

PHYSICAL CHEMISTRY 2004

Proceedings

of the 7th International Conference on Fundamental and Applied Aspects of Physical Chemistry

Volume I and II

September 21-23, 2004 Belgrade, Serbia and Montenegro

PHYSICAL CHEMISTRY 2004

Proceedings

of the 7th International Conference on Fundamental and Applied Aspects of Physical Chemistry

Volume I and II

Editors A. Antić-Jovanović and S. Anić

ISBN	86-82457-12-x
Title:	Physical Chemistry 2004. (Proceedings)
Editors	A. Antić-Jovanović and S. Anić
Published by:	The Society of Physical Chemists of Serbia, Student- ski trg 12-16, P.O.Box 137, 11001 Belgrade, Serbia and Montenegro
Publisher:	Society of Physical Chemists of Serbia
Printed by:	"Jovan" Printing and Published Comp; 300 Copies; Number of Pages: x + 906; Format B5; Printing finished in September 2004.
Text and Layout:	Aleksandar Nikolić

REACTIONS RESPONSIBLE FOR MASS LOSS DURING PRESSURE LESS SINTERING OF Si₃N₄ CERAMICS WITH LiYO₂ ADDITIVE

B. Matović, A. Vučković, D.Bucevac and S. Bošković INN Vinča, Material Science Lab. 11001 Belgrade

Abstract

The reactions were investigated with emphasis on the mass loss during pressureless sintering of Si_3N_4 ceramics without powder bad. A Si_3N_4 powder compacts with LiYO₂ additive were heat-treated at different temperatures under the pressure of N_2 of 0.1 MPa.. The mass loss increased with increasing temperature as well as with increasing additive content. It is expected that the major mass loss should be caused by volatilisation of lithia due to its high vapour pressure. However, the results of the chemical analysis of the samples are in contradiction with this assumption.

Introduction

Since silicon nitride is a covalently bonded solid compound, the selfdiffusivities of Si and N in pure Si_3N_4 are very small [1], therefore it cannot be sintered to full density without additives which form liquid phase upon firing [2]. Thus, liquid-phase sintering is the only method applied for densification of Si_3N_4 ceramics. However, during sintering loss of mass occurs, which is common phenomenon with Si_3N_4 [3]. Si_3N_4 is not getting melt; it decomposes under 0.1 MPa N_2 at 1880° C. The reaction during decomposition according to the formula [4]:

$$Si_3N_4(s) \Leftrightarrow 3 Si(l,g) + 2 N_2(g)$$

is of increasing importance above 1500° C. In addition, it should be born in mind that sintering additives, which form silicate or oxinitride liquid during the sintering evaporate, as well [5]. The mass loss leads unavoidably to composition change. Moreover, it disturbs the consolidation, causes creation of pores and hence degrades the mechanical properties of the ceramics [6]. For these reasons it is very important to decrease mass loss as much as possible.

The objective of the present work is to examine the mass loss during the pressureless sintering of Si_3N_4 ceramics with LiYO₂ additive.

Experimental

The starting powders were commercial Si_3N_4 (Silzot HQ) and homemade $LiYO_2$ powder. Si_3N_4 powders with 5, 10, 15 and 20 wt% $LiYO_2$ were prepared. Sintering was accomplished in a graphite-heated furnace (FCT, Germany) under 0.1 MPa nitrogen atmosphere, in the temperature range from 1550° to 1700°C, with a heating rate of 10 K/min. Chemical analysis by inductively coupled plasma-optical emission spectrometry (ICP-OES, Spectro, Germany) was used to quantify

the Li content of samples after various heat treatments. Mass losse (Δm) of the specimens was calculated according to the following formula: $\Delta m = [(m_G - m_S) \div m_G] \cdot 100$, where m_G = mass of the green body.

Results and Discussion

The mass loss upon sintering with different amounts of $LiYO_2$ additive is shown in Fig. 1. The loss increased with increasing temperature, as well as with increasing additive content. Larger amount of additive means the larger amount of the liquid phase which in turn, leads to more intensive evaporation. At 1550°C total amount of additive is converted into liquid forming Si-Li-Y-O-N melt. It can be assumed that the vaporization of liquid originates from the vaporization of each of its constituents. Also, reactions between Si₃N₄ and the glassy phases are responsible for the instability of Si₃N₄ ceramics at elevated temperatures. However, Y₂O₃ is stable based on thermodynamic calculations [7]. In contrast, the high vapour pressure of lithia causes its easy evaporation as mentioned earlier.

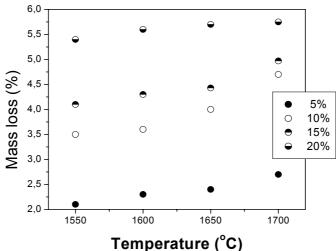
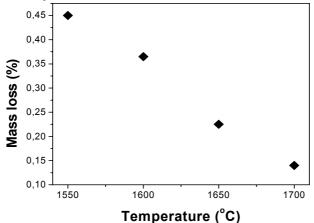


Fig. 1. Mass loss as a function of temperature for Si_3N_4 compacts with different amounts of LiYO₂ additive during sintering with a holding time of 5 min.

It is expected on the basis of the vapour pressure data for Li_2O [8] that lithia should volatilise completely at higher temperatures. However, the results of the chemical analysis of the samples are in contradiction with this assumption (Fig.2). With increasing the LiYO₂ additive the Li₂O content decreases significantly with temperature. However, Li₂O is still present after long annealing times, at all sintering temperatures.


It is known that lithia reacts with Si_3N_4 to give a very volatile lithium nitride (Li₃N) according to the reaction [9]:

$$Si_3N_4 + 6 Li_2O \Longrightarrow 4 Li_3N \uparrow +3 SiO_2 \tag{1}$$

The silica formed in reaction (1) combines with unreacted $Si_3N_4[10]$ according to the reaction (2)

$$\operatorname{Si}_{3}\operatorname{N}_{4} + 3\operatorname{SiO}_{2} = 6\operatorname{SiO} \uparrow + 2\operatorname{N}_{2}\uparrow$$
(2)

This reaction is well known from thermodynamics and experimental work on the Si-N-O system [11].

Fig. 2. Mass loss of lithium in Si₃N₄ samples sintered at various temperatures; annealing time is 4 h.

Conclusion

On the basis of the experimental results, it is to be concluded that the major part of the mass loss of the Si_3N_4 ceramics during sintering is a consequence of interaction of silicon nitride with silica, according to the reaction (2).

Acknowledgement

We acknowledge the support of MNTR of Serbia.

References

- [1] F. Riley, J. Am. Ceram. Soc., 2000, 83, 245.
- [2] G. Petzow and M. Herrmann, in Structure and Bonding, Springer-Verlag, Berlin. 2002, 102, 51.
- [3] S. Wada, J. Ceram. Soc. Jpn., 2001, 109, 803.
- [4] F. F. Lange, J. Am. Ceram. Soc., 1982, 65, C120-21.
- [5] G. Ziegler, J. Heinrich, G. Wötting, J. Mater. Sci., 1987, 22, 3041.
- [6] K. Yokoyama, S. Wada, J. Ceram. Soc. Jpn., 2000, 108, 230.
- [7] K. Yokoyama, S. Wada, J. Ceram. Soc. Jpn., 2000, 108, 6.
- [8] Y. Zou, A. Petric, J. Phys. Chem. Solids, 1994, 55, 493.
- [9] S. Jana, D. Tompson and K. Jack, in Nitrogen Ceramics, Noordhoff, 1976, 405-414.
- [10] O. Gob, M. Herrmann, S. Siegel and P. Obenaus, Key. Eng. Mater., 1997, 132, 751.
- [11] P. Rocabois, C. Chatillon and C. Bernard, J. Am. Ceram. Soc., 1996, 79, 1351.