)).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been submitted to 
the ENA database under accession number PRJEB51967. Publicly avail-
able assemblies and short-read sequencing data used in our study are 
available in the ENA under accession numbers ASM14656v1, ASM584v2, 
ASM400627v1, ASM39716v1, ASM30761v1, ASM51030v1, ASM25313v1 
and ASM810v1 as well as SRR13224035.

Code availability
The source code of BOSS-RUNS is available at https://github.com/
goldman-gp-ebi/BOSS-RUNS.
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