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1,2

Prediction models could identify infants at the greatest risk of bronchopulmonary dysplasia (BPD) and allow targeted preventative
strategies. We performed a systematic review and meta-analysis with external validation of identified models. Studies using
predictors available before day 14 of life to predict BPD in very preterm infants were included. Two reviewers assessed

7628 studies for eligibility. Meta-analysis of externally validated models was followed by validation using 62,864 very preterm
infants in England and Wales. A total of 64 studies using 53 prediction models were included totalling 274,407 infants (range
32-156,587/study). In all, 35 (55%) studies predated 2010; 39 (61%) were single-centre studies. A total of 97% of studies had a high
risk of bias, especially in the analysis domain. Following meta-analysis of 22 BPD and 11 BPD/death composite externally validated
models, Laughon'’s day one model was the most promising in predicting BPD and death (C-statistic 0.76 (95% Cl 0.70-0.81) and
good calibration). Six models were externally validated in our cohort with C-statistics between 0.70 and 0.90 but with poor
calibration. Few BPD prediction models were developed with contemporary populations, underwent external validation, or had
calibration and impact analyses. Contemporary, validated, and dynamic prediction models are needed for targeted preventative
strategies.
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IMPACT:

® This review aims to provide a comprehensive assessment of all BPD prediction models developed to address the uncertainty

of which model is sufficiently valid and generalisable for use in clinical practice and research.
® Published BPD prediction models are mostly outdated, single centre and lack external validation.
® Laughon’s 2011 model is the most promising but more robust models, using contemporary data with external validation are

needed to support better treatments.

INTRODUCTION

Bronchopulmonary dysplasia (BPD), one of the most common and
complex neonatal conditions,’ continues to increase and affects
approximately 28,000 and 18,000 babies annually in Europe? and
the US,? respectively. Preterm infants with BPD have significant
long-term respiratory and neurodevelopmental complications into
adulthood,” including abnormal lung function® and poor school
performance.*

There is a myriad of trials with at least 24 Cochrane reviews
looking at BPD preventative interventions, including postnatal
corticosteroids. However, their benefit in preventing BPD may not
outweigh the significant side effects, including gastrointestinal
perforation and neurodevelopmental impairment.®” This demon-
strates the complexity of BPD management in balancing the risk
of significant long-term morbidity from BPD with that of exposure
to potentially harmful treatments.®

BPD prediction models aim to provide a personalised risk
approach in identifying high-risk very preterm infants for timely
preventative treatments. Despite numerous models being

developed, none are used routinely in clinical practice. This
review aims to provide a comprehensive assessment of all BPD
prediction models developed to address the clinical uncertainty
of which predictive model is sufficiently valid and generalisable
for clinical and research use. Secondly, we will validate eligible
models in a large national contemporaneous cohort of very
preterm infants.

MATERIAL AND METHODS

Systematic review

There was no deviation from the protocol published in PROSPERO.?
Standard Cochrane Neonatal and Prognosis Methods Group
methodologies were used.

Inclusion criteria. Cohort, case-control, and randomised con-
trolled trials used in developing or validating the prediction
models were included. Very preterm infants born before 32 weeks
of gestational age (GA) and less than 2 weeks old at the time of
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BPD prediction were included. This ensures the clinical applic-
ability and timeliness of the prediction models to support clinical
decision making on preventative treatments. Studies that used
non-universally accessible predictors such as pulmonary function
tests, ultrasonography and biomarkers were excluded. BPD was
defined as a respiratory support requirement at either 28 days of
age or 36 weeks of corrected gestational age (CGA).'° The
composite outcome of BPD and death before discharge was
included as a secondary outcome.

Search methods. Standard Cochrane Neonatal'' and prognostic
study search filters'? were used. “Bronchopulmonary dysplasia OR
BPD OR chronic lung disease OR CLD” search terms were used to
search the CENTRAL, Ovid MEDLINE, CINAHL, EMBASE and Scopus
databases until 13/08/2021 (Appendix 1).

Data collection. Two reviewers (T.CK, N.B. or KL.L.) indepen-
dently screened the title and abstract as well as full-text reports for
inclusion before independently extracting data and assessing the
risk of bias using the PROBAST tool'*>'* (Appendix 2). These were
done using a web-based tool CADIMA."> Any disagreement was
resolved by discussion.

Prediction model performance measure. Discrimination (C-statis-
tics), calibration (Observed:Expected ratio (O:E ratio)) and classi-
fication (net benefit analysis) measures were extracted alongside
their uncertainties.

Missing data. Study authors were contacted to obtain any
missing data. Failing that, missing performance measures were
approximated using the methodology proposed by Debray et al.'®
and R statistical package “metamisc”.’

Meta-analysis. Meta-analysis of the performance measures, using
the random-effects approach and R statistical package “meta-
for",'® was performed for externally validated models. Sensitivity
analysis was performed by excluding studies with an overall high
risk of bias. We pre-specified that we would assess the source of
heterogeneity'® and reporting deficiencies'® if more than ten
studies were included.

Conclusions. The adapted Grades of Recommendation, Assess-
ment, Development and Evaluation (GRADE) framework®® was
used to assess the certainty of the evidence.

External validation of eligible models

Study design. A population-based retrospective cohort study
from the UK National Neonatal Research Database (NNRD)?' was
used to externally validate BPD prediction models identified in the
systematic review. We included all very preterm infants admitted
to 185 neonatal units in England and Wales from January 2010 to
December 2017. This encompasses over 90% of English neonatal
units in 2010, with full coverage in England and Wales in 2012 and
2014 respectively. Infants with birthweight z score below -4 or
above 4 were excluded as they were likely erroneous entries.
Further details of the data items extracted are found within the
National Neonatal Dataset?' and Appendix 3. Ethical approval was
granted by the Sheffield Research Ethics Committee (REC
reference 19/YH/0115).

Statistical analysis. Data extraction and statistical analysis were
done using STATA/SE version 16 (StataCorp) and R version 4 (R
Core Team). Summary statistics (median, interquartile range and
percentages) were used to describe the data. Missing data were
imputed five times using Multivariate Imputation by Chained
Equations.?? Model performances were assessed in three domains:
discrimination (C-statistics), calibration (calibration plot and O:E
ratio) and utility measure (decision curve analysis).
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RESULTS

Systematic review

Literature search. Of the 7628 potentially eligible studies
identified, 194 full-text articles were screened with 122 articles
excluded as studies identified risk factors rather than developing
prediction models (48%), predictors available after 2 weeks of age
(24%), infants above 32 weeks GA at birth (17%), non-universally
accessible predictors (10%) or wrong outcome measure reported
(2%). Data were extracted from the 72 full-text articles (Appen-
dix 4), encompassing 64 studies and 53 BPD prediction models
(Fig. 1).

Description of included studies. Of the 64 included studies, 31
were BPD prediction model development studies, 20 were
validation studies, and 13 were development and external
validation studies. Fifty-five of the studies were cohort studies;
five were randomised controlled trials; two used a combination of
randomised control trials and cohort studies with one
case—control study and another with an unreported study design.
Twenty-six studies were performed in North America, 14 in
Europe, 13 in Asia, 5 in South America and Australia/New Zealand
each and 1 study was carried out worldwide. Twenty studies
developed and validated BPD prediction models based on infants
born before 2000, with a further 15 studies using infants born
between 2000 and 2010. The 64 included studies recruited
274,407 (range 32 and 156,587) infants, with the majority
(50 studies) recruiting less than 1000 infants. A total of 39 (61%)
studies were conducted in a single centre. Forty-seven studies
used BPD as their outcome, while 14 studies used a BPD/death
composite outcome, with 3 further studies reporting both BPD
and BPD/death composite outcomes. Thirty-one studies defined
BPD at 36 weeks CGA, while 22 studies used the timepoint of
28 days old. Six studies defined BPD using both timepoints. Five
studies did not report how BPD was defined (Table 1).

A total of 70% of the 44 derivation studies used logistic
regression to develop the BPD prediction tool, with 11% used
univariate analysis; 5% used clinical consensus as well as a
combination of logistic regression and classification and tree
analysis (CART) respectively; and 2% used CART, gradient
boosting, Bayesian network and a combination of logistic
regression and support vector machine, respectively. Complete
case analysis was used in 41% of the included derivation studies,
while handling of missing data was not reported in the remaining
59%. Internal and external validation was done in 25% and 30% of
the studies, respectively. Validation was not done in the remaining
45% of studies. A total of 75% of the studies assessed
discrimination using C-statistics. In contrast, only 16% of the
studies evaluated calibration using the goodness of fit (5 studies),
calibration plot (1 study) and O:E ratio (1 study). Of the 44 models,
ten (23%), eight (18%) and four (9%) models provided a formula,
score chart and nomogram respectively. Only two (5%) models
provided an online calculator (Table 2).

Of the 53 BPD prediction models identified, 19 used predictors
available within 24 hours of age, while 20 and six models relied on
predictors available between 2 and 7 days and above 7 days of
age, respectively. Seven models used predictors available at
various timepoints while the timepoints were unavailable for one
model. The BPD prediction models considered a median of 14
predictors before using a median of five predictors in the final
models. The five most used predictors were GA, birthweight, the
fraction of inspired oxygen (FiO,), sex and invasive ventilation
requirement, which were used in 33-69% of models (Appendix 5).

Risk of bias. The majority of the studies were assessed to have a
low risk of bias for the three domains of participants (84%),
predictors (92%) and outcome (89%). A total of 60 (94%) studies
were assessed to have a high risk of bias in the analysis domain
based on the PROBAST tool'® due to various reasons including
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7783 records identified 1112 additional records
through database searching. identified through other sources.

1

7628 records screened at
title/abstract level after
duplicate removal.

—-| 7434 records excluded.

122 full-text articles excluded, with
reasons:-

a) infants born beyond 32 weeks of
gestational age: 21 articles

b) infants more than two weeks old

194 full-text articles assessed
for eligibility.

when predicting BPD: 29 articles

c) wrong outcome measure reported:

2 articles

d) non-universally accessible
predictors: 12 articles

e) identify BPD risk factors rather
than predicting BPD: 58 articles

72 full-text articles (64 studies) included
as eight articles are of the same study.
53 prediction models assessed.

Fig. 1 Flow diagram of the systematic review. Flow diagram of literature search and included studies.

calibration not assessed (55 studies (86%)); small sample size
(37 studies (58%)); inappropriate handling of missing data (21 studies
(33%)); lack of internal/external validation (9 studies (14%));
inappropriate selection approach for predictors (6 studies (9%));
and inappropriate handling of continuous predictors (2 studies (3%)).

Twenty-one studies (33%) had high applicability concerns in the
participant’s domain as they targeted a specific group of very
preterm infants, usually infants at a higher risk of BPD (for example,
ventilated infants only in 17 studies (27%)). Although universally
accessible, predictors used in ten studies (16%) may not be routinely
collected. Eight studies (13%) used BPD definitions that deviated
against the current consensus'® (Fig. 2 and Appendix 6).

Discrimination. The C-statistics of the included prediction models
ranged from 0.52 to 0.95 in the external validation studies with better
performance in models using predictors beyond 7 days of age. Meta-
analysis could only be done on 22 (50%) and 11 (35%) models for BPD
and BPD/death composite outcomes, respectively, as the remaining
22 and 20 models were only validated in one study. The C-statistics
confidence intervals (Cl) were wide due to the small number of
studies in each meta-analysis. The five models with Cl above 0.5 for
BPD from the meta-analysis were CRIB I,** CRIB II*> as well as
Valenzuela-Stutman 2019% (Birth, day 3 and 14 models). Similarly, for
the BPD/death composite, the five models with Cl above 0.5 from the
meta-analysis were Laughon 2011% (day 1, 3, 7 and 14 models) and
Valenzuela-Stutman 2019%° (day 14 model) (Appendix 7). Meta-
analysis for the Valenzuela-Stutman 2019 models*® could only be
performed after including validation findings from our cohort study.

Calibration. The O:E ratio was reported in four external validation
studies®®=" evaluating six prediction models (Rozycki 1996,%
Parker 1992% and Laughon 20117 (day 1, 3, 7 and 14 models))
with considerable variation in the O:E ratio among the included
models. Meta-analysis of the O:E ratio could only be done on one
model (Laughon 2011%’ (day 1)) with an O:E ratio of 0.96 (95% Cl
0.85-0.99) (Appendix 8).

Pediatric Research

The calibration plot was reported in three studies,>*=2 assessing
six models (Palta 1990,> Sinkin 1990,3* Ryan 1996,>> Kim 2005¢ as
well as Laughon 2011% (day 1 and 3 models) (Appendix 9).

Classification. No studies reported net benefit or decision curve
analyses.

Heterogeneity and reporting deficiencies. The wide confidence
and prediction intervals demonstrated heterogeneity amongst the
external validation studies. As there were less than ten validation
studies in a meta-analysis, subgroup analysis and funnel plots
were not performed to explore the source of heterogeneity.
Sensitivity analysis was not performed as all studies had an overall
high risk of bias except for two studies.>%*’

Summary of findings. Due to the lack of validation studies, a
conclusion could only be made for one model Laughon 2011.%’
There was a low quality of evidence to show the discrimination
and calibration performances of the Laughon 2011?” model in
predicting the BPD/death composite outcome using predictors
at day 1 of age with a C-statistic of 0.76 (95% Cl 0.70-0.81) and
O:E ratio of 096 (95% Cl 0.85-0.99). The evidence was
downgraded by two levels due to study limitation (variation in
the BPD definition used and some studies recruiting high-risk
infants only (such as invasively ventilated infants)), as well as
inconsistency (heterogeneity and a small number of external
validation studies).

External validation

Patient cohort. After exclusions (Appendix 10), 62,864 very
preterm infants were included (Appendix 11). A total of 17,775
(31%) infants developed BPD while 5718 (9%) infants died before
discharge from the neonatal unit.

Model performance. We were able to externally validate six

prediction models (Henderson-Smart 2006,%® Valenzuela-Stutman
2019% (day 1, 3 and 14 models), Shim 20213° and Ushida 2021%°)
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Applicability concerns

0% 25% 50% 75%

B Hign

Fig. 2 Risk of bias assessment. Summary of risk of bias assessments for included studies based on the PROBAST too

in our retrospective cohort. The variables in the remaining models
were not available in our cohort. The discrimination (C-statistics)
and calibration (O:E ratio and calibration plot) (Fig. 3) perfor-
mances were variable among the models. Although the models
displayed fair to good discrimination with C-statistics of 0.70-0.90,
they had poor calibration as indicated by the calibration plot and
O:E ratio between 0.39 and 2.31. The Valenzuela-Stutman 2019
models®® appear to overestimate the predicted risk, whereas the
remaining three models (Henderson-Smart 2006,>® Shim 2021%°
and Ushida 2021%%) tend to underestimate the predicted risk. Of
the six externally validated models, four models (Henderson-Smart
2006,%® Valenzuela-Stutman 2019° (day 14 models), Shim 2021%°
and Ushida 2021%°) indicated superior net benefit across a
reasonable range of threshold probabilities of 30-60% in deciding
postnatal corticosteroid treatment in the decision curve analysis
(Appendix 12). The threshold probabilities used were identified in
a meta-regression of 20 randomised controlled trials.?

DISCUSSION

Our study is an update to the systematic review carried out nearly
a decade ago,** with a further 27 prediction models identified
since the last review. Our systematic review identified 64 studies
that developed and/or validated 53 BPD prediction models with
meta-analysis carried out on 22 models. Due to the lack of
external validation studies, we could not identify a prediction
model for routine clinical use. Further external validation,
including assessment of both discrimination and calibration
performances in a population similar to that whereby the model
will be used, is needed before any model could be adopted in
clinical practice. However, the most promising prediction model
that could be considered based on our meta-analysis was
Laughon 2011%” in predicting the BPD/death composite outcome
using predictors at day one of age. Further re-calibration of the
model based on the local population of interest, with re-
assessment of its performance in subsequent external validation
studies (if re-calibrated), may be needed before being used in
clinical practice.

We have also externally validated six prediction models
in our retrospective population-based cohort study as variables in
the remaining models were not available in our cohort. Although
they have fair to good discrimination, they were not well
calibrated in our cohort. To be useful, prediction tools need to
be generalisable to current datasets highlighting the importance
of external validation.

26,38-40

Implications for clinical practice and research

The implementation of BPD prediction models in clinical practice
is limited by the lack of external validation of the published
models. Less than a third of the identified prediction models were
externally validated. Furthermore, half of the externally validated
models were only validated by one study. This potentially limits
the generalisability of the model performance to other infant
populations and adoption into clinical practice. There is also a
need for continual assessment of the model performance over
time to determine if further updates to the model are needed with
changes in clinical practice.

Pediatric Research

‘ Unclear

100% 0% 25% 50% 75% 100%

. Low

|13

Sample size. Most external validation studies had small sample
sizes or were restricted to specific high-risk infant populations (for
example, ventilated infants only). Furthermore, 61% of studies
were single centre only. This potentially limits the generalisability
of the models. It is recommended that prediction model
development studies should have a sufficient sample size of
infants with the outcome of interest for the number of candidate
predictors used based on recommendations made by Riley et al.
2019,*" while validation studies should have at least 100 infants
with the outcome.”

Missing values. The majority of the studies did not report missing
data or excluded infants with missing data. A clear description of
the handling of missing data should be provided. Complete case
analysis should be avoided if possible."

Variation in prediction timepoint and outcome definition. Nearly
three-quarters of the included prediction models predicted BPD, the
remainder predicting the BPD/death composite outcome. As death
and BPD are semi-competitive risks, infants who died before
36 weeks CGA may have a higher risk of developing BPD if they
had survived until 36 weeks CGA. Hence, the potential predictive
information of death should be accounted for in BPD prediction
modelling. The included models also made predictions at a variety of
timepoints. Therefore, a meta-analysis of the models was difficult
and may limit the clinical settings in which the model can be used. It
may be sensible for the performance of future prediction models to
be externally validated for BPD as well as the BPD/death composite
outcome at three prediction timepoints of one, seven days and
14 days of age. These timepoints would allow timely preventative
treatment or research recruitment to be targeted to high-risk infants.

Predictors. The predictors used in the model should be easily
assessed routinely during daily clinical practice and not depend-
able on clinical practice, such as weight loss and fluid intake.
Future prediction models should also be dynamic, accounting for
the changing status of the infant over time and clinical trajectory.

Predictor selection based on the traditional stepwise approach
or univariable analysis should be avoided, especially in small
datasets. Instead, predictor selection based on a priori knowledge
or statistical approach not based on prior statistical tests between
predictor and outcome (e.g., principal component analysis) may
be better methods."

Model performance. Both discrimination (C-statistics) and calibra-
tion (calibration plot or O:E ratio) performances of the prediction
models need to be assessed during external validation. A model
with fair to good discrimination may be poorly calibrated.>
Hosmer-Lemeshow goodness-of-fit test alone without other
calibration measures was found not to be a suitable method to
assess calibration as it is sensitive to sample size."> The test is
often non-significant (i.e. good calibration) in small datasets while
usually significant (i.e., poor calibration) in large datasets. Since the
recommendation to assess calibration in the last review nearly a
decade ago,*? only two further studies®>' assessed calibration
using calibration plots or O:E ratios.

An impact analysis was not carried out in any of the identified

SPRINGER NATURE
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Discrimation (C-statistics)

a a Bronchopulmonary dysplasia
(BPD) (n = 57,572)

Henderson-Smart 2006 - 0.84 (0.84 - 0.85)
Shim 2021 - 0.84 (0.84 - 0.84)
Ushida 2021 - 0.84 (0.84 - 0.85)
Valenzuela-Stutman 2019 (Birth) - 0.80 (0.79 - 0.80)
Valenzuela-Stutman 2019 (Day 3) - 0.79 (0.78 - 0.79)
Valenzuela-Stutman 2019 (Day 14) - 0.90 (0.90 - 0.90)

= T - T X 1

0.7 0.8 0.9 1.0
C-statistics

b b Bronchopulmonary dysplasia (BPD)
and death (n = 62,864)
Henderson-Smart 2006 - 0.85 (0.85 - 0.86)
Shim 2021 - 0.78 (0.78 - 0.79)
Ushida 2021 - 0.85 (0.85 - 0.86)
Valenzuela-Stutman 2019 (Birth) - 0.76 (0.75 - 0.76)
Valenzuela-Stutman 2019 (Day 14) ] 0.89 (0.89 - 0.90)
- T = T £ 1
0.7 0.8 0.9 1.0
C-statistics

Calibration (O:E ratio)

a Bronchopulmonary dysplasia
(BPD) (n=57,572)

Henderson-Smart 2006 - 1.23 (1.22 - 1.25)
Shim 2021 . 1.47 (1.46 - 1.48)
Ushida 2021 e 223(2.22-224)

Valenzuela-Stutman 2019 (Birth) | 0.46 (0.46 - 0.47)

Valenzuela-Stutman 2019 (Day 3) | » 0.43 (0.42 - 0.43)

Valenzuela-Stutman 2019 (Day 14) . 1.22 (1.21-1.23)

T 8 T ' T % T . T . 1
0.4 0.8 1.2 1.6 2.0 2.4
O:E ratio

Valenzuela-Stutman 2019 (Day 14) .

b Bronchopulmonary dysplasia (BPD) and
death (n = 62,864)

Henderson-Smart 2006 . 1.31 (1.30-1.32)
Shim 2021 . 1.57 (1.56 - 1.58)
Ushida 2021 = 2.31(2.29-233)

Valenzuela-Stutman 2019 (Birth)

0.41 (0.41 - 041)

0.78 (0.77 - 0.79)

T T ; T T T 1
0.4 0.8 1.2 1.6 2.0 2.4
O:E ratio

Calibration plot

a Bronchopulmonary dysplasia (BPD)

b Bronchopulmonary dysplasia (BPD) and death

(n=57,572) Model (n=62,864)
1.00 - 1.00 - Model
—— Henderson-Smart
2006
—— Henderson-Smart
0.75 - ---- Shim2021 0.75 - 2006
-=--- Shim 2021
o ]
AN | Y | g A | S Ushida 2021 [
g 050 - 2 0.50 - o e e i e /A R A Ushida 2021
8 ...... Valenzuela-Stutman O
2019 (Day 14
(Day19) 0.25 -7/ B I N R B A | Valenzuela-Stutman
0.25 - Valenzuela-Stutman ’ 2019 (Day 14)
Dy ) R N e [T Valenzuela-Stutman
______ Valenzuela-Stutman 0.00 - 2019 (Birth)
0.00 - 2019 (Birth) :
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Predicted Predicted

Fig. 3 Model performance of the externally validated prediction models. Discrimination (C-statistics) and calibration (O:E ratio and
calibration plots) characteristics of prediction models externally validated using a retrospective cohort for a bronchopulmonary dysplasia

(BPD) (n=57,572) and b composite BPD and death (n = 62,864).

prediction models to evaluate if the prediction model improved
patient outcomes. Decision curve analysis*?> may be used as an
initial screening method to assess the net benefit of using the
prediction model before carrying out further impact analysis.
Decision curve analysis can be used on the external validation
dataset without further data collection.

Practicality of model. Prediction models developed should be
practical and easy to use at the bedside. Only two published
models?”*° provided online calculators to allow easy access risk
assessment.

Changes in clinical practice and rising BPD rates, potentially
makes previously published models outdated affecting their
predictive ability. Over half of the published models used data

SPRINGER NATURE

from babies born more than a decade ago. Hence, new models
should consider a built-in feature to allow them to learn from
future babies and adapt their performance to new practices.

Strength

The systematic review was carried out based on standard
Cochrane methodologies as well as recent recommendations for
meta-analysis of prediction models'® and risk of bias assess-
ment."® There were no language or date restrictions. The review is
anticipated to guide clinicians and researchers in not only
developing and/or validating BPD prediction models in very
premature infants based on recommendations of the review, but
also in identifying the most promising prediction model to be
externally validated in their local population.

Pediatric Research



The use of recent routinely collected clinical information in our
external validation study, coupled with its large population
coverage, provides an accurate representation of the current
neonatal practice in England and Wales. This large cohort of nearly
63,000 very preterm infants, including infants receiving both
invasive and non-invasive ventilation, forms an ideal cohort to
externally validate and assess BPD prediction models.

Limitation

Only 6 out of the 53 identified prediction models could be
validated in our cohort. Hence, the performance of the remaining
models in our cohort was unclear. However, it is crucial that future
models should only use predictors that are easily assessed in
clinical practice to ensure their successful clinical implementation.

CONCLUSION

As preterm infant survival increases, more survivors are diagnosed
with BPD along with the long-term respiratory and neurological
consequences. Despite almost a doubling in the number of BPD
prediction models published over the last decade, most identified in
our systemic review are not used in routine clinical practice. This is
due to a lack of good quality external validation studies assessing
their performance on the local population of interest. Furthermore,
calibration of the models is often not appropriately evaluated in
most of the models. Models should be externally validated with a
subsequent impact analysis before being adopted in clinical
practice. Decision curve analysis may be a good screening tool to
assess the net benefit of the tool prior to impact analysis.

Our systematic review has also made recommendations for future
BPD prediction models including consideration of additional
predictors, a more dynamic model accounting for changes in the
infant’s condition over time and their trajectory, and the ability to
adapt performance with evolving clinical practice. A good quality,
well-validated BPD prediction tool is needed to provide personalised
preventative treatment and allow targeted trial recruitment to reduce
the long-term impact on this vulnerable and expanding population.
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however available from the authors upon reasonable request and with permission of
the Research Ethics Committee and National Neonatal Research Database.

REFERENCES

1. Lui, K. et al. Trends in outcomes for neonates born very preterm and very low
birth weight in 11 high-income countries. J. Pediatr. 215, 32-40.e14 (2019).

2. Tan, S. et al. Early childhood respiratory morbidity and antibiotic use in ex-
preterm infants: a primary care population-based cohort study. Eur. Respir. J. 56,
2000202 (2020).

3. Thebaud, B. et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Prim. 5, 23 (2019).

4. Cheong, J. L. Y. & Doyle, L. W. An update on pulmonary and neurodevelopmental
outcomes of bronchopulmonary dysplasia. Semin. Perinatol. 42, 478-484 (2018).

5. Gough, A. et al. Impaired lung function and health status in adult survivors of
bronchopulmonary dysplasia. Eur. Respir. J. 43, 808-816 (2014).

6. Doyle, L. W., Cheong, J. L, Hay, S., Manley, B. J. & Halliday, H. L. Early (< 7 days)
systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia
in preterm infants. Cochrane Database Syst. Rev. 10, CD001146 (2021).

7. Doyle, L. W.,, Cheong, J. L, Hay, S., Manley, B. J. & Halliday, H. L. Late (= 7 days)
systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia
in preterm infants. Cochrane Database Syst. Rev. 11, CD001145 (2021).

8. Doyle, L. W, Halliday, H. L., Ehrenkranz, R. A., Davis, P. G. & Sinclair, J. C. An update
on the impact of postnatal systemic corticosteroids on mortality and cerebral
palsy in preterm infants: effect modification by risk of bronchopulmonary dys-
plasia. J. Pediatr. 165, 1258-1260 (2014).

Pediatric Research

T.C. Kwok et al.

9. Kwok, T. & Sharkey, D. Systematic review of prognostic models for predicting
bronchopulmonary dysplasia in very preterm infants. PROSPERO 2020
CRD42020205215. https://www.crd.york.ac.uk/prospero/display_record.php?
ID=CRD42020205215.

10. Higgins, R. D. et al. Bronchopulmonary dysplasia: executive summary of a
workshop. J. Pediatr. 197, 300-308 (2018).

11. Cochrane Neonatal. Resource for Review Authors (accessed 19 August 2020);
https://Neonatal.Cochrane.Org/Resources-Review-Authors (2020).

12. Geersing, G. J. et al. Search filters for finding prognostic and diagnostic prediction
studies in medline to enhance systematic reviews. PLoS One 7, e32844 (2012).

13. Wolff, R. F. et al. Probast: a tool to assess the risk of bias and applicability of
prediction model studies. Ann. Intern. Med. 170, 51 (2019).

14. Moons, K. G. M. et al. Probast: a tool to assess risk of bias and applicability of
prediction model studies: explanation and elaboration. Ann. Intern Med. 170,
W1-W33 (2019).

15. Kohl, C. et al. Online tools supporting the conduct and reporting of systematic
reviews and systematic maps: a case study on cadima and review of existing
tools. Environ. Evid. 7, 8 (2018).

16. Debray, T. P. A. et al. A guide to systematic review and meta-analysis of prediction
model performance. BMJ 356, i6460 (2017).

17. Debray, T. & de Jong, V. Metamisc: Diagnostic and Prognostic Meta-Analysis
(accessed 19 August 2020); https://Cran.R-Project.Org/web/packages/metamisc/
index.html (2019).

18. Viechtbauer, W. Conducting meta-analyses in R with the Metafor package. J. Stat.
Softw. 36, 1-48 (2010).

19. Riley, R. D. et al. External validation of clinical prediction models using big
datasets from E-health records or ipd meta-analysis: opportunities and chal-
lenges. BMJ 353, i3140 (2016).

20. Huguet, A. et al. Judging the quality of evidence in reviews of prognostic factor
research: adapting the grade framework. Syst. Rev. 2, 71 (2013).

21. Gale, C. & Morris, I. Neonatal Data Analysis Unit (NDAU) Steering Board The UK
National Neonatal Research Database: using neonatal data for research, quality
improvement and more. Arch. Dis. Child Educ. Pract. Ed. 101, 216-218 (2016).

22. Sterne, J. A. et al. Multiple imputation for missing data in epidemiological and
clinical research: potential and pitfalls. BMJ 338, b2393 (2009).

23. Cools, F., Askie, L. M. & Offringa, M. Elective high-frequency oscillatory ventilation
in preterm infants with respiratory distress syndrome: an individual patient data
meta-analysis. BMC Pediatrics 9, 33 (2009).

24. The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal
risk and comparing performance of neonatal intensive care units. The Interna-
tional Neonatal Network. Lancet 342, 193-198 (1993).

25. Parry, G., Tucker, J. & Tarnow-Mordi, W. UK Neonatal Staffing Study Collaborative
Group CRIB II: an update of the clinical risk index for babies score. Lancet 361,
1789-1791 (2003).

26. Valenzuela-Stutman, D. et al. Bronchopulmonary dysplasia: risk prediction models
for very-low- birth-weight infants. J. Perinatol. 39, 1275-1281 (2019).

27. Laughon, M. M. et al. Prediction of bronchopulmonary dysplasia by postnatal age in
extremely premature infants. Am. J. Respiratory Crit. Care Med. 183, 1715-1722 (2011).

28. Rozycki, H. J. & Narla, L. Early versus late identification of infants at high risk of
developing moderate to severe bronchopulmonary dysplasia. Pediatr. Pulmonol.
21, 345-352 (1996).

29. Parker, R. A, Lindstrom, D. P. & Cotton, R. B. Improved survival accounts for most,
but not all, of the increase in bronchopulmonary dysplasia. Pediatrics 90, 663-668
(1992).

30. Rysavy, M. A. et al. Should vitamin a injections to prevent bronchopulmonary
dysplasia or death be reserved for high-risk infants? Reanalysis of the National
Institute of Child Health and Human Development Neonatal Research Network
Randomized Trial. J. Pediatr. 236, 78-85.e5 (2021).

31. Baker, E. K. & Davis, P. G. Bronchopulmonary dysplasia outcome estimator in
current neonatal practice. Acta Paediatr. 110, 166-167 (2021).

32. Onland, W. et al. Clinical prediction models for bronchopulmonary dysplasia: a
systematic review and external validation study. BMC Pediatr. 13, 207 (2013).

33. Palta, M. et al. Development and validation of an index for scoring baseline
respiratory disease in the very low birth weight neonate. Pediatrics 86, 714-721
(1990).

34. Sinkin, R. A, Cox, C. & Phelps, D. L. Predicting risk for bronchopulmonary dys-
plasia: selection criteria for clinical trials. Pediatrics 86, 728-736 (1990).

35. Ryan, S. W., Nycyk, J. & Shaw, B. N. Prediction of chronic neonatal lung disease on
day 4 of life. Eur. J. Pediatr. 155, 668-671 (1996).

36. Kim, Y. D, Kim, E. A, Kim, K. S., Pi, S. Y. & Kang, W. Scoring method for early
prediction of neonatal chronic lung disease using modified respiratory para-
meters. J. Korean Med. Sci. 20, 397-401 (2005).

37. Baud, O., Laughon, M. & Lehert, P. Survival without bronchopulmonary dysplasia
of extremely preterm infants: a predictive model at birth. Neonatology 118,
385-393 (2021).

SPRINGER NATURE

11


https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205215
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205215
https://Neonatal.Cochrane.Org/Resources-Review-Authors
https://Cran.R-Project.Org/web/packages/metamisc/index.html
https://Cran.R-Project.Org/web/packages/metamisc/index.html

T.C. Kwok et al.

12

38. Henderson-Smart, D. J. et al. Prenatal predictors of chronic lung disease in very
preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 91, FA0-F45 (2006).

39. Shim, S. Y, Yun, J. Y, Cho, S. J, Kim, M. H. & Park, E. A. The prediction of
bronchopulmonary dysplasia in very low birth weight infants through clinical
indicators within 1 h of delivery. J. Korean Med. Sci. 36, 12 (2021).

40. Ushida, T. et al. Antenatal prediction models for short- and medium-term out-
comes in preterm infants. Acta Obstet. Gynecol. Scand. 100, 1089-1096 (2021).

41. Riley, R. D. et al. Minimum sample size for developing a multivariable prediction
model: part Il - binary and time-to-event outcomes. Stat. Med. 38, 1276-1296 (2019).

42. Vickers, A. J. & Elkin, E. B. Decision curve analysis: a novel method for evaluating
prediction models. Med. Decis. Mak. 26, 565-574 (2006).

ACKNOWLEDGEMENTS

We would like to thank Prof. Valenzuela-Stutman for providing the algorithm for the
Valenzuela-Stutman models.?® We are grateful to all the families that agreed to
include their baby’s data in the NNRD, the health professionals from the UK Neonatal
Collaborative (Appendix 13) who recorded data and the Neonatal Data Analysis
Unit team.

AUTHOR CONTRIBUTIONS

T.CK. and D.S. conceptualised and designed the study. T.CK, N.B. and K.L.L. carried
out the data acquisition and analysis. All authors contributed to the data
interpretation and the final manuscript.

FUNDING
T.CK. received the Action Medical Research training fellowship as part of this study.

SPRINGER NATURE

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541390-022-02451-8.

Correspondence and requests for materials should be addressed to Don Sharkey.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Pediatric Research


https://doi.org/10.1038/s41390-022-02451-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Bronchopulmonary dysplasia prediction models: a systematic review and meta-analysis with validation
	Introduction
	Material and methods
	Systematic review
	Inclusion criteria
	Search methods
	Data collection
	Prediction model performance measure
	Missing data
	Meta-analysis
	Conclusions

	External validation of eligible models
	Study design
	Statistical analysis


	Results
	Systematic review
	Literature search
	Description of included studies
	Risk of bias
	Discrimination
	Calibration
	Classification
	Heterogeneity and reporting deficiencies
	Summary of findings

	External validation
	Patient cohort
	Model performance


	Discussion
	Implications for clinical practice and research
	Sample size
	Missing values
	Variation in prediction timepoint and outcome definition
	Predictors
	Model performance
	Practicality of model

	Strength
	Limitation

	Conclusion
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




