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Abstract
We construct a Cournot model with uncertainty in the number of firms in the industry.
We model such an uncertainty as a Poisson game and characterize the set of equilib-
ria after deriving novel properties of the Poisson distribution. When marginal costs
are zero, the number of equilibria increases with the expected number of firms (n)
and for n ≥ 3 every equilibrium exhibits overproduction relative to the model with
deterministic population size. For a fixed n, overproduction is robust to sufficiently
small marginal costs. The set of equilibria can be Pareto ranked. If n ≥ 3, even the
expected consumer surplus induced by the lowest quantity equilibrium is larger than
the consumer surplus in the model without population uncertainty.
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1 Introduction

The Cournot competition model (Cournot 1838) has been widely used to study imper-
fectly competitive industries.1 The classical complete information version has been
extended to account for more realistic scenarios in which competing firms face uncer-
tainty about relevant industry characteristics such as the market demand or production
costs (see, e.g., Vives 1984, 2002; Cramton and Palfrey 1990; Lagerlöf 2007; Einy
et al 2010; Hurkens 2014). A different and significant source of uncertainty in many
industries is the number of competitors. While in some established industries it can
be reasonable to assume that there is a fixed number of firms and that their identities
are well known, in emerging industries, online industries, unregulated industries, or
industries facing some significant regulatory change, it may be more natural to assume
that firms have uncertainty about the number of competitors they face at the time they
make their strategic decisions. The same is true for industries in which the number
of competitors is large or in which competition takes place at a global scale. Firms
may have a good understanding about the local competition, yet they may not know
the number of competitors they face globally. Some specific examples are high tech
start-ups, as well as manufacturing industries such as the steel, cement, glass, and coal
industries. In all these cases, firms face population uncertainty about their competitors.

Models with population uncertainty (Myerson 1998, 2000; Milchtaich 2004) have
already been extensively used to study elections in voting and political economymod-
els.2 In addition to seeming more realistic than assuming common knowledge about
the population size, the quite convenient properties of the Poisson distribution make
Poisson games an especially useful framework. In industrial organization, Ritzberger
(2009) studies the consequences of assuming population uncertainty (and ofmodelling
it using the Poisson specification) within the Bertrand model of price competition and
shows that it can resolve the Bertrand paradox.3

We introduce Poisson population uncertainty into the Cournot model of quantity
competition. Analogously tomany studies in the literature that introduce uncertainty in
such a model, we also assume linear demand function and we impose a non-negativity
constraint on prices.4 In the classical Cournot model with downward sloping demand

1 See Daughety (1988) for a collection of relevant studies of the topic.
2 See, e.g., Myerson (2002), Bouton and Castanheira (2012), Bouton (2013), Bouton and Gratton (2015),
Hughes (2016) and De Sinopoli and Meroni (2022).
3 That is, that two firms are enough to obtain the perfectly competitive outcome.
4 Assuming linear demand in a Cournot model that incorporates uncertainty implies that prices can be
negative with strictly positive probability. In our case, even if a firm’s individual production might be
small, there are large realizations of the population size under which the total quantity supplied is to the
right of the production level for which a price equal to zero is needed to clear the market. Under different
sources of informational asymmetries, Malueg and Tsutsui (1998); Lagerlöf (2007); Hurkens (2014) show
that allowing for negative prices produces results that critically depend on that assumption, even when
restricting to equilibria in which prices are positive. On the other hand, Einy et al (2010) show that an
equilibrium may not even exist if prices are always restricted to be positive. As we show in Theorem 4.1,
this is not an issue in our setting as Poisson-Cournot games always have an equilibrium.
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function, firms’ optimal choices are strategic substitutes so that a firm’s best reply
decreases as the total quantity produced by its opponents increases. Introducing pop-
ulation uncertainty induces two economic forces that operate in opposite directions.
On one hand, if the expected number of firms is n, a firm that is in the industry expects
its number of competitors to be larger than n − 1, because having been recruited to
compete in the industry is evidence in favor of a larger number of competing firms
(cf. Myerson 1998, p. 382). Under symmetry, this translates into an increased pro-
duction level of the competitors, therefore generating an incentive to underproduce
relative to the equilibrium quantity without population uncertainty when the number
of competitors is exactly n − 1.

On the other hand, a firm also has the incentive to overproduce relative to the
equilibrium quantity without population uncertainty to “bet” on those events in which
the number of other firms is low, given that potential losses incurred in the events in
which such a number is high are bounded by the fact that prices cannot be negative.
Of course, the equilibrium choices that arise from these two opposite forces depend
on the shape of the demand function and on how population uncertainty is introduced
into the model.

Using Poisson uncertainty together with a linear and non-negative inverse demand
function yields a tractable model that provides an intuitive resolution to the interaction
between the two economic forces mentioned above. In particular, the environmental
equivalence property of Poisson games (see Myerson 1998) implies that when the
expected number of firms is n, the expected number of opponents for any competing
firm is also n, one more than the firm’s actual number of opponents in the model with
deterministic population size equal to n. When n is small (namely, for n ≤ 2) so that
the probability of n − 1 or less firms is sufficiently low, the former force is dominant
and equilibrium quantities exhibit underproduction relative to the unique equilibrium
in the deterministic model.5 However, as n increases and the probability of facing a
too large number of competitors also increases (i.e. the price is zero regardless of the
firm’s action), the second force becomes dominant and firms’ equilibrium quantities
are higher than in the deterministic model.6 In particular, for n large enough every
equilibrium is such that firms produce more than twice (and up to four times) as
much as the equilibrium quantity when firms know the population size. Interestingly,

5 As it is standard, when looking at the classical model with exactly n firms we consider the symmetric
equilibrium in which every firm produces the normalized quantity 1

n+1 , which is the only one that is robust
to the introduction of an infinitesimal cost and guarantees a positive market price. With slight abuse of
terminology, we refer to it as the “unique” equilibrium of that model.
6 As we show in the Online Appendix (see Table 2 for a summary), if we focus on integer values of n to
help the comparison with the Cournot model without population uncertainty, there is underproduction for
n equal to 1 and 2. More precisely, for n = 1 there is a unique equilibrium in which each firm produces 2

5 ,

i.e. less than the monopolist’s optimal quantity 1
2 . For n = 2 there are two equilibria, one in which each

firm produces 5
16 , less than the duopolist’s equilibrium quantity 1

3 , and one in which every firm produces

more, 38 . For n ≥ 3, every individual equilibrium quantity is greater than 1
n+1 .
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industries that exhibit uncertainty about the number of competitors mentioned above
(steel, cement, glass, and coal) often also exhibit overproduction.7,8

For most of the paper we consider the case in which the marginal cost is equal to
zero. When firms face positive production costs, results depend on their magnitude
relative to the expected number of competing firms. If we fix the expected number of
firms to n, outcomes remain quantitatively and qualitatively different from those in the
model without population uncertainty whenever marginal costs are sufficiently small.9

However, not surprisingly, if we fix the marginal cost the ratio between any equilib-
rium quantity of the Poisson-Cournot model and the equilibrium quantity without
population uncertainty converges to 1 as n goes to infinity.

There exist various models of oligopoly that analyze markets in which the num-
ber of competitors is not fixed. A vast and diversified literature has focused on entry.
Initial studies have dealt with the decision problem of an established firm to delay or
preclude entry of potential rivals in the market. Among them, Kamien and Schwartz
(1975) extend the standard Cournot setting to allow for possible rival entry and restrict
attention to its timing, which is regarded as a random variable. Entrants as rational
decisionmakers are introduced byMilgrom and Roberts (1982a, b), where entry deter-
rence is analyzed in regimes of incomplete information. Other papers have focused
on the properties of equilibria in Cournot oligopoly models with free entry. Novshek
(1980) proves that, in competitive markets with a single homogeneous good, if firms
are small relative to the market then a Cournot equilibrium with free entry exists and
is approximately competitive. Amir and Lambson (2000) consider exogenous entry in
the traditional Cournot oligopoly, and study how equilibrium output and profits vary
as the number of firms increases under different assumptions on the primitives. More
recently, Bernhard and Deschamps (2017) examine a discrete time Cournot dynamic
model with probabilistic entry in which the arrival of competitors is governed by a
Bernoulli process. Bernhard and Deschamps (2021) extend such a discrete time anal-
ysis and incorporate a continuous time version that models stochastic entry using a
Poisson arrival process. On the other hand, entry into a Cournot market is treated
endogenously by Argenziano and Schmidt-Dengler (2012, 2013), who model it as a
preemption game of complete information, where each firm has to decide whether and
when to enter the new market.

With the notable exception of Bernhard andDeschamps (2017, 2021), a contrasting
difference in most of this literature with respect to our setting is that the number
of potential entrants is taken as given and is common knowledge. Moreover, there
typically is a time component. Poisson-Cournot games are not dynamic, nevertheless,

7 It seems reasonable to assume that, in those industries, the production choice is the most strategically
relevant due to the high storage costs.
8 For example, the State Information Center of China reports serious overcapacity and overpro-
duction in many manufacturing industries in China, including those that we listed above (see
http://www.sic.gov.cn/News/455/8815.htm). China has been making an effort to reduce overcapacity and
overproduction in these industries, including shutting down some small, less productive firms. This entailed
compensating workers who became unemployed during the process. The cost is over 100 billion RMB
(around 14.3 billion USD).
9 This is due to the fact that equilibria of the model with zero costs are typically strict, so they are robust to
perturbations of any parameter of the model. In particular, they are also robust to small enough perturbations
of the inverse demand function.
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they could be seen as subgames in a more structured model in which, for instance,
the strategic choices of an incumbent affect the mean of the Poisson distribution that
determines the number of entrants.

After considering an example that highlights the main incentive implications of
adding population uncertainty to Cournot competition in Sect. 2, we fully describe
the model in Sect. 3. In Sect. 4 we prove existence of equilibrium and solve the
model. Welfare comparisons with respect to the Cournot model without population
uncertainty are in Sect. 5. In Sect. 6 we study the case in which marginal costs are
strictly positive. Section 7 concludes. Appendix A provides some new results on the
Poisson distribution that are needed in Sect. 4. Appendices B and C have, respectively,
proofs omitted from Sects. 5 and 6.

2 An example of population uncertainty

Before introducing the Poisson distribution to model population uncertainty in the
Cournot setting, we provide an illustrative example with incomplete information. This
example introduces pieces of intuition and techniques that will be used to prove some
results within the Poisson model. It also illustrates that the qualitative aspect of our
results is not due to the specific modelling choice, that is, to the Poisson structure,
but that it would be preserved in an incomplete information framework as long as an
independence assumption on players’ types holds.

Consider a model with a potential pool of firms each of which becomes active with
some probability. We examine its equilibria as the set of firms increases. Assume that
the inverse demand function is linear and constrained to be non-negative. Hence, after
a normalization, it can be expressed as p(Q) = max{0, 1 − Q}, where Q is the total
produced quantity. To model uncertainty in the actual number of active firms, one can
equivalently assume that a potential firm has marginal production cost either equal to
zero (i.e. it will be active) or greater than 1 (i.e. it will not be active).10

Let each firm’s marginal cost be either 0 or φ > 1 with equal probability. Consider
the case in which there are two potential firms, so the expected number of active firms
is 1. In this case, firm i’s profit when it produces qi and the other firm produces q j is

1

2
max {0, 1 − qi } qi + 1

2
max

{
0, 1 − q j − qi

}
qi .

We look for symmetric equilibria q∗ such that q∗ < 1
2 , so that both terms of the profit

function are positive.Maximizing it with respect to qi , we obtain firm i’s best response
function

BRi (q j ) = 2 − q j

4
.

10 Janssen and Rasmusen (2002) briefly consider a Cournot model with population uncertainty which is
modelled in a similar way. However, they do not impose the non-negativity constraint on prices and only
consider equilibria in which prices are non-negative.
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By symmetry we have q∗ = 2
5 , which is an equilibrium since 1 − 2q∗ > 0 and there

is no profitable deviation to any other quantity.11 It can be easily seen that 1
2 is not

an equilibrium, so q∗ is the unique symmetric equilibrium of the game. It induces
an expected total quantity equal to 2

5 , therefore there is underproduction relative to
the complete information case, where the monopolist’s optimal quantity is 1

2 . This
follows from strategic substitutability, given that the expected number of opponents
for an active firm (0.5) is higher than under complete information.

We now illustrate how, as the expected number of active firms increases, the incen-
tive to “bet” on the more profitable events in which there are few other active firms
appears and rapidly becomes dominant. In particular, there might be multiple equilib-
ria and, if the number of expected active firms is 3 or higher, every equilibrium exhibits
overproduction relative to the corresponding complete information equilibrium.

Thus, let us modify the previous case so that there are four firms and, therefore,
the expected number of active firms is 2. Firm i’s profit when it produces qi ≤ 1 and
every other firm produces q j is

1

8
(1 − qi )qi + 3

8
max

{
0, 1 − q j − qi

}
qi + 3

8
max

{
0, 1 − 2q j − qi

}
qi

+1

8
max

{
0, 1 − 3q j − qi

}
qi .

To find symmetric equilibria we need to be aware that given an equilibrium candidate
some terms in the profit function may be zero, that a deviation to a smaller quantity
may render null terms strictly positive, and that a deviation to a larger quantity may
render strictly positive terms null. With that in mind and after some work, it is possible
to see that the game has exactly two symmetric equilibria in which, respectively, firms
produce 7

23 and 4
11 . In the complete information case with two firms, the equilibrium

quantity is 1
3 . Thus, under incomplete information, there is one equilibrium in which

firms’ production is larger and one equilibrium in which firms’ production is smaller
than the complete information equilibrium quantity. Underproduction is again due
to strategic substitutability, while overproduction comes from each firm ignoring the
event inwhich it has two ormore active opponents andmakes zero profits, and focusing
on maximizing profits in the event it is a monopolist or a duopolist.

If we increase the number of firms to 6 so that the expected number of active firms
is 3, there exists a unique symmetric equilibrium in which firms produce 16

57 , which is
larger than the complete information equilibrium quantity 1

4 . Overproduction relative
to the complete information case persists when the number of firms is 8, so that the
expected number of active firms is 4, and multiplicity of equilibria reappears. In this
case, there are two symmetric equilibria, 32

141 and
29
107 , both larger than

1
5 .As the number

11 Note that any profitable deviation must be greater than 3
5 to make the second term in the profit function

null, and the best one is 1
2 . However, since

1
2 < 3

5 , there cannot be any profitable deviation. In fact, for
every q we have

1

2
(1 − q)q <

1

2

(
1 − 1

2

)
1

2
<

1

2

(
1 − 1

2

)
1

2
+ 1

2

(
1 − q∗ − 1

2

)
1

2
<

1

2
(1 − q∗)q∗ + 1

2
(1 − 2q∗)q∗.
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of firms n increases, the incomplete information game can be closely approximated
by a Poisson game with expected number of firms equal to n

2 . In general, when p
is the probability of being active and n is the cardinality of the set of players, the
corresponding game with incomplete information is well approximated by a Poisson
game with expected number of players equal to np.

3 Themodel

In a Poisson-Cournot game the number of firms in an industry is a Poisson random

variable with mean n. Therefore, there are k firms with probability Pn
k := e−n nk

k! and
m or a fewer number of firms with probabilityCn

m := ∑m
k=0 P

n
k . All firms are identical

and face the same inverse demand function p(Q) := max{0, 1 − Q} where Q is the
total quantity produced in the market. For the time being, we assume that themarginal
production cost φ equals zero.12 The strategy space is the set of all positive production
quantities [0,∞).

A firm does not have any further information about the number of opponents.
Environmental equivalence then implies that Pn

k is also the probability that a firm
attaches to the event that there are k other firms in the market. Hence, if every other
firm produces q ′, the profit to a firm that in turn produces q is

π(q, q ′ | n) :=
∞∑

k=0

Pn
k max

{
0, 1 − kq ′ − q

}
q.

Definition 3.1 A Nash equilibrium of the Poisson-Cournot game is a quantity q∗ such
that π(q∗, q∗ | n) ≥ π(q, q∗ | n) for every other q.13

To make the profit maximization problem tractable, instead of working directly
with the profit function, for every integer m ≥ 1 we define the pseudo-profit at m − 1

π̃m−1(q, q ′ | n) :=
m−1∑

k=0

Pn
k (1 − kq ′ − q)q.

If q, q ′ ∈
[

1
m+1 ,

1
m

)
and the realization of the number of competitors in the industry

is larger than or equal to m, then the price equals zero and the realized profit equals

the pseudo-profit at m − 1. Therefore, if q, q ′ ∈
[

1
m+1 ,

1
m

)
then π(q, q ′ | n) =

πm−1(q, q ′ | n). If the quantity q maximizes the pseudo-profit when every other firm
produces q ′ then we say that q is a pseudo-best response against q ′. Taking first order
conditions to the pseudo-profit, we obtain that such a best response equals

B̃R
n
m−1(q

′) := 1

2
− 1

2

∑m−1
k=0

nk
k! k

∑m−1
k=0

nk
k!

q ′ = 1

2
− 1

2

nCn
m−2

Cn
m−1

q ′.

12 See Sect. 6 for the analysis with positive marginal cost.
13 As Myerson (1998) points out, population uncertainty implies that identical firms must be treated sym-
metrically.
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Let Mn
m denote the mean of the Poisson distribution with parameter n truncated at m,

that is, conditional on its realization being smaller than or equal to m. We call Mn
m the

conditional mean at m. Then, the pseudo-best response can be written as

B̃R
n
m−1(q

′) := 1

2
− 1

2
Mn

m−1q
′.14

Suppose q∗ ∈
[

1
m+1 ,

1
m

)
is an equilibrium of the Poisson-Cournot model, then it

must be equal to

q∗ = 1

Mn
m−1 + 2

. (3.1)

However, a quantity q̃ may equal (3.1) and still not be an equilibrium. A necessary
(but, again, still not sufficient) condition is 1

m+1 ≤ q̃ < 1
m . Since Mn

m−1 ≤ m − 1 is

obviously true, we always have q̃ ≥ 1
m+1 . However, q̃ < 1

m if and only if Mn
m−1 >

m − 2. If Mn
m−1 ≤ m − 2 then there exists no equilibrium in the interval

[
1

m+1 ,
1
m

)
. If

otherwiseMn
m−1 > m−2,we say that q̃ is apseudo-equilibrium.Apseudo-equilibrium

may or may not be an equilibrium but every equilibrium is a pseudo-equilibrium.
Thus, the non-negativity constraint on prices implies that, for any production level of

the competitors, there is an upper bound on howmany competitors can be active in the
market and prices still be positive. A profit maximizing firm ignores sufficiently high
realizations of the Poisson distribution of competitors and (given the linearity of profits
and risk neutrality) optimizeswith respect to the expected number of competitors under
such a truncation.

From Corollary A.1, we have Mn
m − Mn

m−1 < 1. From Corollary A.2, we know
that Mn

m > m − 1 implies Mn
m−1 > m − 2. Therefore, the set of pseudo-equilibria is

characterized by the unique integer m̄ that satisfies Mn
m̄ ≤ m̄ − 1 and Mn

m̄−1 > m̄ − 2.
Moreover, there are exactly m̄ pseudo-equilibria: the minimum pseudo-equilibrium

quantity 1
Mn

m̄−1+2 belongs to the interval
[

1
m̄+1 ,

1
m̄

)
and, for each strictly positive

integerm < m̄, there is one pseudo-equilibrium in the interval
[

1
m+1 ,

1
m

)
. Note that the

largest pseudo-equilibrium quantity is given by 1
Mn

0+2 = 1
2 , while the smallest pseudo-

equilibrium quantity is characterized by the value of m̄ bounded in the following
theorem.

Theorem 3.1 The unique integer m̄ satisfying both Mn
m̄−1 > m̄ − 2 and Mn

m̄ ≤ m̄ − 1
obeys the double inequality n

2 + 1 < m̄ < n
2 + 3.

Proof Follows directly from Propositions A.2 and A.3 in Appendix A. �	

14 Recall that, in the Cournot model without population uncertainty and n firms, we have BR(q ′) =
1
2 − 1

2 (n−1)q ′. Note as well that the analogous expression with population uncertainty but without the non-
negativity constraint on prices is 1

2 − 1
2 nq

′. In that case, there is a unique symmetric equilibrium, q∗ = 1
n+2 ,

which exhibits underproduction for every n because of the sole effect of environmental equivalence.
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Fig. 1 Graphical representation of pseudo-equilibria

Table 1 Pseudo-equilibria for
small values of n

Interval Pseudo-equilibrium Pseudo-equilibrium for

[
1
2 , 1

)
1
2 n > 0

[
1
3 , 1

2

)
1

Mn
1 +2

n > 0
[
1
4 , 1

3

)
1

Mn
2 +2

n > 1.41
[
1
5 , 1

4

)
1

Mn
3 +2

n > 3.14
[
1
6 , 1

5

)
1

Mn
4 +2

n > 4.96
[
1
7 , 1

6

)
1

Mn
5 +2

n > 6.84
[
1
8 , 1

7

)
1

Mn
6 +2

n > 8.75
[
1
9 , 1

8

)
1

Mn
7 +2

n > 10.68
[
1
10 , 1

9

)
1

Mn
8 +2

n > 12.62

Figure 1 shows how pseudo-equilibria (represented by dots in the figure) are typi-
cally placed within their corresponding intervals. (Note that, if n is small, we can have

m̄ ≤ 5.) Table 1 displays, for each interval
[

1
m+1 ,

1
m

)
with m ≤ 9, the values of n for

which there is a pseudo-equilibrium in that interval so that we have Mn
m−1 > m−2.15

Furthermore, in the Online Appendix, we compute and provide analytical expressions
for pseudo-equilibria and equilibria when n is small.

Every strictly positive integer smaller than m̄ is associated with a pseudo-
equilibrium. Since every equilibrium must be a pseudo-equilibrium, it follows from
Theorem 3.1 that every equilibrium quantity will be strictly greater than 1

m̄+1 = 2
n+8 .

This implies that every individual equilibrium quantity will be larger than that of the
model with deterministic population size, 1

n+1 , whenever n ≥ 6, and will converge
to at least its double as n grows to infinity. Therefore, loosely speaking, population
uncertainty in the standard Cournot model induces a faster convergence to perfect
competition. We formally establish such a result in Sect. 5, but first we need to show
that an equilibrium always exists.

15 Values of n are rounded to two decimal places.
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4 Equilibrium existence and characterization

We show existence of Nash equilibrium through a constructive proof that exploits the
specific structure of the problem.16 Of course, a pseudo-equilibrium is an equilibrium
if there is no profitable deviation to any other quantity. To show that at least one
pseudo-equilibrium is an equilibrium, we apply the following steps. First, for a given
pseudo-equilibrium, we characterize the best possible deviation to a lower quantity
and the best possible deviation to a higher quantity, and we show that they cannot be
both profitable simultaneously. Second, we consider two pseudo-equilibria living in
contiguous intervals and show that, if neither is an equilibrium, it is either because
in both cases deviating to a higher quantity is profitable, or because in both cases
deviating to a lower quantity is profitable. Finally, we show that from the smallest
pseudo-equilibrium it is never profitable to deviate to a lower quantity. Hence, if
the smallest pseudo-equilibrium quantity is not an equilibrium because deviating to
a larger quantity is profitable, then either the second smallest pseudo-equilibrium
quantity is an equilibrium or deviating to a higher quantity is also profitable. The same
is true for any subsequent pseudo-equilibrium. Thus, an equilibrium always exists.

From the previous section, we know that there are m̄ pseudo-equilibria. Each

pseudo-equilibrium quantity q̃ ∈
[

1
m+1 ,

1
m

)
is the unique maximizer of the pseudo-

profit π̃m−1(·, q̃ | n) but is not an equilibrium unless it also maximizes the profit

function π(·, q̃ | n). Indeed, when q, q̃ ∈
[

1
m+1 ,

1
m

)
, then π̃m−1(q, q̃ | n) coincides

with π(q, q̃ | n). However, when q < 1 − mq̃ or q > 1 − (m − 1)q̃ then the true
profit and the pseudo-profit differ. In the first case, a firm producing q can face up
to m competitors producing q̃ without prices vanishing, so that π(q, q̃ | n) has one
additional positive term (the one corresponding to k = m) that in the pseudo-profit
is zero.17 In the second case, one or more terms of the pseudo-profit are negative,
while in the real profit they are zero. In particular, there is a largest integer i such
that q > 1 − (m − i)q̃ . For that value of i , a firm producing q can only face up to
m − i − 1 competitors producing q̃ and prices still be positive, so that the last i terms
of the pseudo-profit are negative, while in the real profit they are zero.

Thus, consider a pseudo-equilibrium q̃ ∈
[

1
m+1 ,

1
m

)
. If there is a profitable devi-

ation from q̃ to some lower quantity q < 1 − mq̃, then the best of such deviations
¯
q

solves

max
q

π̃m(q, q̃ | n) = max
q

m∑

k=0

Pn
k (1 − kq̃ − q)q,

and equals

¯
q = 1

2
− 1

2
Mn

mq̃.

16 The profit function is not quasi-concave, so standard topological methods cannot be used to prove
existence.
17 But if all competitors produce q̃, a firm cannot face k > m competitors without prices falling to zero.
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Note that
¯
q is not necessarily in the interval

[
1

m+2 ,
1

m+1

)
because it may also be

smaller than 1
m+2 . On the other hand, if there is a profitable deviation from q̃ to some

higher quantity q > 1 − (m − 1)q̃ then the best of such possible deviations is of the
form

q̄ = 1

2
− 1

2
Mn

m−i q̃,

for some i ≥ 2. We show that the best one is, in fact, q̄ = 1
2 − 1

2M
n
m−2q̃ .

Lemma 4.1 Let q̃ ∈
[

1
m+1 ,

1
m

)
be a pseudo-equilibrium and let m > 3. Then, the best

possible deviation to a higher quantity is q̄ = 1
2 − 1

2M
n
m−2q̃ .

Proof Since q̃ is a pseudo-equilibrium, Corollary A.2 implies Mn
m−i > m − i − 1 for

every i ≥ 1. Consider quantity q̂ = 1
2 − 1

2M
n
m− j q̃ with j ≥ 3 and suppose it yields a

higher expected profit than q̄ = 1
2 − 1

2M
n
m− j+1q̃ . Since quantity q̄ is the maximizer

of the pseudo-profit π̃m− j+1(·, q̃ | n) and q̂ yields a higher expected profit, the latter
must be maximizing a different pseudo-profit, hence, q̂ > 1− (m − j + 1)q̃ . Keeping
in mind that Mn

m− j > m − j − 1, we have

q̂ = 1

2
− 1

2
Mn

m− j q̃ > 1 − (m − j + 1)q̃

q̃ >
1

2(m − j + 1) − Mn
m− j

>
1

m − j + 3
≥ 1

m
,

but this contradicts q̃ < 1
m so that q̂ is a worse response than q̄ against q̃ . �	

It follows that a pseudo-equilibrium q̃ ∈
[

1
m+1 ,

1
m

)
is an equilibrium if neither the

higher quantity q̄ = 1
2 − 1

2M
n
m−2q̃ nor the lower quantity

¯
q = 1

2 − 1
2M

n
mq̃ yield strictly

higher expected profits to the deviating firm than q̃ . These two deviations cannot be
both profitable at the same time.

Lemma 4.2 Let q̃ ∈
[

1
m+1 ,

1
m

)
be a pseudo-equilibrium. If there is a profitable devi-

ation to the higher quantity q̄ then there cannot be a profitable deviation to the lower
quantity

¯
q and vice versa.

Proof Recall that if q̄ is a profitable deviation we must have q̄ > 1 − (m − 1)q̃ .
Similarly, if

¯
q is a profitable deviation then

¯
q < 1 − mq̃ . Using the expressions for q̄

and
¯
q and rearranging we obtain the inequalities

q̃

(
m − 1 − 1

2
Mn

m−2

)
>

1

2
and q̃

(
m − 1

2
Mn

m

)
<

1

2
.

Corollary A.1 implies 1
2M

n
m < 1+ 1

2M
n
m−2 so that, in turn, q̄ > 1− (m − 1)q̃ implies

¯
q > 1 − mq̃ and

¯
q < 1 − mq̃ implies q̄ < 1 − (m − 1)q̃ . �	
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We now prove that, given two pseudo-equilibria in adjacent intervals that are not
equilibria, there are only two options. Either they both have a profitable deviation to
a lower quantity or they both have a profitable deviation to a larger quantity.

Lemma 4.3 Let q̃ ∈
[

1
m+1 ,

1
m

)
and q̂ ∈

[
1

m+2 ,
1

m+1

)
be two pseudo-equilibria. If

there is a profitable deviation from q̂ to a higher quantity q̄ then there cannot be a
profitable deviation from q̃ to a lower quantity

¯
q, and vice versa.

Proof Substituting q̄ and q̂ by their corresponding values in q̄ > 1−mq̂ , multiplying
across by Mn

m + 2 and rearranging, we obtain

m − 1 − 1

2
Mn

m − 1

2
Mn

m−1 > 0.

Similarly, substituting
¯
q and q̃ by their corresponding values in

¯
q < 1 − mq̃, multi-

plying across by Mn
m−1 + 2 and rearranging, we obtain

m − 1 − 1

2
Mn

m − 1

2
Mn

m−1 < 0.

Since the two inequalities contradict each other, the result follows. �	
As shown in the Online Appendix, in the largest pseudo-equilibrium quantity 1

2 it
is always profitable to deviate to a smaller quantity for every n. Moreover, given a
pseudo-equilibrium q̃ , the necessary condition q̄ > 1− (m − 1)q̃ for the deviation to
the higher quantity q̄ to be profitable can be rewritten as m − 2 > 1

2 (M
n
m−1 + Mn

m−2),
which is never satisfied for m = 1, 2. We establish that an equilibrium always exists
showing that from the smallest pseudo-equilibrium quantity deviating to a smaller
quantity is never profitable.

Theorem 4.1 (Existence) There is at least one equilibrium.

Proof We show that if q̃ ∈
[

1
m̄+1 ,

1
m̄

)
is the smallest pseudo-equilibrium quantity

then deviating to a smaller quantity is not profitable. To the contrary, suppose
¯
q =

1
2 − 1

2M
n
m̄q̃ is a profitable deviation. Remembering that Mn

m̄ ≤ m̄ − 1 then we must
have

1 − m̄q̃ >
¯
q = 1

2
− 1

2
Mn

m̄q̃ ≥ 1

2
− 1

2
(m̄ − 1)q̃

1 − 2m̄q̃ > −(m̄ − 1)q̃

q̃ <
1

m̄ + 1

which is impossible.18 �	
18 An alternative proof of existence can be constructed using lattice-theoretic methods (see Amir 1996 for a
complete information framework). While any selection of the best response correspondence has countably
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We now turn to describing the set of equilibria. To do that, we compute the expected
profit at a pseudo-equilibrium and if a firm deviates to a lower or a higher quantity.
The first expected profit is

π(q̃, q̃ | n) = q̃

[

(1 − q̃)

m−1∑

k=0

Pn
k − q̃

m−1∑

k=0

Pn
k k

]

= q̃

[

(1 − q̃)Cn
m−1 − q̃

m−1∑

k=0

Pn
k k

]

= q̃
[
1 − q̃ − q̃Mn

m−1

]
Cn
m−1.

Similarly, the expected profits from deviations q̄ and
¯
q are

π(q̄, q̃ | n) = q̄
[
1 − q̄ − q̃Mn

m−2

]
Cn
m−2,

π(
¯
q, q̃ | n) =

¯
q

[
1 −

¯
q − q̃Mn

m

]
Cn
m .

We also have the equalities

q̃ = 1

2
− 1

2
Mn

m−1q̃, q̄ = 1

2
− 1

2
Mn

m−2q̃,
¯
q = 1

2
− 1

2
Mn

mq̃,

which we substitute in the expressions above to obtain

π(q̃, q̃ | n) = q̃2Cn
m−1, π(q̄, q̃ | n) = q̄2Cn

m−2, π(
¯
q, q̃ | n) =

¯
q2Cn

m .19

In equilibrium, the first one of these three profit values must be larger than the other
two. We use such an observation to find a necessary condition on m such that the

pseudo-equilibrium that lives in
[

1
m+1 ,

1
m

)
is an equilibrium.

Proposition 4.1 If q∗ ∈
[

1
m+1 ,

1
m

)
is an equilibrium then

n

4
+ 1

4
< m <

(
4

9
n + 8

9

)(
3n + 12

3n + 4

)2

+ 1.

Proof We first show that m ≤ n
4 + 1

4 implies that the associated pseudo-equilibrium
q̃ satisfies

¯
q2Cn

m > q̃2Cn
m−1. On one hand, we use the upper bound Mn

m − Mn
m−1 < 1

many discontinuity points, some results obtained in this section can also be used to prove that all its jumps
are upwards. Hence, any such selection is a quasi-increasing function so that the Tarski’s intersection point
theorem (see, e.g., Theorem 3 in Vives 2018) implies that it intersects the 45 degree line at least once.
Features of the jumps of the best response correspondence have been exploited to prove existence of a
Cournot equilibrium also by McManus (1964) for the case of identical firms and by Novshek (1985) for
asymmetric ones. We chose to provide a constructive proof as it highlights some economic insights relevant
to the model.
19 Recall that in the model with deterministic population size, q = 1

n+1 is the individual equilibrium

quantity and equilibrium profits are given by q2.
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in Corollary A.1 to obtain

(

¯
q

q̃

)2

=
(

1

2q̃
− 1

2
Mn

m

)2

=
(
1 − 1

2
(Mn

m − Mn
m−1)

)2

>
1

4
.

On the other hand, the upper bound Mn
m ≤ nm

n+1 from Lemma A.2 combined with the
the upper bound on m implies

Cn
m−1

Cn
m

= 1

n
Mn

m ≤ m

n + 1
≤ 1

4
.

We now show thatm ≥ ( 4
9n + 8

9

) (
3n+12
3n+4

)2+1 implies q̄2Cn
m−2 > q̃2Cn

m−1. From

Lemma A.3, Mn
m−1 − Mn

m−2 > n−4
n+4 , hence

(
q̄

q̃

)2

=
(

1

2q̃
− 1

2
Mn

m−2

)2

=
(
1 + 1

2
(Mn

m−1 − Mn
m−2)

)2

>

(
3n + 4

2(n + 4)

)2

.

While the lower bound on m together with the lower bound on Mn
m−1 > n

n+2 (m − 1)
in Eq. (A.4) imply

Cn
m−1

Cn
m−2

= n

Mn
m−1

<
n + 2

m − 1
≤

(
3n + 4

2(n + 4)

)2

and establish the desired result. �	

Hence, equilibria of the Poisson-Cournotmodel are, for n sufficiently high, between
two and four times as large as the equilibrium quantity without population uncertainty.
We note that the upper bound form in Proposition 4.1 is more efficient than the bound
n
2 + 3 found in Theorem 3.1 for pseudo-equilibria only for n > 25.86.

We now derive a sufficient condition which ensures that, for every value of m

between two given thresholds, the interval
[

1
m+1 ,

1
m

)
contains an equilibrium. The

lower threshold guarantees that there is no profitable deviation from the pseudo-
equilibrium in that interval to a smaller quantity, while the higher one rules out a
profitable deviation to a larger quantity.

Proposition 4.2 If q̃ ∈
[

1
m+1 ,

1
m

)
is a pseudo-equilibrium such that

(
n

4
+ 1

2

) (
n + 12

n + 4

)2

≤ m ≤ 4

9
n + 13

9

then q̃ is an equilibrium.
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Fig. 2 Bounds for m found in Propositions 4.1 and 4.2 given 20 ≤ n ≤ 160

Proof We first show that if the first inequality holds then q̃2Cn
m−1 ≥

¯
q2Cn

m . The bound

Mn
m − Mn

m−1 > n−4
n+4 found in Lemma A.3 implies

(

¯
q

q̃

)2

=
(
1 − 1

2
(Mn

m − Mn
m−1)

)2

<

(
n + 12

2(n + 4)

)2

.

On the other hand,m ≥ ( n
4 + 1

2

) (
n+12
n+4

)2
and the lower bound on Mn

m in (A.4) imply

Cn
m−1

Cn
m

= 1

n
Mn

m >
m

n + 2
≥

(
n + 12

2(n + 4)

)2

.

It remains to show that the second inequality implies q̃2Cn
m−1 ≥ q̄2Cn

m−2. Using
inequality Mn

m−1 − Mn
m−2 < 1 in Corollary A.1 we have

(
q̄

q̃

)2

=
(
1 + 1

2
(Mn

m−1 − Mn
m−2)

)2

<
9

4
.

While the second inequality and the bound Mn
m ≤ n

n+1m in Lemma A.2 imply

Cn
m−1

Cn
m−2

= n

Mn
m−1

≥ n + 1

m − 1
≥ 9

4

as we wanted. �	
We remark that the double inequality in the last proposition can only be satisfied for
n ≥ 17.29.

Figure 2 plots the bounds for m found in Proposition 4.1 and Proposition 4.2 for
values of n between 20 and 160 together with numerical computation of the maximum
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Table 2 Equilibria for small
values of n

Interval Equilibrium quantity Equilibrium for

[
1
3 , 1

2

)
1

Mn
1 +2

0 < n ≤ 3.61
[
1
4 , 1

3

)
1

Mn
2 +2

1.69 ≤ n ≤ 7.46
[
1
5 , 1

4

)
1

Mn
3 +2

3.69 ≤ n ≤ 11.39
[
1
6 , 1

5

)
1

Mn
4 +2

5.79 ≤ n ≤ 15.33
[
1
7 , 1

6

)
1

Mn
5 +2

7.93 ≤ n ≤ 19.3
[
1
8 , 1

7

)
1

Mn
6 +2

10.11 ≤ n ≤ 23.27
[
1
9 , 1

8

)
1

Mn
7 +2

12.29 ≤ n ≤ 27.26
[
1
10 , 1

9

)
1

Mn
8 +2

14.5 ≤ n ≤ 31.24

and minimum values of m for which there is an equilibrium in
[

1
m+1 ,

1
m

)
. Table 2

provides the results of the analytical computations of equilibria for smaller values
of n that are offered in the Online Appendix.20 Focusing on integer values of n,
we can see that from n = 3 every equilibrium of the Poisson-Cournot model exhibits
overproduction relative to the model with deterministic population size. From n = 40,
in every equilibrium, firms produce more than twice the equilibrium quantity of the
deterministic case. The multiplicity of equilibria is more pervasive as n increases. It
arises from the different production levels that firms can coordinate on, each production
level being associatedwith the number of firms that can operate in themarket and prices
still be positive.

Proposition A.5 in Appendix A works out tighter bounds than those in Proposi-
tion 4.1 and Proposition 4.2 (cf. Fig. 3) which are, in turn, based on a tighter bound
for Mn

m − Mn
m−1. Proposition A.5 implies that, as n goes to infinity, the expected total

equilibrium quantity converges to at least 2.25 (and to at most 4). See Appendix A for
more details.

5 Welfare

5.1 Profits

The set of equilibria can be Pareto ranked from the firms’ viewpoint. Given any equi-
librium, the individual profit to a firm increases under any other equilibrium associated

20 Formulae provided in the Online Appendix allow to compute equilibria for all values of n ≤ 14. For
instance, as mentioned in the Introduction, if n = 2 the equilibrium quantities are 3

8 and 5
16 , one larger and

one smaller than the equilibrium quantity 1
3 in the deterministic case. For n = 5, the equilibrium quantities

Footnote 20 continued
are 37

134 ≈ 0.276 and 236
1027 ≈ 0.23, both larger than 1

6 ≈ 0.167. For n = 10, the equilibrium quantities are
683
3196 ≈ 0.214, 1933

10696 ≈ 0.181, and 4433
28196 ≈ 0.157, all larger than 1

11 ≈ 0.091.

123



Poisson–Cournot games

with a smaller quantity. The smaller production is compensated by the higher price
for any given realization of the number of firms and, additionally, by the larger prob-
ability that prices remain strictly positive. For any m, let q̃m−1 = 1

Mn
m−1+2 . We have

the following result.

Proposition 5.1 Let q̃m and q̃m−1 be two equilibria. Then π(q̃m−1, q̃m−1 | n) <

π(q̃m, q̃m | n) for every n.

Proof Since q̃m < q̃m−1 and both are equilibria, we have

π(q̃m−1, q̃m−1 | n) =
m−1∑

k=0

Pn
k (1 − kq̃m−1 − q̃m−1)q̃m−1 <

m−1∑

k=0

Pn
k (1 − kq̃m − q̃m−1)q̃m−1 ≤ π(q̃m−1, q̃m | n) < π(q̃m, q̃m | n).

�	
Nonetheless, even under the lowest equilibrium quantity, profits are still lower than in
the unique equilibrium quantity if there is no population uncertainty. Thus, we claim
the following result, which is proven in Appendix B.

Claim 1 Let q̃m−1 be an equilibrium. Then π(q̃m−1, q̃m−1 | n) < 1
(n+1)2

for every n.

Recall that m̄ is the integer associated with the smallest pseudo-equilibrium quantity,
so every equilibrium is larger than q̃m̄−1. In Appendix B we show that, for n large
enough,

q̃2m̄−1C
n
m̄−1 <

1

(n + 1)2
.

The result follows from the fact that form < n the value ofCn
m converges exponentially

to zero as n increases, i.e. faster than 1
n2
.

5.2 Consumer surplus

Not surprisingly, results about consumer surplus move in the opposite direction. Obvi-
ously, consumers always prefer equilibria with larger quantities as the probability
distribution over prices induced by any quantity is first order stochastically dominated
by the corresponding distribution induced by a smaller quantity. Moreover, even in
the lowest quantity equilibrium of the Poisson-Cournot game, the consumer surplus
is bigger than in the unique equilibrium of the Cournot model without population
uncertainty.

When firms have common knowledge about the total number of firms n in the
industry, the loss in consumer surplus relative to perfect competition equals

2n + 1

2(n + 1)2
.
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In the Poisson-Cournot model, when firms produce the equilibrium quantity q̃m−1 ∈[
1

m+1 ,
1
m

)
then, if no firm is realized, the loss in consumer surplus equals 1

2 ; if there is

1 firm, the loss equals
1−q̃2m−1

2 ; if there are 2 firms, the loss equals
1−4q̃2m−1

2 . In general,

if there are k ≤ m firms, the loss in consumer surplus is equal to
1−k2q̃2m−1

2 .21 So, the
expected loss in consumer surplus is

1

2
Cn
m − 1

2
q̃2m−1

m∑

k=0

Pn
k k

2 = 1

2
Cn
m − 1

2
q̃2m−1(nC

n
m−1 + n2Cn

m−2).

Focusing on integer values of n for a meaningful comparison with the Cournot model
with deterministic population size, every equilibrium under population uncertainty
exhibits overproduction when n ≥ 3. Correspondingly, we make the following claim.

Claim 2 Let q̃m−1 be an equilibrium. Then, for n ≥ 3,

Cn
m − q̃2m−1(nC

n
m−1 + n2Cn

m−2) <
2n + 1

(n + 1)2
.

Therefore, for sufficiently large n, consumer surplus under population uncertainty
is always closer to the perfect competition value 1

2 than consumer surplus in the
deterministic model with population size equal to n. While we skip the proof to the
previous claim, we note that this result can be demonstrated when q̃m−1 is the smallest
equilibrium quantity using a similar argument as in the proof of Claim 1. Furthermore,
also using similar arguments, one can show that the expected total surplus of the
Poisson-Cournot model is higher than the total surplus in the standard Cournot model,
at least, for sufficiently high n.

6 Positive production costs

We relax the assumption of zero marginal cost and discuss the robustness of the
results in the previous sections. The effect of marginal costs on outcomes depends
on their magnitude relative to the expected number of firms n. First, we consider a
given economy n and show that the main qualitative results remain valid if costs are
sufficiently small. Then, we consider a fixed marginal cost φ and examine the stability
of results letting n vary.

Given marginal cost φ > 0, the profit to a firm that produces q when every other
firm produces q ′ is given by

π(q, q ′ | n, φ) :=
∞∑

k=0

Pn
k max

{
0, 1 − kq ′ − q

}
q − φq = π(q, q ′ | n) − φq.

21 If k > m the price is zero and so is the loss in consumer surplus.
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The pseudo-profit, pseudo-best response, and pseudo-equilibrium can be defined anal-
ogously to Sect. 3. We provide the following essential result, whose proof follows the
same arguments as the case φ = 0 and can be found in Appendix C.

Theorem 6.1 For every marginal cost φ > 0 there is at least one equilibrium.

If we fix the expected number of firms n, equilibria of the Poisson-Cournot game
with positive marginal cost exhibit overproduction with respect to the Cournot model
with exactly n firms, at least if such a marginal cost is sufficiently small. If an equilib-
rium is strict (as is typically the case), it is robust to every sufficiently small perturbation
of the parameters of the model, including the marginal cost. Thus, let q∗ be a non-
strict equilibrium when φ = 0 and let qφ be the close-by pseudo-equilibrium when
φ > 0.22 If a deviation from q∗ to a higher quantity leads to the same profit level then,
by continuity, any deviation from qφ to a higher quantity leads to a strictly smaller
profit level if φ is sufficiently small. The only event in which qφ would not be an
equilibrium is when a deviation from q∗ to a smaller quantity leads to the same profit
level. However, the same argument as the one used in the proof of Theorem 4.1 implies
that this cannot be the case when q∗ is the smallest pseudo-equilibrium quantity.23 It
follows that, if φ is sufficiently small, every equilibrium quantity is greater than the
smallest pseudo-equilibrium quantity when φ = 0.

When themarginal cost is substantial, firms can no longer ignore the events inwhich
they face a large number of opponents, as in those events they now make negative
profits. As a consequence, the incentive to overproduce relative to the deterministic
case “betting” on the events in which opponents are few and mark-ups are high is
mitigated by the possibility of incurring a substantial loss when competitors are many.
Even if such a possibility may be neglected when the expected number of firms is
small, it becomes more and more relevant as n increases.

We show that the ratio between any equilibrium quantity of the Poisson-Cournot
model and the equilibriumquantity of the standardCournotmodel converges to 1when
the expected number of firms goes to infinity. In fact, if each competitor produces a
quantity relatively larger than the equilibrium quantity of the deterministic model, a
firm producing that same quantity faces negative profits with probability that rapidly
approaches 1 as the expected population size increases. Thus, the firmwould prefer not
to produce to avoid the loss. On the other hand, if each competitor produces a quantity
relatively smaller than the equilibrium quantity without population uncertainty, then
the total quantity that competitors produce is lower than in the deterministic case with
probability that rapidly converges to 1. By strategic substitutability a firm’s best reply
is then larger, and hence that quantity cannot be an equilibrium.

Recall that in the Cournot model without population uncertainty, when the total
number of firms is n and the marginal cost is 0 < φ < 1, a firm’s equilibrium
quantity is q∗∗

n (φ) = 1−φ
n+1 . Correspondingly, let q

∗
n (φ) be a firm’s production under

22 Note that, since the profit function is continuous in φ, if φ is sufficiently small there is a pseudo-
equilibrium close to every pseudo-equilibrium of the model with no costs. Indeed, recall that if φ = 0 there

is a quasi-equilibrium in the interval
[

1
m+1 , 1

m

)
as long as m − 2 < Mn

m−1 ≤ m − 1 and that the second

inequality is always satisfied as a strict inequality.
23 See also the proof of Lemma C.4.
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some equilibrium of the Poisson-Cournot model with expected number of firms n and
marginal cost 0 < φ < 1.

Proposition 6.1 For every 0 < φ < 1 and real number α > 1, there exists a value
nφ,α ∈ R++ such that if n ≥ nφ,α then α−1

α
q∗∗
n (φ) ≤ q∗

n (φ) ≤ α+1
α

q∗∗
n (φ).

Proof Let us write q∗
n and q∗∗

n instead of q∗
n (φ) and q∗∗

n (φ). We begin showing that
for any 0 < φ < 1 and α > 1 there exists a value ňφ,α such that if n ≥ ňφ,α then
q∗
n ≤ α+1

α
q∗∗
n .

Suppose to the contrary that q∗
n > α+1

α
q∗∗
n for every n, and consider a firm whose

opponents all produce q∗
n . If it also produces q

∗
n then, in the event in which the number

of opponents is larger than m̌ = ⌈
α

α+1n
⌉ − 1, the price is lower than

1 − α

α + 1
nq∗

n − q∗
n < 1 −

(
α

α + 1
n + 1

) (
α + 1

α

1 − φ

n + 1

)
= φ − 1

α

1 − φ

n + 1
.

If n is sufficiently large this last estimate is positive. So, if indeed the realized number
of firms is larger than m̌, profits are lower than

−
(
1

α

1 − φ

n + 1

)
q∗
n .

Profits in the events in which the number of opponents is smaller than m̌ must be lower
than the monopoly profit (1 − q∗

n − φ)q∗
n . We have

π(q∗
n , q∗

n | n, φ) < Cn
m̌

(
1 − α + 1

α

1 − φ

n + 1
− φ

)
q∗
n − (1 − Cn

m̌)
1

α

1 − φ

n + 1
q∗
n ,

which is negative if

Cn
m̌ <

1

αn
. (6.1)

Since m̌ < n, we can use the Chernoff bound

Cn
m ≤ e−n(en)m

mm
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to show thatCn
m̌ converges to zero exponentially, so faster than 1

n , as n goes to infinity.
24

It follows that, for every φ and α, there exists a value ňφ,α such that, for n ≥ ňφ,α , we
have π(q∗

n , q∗
n | n) < 0, so q∗

n cannot be an equilibrium.25

The second part of the proof consists of showing that for every 0 < φ < 1 and
α > 1 there exists a value n̂φ,α such that if n ≥ n̂φ,α then q∗

n ≥ α−1
α

q∗∗
n . Suppose to

the contrary that q∗
n < α−1

α
q∗∗
n for every n. When the number of opponents producing

q∗
n is smaller than or equal to m̂ = ⌊

α
α−1 (n − 1)

⌋
, the total quantity they produce is

less than (n − 1)q∗∗
n and a deviation to q∗∗

n will induce higher profits (and the lower
the realized number of other firms the higher the profit). In turn, if the realized number
of other firms is larger than m̂ then the firm’s losses are never greater than 1. Thus, we
have

π(q∗∗
n , q∗

n | n, φ) − π(q∗
n , q∗

n | n, φ) >

Cn
m̂[(1 − m̂q∗

n − q∗∗
n − φ)q∗∗

n − (1 − m̂q∗
n − q∗

n − φ)q∗
n ] − (1 − Cn

m̂) =
Cn
m̂(1 − φ − m̂q∗

n − q∗∗
n − q∗

n )(q∗∗
n − q∗

n ) − (1 − Cn
m̂) >

Cn
m̂

[
nq∗∗

n − (m̂ + 1)
α − 1

α
q∗∗
n

] (
q∗∗
n − α − 1

α
q∗∗
n

)
− (1 − Cn

m̂) ≥

Cn
m̂

[
nq∗∗

n −
(

α

α − 1
(n − 1) + 1

)
α − 1

α
q∗∗
n

]
1

α

1 − φ

(n + 1)
− (1 − Cn

m̂) =

Cn
m̂

[
1

α

1 − φ

(n + 1)

]2
− (1 − Cn

m̂).

As in the first part of the proof, we can show that, for n sufficiently large, the last
expression is greater than zero. That is, if n is large enough then m̂ > n and the
Chernoff bound 1 − Cn

m ≤ e−n(en)m

mm implies that 1 − Cn
m̂ converges exponentially to

zero as n goes to infinity, hence faster than 1
n2
. Thus, for every φ and α, there exists a

value n̂φ,α such that q∗
n cannot be an equilibrium if n ≥ n̂φ,α .

Setting nφ,α = max{ňφ,α, n̂φ,α}, we obtain the desired result. �	

24 The bounds we employ for profits lead to the simple inequality (6.1) but eliminate its dependence on φ.
Such a dependence could be restored usingmore efficient bounds. Note that (6.1) holds under the assumption
that when the realized number of opponents is m̌ + 1 the price is positive, which is true if n is sufficiently
large. For values of n such that φ − 1

α
1−φ
n+1 ≤ 0, when the number of competitors is larger than m̌ + 1 the

price is zero. In this case we have

π(q∗
n , q∗

n | n, φ) < Cn
m̌ (1 − φ)q∗

n − (1 − Cn
m̌ )φq∗

n ,

which is negative if Cn
m̌ < φ. Since m̌ < n and m̌ depends linearly on n, this inequality is satisfied as long

as n is sufficiently high. Note also that we need to consider this case for a proper comparison with the model
with zero costs, in which the price is zero when the realized number of opponents is m̌ + 1. In particular,
for any given n, Cn

m̌ < φ is never satisfied if φ = 0, consistently with our main results.
25 Substituting Cn

m̌ with the corresponding Chernoff bound in (6.1) and using a similar approach to the
proof of Claim 1, it is possible to explicitly calculate ňφ,α .
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7 Conclusion

We have constructed and solved a Cournot model in which the number of firms is
uncertain and distributed according to a Poisson distribution. Under symmetry (i.e.
all firms have the same marginal cost) we proved that every Poisson-Cournot game
has at least one equilibrium. If marginal costs are equal to zero and the expected
number of firms is larger than 3, every equilibrium exhibits “severe” overproduction
and, therefore, consumer surplus is larger than in the analogous situation in which
the number of firms is well known. This result is robust to small enough and strictly
positive marginal costs.

However, it should be noted that several simplifying assumptions, while offering
tractability, also lead to some limitations. Firstly, we have already mentioned that
all firms are symmetric and have the same marginal costs, so we cannot analyze
how overproduction differs across productivity levels. Secondly, as in the classical
Cournot model, firms are limited to choose quantities and are not able to affect market
demand. Thirdly, as is typical in Poisson models, there is no possibility of entry or
exit after the realization of the Poisson distribution determines the number of firms
in the market. Similarly, there are no information asymmetries and there is common
knowledge about the underlying distribution function (Poisson) and its parameter (the
expected number of firms). Nevertheless, as the example in Sect. 2 illustrates, the
main qualitative properties of our results do not fundamentally depend on the Poisson
distribution.
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Appendix A: The conditional meanMn
m

Given n > 0 and a positive integer m, the conditional mean Mn
m is the mean of the

Poisson distribution conditional on its realization being smaller or equal than m. That
is,

Mn
m =

∑m−1
k=0

nk
k! k

∑m−1
k=0

nk
k!

= nCn
m−1

Cn
m

.
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Poisson–Cournot games

Of course, Mn
m is increasing and converges to n as m grows. In this appendix we

establish several other results about Mn
m that are needed to characterize the set of

equilibria of the model. To simplify notation, we fix n and drop the corresponding
superscript from every expression as long as it does not lead to confusion.

Recall that, whenever convenient, the Poisson distribution can be expressed in terms
of the incomplete gamma function as follows

�(m + 1, n) :=
∫ ∞

n
sme−sds = m!Cm .

We can similarly use the exponential integral,

1

nm+1�(m + 1, n) = E−m(n) :=
∫ ∞

1
sme−nsds = e−n

∫ ∞

0
(1 + s)me−nsds.

Thus, we define the expression

Jm :=
∫ ∞

0
(1 + s)me−nsds. (A.1)

Using the properties of the incomplete gamma function, we can write the conditional
mean as Mm = mJm−1

Jm
which is, therefore, also defined for non-integer values of m.

Integrating by parts, we see that Jm satisfies the recurrence

nJm = 1 + mJm−1,

therefore, Mm = n − 1
Jm
.

With this in mind we can now prove the following result.

Proposition A.1 The expression Mm − Mm−1 is decreasing in m for all m > 0.26

Proof Since Mm is increasing inm it is enough to show that Mm is concave inm which
holds if 1

Jm
is convex or, taking derivatives with respect to m, if

2J ′2
m − J ′′

m Jm
J 3m

≥ 0.

Since Jm is always positive, we need to prove 2J ′2
m − J ′′

m Jm ≥ 0. From (A.1) we have

2J ′2
m − J ′′

m Jm

= 2
∫ ∞

0

∫ ∞

0
log(1 + s1) log(1 + s2)(1 + s1)

m(1 + s2)
me−n(s1+s2)ds1ds2

−
∫ ∞

0

∫ ∞

0
log(1 + s1) log(1 + s1)(1 + s1)

m(1 + s2)
me−n(s1+s2)ds1ds2.

26 An alternative proof, only valid when m is an integer value, is available from the authors upon request.
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Using the change of variables s2 = s − s1, the last expression equals

∫ ∞

0
e−ns

∫ s

0
(1 + s1)

m(1 + s − s1)
m log (1 + s1)

×
[
2 log (1 + s − s1) − log (1 + s1)

]
ds1ds.

It is useful to define the functions

gm(s1 | s) := (1 + s1)
m(1 + s − s1)

m,

h(s1 | s) := 2 log(1 + s − s1) − log(1 + s1), and

f (s1 | s) := log(1 + s1)h(s1 | s).

Due to the symmetry of the function gm(s1 | s) around s/2 where it attains its unique
maximum we have

2J ′2
m − J ′′

m Jm =
∫ ∞

0
e−ns

∫ s

s/2
gm(s1 | s)

[
f (s1 | s) + f (s − s1 | s)

]
ds1ds. (A.2)

The function h(s1 | s) is strictly decreasing on 0 < s1 < s and is zero at s̃1 =
s + 3

2 −
√
s + 9

4 . It follows that f (s1 | s) is strictly decreasing on s̃1 < s1 < s.

Furthermore, we can show that f (s1 | s) is increasing in 0 < s1 < s − s̃1. First note
that

f ′(s1 | s) = 2 log (1 + s − s1)

1 + s1
− 2(s + 2) log (1 + s1)

(1 + s − s1)(1 + s1)

>
2 log (1 + s̃1)

1 + s1
− 2(s + 2) log (1 + s − s̃1)

(1 + s − s1)(1 + s1)
.

Since s̃1 satisfies 2 log(1 + s − s̃1) = log(1 + s̃1) the right hand side of the last
inequality equals

2 log (1 + s̃1)

1 + s1
− (s + 2) log (1 + s̃1)

(1 + s − s1)(1 + s1)
= log (1 + s̃1) (s − 2s1)

(1 + s1)(1 + s − s1)
,

which is strictly positive because s1 < s − s̃1 and s̃1 > 2
3 s (this bound can be directly

verified using the expression for s̃1). Therefore, f (s1)+ f (s−s1) is strictly decreasing
on s̃1 < s1 < s and there exists a unique s̄1 with s̃1 < s̄1 < s at which it vanishes.
Hence, Eq. A.2 is equal to

∫ ∞

0
e−ns

(∫ s̄1

s/2
gm(s1 | s)

[
f (s1 | s) + f (s − s1 | s)

]
ds1

+
∫ s

s̄1
gm(s1 | s)

[
f (s1 | s) + f (s − s1 | s)

]
ds1

)
ds
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>

∫ ∞

0
gm(s̄1 | s)e−ns

(∫ s̄1

s/2

[
f (s1 | s) + f (s − s1 | s)

]
ds1+

∫ s

s̄1

[
f (s1 | s) + f (s − s1 | s)

]
ds1

)
ds

=
∫ ∞

0
gm(s̄1 | s)e−ns

∫ s

s/2

[
f (s1 | s) + f (s − s1 | s)]ds1ds

=
∫ ∞

0
gm(s̄1 | s)e−ns

∫ s

0
f (s1 | s)ds1ds.

Consider the inner integral

F(s) :=
∫ s

0
f (s1 | s) ds1.

We obviously have F(0) = 0. We establish the desired result by proving F ′(0) = 0
and F ′′(s) > 0 for every s ≥ 0. Using the Leibniz integral rule we obtain

F ′(s) = f (s | s) +
∫ s

0

∂ f (s1 | s)
∂s

ds1 = − log(1 + s)2 +
∫ s

0

2 ln(1 + s − s1)

1 + s1
ds1

so that F ′(0) = 0. Furthermore,

F ′′(s) = −2 ln(1 + s)

1 + s
+ 0 +

∫ s

0

2

(1 + s1)(1 + s − s1)
ds1 = 2s ln(1 + s)

(1 + s)(2 + s)
> 0,

as we wanted. �	
This previous result has some important implications. The first one follows directly

from M0 = 0 and M1 = n
n+1 .

Corollary A.1 For any integer m ≥ 1 we have Mm − Mm−1 < 1.

Corollary A.2 For every integer m ≥ 1, if Mm > m − 1 then Mm−1 > m − 2.

We are interested in finding m̄, i.e., the greatest integerm such that Mm−1 > m−2.
We find bounds for m̄ in the next two propositions.

Proposition A.2 The greatest m such that Mm−1 > m − 2 satisfies m > n
2 + 1.

Proof Using the rules of the conditional expectation, we know that the conditional
mean satisfies

Mm = Cm−1

Cm
Mm−1 + Pm

Cm
m. (A.3)

If Mm−1 > m − 2, then

Mm >
Cm−1

Cm
(m − 2) + Pm

Cm
m = m − 2

n
Mm .
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Solving for Mm , we obtain that Mm−1 > m − 2 implies

Mm >
n

n + 2
m. (A.4)

But m̄ is the greatest integerm with Mm−1 > m−2, i.e. Mm̄ ≤ m̄−1. This inequality
combined with (A.4) provides the lower bound n

2 + 1 < m̄. �	
To obtain the upper bound for m̄ we need the following basic fact about the condi-

tional mean of a Poisson random variable.

Lemma A.1 The conditional mean Mn
m is strictly increasing in n for every m > 0.

Proof Since Pn
m/Pn

m′ is strictly increasing in n if m > m′, an increase in n makes
any realization m > 0 of the Poisson random variable relatively more likely than any
smaller realization m′. The result follows. �	
Proposition A.3 The greatest m such that Mm−1 > m − 2 satisfies m < n

2 + 3.

Proof We actually show that m ≥ n
2 + 2 implies Mm ≤ m − 1. Given Lemma A.1, it

is enough to show that m = n
2 + 2 implies Mm ≤ m − 1. But if m = n

2 + 2, the latter
inequality can be written in continuous terms using the incomplete gamma function
as

(m − 3)
∫ ∞

0
e−2(m−2)s(1 + s)mds ≤ 1.

With the change of variables et = 1 + s on the left hand side we have

(m − 3)
∫ ∞

0
e−2(m−2)(et−1)+(m+1)t dt < (m − 3)

∫ ∞

0
e−2(m−2)(t+ t2

2 + t3
6 )+(m+1)t dt

so that, with the new change of variables u = (1 + t)3 and rearranging, it is enough
to prove

(m − 3)e−3
∫ ∞

1
e− 1

3 (m−2)(u−1)+3u1/3
(
1

3
u−2/3

)
du ≤ 1. (A.5)

Let Im be the value of integral above. Integrating by parts we obtain the equality

(m − 2)Im = e3 +
∫ ∞

1
e− 1

3 (m−2)(u−1)+3u1/3
(
u−4/3 − 2

3
u−5/3

)
du.

Combining the last expression with the left hand side of (A.5) we have that the latter
approaches 1 as m tends to infinity. To show that (A.5) holds for every m we prove
that (m − 3)Im is increasing for every m.

d

dm
(m − 3)Im = d

dm
(m − 2)Im − d

dm
Im

123



Poisson–Cournot games

=
∫ ∞

1
e− 1

3 (m−2)(u−1)+3u1/3

(
−1

3
u−1/3 + 1

9
u−2/3 + 1

3
u−4/3 − 2

9
u−5/3 + 1

9
u1/3

)
du.

The derivative of (m − 3)Im is positive as long as the bracketed expression is strictly
positive for almost every u ≥ 1. That is, as long as, for almost every u ≥ 1

f (u) := u + 3u1/3 + u2 > g(u) := 3u4/3 + 2.

Functions f and g are always positive and coincide at u = 1. The same properties can
be verified for the pairs of functions ( f ′, g′) and ( f ′′, g′′). However, f ′′′(u) > 0 >

g′′′(u) for every u ≥ 1, thereby proving inequality (A.5) . �	
When Mm−1 > m−2, Eq. (A.4) provides a lower bound for Mm . The next Lemma

gives a corresponding upper bound.

Lemma A.2 For every integer m ≥ 1 we have Mm ≤ n
n+1m, with equality only if

m = 1.

Proof We obtain M1 = n
n+1 by direct computation. Let m > 1; we obviously have

Mm−1 < m − 1, which can be combined with (A.3) to obtain

Mm <
Cm−1

Cm
(m − 1) + Pm

Cm
m = m − Cm−1

Cm
= m − 1

n
Mm .

The result follows after solving for Mm . �	
Similarly, together with the upper bound for Mm − Mm−1 in Corollary A.1, we

need a lower bound for values of m that are associated with a pseudo-equilibrium.

Lemma A.3 If m < n
2 + 3 then Mm − Mm−1 > n−4

n+4 .

Proof From Proposition A.1 we know that Mm − Mm−1 is decreasing, so we focus
on Mm̄ − Mm̄−1, where m̄ is defined as in Theorem 3.1. Subtracting Mm̄−1 from both
sides in (A.3) we obtain

Mm̄ − Mm̄−1 = Pm̄
Cm̄

(m̄ − Mm̄−1) ≥ Pm̄
Cm̄

(1 + Mm̄ − Mm̄−1), (A.6)

and solving for Mm̄ − Mm̄−1,

Mm̄ − Mm̄−1 ≥ Pm̄
Cm̄−1

= n

Mm̄
− 1.

Since Mm̄ ≤ m̄ − 1 and m̄ < n
2 + 3 the last expression implies

Mm̄ − Mm̄−1 >
n − m̄ + 1

m̄ − 1
= n − 4

n + 4
.

�	
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In the remainder of this appendix we find the alternative bound Mm −Mm−1 > n−6
n−2

which is tighter whenever n > 8. We begin with a preliminary lemma.

Lemma A.4 If n > 2 then

(
n

2
− 1 − n − 6

n − 2

)
Jn
2+3 ≥ 1.

Proof Given some a such that |a| < 1 and some b, we begin by finding a new
expression for nJan+b. We use the equality nJm = 1 + mJm−1 recursively to obtain

nJan+b = 1 + (an + b)Jan+b−1

= 1 + bJan+b−1 + a
(
1 + (an + b − 1)Jan+b−2

)

= 1 + a + bJan+b−1 + a(b − 1)Jan+b−2 + a2nJan+b−2

= · · ·

=
N∑

k=0

(
ak + ak(b − k)Jan+b−1−k

) + aN+1nJan+b−1−N .

If an + b is not an integer (so that an + b + 1− N �= 0 for every N ) we can take the
limit as N goes to infinity to obtain

nJan+b = 1

1 − a
+

∫ ∞

0
e−ns(1 + s)an+b−1

∞∑

k=0

(b − k)

(
a

1 + s

)k

ds

= 1

1 − a
+

∫ ∞

0
e−ns(1 + s)an+b b(1 + s) − a(b + 1)

(a − 1 − s)2
ds.

If an + b is an integer then a continuity argument implies that the previous equality
also holds. We use such an equality to obtain an expression for n2 Jan+b.

n2 Jan+b = n

1 − a
+ n

∫ ∞

0
e−ns(1 + s)an+b b(1 + s) − a(b + 1)

(a − 1 − s)2
ds. (A.7)

Integrating by parts we obtain

n

1 − a
+ b − a − ab

(a − 1)2
+

∫ ∞

0
e−ns

[
(an + b)(1 + s)an+b−1 b(1 + s) − a(b + 1)

(a − 1 − s)2

+ (1 + s)an+b d

ds

b(1 + s) − a(b + 1)

(a − 1 − s)2

]
ds

and, rearranging,

n

1 − a
+ b − a − ab

(a − 1)2
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+
∫ ∞

0
e−ns(1 + s)an+b

[
b

1 + s

b − a(b + 1)

(a − 1 − s)2
+ d

ds

b(1 + s) − a(b + 1)

(a − 1 − s)2

]
ds

+an
∫ ∞

0
e−ns(1 + s)an+b−1 b(1 + s) − a(b + 1)

(a − 1 − s)2
ds.

The last integral in the previous expression can be integrated by parts in the same
fashion as the integral in Eq. (A.7). Doing so we obtain

n

1 − a
+ b − a − ab

(a − 1)2
+ a

b − a − ab

(a − 1)2

+
∫ ∞

0
e−ns(1 + s)an+b

[
b

1 + s

b(1 + s) − a(b + 1)

(a − 1 − s)2
+ d

ds

b(1 + s) − a(b + 1)

(a − 1 − s)2

]
ds

+
∫ ∞

0
e−ns(1 + s)an+b

[
a(b − 1)

(1 + s)2
b(1 + s) − a(b + 1)

(a − 1 − s)2

+ a

1 + s

d

ds

b(1 + s) − a(b + 1)

(a − 1 − s)2

]
ds

+ a2n
∫ ∞

0
e−ns(1 + s)an+b−2 b(1 + s) − a(b + 1)

(a − 1 − s)2
ds.

Iterating the same step ad infinitum we have

n

1 − a
+ b − a − ab

(a − 1)2

∞∑

k=0

ak

+
∫ ∞

0
e−ns(1 + s)an+b b(1 + s) − a(b + 1)

(a − 1 − s)2

∞∑

k=0

ak(b − k)

(1 + s)k+1 ds

+
∫ ∞

0
e−ns(1 + s)an+b d

ds

b(1 + s) − a(b + 1)

(a − 1 − s)2

∞∑

k=0

ak

(1 + s)k
ds,

which we simplify by solving the infinite sums to obtain

n2 Jan+b = n

1 − a
+ b − a − ab

(1 − a)3
+

∫ ∞

0
e−ns(1 + s)an+b

1

(a − 1 − s)4

[
b(b − 1)s2 + +(2b2 − 2ab2 − ab + 2a − 2b)s

+a2b2 + 2a2b − 2ab2 + a2 − ab + b2 + 2a − b
]
ds

When a = 1
2 and b = 3 the expressions for n2 Jan+b and nJan+b become

nJn
2+3 = 2 + 4

∫ ∞

0
e−ns(1 + s)

n
2+3 3s + 1

(2s + 1)2
ds, and

n2 Jn
2+3 = 2n + 8 + 8

∫ ∞

0
e−ns(1 + s)

n
2+3 12s

2 + 5s + 1

(2s + 1)4
ds,
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Fig. 3 New bounds for m found using Mm − Mm−1 > n−6
n−2 given 20 ≤ n ≤ 160

from where it readily follows

(
n

2
− 1 − n − 6

n − 2

)
Jn
2+3 = n2 − 6n + 16

2n − 4
Jn
2+3

= 1 + 16

n − 2

∫ ∞

0
e−ns(1 + s)

n
2+3 s

2(8s2 + 7s + 3)

(2s + 1)4
ds ≥ 1.

�	
Proposition A.4 If n > 2 and m < n

2 + 3 we have Mm − Mm−1 > n−6
n−2 .

Proof Given Lemma A.4 and Propositions A.1 and A.3,

Mm − Mm−1 > Mn
2+3 − Mn

2+2

= 1

Jn
2+2

− 1

Jn
2+3

≥
(n
2

− 1
)

−
(
n

2
− 1 − n − 6

n − 2

)

= n − 6

n − 2
.

�	
Of course, the tightness of the bounds in Propositions 4.1 and 4.2 depend on the

tightness of the bounds for Mm and Mm − Mm−1. The bound found in the last propo-
sition is tighter than the one in Lemma A.3 whenever n > 8. Using this new bound,
we obtain the following necessary and sufficient conditions for equilibria that are
represented in Fig. 3.
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Proposition A.5 Let n > 2. If q∗ ∈
[

1
m+1 ,

1
m

)
is an equilibrium then

n

4
+ 1

4
<m <

(
4

9
n + 8

9

) (
3n − 6

3n − 10

)2

+ 1.

Furthermore, if q̃ ∈
[

1
m+1 ,

1
m

)
is a pseudo-equilibrium such that

(
n

4
+ 1

2

)(
n + 2

n − 2

)2

≤m ≤ 4

9
n + 13

9

then q̃ is an equilibrium.

The upper bound in Proposition A.5 is more efficient than the one in Theorem 3.1
for n > 14. To illustrate the efficiency of these bounds consider, e.g., n = 100.
According to Proposition A.5 every equilibrium quantity must be larger than 1

48 and

smaller than 1
26 . Furthermore, every interval

[
1

m+1 ,
1
m

)
from 1

46 to 1
28 contains an

equilibrium, which is given by 1
M100

m−1+2
. According to numerical computations, there

is an equilibrium in each interval from 1
48 to 1

27 . (Without population uncertainty, the
unique equilibrium quantity is 1

101 .)

Appendix B: Proof of Claim 1

Claim 1 Let q̃m−1 be an equilibrium. Then π(q̃m−1, q̃m−1 | n) < 1
(n+1)2

for every n.

Proof We begin to show that, for n large enough,

q̃2m̄−1C
n
m̄−1 <

1

(n + 1)2
. (B.1)

Replacing q̃m̄−1 by its value and using Mn
m̄−1 > m̄ − 2, we actually prove that for n

large enough

Cn
m̄−1 <

(
m̄

n + 1

)2

.

A tight upper bound for Cn
m̄−1 can be found as follows. Since Mn

m̄ ≤ m̄ − 1

and Mn
m̄ = n

Cn
m̄−1
Cn
m̄

= n
(
1 − Pn

m̄
Cn
m̄

)
we obtain Cn

m̄ ≤ Pn
m̄

(
n

n+1−m̄

)
, so that Cn

m̄−1 =
Cn
m̄ − Pn

m̄ ≤ Pn
m̄

(
m̄−1

n+1−m̄

)
. Thus, inequality (B.1) is satisfied whenever

Pn
m̄

(
m̄ − 1

n + 1 − m̄

)
<

(
m̄

n + 1

)2

.
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Recall that, by Theorem 3.1, n
2 + 1 < m̄ < n

2 + 3. Assuming n > 6, the previous
inequality is satisfied if it holds after replacing the factorial in Pn

m̄ by Stirling’s approx-
imation

√
2πm̄( m̄e )m̄ and m̄ by n

2 + 3.27 Making the change of variables x = n
2 we

obtain the inequality

e−x+3 1√
2π(x + 3)

(
2x

x + 3

)x+3 (
x + 2

x − 2

)
<

(
x + 3

2x + 1

)2

which holds for, e.g., x = 3.174 (i.e. n = 6.348). To show that it also holds for every
x > 3.174 (n > 6.348) we prove that the inequality still holds after we differentiate
it with respect to x . Indeed, taking logarithms and differentiating we obtain

−1 + x + 3

x
+ log(2x) + 1

x + 2
+ 4

2x + 1
<

2

x + 3
+ 1

2(x + 3)
+ log(x + 3) + 1

+ 1

x − 2
.

Collecting the logarithms, using the bound log(y) ≤ y − 1, and rearranging we find
the simpler expression

x + 3

x
+ 4x − 5

2(x + 3)
+ 1

x + 2
+ 4

2x + 1
< 3 + 1

x − 2
.

This last inequality can be easily verified when x > 2 by noticing that 4x−5
2(x+3) < 2x−2

x+2

and 4
2x+1 < 2

x , and that

x + 3

x
+ 2x − 2

x + 2
+ 1

x + 2
+ 2

x
= 3 + 10

x(x + 2)
< 3 + 1

x − 2
.

Hence, (B.1) is satisfied for n ≥ 6.348.
Furthermore, using the computation of equilibria for small values of n in the Online

Appendix, Claim 1 can be directly verified for every n > 0. �	

Appendix C: Equilibrium existence with positive production costs

If φ ≥ 1 not producing is the unique equilibrium. Therefore, in this appendix we
assume 0 < φ < 1. We show that there is always an equilibrium following the same
strategy of the proof as when φ = 0. However, we previously need to show that when
0 < φ < 1 a pseudo-equilibrium always exists. To simplify notation, we fix n and
drop the corresponding superscript from every expression.

27 To see this, note first that m−1
m2(n+1−m)

is increasing in m when m > n
2 + 1. Second, we can write the

density Pn
m as a continuous function of m using the gamma function instead of the factorial. If n > 6

then, necessarily, m < n and the resulting continuous function is increasing in m so that we can replace
m̄ by n

2 + 3. Finally, we substitute the value of the gamma function at n
2 + 3 with the value of Stirling’s

approximation.

123



Poisson–Cournot games

If q, q ′ ∈
[

1
m+1 ,

1
m

)
then the pseudo-profit equals

π̃m−1(q, q ′ | n, φ) :=
m−1∑

k=0

Pk(1 − kq ′ − q)q − φq

which can be used to derive the pseudo-best response

B̃Rm−1(q
′) := 1

2
− 1

2
Mm−1q

′ − 1

2

φ

Cm−1

and, if it exists, the pseudo-equilibrium

q̃ =
1 − φ

Cm−1

Mm−1 + 2
.

Such a pseudo-equilibrium q̃ does exist if 1
m+1 ≤ q̃ < 1

m . That is, if

L(m − 1) := (m − 2) − m
φ

Cm−1
< Mm−1

≤ H(m − 1) := (m − 1) − (m + 1)
φ

Cm−1
. (C.1)

Theorem C.1 A pseudo-equilibrium exists.

Proof Using the incomplete gamma function we can temporarily work with the con-
tinuous versions of Cm−1, L(m − 1), H(m − 1) and Mm−1. Since φ < 1, there is an
m′ such that Cm′−1 = φ. For such a value, L(m′ − 1) = H(m′ − 1) = −2 < Mm′−1.
Note that for every m > m′ we have L(m − 1) < H(m − 1) and that, as m goes to
infinity, both L(m − 1) and H(m − 1) also go to infinity while Mm−1 converges to n.
Therefore, there is some m ∈ R++ such that the double inequality (C.1) is satisfied.
We need to show that such a double inequality is also satisfied for some integer value
of m.

To the contrary assume that there is no pseudo-equilibrium. Let m̂ be the largest
integer such that Mm̂−1 > H(m̂ − 1), since there is no pseudo-equilibrium we must
have Mm̂ ≤ L(m̂). Therefore,

Mm̂ − Mm̂−1 < L(m̂) − H(m̂ − 1) = (m̂ + 1)φ
Pm̂

Cm̂Cm̂−1
.

From Eq. (A.6) in the proof of Lemma A.3 we know

Mm̂ − Mm̂−1 = Pm̂
Cm̂

(m̂ − Mm̂−1),
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and combining the last two expressions

Mm̂−1 > m̂ − (m̂ + 1)
φ

Cm̂−1
= H(m̂ − 1) + 1.

Repeating this same argument but using Mm̂−1 > H(m̂ − 1) + 1 we obtain

Mm̂−1 > m̂ + Cm̂

Pm̂
− (m̂ + 1)

φ

Cm̂−1
> H(m̂ − 1) + 2.

Thus, if we iterate on the argument we conclude Mm̂−1 > m̂−1, which is impossible.
Therefore, there is at least one pseudo-equilibrium. �	

In order to show that there is always an equilibrium we follow the same strategy
as in the case φ = 0. That is, given a pseudo-equilibrium, we find the best possible
deviation to a higher and to a lower quantity. Then we show that both deviations
cannot be profitable at the same time and that, if two consecutive pseudo-equilibria
are not equilibria, then either both have a profitable deviation to a smaller quantity or
both have a profitable deviation to a larger quantity. The existence result follows from
establishing that at the smallest pseudo-equilibrium there is no profitable deviation
to a smaller quantity, and that at the largest pseudo-equilibrium there is no profitable
deviation to a larger quantity. We now show each of these results in turn.

A pseudo-equilibrium q̃ ∈
[

1
m+1 ,

1
m

)
is an equilibrium if no firm can profitably

deviate to either a quantity smaller than 1
m+1 or to a quantity larger than 1

m . The best
deviation to a smaller quantity is

¯
q = 1

2
− 1

2
Mmq̃ − 1

2

φ

Cm
.

And a necessary condition for it to be a profitable deviation is
¯
q < 1 − mq̃. On the

other hand, a necessary condition for some q̄ > 1
m to be a profitable deviation is

q̄ > 1 − (m − 1)q̃ .

Lemma C.1 The best possible deviation to a quantity higher than 1
m is

q̄ = 1

2
− 1

2
Mm−2q̃ − 1

2

φ

Cm−2
.

Proof We begin establishing the following fact: if q̃ ∈
[

1
m+1 ,

1
m

)
is a pseudo-

equilibrium then for any j ≥ 3 we must have

Mm− j > m − 2( j − 1) − m
φ

Cm− j
. (C.2)
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Indeed, using Corollary A.1 and the assumption that q̃ is a pseudo-equilibrium we
obtain

Mm− j > Mm−1 − ( j − 1) > (m − 2) − ( j − 1) − m
φ

Cm−1

and it can be easily shown that if j ≥ 3 this estimate is larger than the right-hand side
of (C.2) thereby establishing such an inequality.

Suppose now that for j ≥ 3 the deviation to

qm− j = 1

2
− 1

2
Mm− j q̃ − 1

2

φ

Cm− j

is more profitable than the deviation to

qm− j+1 = 1

2
− 1

2
Mm− j+1q̃ − 1

2

φ

Cm− j+1
.

If that is the case then qm− j > 1− (m − j + 1)q̃ . Substituting qm− j by its value and
solving for q̃ we have

q̃ >
1 + φ

Cm− j

2(m − j + 1) − Mm− j
>

1 + φ
Cm− j

m
(
1 + φ

Cm− j

) = 1

m
,

where the second inequality follows from (C.2). But this provides the desired contra-
diction. �	

Lemma C.2 Let q̃ ∈
[

1
m+1 ,

1
m

)
be a pseudo-equilibrium. If there is a profitable devi-

ation to the higher quantity q̄ then there cannot be a profitable deviation to the lower
quantity

¯
q and vice versa.

Proof If both q̄ and
¯
q are profitable deviations, using q̄ > 1−(m−1)q̃ and

¯
q < 1−mq̃ ,

substituting q̄ and
¯
q by their corresponding values, and applying Mm − Mm−2 < 2

we obtain

q̃

(
m − 1

2
Mm

)
>

1

2

(
1 + φ

Cm−2

)
and q̃

(
m − 1

2
Mm

)
<

1

2

(
1 + φ

Cm

)
.

However, they cannot both hold at the same time because Cm−2 < Cm . �	

Lemma C.3 Let q̃ ∈
[

1
m+1 ,

1
m

)
and q̂ ∈

[
1

m+2 ,
1

m+1

)
be two pseudo-equilibria. If

there is a profitable deviation from q̂ to a higher quantity q̄ then there cannot be a
profitable deviation from q̃ to a lower quantity

¯
q, and vice versa.
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Proof Suppose there is a profitable deviation from q̂ to a higher quantity and from
q̃ to a lower quantity. From the necessary conditions for those two deviations to be
profitable we obtain the inequalities

m − 1 − 1

2
Mm − 1

2
Mm−1 >

φ

Cm−1
+ 1

2

φ

Cm−1
Mm + m

φ

Cm
− 1

2

φ

Cm
Mm−1

m − 1 − 1

2
Mm − 1

2
Mm−1 <

φ

Cm
+ 1

2

φ

Cm
Mm−1 + m

φ

Cm−1
− 1

2

φ

Cm−1
Mm .

We claim that the right-hand side in the second inequality is strictly smaller than the
right-hand side in the first inequality. That holds if and only if

1

Cm−1

(
m − 1 − Mm

)
<

1

Cm

(
m − 1 − Mm−1

)
,

and this inequality holds if and only if

(m − 1)Cm − nCm−1 < (m − 1)Cm−1 − nCm−2

(m − 1)Pm < nPm−1

m − 1

n
<

Pm−1

Pm
= m

n
,

which establishes our claim and provides the desired contradiction. �	
Lemma C.4 At the highest pseudo-equilibrium quantity, deviating to a higher quantity
is not profitable. Similarly, at the lowest pseudo-equilibrium quantity, deviating to a
lower quantity is not profitable either.

Proof Let q̃ ∈
[

1
m+1 ,

1
m

)
be the smallest pseudo-equilibrium quantity so that Mm ≤

L(m). If deviating to a lower quantity was a profitable deviation, then

1 − q̃m >
1

2
− 1

2
q̃Mm − 1

2

φ

Cm
≥ 1

2
− 1

2
q̃

(
m − 1 − (m + 1)

φ

Cm

)
− 1

2

φ

Cm

and, solving from q̃ , we have q̃ < 1
m+1 which is impossible.

Let q̃ ∈
[

1
m+1 ,

1
m

)
be the highest pseudo-equilibrium quantity so that Mm−2 >

H(m − 2). If deviating to a higher quantity was a profitable deviation, then

1 − (m − 1)q̃ <
1

2
− 1

2
q̃Mm−2 − 1

2

φ

Cm−2
<

1

2
− 1

2
q̃

(
m − 2 − m

φ

Cm−2

)

−1

2

φ

Cm−2
.

Solving from q̃ , we obtain q̃ > 1
m which is also impossible. �	
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