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Abstract: (1) Background: Obesity is closely connected to the pathophysiology of cardiovascular
diseases (CVDs). Excess fat accumulation is associated with metabolic malfunctions that disrupt
cardiovascular homeostasis by activating inflammatory processes that recruit immune cells to the
site of injury and reduce nitric oxide levels, resulting in increased blood pressure, endothelial cell
migration, proliferation, and apoptosis. Adipose tissue produces adipokines, such as chemerin, that
may alter immune responses, lipid metabolism, vascular homeostasis, and angiogenesis. (2) Meth-
ods: We performed PubMed and MEDLINE searches for articles with English abstracts published
between 1997 (when the first report on chemerin identification was published) and 2022. The search
retrieved original peer-reviewed articles analyzed in the context of the role of chemerin in CVDs,
explicitly focusing on the most recent findings published in the past five years. (3) Results: This
review summarizes up-to-date findings related to mechanisms of chemerin action, its role in the
development and progression of CVDs, and novel strategies for developing chemerin-targeting
therapeutic agents for treating CVDs. (4) Conclusions: Extensive evidence points to chemerin’s role
in vascular inflammation, angiogenesis, and blood pressure modulation, which opens up exciting
perspectives for developing chemerin-targeting therapeutic agents for the treatment of CVDs.

Keywords: chemerin; cardiovascular disease; chemerin receptors; adipokine; inflammation; endothelial
dysfunction; chemerin-targeting therapeutic agents

1. Introduction

Cardiovascular disease (CVDs) represents the major global cause of death and disabil-
ity in humans, accounting for approximately one-third of all deaths worldwide [1]. The
close relationship between CVDs and obesity is well documented. It points to the connec-
tion between the excessive accumulation of visceral fat and the clustering of metabolic dis-
eases, such as dyslipidemia, type 2 diabetes, and hypertension, which eventually culminate
in the development of CVDs [2]. Obesity is associated with many metabolic abnormalities
that disrupt cardiovascular homeostasis by stimulating inflammatory processes that recruit
immune cells to the injury site and reduce nitric oxide (NO) levels, resulting in increased
blood pressure, endothelial cell migration, proliferation, and apoptosis [3]. In addition to
its role in storing excess fat, adipose tissue also acts as an endocrine organ that produces
numerous biologically active, cytokine-like peptides called adipokines that can elicit au-
tocrine, paracrine, and endocrine functions in the body [4]. Adipokines regulate adipose
tissue metabolism, differentiation, and energy balance storage and are essential for normal
physiological functioning [5]. In addition, adipokines may alter immune responses, lipid
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metabolism, insulin sensitivity, vascular homeostasis, and angiogenesis, thus directly or
indirectly affecting CVDs pathogenesis [6,7]. It has been acknowledged that dysfunctional
adipose tissue remodelling results in adipokine disbalance, leading to systemic inflamma-
tion that affects the cardiovascular endothelium, resulting in hypertension and endothelial
cell proliferation [6,8,9]. Numerous other adipokines whose expression has been shown
to be upregulated in the obese state have been identified since the discovery of leptin,
an adipose-specific adipokine with a central role in regulating food intake and energy
expenditure. Tumour necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and resistin belong
to a pro-inflammatory group of adipokines that lead to exacerbation of metabolic and
cardiovascular diseases [10]. However, some adipokines that are downregulated in obesity
have anti-inflammatory properties, thus exerting a protective function against conditions
associated with obesity, including CVDs [11].

In this review, we focus on the role of chemerin in the pathophysiology of CVDs.
Chemerin is an adipokine with multiple roles in the pathogenesis of metabolic disor-
ders and inflammatory disease in the cardiovascular system. Chemerin regulates energy
metabolism, adipogenesis, and angiogenesis [12–14] and plays a role in adaptive and innate
immunity, acting as a chemoattractant for immune cells [15,16]. Systemic chemerin levels
positively correlate with obesity-related phenotypes, such as body mass index (BMI), in-
sulin resistance, and serum triglycerides, suggesting its function in metabolic diseases [16].
In addition, it has been suggested that chemerin levels determine the severity of coronary
lesions since a positive correlation was observed between the presence of coronary artery
disease and serum chemerin levels [17,18]. High chemerin levels are an independent pre-
dictor of coronary artery disease [19]. It was observed that plasma chemerin levels were
increased in patients with coronary artery disease and were associated with an increased
risk of significant adverse cardiovascular effects in these patients [19]. Chemerin secretion
in the perivascular tissue correlates positively with aortic and coronary atherosclerosis [20],
and chemerin has been linked to peripheral arterial stiffness [21], inflammation markers,
and metabolic syndrome components [22] have been reported. This review focuses on the
mechanisms of chemerin action and its role in the pathogenesis of CVDs. Furthermore, we
discuss novel approaches for developing chemerin-targeting therapeutic agents to treat
CVDs.

Search Strategy

We searched PubMed and MEDLINE for English and non-English articles with English
abstracts published between 1997 (when the first report on chemerin identification was pub-
lished) and 2022. The top search terms were: chemerin, cardiovascular disease, chemerin
receptors, adipokine, inflammation, endothelial dysfunction, and chemerin-targeting ther-
apeutic agents. The search retrieved original peer-reviewed articles, which were further
analyzed, focusing on the role of chemerin in CVDs. We specifically focused on including
the most recent findings published in the past five years.

2. Cardiovascular Disease (CVDs)

The pathogenesis of CVDs is predominantly of atherosclerotic origin and progressively
leads to the development of coronary artery disease, cerebrovascular disease, venous throm-
boembolism, and peripheral vascular disease, ultimately causing myocardial infarction,
cardiac arrhythmias, or stroke [23]. Atherosclerosis is a progressive inflammatory disease
characterized by lipid deposition in the arteries [24]. A defining event in the initiation
of atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL)
which is exposed to the oxidative waste of vascular cells and modified to oxidized LDL
(OxLDL) [25]. The recruitment of macrophages accompanies this process to fatty deposits
on blood vessel walls [26] and ingestion of OxLDL by macrophages resulting in the forma-
tion of so-called “foam cells”, lipid-laden macrophages with a foamy appearance [27,28].
Foam cells secrete substances involved in plaque formation and its progression to more
complex forms that can inhibit blood flow. Plaque growth can lead to the formation of



Biomedicines 2022, 10, 2970 3 of 20

a blood clot, resulting in myocardial infarction or stroke. Hypertension represents one
of the most important risk factors for developing atherosclerotic heart disease, stroke,
and peripheral artery disease. The pathogenesis of hypertension is characterized by pro-
gressively increased arterial stiffness, inflammation accompanied by activation of the
renin–angiotensin–aldosterone system, and endothelial dysfunction [29].

Different behavioural and risk factors may increase inflammatory stress, leading to
CVDs [30]. In this context, inflammation is a cause and aggravating factor in CVDs and a
mediator of the disease’s worst prognosis. Recent studies have extensively examined the
role of inflammation in the genesis and progression of CVDs [31,32]. However, new inflam-
matory biomarkers, such as C-reactive protein (CRP) [33], interleukins (IL) [34], tumour
necrosis factor-alpha (TNF-α), and nitrotyrosine, have emerged in recent decades [30]. We
must mention sirtuins (SIRT), micro RNAs (miRs), ST2 protein, apolipoprotein E protein,
adiponectin, and others among these new biomarkers [30]. These biomarkers are pref-
erentially expressed locally in the inflammatory target tissue, but they are also released
into the peripheral blood and used as diagnostic and prognostic biomarkers [30]. Indeed,
these biomarkers may predict future adverse cardiovascular events and a poor prognosis
in CVDs patients. Furthermore, these new inflammatory biomarkers can be used to assess
therapeutic efficacy in CVDs patients and could pave the way for new and exciting research
into the relationship between inflammation and CVDs [30].

In obese patients, visceral fat and superficial adipose tissue are active endocrine
tissues that express cytokines that can communicate with the cardiovascular system [35,36].
These cytokines, which include TNF, IL6, and anti-apoptotic proteins such as SIRT, are
crucial in regulating adipose tissue function. Indeed, cytokine overexpression causes
adipose tissue local dysfunction characterized by increased inflammation and oxidative
stress, which is linked to a decrease in mitochondrial biogenesis [36]. In this context,
SIRT is an NAD+-dependent deacetylase that regulates mitochondrial function, energy
metabolism, adipocyte hypertrophy, cardiac regeneration, and cardiac remodelling [36,37].
Currently, altered glucose homeostasis induces the upregulation of inflammatory cytokines,
which is associated with SIRT1 downregulation in obese diabetes patients. However, in
diabetic patients versus normoglycemic patients, this may affect cardiovascular functions,
resulting in altered myocardial performance and the development of heart failure [36].
According to Sardu et al., baseline hyperglycemia and insulin resistance are associated with
higher expression of serum inflammatory cytokines and nitrotyrosine and lower expression
of SIRT1 in subcutaneous abdominal fat in pre-diabetic patients versus normoglycemic
patients [36].

Pre-diabetics have blood glucose and glycated haemoglobin levels that are not within
the normal range for diabetes diagnosis [36]. Surprisingly, pre-diabetics have a higher
risk of developing myocardial dysfunction, CVDs, and heart failure and an increased
risk of death from any cause. As a result, altered glucose homeostasis appears to be
the key factor influencing these molecular changes and clinical outcomes in pre-diabetic
vs. normoglycemic patients [36]. In contrast, obesity-related changes in inflammation,
oxidative stress, and cardiac cellular growth may impact myocardial function [36]. As a
result, this pathological condition may be induced and exacerbated in obese patients with
prediabetic conditions vs. patients with normoglycemic conditions due to altered glucose
homeostasis. As a result of altered glucose homeostasis, this pathological condition may
be induced and exacerbated in obese patients with prediabetic conditions versus patients
with normoglycemic conditions [36]. Nitrotyrosine is produced by the oxidation of tyrosine
and is an indicator of oxidative stress in overweight and diabetic patients [38]. Indeed,
hyperglycemia is directly involved in the subsequent formation of nitrotyrosine in diabetic
patients. Furthermore, patients with prediabetic conditions had a statistically significantly
lower baseline value of SIRT1, downregulated by altered glucose homeostasis and linked to
altered myocardial performance [36]. These inflammatory/oxidative molecular pathways
were linked to various echographic changes. Patients with prediabetes had higher intima-
media thickness values at baseline than obese patients with normoglycemic conditions [36].
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Intima-media thickness is a significant atherosclerotic risk marker due to an adaptive
response to changes in flow, wall tension, or lumen diameter [36,39]. On the other hand,
higher intima-media thickness could be caused by non-atherosclerotic processes such as
smooth muscle cell hyperplasia and fibro-cellular hypertrophy, which can result in medial
hypertrophy and compensatory arterial remodelling [36]. Obese patients with prediabetes,
on the other hand, may have anatomic and physiologic changes consistent with early
arterial disease [36,37]. These molecular inflammatory/oxidative alterations were linked to
higher values of septum thickness, posterior wall, left ventricle mass, and MPI at baseline
in patients with pre-diabetic versus normoglycemic conditions. [36].

MicroRNAs (miRs) are important regulators of inflammation, adipose tissue function,
and SIRT1 expression and are implicated in regulating insulin resistance and glucose home-
ostasis [40–45]. miRs are small endogenous non-coding RNAs that regulate gene expression
by repressing translation or degrading target mRNAs [40–45]. miR-195 and miR-27, in
particular, have been linked to adipose tissue and systemic inflammation, as well as SIRT1
expression, and are differentially expressed in overweight and normoglycemic vs. hyper-
glycemic patients. [42–45]. These effects resulted in significant reductions in intima-media
thickness (IMT), left ventricular mass (LVM), and myocardial performance index (MPI)
and an improvement in the left ventricular ejection fraction (LVEF). In obese pre-diabetic
patients, miR-195 and miR-27 may regulate the expression of inflammatory/oxidative
metabolites. Then, through the different regulations of miR195 and miR-27 expression, these
molecules could influence the IMT, LVM, LVEF, and MPI. Indeed, at 12 months of follow-up,
metformin therapy vs. placebo may significantly reduce inflammatory/oxidative stress
and the expression of circulating miR-195 and miR-27 in pre-diabetic obese patients [45].
These effects resulted in significant reductions in IMT, LVM, and MPI and an improvement
in LVEF. In this context, metformin therapy, in addition to a hypocaloric diet vs. placebo,
appears to be an appropriate treatment to reduce hyperglycemia and insulin resistance and
reverse systemic inflammation/oxidative stress in obese pre-diabetics via downregulation
of circulating miR-195 [45]. Metformin therapy and a hypocaloric diet vs. placebo appear
to be appropriate treatments to reduce hyperglycemia and insulin resistance and reverse
systemic inflammation/oxidative stress in obese pre-diabetics via downregulation of circu-
lating miR-195 and miR-27. Future research is required to evaluate the effects of metformin
in pre-diabetic obese patients and its possible correlation with clinical outcomes via miRs
modulation.

Metabolic diseases are closely linked to the development of CVDs and represent
another significant global health problem associated with a high risk for morbidity and
mortality [46]. Although metabolic diseases is an “umbrella term” for multiple related
disorders, the prevalence of abdominal obesity, dyslipidemia, diabetes, and insulin re-
sistance (IR) is observed [46,47]. The disbalance between energy intake and expenditure
and genetic predisposition leads to the emergence of an obese phenotype [47,48]. Single
mutations in genes coding for adipokines, such as leptin and its receptors, were shown
to predispose the development of obesity [49,50]. An important factor associated with
excessive fat accumulation is decreased blood supply, causing hypoxia and local fat tissue
inflammation [51], gradually progressing into systemic inflammation [52]. Persistent ac-
tivation of various inflammatory mediators leads to the development of IR, T2DM, and
CVDs [53–55]. These diseases are accompanied by dyslipidemia [56] which is character-
ized by elevated total cholesterol, low-density lipoproteins (LDL), triglycerides (TG), very
low-density lipoprotein (VLDL), a reduced level of high-density lipoprotein cholesterol
(HDL-C), and decreased NO bioavailability [57–62]. Dyslipidemia induces endothelial
dysfunction and initiates CVDs [57–59,63]. It has been shown that even moderately el-
evated cholesterol levels may be linked with CVDs [58,59]. Fat accumulation increases
the release of inflammation-related factors such as macrophages and adipocyte-derived
adipokines, further stimulating cytokine expression that perturbs metabolic homeostasis,
promoting IR and hypertension [64–67]. Adipokines such as adiponectin, leptin, resistin,
TNF-α, and various ILs affect vascular function by increasing the expression of angiotensin
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and endothelin and inhibiting NO production [68,69]. Disturbed lipid metabolism results
in the accumulation of reactive oxygen species (ROS), leading to oxidative stress that
augments cytokine production [70] and increases the amount of OxLDL, which is more
physiologically harmful than LDL [69,71,72].

3. Chemerin

Chemerin is a small (18 kDa) protein that regulates numerous biological processes such
as adipogenesis, glucose homeostasis, tumourigenesis, inflammation, angiogenesis, myoge-
nesis, and immune cell migration [73,74]. The chemerin-encoding gene is known as retinoic
acid receptor responder 2 gene (RARRES2) or tazarotene-induced gene 2 (TIG2) since it was
initially discovered in psoriatic skin lesions exposed to the synthetic anti-psoriatic retinoid
tazarotene [75]. Later it was found that human hepatocytes and adipocytes represent the
major sites of chemerin synthesis [76,77], although significant expression of the RARRES2
gene was also observed in other tissues, such as kidneys, pancreas, adrenal glands, lungs,
and skin [78–80]. Chemerin expression in various tissues may be either constitutive or
regulated [13], and it is presumed that these two distinct pathways are differently con-
trolled [81]. For example, adipocytes and hepatocytes have high constitutive RARRES2
mRNA levels [80], in contrast to immune cells such as monocytes and granulocytes in which
the chemerin transcript is not detectable [82]. Observed differences in chemerin expres-
sion in different cell and tissue types may be of great importance for various pathological
conditions such as obesity, cancer, inflammation, and cardiovascular diseases [83–85]. It
has been proposed that chemerin expression may be regulated in a tissue-specific manner
by metabolic and inflammatory mediators [86], including glucose, fatty acids, insulin,
immunomodulatory cytokines, and agonists of nuclear receptors such as glucocorticoids,
retinoids, and vitamin D [81]. Chemerin promoter analysis has revealed the presence of
response elements for the peroxisome proliferator-activated receptor γ (PPARγ), sterol
regulatory element-binding protein 2 (SREBP2), and farnesoid X receptor (FXR) [87–89],
which are regulated by lipids (PPARγ), free fatty acids (SREBP2), and bile acids (FXR).
Although the details of the molecular mechanism that directs the regulated expression of
chemerin in different tissues are still not fully elucidated, epigenetic modifications such as
DNA methylation were implied as a decisive factor affecting constitutive and regulated
chemerin expression. DNA methylation in promoter regions is commonly associated with
transcriptional repression, while methylated cytosines in CpG dinucleotides located within
the gene are usually associated with transcriptional activation. A recent study demonstrates
that DNA methylation has an important role in the cell-specific expression of RARRES2 in
adipocytes, hepatocytes, and B lymphocytes [81]. The DNA methylation of RARRES2 con-
trols the constitutive expression of chemerin, whereas acute-phase cytokines, interleukin
1b (IL-1β) and oncostatin M (OSM) were shown to regulate chemerin expression in a cell
type-dependent manner [81].

Initially produced as preprochemerin, chemerin is then cleaved into prochemerin, an
inactive precursor chemerin isoform that freely circulates in plasma. Active chemerin isoform
is produced via post-translational processing, which entails the removal of 20 amino acids
from the C-terminal of prochemerin by a variety of serine and cysteine proteases, such as
plasmin, carboxypeptidases, cathepsins, Factor XIIIa, and Factor X (Figure 1) [74,77,78,90,91].
The original chemerin isoform consists of 163 amino acids, while other isoforms have
different numbers relative to the original isoform’s length and include chemerin 125, 152,
154, 155, 156, 157, and 158 [78,92]. Generally, in humans, the chemerin circulating form is
not bioactive, i.e., its bioactivity is determined by isoforms. The bioactivity of chemerin
isoforms is defined by chemotaxis analyses (migration assays in CMKLR1 expressing cells)
and intracellular calcium flux evaluation. According to the literature data, the Chem157
isoform has remarkable activity, followed by Chem158, Chem156, and Chem155 in the
blood, synovium, skin, and adipocytes, while Chem125, Chem144, Chem152, Chem154,
and Chem162 represent inactive chemerin isoforms [16,74,78,79,92]. In most studies on
serum and plasma samples, the most abundant isolated form of chemerin was the pre-
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cursor (Chem163), produced by the liver and secreted into the circulation [93–95]. The
activation of Chem163 might appear through inflammation, coagulation, or fibrinolysis
processes [77,96]. Considering the blood vessels, chemerin, as a full-length recombinant
peptide, triggers artery contractions in both human and animal models [97–99]. Chemerin
activation is moderated via three receptors: chemokine-like receptor 1 (CMKLR1, also
known as Chem23), G protein-coupled receptor 1 (GPR1), and C-C chemokine receptor-like
2 (CCRL2) (Figure 1) and their mutual interactions are in the nanomolar range [76,100].

Biomedicines 2022, 10, x FOR PEER REVIEW 6 of 21 
 

Chem144, Chem152, Chem154, and Chem162 represent inactive chemerin isoforms 

[16,74,78,79,92]. In most studies on serum and plasma samples, the most abundant 

isolated form of chemerin was the precursor (Chem163), produced by the liver and 

secreted into the circulation [93–95]. The activation of Chem163 might appear through 

inflammation, coagulation, or fibrinolysis processes [77,96]. Considering the blood 

vessels, chemerin, as a full-length recombinant peptide, triggers artery contractions in 

both human and animal models [97–99]. Chemerin activation is moderated via three re-

ceptors: chemokine-like receptor 1 (CMKLR1, also known as Chem23), G protein-coupled 

receptor 1 (GPR1), and C-C chemokine receptor-like 2 (CCRL2) (Figure 1) and their mu-

tual interactions are in the nanomolar range [76,100]. 

 

Figure 1. Chemerin synthesis and receptor signalling. RARRES2 retinoic acid receptor responder 2; 

CMKLR1 chemokine-like receptor 1; GPR1 G protein-coupled receptor 1; CCRL2 C-C chemokine 

receptor-like 2. Generated with Biorender.com. 

The interaction between chemerin and its receptors is important for various cellular 

and signalling mechanisms in the cardiovascular (CV), nervous, and reproductive sys-

tems [101–103]. CMKLR-1is the main chemerin receptor, and the chemerin/CMKLR1 axis 

promotes chemotaxis of natural killers (NK), macrophages, and dendritic cells [104]. 

GPR1 has a comparably similar affinity to chemerin as CMKLR1 with a similar sequence 

identity, and in experimental animal models, GPR1 participates in the development of 

adiposity, hormone secretion, and regulation of glucose equilibrium in obesity [102,105]. 

Interestingly, GPR1 plays a double role in chemerin activity, acting as both a signalling 

receptor via arrestin and a scavenger receptor for peptides that cannot stimulate receptor 

activation [106]. Although chemerin is the only recognized ligand for CCRL2, its interac-

tion does not initiate ligand scavenging or chemotaxis [107,108]. The human population’s 

physiological level of plasma chemerin is approximately 50 ng/mL [109]. 

3.1. Chemerin and CVDs 

An increasing body of evidence shows that chemerin plays numerous important 

roles in regulating the cardiovascular system and pathogenesis of CVDs, acting as an ad-

ipokine, chemoattractant, and growth factor. As an adipokine, chemerin modulates glu-

cose and lipid levels, thus affecting lipid deposition in the endothelium [12,110] and the 

Figure 1. Chemerin synthesis and receptor signalling. RARRES2 retinoic acid receptor responder
2; CMKLR1 chemokine-like receptor 1; GPR1 G protein-coupled receptor 1; CCRL2 C-C chemokine
receptor-like 2. Generated with Biorender.com.

The interaction between chemerin and its receptors is important for various cellular
and signalling mechanisms in the cardiovascular (CV), nervous, and reproductive sys-
tems [101–103]. CMKLR-1is the main chemerin receptor, and the chemerin/CMKLR1 axis
promotes chemotaxis of natural killers (NK), macrophages, and dendritic cells [104]. GPR1
has a comparably similar affinity to chemerin as CMKLR1 with a similar sequence identity,
and in experimental animal models, GPR1 participates in the development of adiposity,
hormone secretion, and regulation of glucose equilibrium in obesity [102,105]. Interestingly,
GPR1 plays a double role in chemerin activity, acting as both a signalling receptor via ar-
restin and a scavenger receptor for peptides that cannot stimulate receptor activation [106].
Although chemerin is the only recognized ligand for CCRL2, its interaction does not initiate
ligand scavenging or chemotaxis [107,108]. The human population’s physiological level of
plasma chemerin is approximately 50 ng/mL [109].

3.1. Chemerin and CVDs

An increasing body of evidence shows that chemerin plays numerous important
roles in regulating the cardiovascular system and pathogenesis of CVDs, acting as an
adipokine, chemoattractant, and growth factor. As an adipokine, chemerin modulates
glucose and lipid levels, thus affecting lipid deposition in the endothelium [12,110] and the
progression of atherosclerosis [12]. Chemoattraction is another prominent role of chemerin
that enables the interaction of macrophages with dendritic cells and natural killer cells,
directing them towards locations where damage occurs [79,111,112]. Chemerin promotes
calcium mobilization and chemotaxis of immature dendritic cells and macrophages in the
vasculature system [79], changes endothelial adhesion levels [113], and induces endothelial
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angiogenesis [114,115]. As a growth factor, chemerin promotes microcirculatory vessel
outgrowth to sustain adipocyte aggregation and regulates osteoblastogenesis of bone
marrow-derived precursor cells [100,115]. CMKLR1 receptor has been identified on the
endothelium and smooth muscle layers of blood vessels, indicating chemerin’s considerable
part in hypertension development since it moderates vascular tone and smooth muscle
contractions [97,116]. Chemerin decreases NO-induced vascular relaxation and cyclic
guanosine monophosphate (cGMP) formation [117,118]. In endothelial cells, NO is mainly
produced by endothelial nitric oxide synthase (eNOS) [119]. Chemerin was found to
decrease eNOS generation and stimulate NO breakdown, resulting in overall NO reduction
in endothelial cells. It has been speculated that additional mechanisms, such as eNOS
uncoupling and reduced NO-dependent cGMP signalling, could contribute to chemerin-
mediated endothelial dysfunction [117,120].

Chemerin’s role in the proliferation and migration of endothelial cells central to devel-
oping atherosclerosis is well documented. Chemerin promotes angiogenesis by stimulating
the endothelial cells’ proliferation while simultaneously functioning as their chemoattrac-
tant [121] in a process that depends on p38 mitogen-activated protein kinase (MAPK) and
the extracellular regulated protein kinases (ERK) 1/2 pathway in human umbilical vein
endothelial cells (HUVEC) [114,121,122]. Chemerin also exerts a dose-dependent effect on
matrix metalloproteinases-2/9-mediated extracellular matrix degradation, further affecting
the endothelial cells’ proliferation and migration capacity [123].

Chemerin was shown to increase the expression of various endothelial inflammatory
factors such as IL-6, TNFα, and CRP, which results in abnormal endothelial secretion, blood
vessel wall inflammation, and increased monocyte attachment to endothelial cells [124–126].
Interestingly, inflammatory cytokines such as TNF-α, IL-1β, and IL-6 were found to mod-
ulate chemerin effects by increasing the expression of CMKLR1 receptor in endothelial
cells [120]. In human coronary artery endothelial cells, elevated circulating chemerin con-
centration is associated with increased expression of intercellular adhesion molecule 1
(ICAM-1) and E-selectin, which are regarded as typical markers of vascular endothelial
activation [127]. Based on the literature data, it could be suggested that inflammatory mech-
anisms mediate many effects of chemerin that lead to endothelial dysfunction. Chemerin is
also associated with excessive ROS accumulation in endothelial cells, contributing to en-
dothelial dysfunction [124]. Mitochondrial ROS production was increased upon treatment
of human aorta endothelial cells with chemerin, whereas treatment with a ROS scavenger N-
acetylcysteine or knockdown of CMKRL1 receptor led to inhibition of ROS production [128].
These data suggest that chemerin exerts effects on mitochondria, which represent the major
source of intracellular ROS production and are further supported by findings that the
mitochondria-targeted antioxidant Mito-TEMPO suppressed the chemerin-mediated ROS
generation [128].

Chemerin’s effects on vascular smooth muscle cells (VSMCs) are extensively studied.
The proliferation and migration of VSMCs are involved in vascular remodelling, and the
abnormal vascular structure is accompanied by vascular dysfunction [129]. Studies show
that short-term in vitro treatment of VSMCs with chemerin (20 min) increased the prolifer-
ation and migration capacity of VSMCs via MAPK and Akt/ERK signalling [130,131], the
endothelin-1 dependent pathway [132], and increased autophagy [133]. Interestingly, pro-
longed incubation of VSMCs with chemerin (6 h) led to VSMC’s apoptosis [126], suggesting
that chemerin may exert different functions at different stages of vascular remodelling and
dysfunction [120]. In addition, increased ROS accumulation and elevated expressions of in-
flammatory cytokines such as IL-1β, IL-6, and monocyte chemoattractant protein-1 (MCP-1)
were observed in chemerin-treated VSMCs, suggesting that chemerin can induce VSMC
dysfunction by augmenting oxidative stress and promoting inflammation [126,134–137].

The current state of knowledge points to the role of chemerin, a global regulatory
protein that mediates a variety of cardiovascular functions. In the following section, we
present further important evidence establishing a connection between chemerin and CVD
pathogenesis as evidenced by human and animal studies.
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3.1.1. Evidence from Human Studies Supporting Chemerin’s Role in CVDs

Chemerin’s significant role in vascular dysfunction processes is illustrated by in vitro
findings that chemerin stimulation increases reactive oxygen species (ROS) generation and
inflammation in human microvascular endothelial cells and VSMCs [126]. Chemerin par-
ticipates in endothelial inflammation via pro-inflammatory transcriptional regulator NF-KB
activation and increases monocyte–endothelial adhesion [125]. According to recent research,
chemerin serum levels are positively associated with unstable plaques and blood vessel
disorders. [138,139]. A broad spectrum of chemerin’s associations with atherosclerosis is
possibly due to its interference with macrophage activity via its CMKLR1 receptor [140,141].
Serum chemerin levels, for example, correlated with atrial remodelling and fibrillation,
blood pressure, lipid status, and BMI in a cross-sectional study of male and female hu-
man patients with atrial fibrillation [142]. In a prospective cohort study with 834 patients,
chemerin was labelled as a novel serum biomarker for predicting major adverse cardiac dis-
orders in chronic heart failure [143]. According to data from another cohort study, plasma
chemerin levels increased in male and female patients with progressive carotid stenosis
and correlated positively with different inflammatory markers, indicating chemerin’s in-
fluence on atherosclerosis [144]. Various in vivo studies validated the correlation between
increased chemerin levels and obesity and metabolic syndrome [85,145]. Still, we should be
cautious about plasma chemerin concentrations since it involves assays that distinguish be-
tween chemerin and prochemerin isoforms. In addition to chemerin’s positive association
with visceral adiposity and insulin resistance (IR), chemerin also correlates with carotid
intima-media thickness, suggesting its potential role in CV risk evaluation [146] (Table 1).

Table 1. Chemerin and CVDs: Evidence from human studies.

Patient’s Gender and
Age (Mean ± SD or
Median and Range)

CVDs Chemerin Levels CV- Associated Disorders/Parameters
and Chemerin Correlation Reference

male and female
11.6 ± 2.0 ↑ BMI ↑ (serum) BMI, waist circumference, leptin, body

fat insulin, HDL-C and TC [85]

male and female
48.4 ± 10.9 dyslipidemia, hypertension ↑ (plasma) RARRES2 gene polymorphism, hs-CRP [138]

male and female
43.5 ± 13.0

rheumatoid factor-positive,
hypertension ↑ (plasma)

Hs-CRP, leptin, vascular adhesion
molecule, monocyte chemoattractant

protein
[141]

male and female
60.54 ± 9.64 arterial fibrillation ↑ (serum)

arterial fibrillation, BMI, SBP, DBP, TC,
LDL-C, creatinine, hs-CRP and left atrial

diameter
[142]

male and female
66 (58–75)

hypertension, chronic heart
failure, diabetes,
hyperlipidemia

↑ (serum) heart failure, diabetes, hs-CRP,
hypertension [143]

male and female
66.9 ± 0.6 coronary artery disease ↑ (plasma) TC, hsCRP, peripheral leukocyte count,

TNF-α [144]

male and female
45.5 (18–69)

↑ BMI, impaired glucose
tolerance

↑RARRES2 expression
(whole blood) visceral fat mass [145]

male and female
44.0 ± 10.1

hypertension, diabetes, ↑
BMI ↑ (plasma) waist circumference, HOMA-IR, fat mass,

HbA1c, cIMT [146]

male and female
16.3 ± 1.5

atherosclerotic lesions and
cardiac autonomic

neuropathy, diabetes type 1
↑ (serum) vaspin and LDL-C [147]

female
13.9 ± 1.8 ↑ BMI ↑ (serum) TG, HDL-C, LDL-C and fat mass [148]

male and female
62.2 ± 10.0

coronary stenosis,
hypertension, diabetes ↑ (serum) fasting glucose, TC, LDL-C, hs-CRP,

degree of coronary artery stenosis [149]
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Table 1. Cont.

Cell Culture Model Chemerin Concentrations Duration of
Stimulation

CV-Associated
Disorders/Parameters–Chemerin

Correlation
Reference

human microvascular
endothelial cells 10 nM 2 h

↑ endothelial cell adhesion, protein
expression and secretion, activates

NF-KB
[125]

human microvascular
endothelial and vascular

smooth muscle cells
50 ng/mL 5, 15, 30, 60 min and 2, 8,

24 h

↑ O2·−, ↑ H2O2, ↑ Nox 1, ↑ Nox 4 and ↑
miRNA expression, ↑ phosphorylation of
SAPK/JNK and ERK1/2, ↓ eNOS, ↓ NO

and apoptosis

[126]

human peripheral blood
mononuclear cells 2.5, 25, 50 and 100 ng/mL 12, 24, 36 and 48 h. ↑ adhesion and migration abilities of

endothelial progenitor cells [138]

↑ increased; ↓ decreased; BMI, body mass index; cIMT, carotid intima-media thickness; CV, cardiovascular;
CVDs, cardiovascular disorders; DBP, diastolic blood pressure; eNOS, endothelial nitric-oxide synthase; ERK,
extracellular signal-regulated kinase; H2O2, hydrogen peroxide; HbA1c. glycated haemoglobin; HDL-C. High-
density lipoprotein cholesterol; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; hsCRP, high
sensitive c-reactive protein; LDL-C, low-density lipoprotein cholesterol; NO, nitric oxide; Nox, NADPH oxidases;
O2·−, superoxide anion; SAPK/JNK, stress-activated protein kinases/jun amino-terminal kinases; SBP, systolic
blood pressure; TC, total cholesterol; TG, triglycerides; TNF-α tumour necrosis factor α.

In patients with rheumatoid arthritis, chemerin levels are independently associated with
atherosclerosis plaque formation and endothelial function [141]. In addition to adults and
elderly patients, CV risk prevalence could be perceived in younger populations [150,151], and
some authors indicated that chemerin levels in obese and diabetic adolescents positively
correlate with various biochemical parameters related to CV risk occurrence [147,148].
However, in another study on human subjects where serum chemerin levels were positively
associated with various cardiometabolic risk factors, such as triglyceride, fasting glucose,
coronary artery stenosis, and others, multiple regression indicated that chemerin does not
represent an independent factor of risk for multiple vessel disorders [149].

Interestingly, some authors state that chemerin participates in pre-eclampsia devel-
opment by CMKLR1/Akt/enhancer-binding protein-alpha (CEBPα) axis activation and
angiogenesis suppression and induces M1 macrophage polarization [152]. Expression levels
of chemerin, pregnancy-associated plasma protein A (PAPP-A), ox-LDL, and matrix metal-
loproteinase 9 were found to be independent risk factors for neurological impairment in
ischemic cerebrovascular disease patients [153]. The chemerin/CMKLR1 axis promotes vas-
cular smooth muscle cell migration and proliferation through Akt/ERK phosphorylation,
causing vascular remodelling and hypertension [131] (Table 1). It was observed that adult
patients with primary hypertension had significantly higher serum chemerin concentrations
compared to healthy controls [154]. In addition, the concentration of circulating chemerin
was increased in obese children with elevated systolic blood pressure [155,156]. Although
numerous pieces of evidence show a strong positive correlation between chemerin concen-
tration and blood pressure, further clinical studies are required to support the predictive
potential of the association of chemerin concentration with hypertension.

Recently, it has been proposed that the local tissue chemerin concentrations, not the
circulating chemerin levels, are responsible for controlling blood pressure [78]. In particular,
adipocytes in the fat tissue were suggested to be a source of biologically relevant chemerin
for blood pressure regulation. According to this suggestion, perivascular adipose tissue
(PVAT) facilitates the local action of chemerin in the vasculature by serving as a source
of chemerin that may activate CMKLR1 receptors in sympathetic nerves and/or smooth
muscle cells to stimulate vascular contraction [78,157].

This view is supported by findings that chemerin may enhance sympathetic nerve
function in rats where PVAT-produced chemerin amplified superior mesenteric arterial
contraction induced by electrical-field stimulation (EFS) via activation of CMKLR1 recep-
tor [98]. The experiments suggest sympathetic nerve stimulation may lead to chemerin
secretion [78]. Furthermore, exogenous chemerin-9 potentiated EFS-induced arterial con-
traction, which is important in light of the sympathetic nervous system’s role in controlling
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and regulating blood pressure. Also, high chemerin mRNA transcripts are found in the
adrenal gland [82], which is part of the sympathetic nervous system and exerts blood
pressure control via epinephrine and mineralocorticoids. Chemerin release in the adrenal
medulla provoked by sympathetic nerve activation would activate the receptors in the
adrenal cortex, representing another possible mechanism for blood pressure control by
increased local concentrations of chemerin.

Chemerin was also associated with an abdominal aortic aneurysm (AAA), represent-
ing progressive abdominal aortic dilation. The concentration of circulating chemerin was
increased in patients with AAA, and the analysis of abdominal aortic samples from AAA
patients revealed increased mRNA levels of both chemerin and CMKRL1 relative to healthy
controls, suggesting the involvement of chemerin/CMRKL1 axis in AAA pathogenesis
and progression [158]. The protein expression of chemerin and CMKLR1 receptor was also
analyzed by immunohistochemistry in human aortas, coronary vessels, and periadven-
titial adipose tissue (PVAT) and strongly correlated with the presence of atherosclerosis.
Chemerin immunopositivity was observed in PVAT, VSMCs, and foam cells in atheroscle-
rotic lesions, whereas CMKLR1 was expressed in VSMCs and foam cells in aortic and
coronary vessels with atherosclerotic lesions. Although chemerin and CMKLR1 protein
expression significantly correlated with the severity of aortic atherosclerosis [140], chemerin
is not recommended as an atherosclerosis marker due to the dependence of its predictive
potential on the location of affected arteries and the disease stage [22,159,160]. However,
chemerin may be considered a predictor of acute coronary syndrome (ACS) since the
concentration of circulating chemerin was significantly higher in patients with ACS relative
to those with stable angina pectoris and healthy controls, and the increase in chemerin
concentration strongly correlated with the elevation of CRP concentration [154,161,162].

3.1.2. Chemerin Roles in CVDs: Evidence from Animal Studies

In diabetes, the incidence of cardiomyopathy, ischemia, and micro/macrovascular
dysfunction is increased [163]. Chemerin partially participates in glucose homeostasis,
inducing IR in rat cardiomyocytes via the ERK1/2 pathway (Table 2) [164]. Diabetic
retinopathy is a frequent and early microvascular complication [165]. According to Jun
et al., chemerin through CMKLR1 induces ICAM-1 expression and vascular endothelial
growth factor (VEGF) secretion in rats’ primary retinal microvascular endothelial cells,
stimulating the angiogenic process in diabetes pathology [166]. In a study on cultured
cardiomyocytes of rats, data showed that chemerin suppresses Akt phosphorylation and
caspase-9 activation and consequently leads to cell apoptosis [167]. In cardiac fibroblasts
isolated from Wistar rats, chemerin-9, an active fragment of chemerin, induced cell mi-
gration, and ROS increase [168]. Previous studies showed that chemerin affects adipocyte
differentiation and moderates different long non-coding RNAs (IncRNAs) and micro RNAs
(miRNAs) responsible for fat accumulation and VEGF expression and activity, such as
lncRNA Meg3 and miR-217 [169]. A recent study on female chemerin knockout rats re-
ported data regarding chemerin’s role in adipocyte growth in mesenteric fat [170]. In
addition, chemerin modified blood pressure in chemerin knockout (KO) female rats, but
this effect was not observed in male rats, suggesting a possible sex dependency [171]. In the
same animal model, it is shown that chemerin affects sympathetic nerve-mediated contrac-
tion and vascular tone [172]. Chemerin’s association with the progression of atherosclerosis
was investigated by manipulating chemerin levels in vivo. Adenovirus transfection was
used to knockdown or overexpress the chemerin gene in the aorta or plasmacytoid den-
dritic cells (pDCs) of apolipoprotein (Apo) E−/− mice on a high-fat diet [173,174]. This
approach revealed that chemerin accelerates the progression of atherosclerosis [174]. In
addition, the knockout of CMKLR1 receptors in pDCs of ApoE−/− mice restricted the
formation and progression of atherosclerotic plaque [173]. It has been suggested that the
pro-atherosclerotic effect of chemerin can be explained by increased adhesion and migration
of endothelial cells [110], the proliferation of VSMCs, and inflammation [175]. The human
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and animal studies presented in this review strongly support the conclusion that chemerin
dysregulation represents a risk factor for CVDs and obesity.

Table 2. Chemerin and CVDs: Evidence from animal studies.

Animals (Gender) Tissues
CV-Associated

Disorders/Parameters–Chemerin
Correlation

Reference

chemerin knockout
Sprague Dawley rat

(female)
thoracic aorta blood pressure modification [171]

chemerin knockout
Sprague Dawley rat

(female)
plasma, mesenteric adipocytes ↓ visceral adiposity [170]

chemerin knockout
Sprague Dawley rat

(female)
superior mesenteric arteries ↓ vascular tone [172]

Cell Culture Model Chemerin
Concentrations

Duration of
Stimulation

CV-Associated
Disorders/Parameters–Chemerin

Correlation
Reference

rat vascular smooth muscle
cells 1–300 ng/mL 24 h ↑ vascular smooth muscle cells

proliferation and migration [131]

Sprague Dawley rat’s
cardiomyocytes 10 and 100 ng/mL 24 h impaired insulin signalling and induced

insulin resistance [164]

Sprague Dawley rat’s
cardiomyocytes 0.1, 1, 10 and 100 nM 6–48 h cardiomyocytes apoptosis [167]

mouse 3T3-L1
preadipocytes

0, 20, 40, 60, 80 and
100 ng/mL 48 h

miRNA-217 suppression (correlated with
fat accumulation), induced

preadipocytes differentiation into
adipocytes, ↑Meg3 lncRNA

[169]

Wistar rat’s cardiac
fibroblasts 100 ng/mL 12 h fibroblast migration, ↑ ROS [168]

miRNA, micro RNA; Meg3, maternally expressed gene; lncRNA, long non-coding RNA; ROS, reactive oxygen
species.

4. Perspectives for the Development of Chemerin-Targeting Therapeutic Agents

The increasing amount of data on chemerin’s role in the pathogenesis of CVDs gave
rise to an intriguing possibility of using chemerin and associated signalling proteins,
such as receptor CMKLR1, as targets for developing novel therapeutic agents for the
management of CVDs. One of the most extensively studied candidates is the compound
CCX832, a CMKLR1 inhibitor shown to significantly ameliorate chemerin-induced vascular
dysfunction in vitro and in vivo [120].

CCX832 has been shown to reduce chemerin-induced vascular inflammation in human
microvascular endothelial cells, ameliorate consequences of oxidative stress in human aortic
smooth muscle cells, and reverse chemerin-induced angiogenesis via decreased expres-
sion of P38 MAPK, ERK1/2, and matrix metalloproteinases-2/9 [99,120,176]. In addition,
CCX832 exerted an inhibitory effect on the abnormal contraction of human pulmonary
and coronary arteries [98,177]. The observed effects of CCX832-mediated inhibition of
CMKLR1 were further confirmed in experimental studies using RNA interference by short
hairpin RNA (shRNA) to suppress CMRKL1 expression [178]. Data showed that CMRKL1
knockdowns were associated with reversed angiogenesis, reduced oxidative stress and
downregulated expression of autophagy-related genes [121,128,179]. Despite promising
experimental results and phase 1 clinical trial initiation in patients with psoriasis, the devel-
opment of CCX832 was discontinued in February 2012 for unknown reasons. However,
research on CCX832 has paved the way for identifying and developing other CMKLR1



Biomedicines 2022, 10, 2970 12 of 20

inhibitors that should have similar effectiveness in ameliorating chemerin-induced vascular
dysfunction and improving the safety profile in humans.

Another ligand for binding to CMKLR1 is resolvin E1 (RvE1), a member of the family
of compounds derived from omega-3 polyunsaturated fatty acids (PUFA). RvE1 is a special-
ized pro-resolving mediator (SPM) with a potent immunomodulatory role in the resolution
of inflammation. In addition, RvE1 has a crucial role in reducing chemerin-mediated vascu-
lar dysfunction and associated CVDs risk [180,181], most probably through competing with
chemerin for the binding site of CMKLR1. RvE1 was shown to have numerous benefits
for the cardiovascular system, such as regulation of vasoconstriction [98], inhibition of
atherosclerotic plaque progression [182], and restriction of vascular calcification [183].

Several synthetic fragments of chemerin were shown to possess biological activity,
acting as chemerin analogues and agonists of CMKLR1. For instance, chemerin-9 (C9) has
an anti-inflammatory role, reducing TNF-α levels and decreasing the areas of atheroscle-
rotic aortic lesions [184]. C9 was recently shown to attenuate abdominal aortic aneurism
formation in ApoE−/− mice by significantly suppressing the infiltration of inflammatory
cells, neovascularization, and matrix metalloproteinase expression, while increasing the
presence of elastic fibres and smooth muscle cells (SMCs) [185]. However, C9 may also
adversely affect the cardiovascular system by inducing arterial contraction and hyperten-
sion [184]. Further studies addressing the efficacy and safety of C9 and other synthetic
chemerin fragments are required to assess their potential for therapeutic use. Regarding
other synthetic fragments of chemerin, some authors pointed out that Chem156 also reflects
an anti-inflammatory role in synovial fluid of patients with arthritis and experimental
hepatocellular carcinoma [186,187].

Finally, antisense oligonucleotides (ASOs) targeting the chemerin gene by sequence-
specific binding were also investigated in animal studies, and it was demonstrated that
chemerin knockout by ASO results in a significant decrease in blood pressure [188]. These
findings open up a perspective on the possible use of chemerin-targeting ASOs for the
treatment of hypertension.

5. Conclusions

Evidence points to chemerin’s crucial role in CVD’s development and progression. As
an adipokine, chemerin modulates glucose and lipid levels, thus affecting lipid deposition
in the endothelium and the progression of atherosclerosis. As a chemoattractant, it facilitates
the mobilization and interaction of macrophages with dendritic cells and natural killer
cells in the vasculature system and induces endothelial angiogenesis. The established
chemerin’s role in vascular inflammation, angiogenesis, and blood pressure modulation
opens up exciting perspectives for developing chemerin-targeting therapeutic agents for
the treatment of CVDs. Several candidates that target chemerin and the CMRK1 signalling
pathway have shown promising potential in reducing vascular dysfunction in numerous
in vitro and in vivo studies. Further research addressing the efficacy and safety of novel
chemerin-targeting agents is required to assess their potential therapeutic application.
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