

PHYSICAL CHEMISTRY 2004

Proceedings

of the 7th International Conference on Fundamental and Applied Aspects of Physical Chemistry

Volume I and II

September 21-23, 2004 Belgrade, Serbia and Montenegro

PHYSICAL CHEMISTRY 2004

Proceedings

of the 7th International Conference on Fundamental and Applied Aspects of Physical Chemistry

Volume I and II

Editors A. Antić-Jovanović and S. Anić

ISBN	86-82457-12-x		
Title:	Physical Chemistry 2004. (Proceedings)		
Editors	A. Antić-Jovanović and S. Anić		
Published by:	The Society of Physical Chemists of Serbia, Student- ski trg 12-16, P.O.Box 137, 11001 Belgrade, Serbia and Montenegro		
Publisher:	Society of Physical Chemists of Serbia		
Printed by:	"Jovan" Printing and Published Comp; 300 Copies; Number of Pages: x + 906; Format B5; Printing finished in September 2004.		
Text and Layout:	Aleksandar Nikolić		

RADIONUCLIDES IN SOME SPRING MINERAL WATERS IN SERBIA

J. D. Joksić and M. B. Radenković

Vinča Institute of Nuclear Sciences, Radiation and Environmental Protection Laboratory, 11001 Belgrade, P.O.B. 522, Serbia & Montenegro

Abstract

Radiochemical analyses of some natural mineral bottled waters from different location in Serbia were investigated. Concentrations of all present naturally occurring radionuclides, ²³⁸U, ²³⁴U, ²³²Th, ²³⁰Th, ²²⁸Th, ²²⁸Ra and ²²⁶Ra and ²³⁴U/²³⁸U, ²²⁶Ra/²³⁰Th, ²²⁸Th /²³²Th, and ²²⁸Ra/²²⁸Th activity ratios were calculated and discussed. Uranium series disequilibria in the hydrosphere occur due to geochemical differentiation processes resulting with different mobility of the radionuclides from the same series. We have investigated radioactive disequilibrium in the spring waters Crni Guber, Čibutkovica and Studenica, originated from metamorphic rock area. High content of radium isotopes (²²⁶Ra, ²²⁸Ra) in analysed natural spring waters indicates contribution from other non-water sources, probably environmental sediment.

Introduction

Consumption of spring mineral water is continuously increasing during last few decades. Waters coming from deeply located sources in the earth crust may transport natural radioactive isotopes (including radium isotopes) under certain geological conditions. Two of them (²²⁶Ra, ²²⁸Ra) are of real menace from radiological point of view, because when disintegrating they create series of daughter alpha and beta radioactive elements. Permanent consumption of mineral water with higher concentration of radium isotopes might be dangerous for human health. Increased contents of ²²⁶Ra were observed in some mineral waters, used as drinking waters in France where the highest concentration was 2.7 Bq/l, Portugal 2.2 Bq/l, Germany 1.8 Bq/l, Brazil 3.5 Bq/l [1]. Activity concentrations for drinking water, recommended by WHO, are 0.1 Bq/l for gross *beta* activity. These recommendations must be appled to routine operational conditions of existing or new water supplies. For natural spring water we have to measure naturally occurring radionuclide ⁴⁰K, which makes up about 0.01 % of natural potassium (WHO, 1996).

We have investigated several natural spring waters. In these spring waters gross *alpha* and gross *beta* activity exceed recommended values of 0.1 Bq/l and 1Bq/l, respectively, for drinking and mineral water. These are carbon acid waters with similar chemical composite and same pH value (6.5).

Experimental

Alpha spectrometry procedure for uranium and thorium isotopes included: sampling, preliminary samples treatment, ion-exchange chemical separation, ion-exchange purification of separated elements, thin-layer source preparation and alpha spectrometry measurements.[3] After collection water samples have been acidified, evaporated and ashed at 550°C. ²³²U and ²²⁹Th have been aded in a quantity of about 0.1 Bq as a tracer to each sample, for radiochemical yield recoveries.

Radiochemical separation and purification was done on ion-exchenge resin DOWEX 1x8, 100-200 mesh. Electroplating of purified fractions, was used to made thin-layer radioactive sources. After electrodeposition, a thorium source was covered by vyns-foil. Samples have been concretrated by evaporating 10 l water to 450 ml for gamma analysis. After preparation, samples have been saled in the acril containers for 4 weeks to reash radioequilibrium between ²²⁸Ra and ²²⁶Ra and ²²⁶Ra.

Low-level activity measurements have been done by the use of Canberra 2004 alpha-spectrometry counting system, including vacuum chamber (20 mbar), PIPSdetector (300 mm² surface), with: counting efficiency 15%, at 25mm distance; multichannel energy scale 9.1 keV/ch, resolution 24 keV for ²⁴¹Am.

The counting time required had to be a few days, that is long enough to ensure an accurate result.

The gamma activity of the samples has been counted using high purity Ge detector, with counting relative efficiecy 23 %.

Results and Discussion

Spring water Crni Guber exhibits a disequilibria mostly in the ²³²Th series (Table1.). The ²²⁶Ra content, that should be in equilibrium with ²³⁸U, exceeds the value expected for the equilibrium. The equilibrium means that neither gain nor loss of any parent or daughter in a decay chain are not possible. The ²³⁰Th isotope was not found in this sample. However, the ²²⁶Ra and ²²⁸Ra activities found in this sample are much higher than those of their parents, because of the same chemical behaviour of different isotopes of an element. In the ²³²Th series the ²²⁸Th/²²⁸Ra disequilibrium is much higher than expected from present ²³²Th. High ²²⁸Th content may derive from ²²⁸Ra. Since chemical properties of uranium and radium are quite different, mobility of the parent and product isotopes are different in most chemical environments. ²³²Th is insoluble in water environments. However, its daughter nuclide ²²⁸Ra is much more soluble. The ²²⁸Th/²³²Th and ²²⁸Ra/²²⁸Th ratios are 126.7 and 7.7.

	²³⁴ U/ ²³⁸ U	²²⁸ Th/ ²³² Th	²²⁶ Ra/ ²³⁰ Th	²²⁸ Ra/ ²²⁸ Th
Crni Guber	1.24	126.7	/	7.7
Čibutkovica	0.95	54.3	38.5	12.4
Studenica	1.24	13.6	50000	/

Table 1: Radioactivity ratios of $^{234}U/^{238}U$, $^{228}Th/^{232}Th$, $^{226}Ra/^{230}Th$ and $^{228}Ra/^{228Th}$ in mineral waters

In the Čibutkovica spring water a disequilibria has been found, both in the ²³⁸U and ²³²Th series. The ²²⁶Ra content, that should be related to the ²³⁸U one, exceeds very much the equilibrium value. The ²²⁸Th, ²²⁸Ac and ²²⁸Ra concentrations are much higher than expected from present ²³²Th amount. In the decay process from ²³²Th to

²²⁸Th, the ²²⁸Ra radionuclide ($t_{1/2} = 5.75$ y) is in the middle. Since chemical properties of radium and thorium are different, high ²²⁸Th content may derive from ²²⁸Ra content. The ²²⁸Th/²³²Th, ²²⁶Ra/²³⁰Th and ²²⁸Ra/²²⁸Th ratios are 54.3, 38.5 and 12.4, respec-

tively. The results obtained here show that the rise in the activity level corresponds to the ²²⁶Ra isotope, for the Studenica water, since the ²²⁶Ra/²³⁰Th ratio was found to be 50000. Corresponding ratio for the Čibutkovica water is 38.5. The ²²⁸Ra isotope was not found in this water, so because of that the ²²⁸Ra/²²⁸Th ratio was missed. For com-

parison, the least 228 Th/ 232 Th ratio (of only 13.6) was found in the Studenica water.

Conclusion

The uranium series disequilibria can occur due to geochemical differentiation processes resulting with different mobility of the radionuclides from the same series. High content of radium isotopes (²²⁶Ra, ²²⁸Ra) in analysed natural spring waters indicates contribution from other non-water sources, probably environmental sediment.

References

- [1] A.Hetman, J.Dorda, W.Zipper Nukleonika, 1998, 43(4), 481-488.
- [2] WHO, Guidelines for drinking water quality, 2nd Edition 1996, Vol. 1,2.
- [3] M.Radenković, D. Vuković, V.Šipka, D.Todorović, J.Radioanal.Nucl.Chem., 1996, 208(2), 467-475.