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Abstract

We present a novel computational approach for quadratic hedging in a high-dimensional
incomplete market. This covers both mean-variance hedging and local risk minimiza-
tion. In the first case, the solution is linked to a system of BSDEs, one of which being
a backward stochastic Riccati equation (BSRE); in the second case, the solution is re-
lated to the Follmer-Schweizer decomposition and is also linked to a BSDE. We apply
(recursively) a deep neural network-based BSDE solver. Thanks to this approach, we
solve high-dimensional quadratic hedging problems, providing the entire hedging strate-
gies paths, which, in alternative, would require to solve high dimensional PDEs. We test
our approach with a classical Heston model and with a multi-dimensional generalization
of it.

Keywords Deep hedging; Deep BSDE solver; Mean-variance hedging; Local risk minimiza-
tion; Multidimensional Heston model.

1 Introduction

The problem of hedging a contingent claim is typically faced by a financial institution who
sold a derivative to a customer and is hence confronted with a future liability, in the form of a
positive random variable H representing the payoff at final time. Hedging of contingent claims
is a central problem in financial mathematics. Due to the link between trading strategies of
the hedger and stochastic integrals [20], this corresponds to the question whether the random
variable H can be written in the form of a stochastic integral of the trading strategy with
respect to a semimartingale. When such a representation holds for any possible choice of the
contingent claim H, the market is said to be complete. The standard example in this case is
given by the Black-Scholes [3] market model.

Completeness, however, is a property which is easily lost as soon as we consider even slight
generalizations of the Black-Scholes market, e.g. by considering random coefficients due to
stochastic volatility /stochastic interest rates, or if we allow for discontinuous price paths in
the underlying security. This fact has motivated, in the last decades, the introduction of a
multitude of alternative approaches to hedging in incomplete markets.

In this paper, we consider quadratic hedging in a pure diffusive setting, both in the form
of mean-variance hedging, introduced in [4], [11], [34], and local risk minimization, proposed
in [16], [15], [33] and [34]. For a survey of the two approaches, featuring also a complete list of
early references, we refer to [35]. In the last decades, the two approaches have been studied by
several authors and extended in different directions: for stochastic volatility models, which are



the focus of the present paper, we mention [24| concentrating on local risk minimization,|[10]
and [2] who discuss mean-variance hedging. For the class of affine stochastic volatility models,
we refer to [7] and [27]. For recent results on mean-variance hedging we also refer to [8].

For mean-variance hedging, approaches based on the theory of stochastic optimal control
are treated in [30] and [26]. We anticipate that the link with stochastic control theory will be
very important in our approach as we shall see in the sequel.

Concerning the computation of quadratic hedging strategies we mention [21] and [22]: in
these works the two approaches are compared in the context of certain stochastic volatility
models. Both local risk minimization and mean-variance hedging are studied from a numerical
point of view: the two methods are implemented in a Markovian framework by using PDE
techniques in the form of the finite difference method. It is well known that such numerical
methods for PDEs suffer from the curse of dimensionality, hence it seems difficult to apply
quadratic hedging to contingent claims that depend on a high number of risk factors. This is
the problem we would like to address in the present paper: namely, we would like to propose
a computational strategy which makes the implementation of quadratic hedging feasible even
when the number of underlying risk factors is large.

Our strategy is based on two observations. First of all, both quadratic hedging approaches
can be treated from the point of view of backward stochastic differential equations (BSDEs).
This link is particularly evident for mean-variance hedging, due to the very formulation of
the problem as a stochastic control problem of linear quadratic type: the solution involves a
system of two BSDEs that need to be solved sequentially. For local risk minimization, the link
with BSDEs is not immediately clear in the original definition of local risk minimizing strategy.
However, it is well known that finding local risk minimizing strategies is equivalent to finding
the so-called Follmer-Schweizer decomposition of the discounted payoff, which in turn involves
the solution of a linear BSDE. In summary, both local risk minimization and mean-variance
hedging can be treated from the point of view of BSDEs.

The second observation is the fact that high-dimensional BSDEs (or equivalently the asso-
ciated PDEs via the Feynman-Kac formula) can be efficiently solved by means of deep learning
methods. In recent years, the introduction of advanced and highly parallelized hardware, in
particular graphic processing units, have motivated, among other factors, an increasing rel-
evance of statistical learning methods for the solution of high-dimensional problems. In the
context of the numerical methods for PDEs an already large stream of literature involves the
numerical solution of high-dimensional PDEs by means of deep learning methods, where dif-
ferent quantities related to the solution function are approximated by deep artificial neural
networks (ANNs).

Of particular relevance for our work are [12] and [19]. In these works, the starting point is
to consider the BSDE associated to a particular PDE. The solution of the BSDE is then viewed
as the minimizer of a stochastic control process involving a quadratic loss. Once the BSDE is
discretized forward in time via a standard Euler scheme, the initial condition and the controls
of the BSDE, at each point in time, are parametrized by a family of ANNs. The parameters
of the ANNs are optimized by minimizing the expected squared distance between the known
terminal condition and the terminal value of the discretized BSDE.

In view of the two observations above our approach consists in expressing both quadratic
hedging approaches by means of the associated BSDEs and then apply the deep BSDE solver
of [12] to solve for all quantities of interest in a diffusive setting of arbitrary dimension.

As a running example we consider a multi-asset and multi-factor version of the Heston
model |23]. One the one side, such choice allows us, in the one-dimensional setting, to validate
our numerical procedure against well established numerical solutions that employ standard
numerical methods, notably the results of [7]; on the other side, this hints at the possibility of



applying our approach in the more broad class of diffusive stochastic volatility models. Our
numerical results show that deep learning based methods increase the scope of applicability of
quadratic hedging approaches to a high-dimensional setting.

The outline of the paper is the following: in Section 2, we first present the probabilistic
setting, a and general market model. To make the discussion self-contained, we devote Section
3 and 4 to a presentation of mean-variance hedging and local risk minimization where we
emphasize the link with the BSDEs we intend to numerically solve. Section 5 is where we
develop our methodology: we first provide a self-contained introduction to the deep BSDE
solver in Section 5.1, and then we apply it in Sections 5.2.1 and 5.2.2 to mean-variance hedging
and local risk minimization respectively. Section 6 presents the multi-factor and multi-asset
version of the Heston model we use in the numerical experiments and contains some technical
proofs that are needed in order to ensure the well-posedness of the mean-variance hedging
strategy. Finally, Section 7 is devoted to the numerical experiments while Section 8 concludes
the paper.

2 Setting and main assumptions

Let (Q,F,F,P) a complete filtered probability space, with F = {F;};>¢ satisfying the usual
hypotheses. For m > 1 and d > 0, we consider an m-dimensional and a d-dimensional Brownian
motion Wy = (W, ..., W/™)T and B; = (B}, ..., B{)". Throughout the paper we will assume
that the filtration F is generated both by W and B. In particular, the components of W drive
the diffusion of the tradable assets, while B models the incompleteness of the market.

Let ¢ € N\ {0}. We introduce the following notation:

. LZFT(Q;Rq) is the space of all Fp-measurable R%-valued random variables X : Q +— RY
such that
X5 = (B X %)Y < oo;

o LL([0,T];RY), for 1 < p < o0, is the space of all F-adapted R?-valued processes X; with
t in [0, 7] such that

T
IX1, = (E] / X7 417 < oo

o L2(Q;C([0,T);RY)) is the space of all R%-valued F-adapted processes on [0, 7] with P-a.s.
continuous sample paths such that

E

sup \Xt\Q < 00;
t€[0,T]

o L (Q;C(]0,T);R?)) is the space of all R?%-valued F-adapted essentially bounded processes
with continuous sample paths.

2.1 The market model

We consider a financial market with one cash account and m stocks. We denote respectively
by S and S} the price at time t of the cash account and the i-th stock, with i = 1,...,m, and
assume their dynamics are given by the following stochastic differential equations (SDEs)

{ds,? = SOrdt Sy =1 1)

dsi = S [u;‘dt + M ol awy Si=s, i=1,...,m.
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where the processes r, pf, 0 (i, =1,...,m) in R are F-adapted and are such that existence
and uniqueness for solutions to (2.1) is guaranteed. We assume that the short rate of interest
r is bounded from below dP ® dt-a.s.

We remark that the assumption of F-adapted processes in (2.1) covers the case where the
coeflicients are measurable functions of a set of factors evolving according to additional SDEs:
this is the situation which is typically encountered in the context of stochastic volatility models.
We also denote by p:= (u!,...,u™)T the drift vector and by o := (6¥); =1, the volatility
matrix, which is assumed to be invertible dP ® dt-a.s.. We set

¢ =0y (e — 1),

Throughout the paper we mainly work with discounted values. We will use the ™ symbol to
denote discounted quantities. In particular, we will denote by S} := S!/S? the discounted
stock prices. Clearly, one has

m
dSi =S¢ | (i — ry)dt + Zazdetj Si=si, i=1,...,m, (2.2)
j=1
and S? = 1. We will write S, = (S},...,S5™)7. Given the assets on the market, an agent ma
t t ) Dt g Y

trade on them by constructing a trading strategy.
We introduce the following quantities:

e Let & € R be the number of shares of the i-th stock owned by the agent at time ¢, for
i=1,...,m,and set & = (&,...,6™)T.

e Let ¢y € R denote the units of the cash account in the agent portfolio at time ¢.
Assumption 2.1. We assume that
1. (&)t>0 is an F-predictable process in R™;
2 N 2
2. E [foT ds + (fOT ¢ diag(Ss) (s — rs]l)‘ ds) ] < 00,

meaning that the stochastic integral fOT £;rd5’3 1s well defined in the space of semimartin-

f;r diag(gs)as

gales. Notice that this comprises the following condition: the process (o) diag(gt)ft)tzo
belongs to LA([0,T]; R™);

3. (Y1)1>0 is an F-adapted process in R.

Definition 2.1. We call any couple of processes (£,1) = (&, %t)iejo,r) satisfying the above
assumptions a trading strategy and we denote by A the set of all such strategies.

The (discounted) value process associated to a trading strategy (£,) is given by
~ m .~ ~ m o~
Vi=> &S+ wS = €8i+ . (2.3)
i=1 i=1

Notice that, for trading strategies satisfying Assumption 2.1, the SDE (2.3) admits a unique
strong solution which is a square integrable martingale.



2.2 Self-financing property and financing costs

A fundamental concept to consider when trading is the self-financing property of a strategy.

Definition 2.2. A trading strategy (&,1) € A is self-financing if one has

av, =S €ds, o Vi—y+ / S e,
i=1 0 i—1

1=
for a given initial wealth Vj = y.

It follows that if the trading strategy is self-financing, V solves the following SDE:

{qvt = SIS = {0 [ - ] 81}t + DL GSI S oV awd
o=y

In absence of the self-financing property, a strategy may generate inflows or outflows of cash
over time, hence we introduce the following process that monitors such cashflows over time.

Definition 2.3. The (discounted) cumulative cost process C at time ¢ of a strategy &v)e A
is defined by

+ m
Cy =V, / ) " ¢idsi. (2.5)

1=
We say that the strategy is mean-self-financing if the process C is a square integrable martingale.

Observe that according with this definition, the cumulative cost for a self-financing strategy
coincides with the initial wealth y as it should be.

In the present paper, we are interested in pricing and hedging a (discounted) contingent
claim of European type, represented by a positive random variable H € L%_-T (€;R). The random

variable H is the unknown payoff at time 7', subject to a certain set of market conditions, that
is obtained by the holder of the contract. The price paid by the buyer of the contract allows
the seller to set up a hedging portfolio to possibly cover the contractual liability at time T
This rather natural approach is at the basis of the study of dynamic trading strategies of the
previously announced form (&, ).

The ideal situation is reached when, by means of an admissible and self-financing trading
strategy, the seller /hedger of the contract is able to guarantee the condition Vr = H P-as. In
this case we say that the claim is attainable and, if all contingent claims are attainable, then
the market is said to be complete. In the probabilistic setting we are considering, whenever
d > 0, the number of Brownian motions is larger than the number of risky assets available for
trading. This is a well-known situation where the market is incomplete. Incompleteness means
that, for some claims, it will not be possible to construct an admissible self-financing strategy
such that f/T = H P-as.

For incomplete markets, several approaches to pricing/hedging have been proposed. We
can name e.g. utility indifference pricing [5| or superhedging [29]. In the present paper, we
focus on the class of quadratic hedging approaches. Within this category, we study both mean-
variance hedging and local risk minimization. As perfectly illustrated in [35], such approaches
are defined by relaxing the structure of the set of strategies over which one optimizes investment
decisions. In particular:



e If we insist on the fact that strategies should be self-financing, while accepting a tracking
error at time 7', then we are employing the mean-variance hedging criterion;

e If instead we insist on the idea that Vp = H P-a.s., while accepting that strategies will
fail to be self-financing, then we are considering the local risk minimization approach.

In the following we will provide a brief overview of the two hedging approaches we consider.
We refer to [35] and references therein for a more formal treatment. In particular we will focus
on presenting the link between the hedging approaches and certain BSDEs we would like to
solve by means of deep learning methods. Here we consider a single cashflow paid/received
at time 7', however the concepts we present can be extended to cover the case of streams of
cashflows of a contract over the time interval [0,T7], see [9] and in particular [36].

3 Mean-variance hedging

The mean-variance hedging approach corresponds to the following stochastic optimal control
problem
- N2
inf E [(VT—H) ‘]—"]
(&) eAmy
subject to (2.4),

(3.1)

where Ap,, denotes the set of admissible trading strategies for problem (3.1) (see Definition 3.1
below). In the following, we use the notation V™Y to stress the fact that the evolution of V is
considered in a mean-variance hedging contest. Following the approach of [30], the solution of
this problem can be linked to the following system of two BSDEs

AT LA
dL; = <|¢t\2Lt +2¢) Ay + = “) dt + AJ AW, + AJ ,dB;
P (3.2)
L; >0
and

-3
Xm=H

- AT mv v v
axm =4 ( [y — DL > dt + 0" AWy + 0y T dBy

where A = (A1, Ag) € L2 ([0, T); R™) and n™ = (pi™, n5™) € L2 ([0, T); R™ ). The set A’

in (3.1) is the set of admissible strategies defined as follows:

Definition 3.1. A trading strategy (£,) € A is admissible for the mean-variance hedging

problem (3.1), if it is self-financing and if the quantity Ly ar(X ' — XN/TI:XT) is uniformly
integrable for any sequence of F-stopping times 73, ' 0o as k — oo.

We state, in a more formal way, the link between the stochastic control problem (3.1) and
the system of BSDEs (3.2)-(3.3) via the following result, which closely follows [30, Proposition
3.3].

Proposition 3.1. If the BSDEs (3.2) and (3.3) admit unique solutions (L, A) € Lg°(€; C([0, T];R)) x
Lz ([0, TT; R™) and (X™, ™) € LE(; C([0,T];R™)) x L ([0,T]; R™¥9), then

) A ) 3
= ding(3) (o) ot P G-I H @) ) )




is the unique optimal control for the stochastic control problem (3.1), where V™Y s the solution

of the SDE (2.4) with & = £™.
Proof. See Appendix B. O

Notice that the two BSDEs need to be solved sequentially: first, one solves (3.2) which
provides the form of the processes Ag and L appearing in the right-hand side of (3.3).

The first BSDE (3.2) is called stochastic Riccati equation: this is a quadratic BSDE for which
existence and uniqueness of a solution are non-trivial to prove. For example, [30] provides an
existence and uniqueness result based on the work of [28] covering e.g. the Hull-White stochastic
volatility case, but his results do not cover, e.g., the Heston model that we consider in Section
7, because of the unboundedness of the coefficients. We shall discuss existence and uniqueness
for the particular BSRE we consider in Section 6.1. As shown in [30], the solution to the
stochastic Riccati equation characterizes a particular equivalent martingale measure, which is
the wvariance optimal martingale measure: this is the pricing measure implicit in the mean-
variance hedging approach. More specifically, for v € L]2F ([0, T];Rd)7 the author first defines
the exponential local martingale

t t t
M%t:exp{_/ ¢des—/ quBS—;/ (|¢s> + |vs?) ds}. (3.5)
0 0 0

If M, is a true martingale, one can introduce the parametrized family of measures dQ, =
M, rdP and the variance optimal martingale measure is the measure whose Girsanov kernel
for the Brownian motions B solves the following optimization problem

M”’T] 2 . (3.6)

min E
veL2([0,T];R) [ S9

The link between the variance optimal martingale measure and the stochastic Riccati equation
is presented in Theorem 4.1 in [30]: let v™ be the solution to the minimization problem (3.6),
so that Quy := Qumv is the variance optimal martingale measure. If the stochastic Riccati
equation (3.2) admits a solution, then

va —

A

- (3.7)

The interpration of the second BSDE is the following: X™Y represents the dynamics of
a portfolio in a fictiously extended financial market. The initial value of X™¥ provides the
contingent claim price in the mean-variance hedging approach, see Theorem 4.2 in [30] stating
that

X =% [A] 7]

4 Local risk minimisation

As mentioned above, self-financing trading strategies have constant cost equal to the initial
wealth Vy = y. To have a self-financing strategy hedging for a contingent claim means that
one can guarantee the payment of the claim at time 7' simply by investing the initial amount
Vo, whereas using a non-self-financing strategy carries the risk associated to the cost process



C. We introduce the risk process associated to a trading strategy (£,) via the following

Ri(€,0) = E [(OT _ ét)Q

]-"t} . (4.1)

In the approach proposed by [33], one aims at minimizing the risk process with respect to small
perturbations of the trading strategy (£,v). The concept of small perturbation requires the
introduction of several notations that we skip in the present treatment. We limit ourselves to
the following description: the idea is to introduce a measure for the increase of quadratic risk as
measured by a relative variation of the (4.1) over time partitions (see [36, Equation (1.3)]). Such
measure of the increase of quadratic risk over perturbations is employed in Definition 1.5 in [36]
to properly introduce the concept of local risk minimizing strategy. For our purposes, we will
rely on Theorem 1.6 in [36], suitably reformulated for the case of a single final payoff H. Such
result states the equivalence between local risk minimizing strategies as in the above mentioned
Definition 1.5 and strategies that reach the final payoff, while being mean-self-financing with
a cost process being a martingale strongly orthogonal to the martingale component of the
discounted asset pricess S.

Theorem 4.1 (Theorem 1.6 in [36]). The followings are equivalent:
1. (&,4) is local risk minimizing;

2. (&,v) is such that Vi = H, is mean-self-financing and the cost process (2.5) is strongly
orthogonal to the martingale component of S.

From now on, we will use the second item in the result above as definition of local risk
minimizing strategy. From [36, Proposition 5.2|, one has that the existence of a locally risk-
minimizing strategy (&, 4") is equivalent to the existence of the so-called Follmer-Schweizer
(FS) decomposition of the discounted payoff. To be self-contained we report the full proof as
it can be found in [36].

Theorem 4.2 (Proposition 5.2 in [36]). The discounted payoff H admits a local risk minimizing
strategy (€7, 9") if and only if H admits the representation

T
H=hy +/ ¢, dS; + Hr (4.2)
0

for some hg € LQFO(Q;R), ¢ € R™ satisfying Assumption 2.1 (1-2) and H a right-continuous,

square integrable martingale strongly orthogonal to the martingale component of S, such that
Ho = 0.

Proof. Given the decomposition (4.2) with H strongly orthogonal to the martingale component
of S, the strategy (&%, 4™) defined by

1
tr = Cta

t
V" = ho +/ (§ dSs +Hq,

0
with ¢ = VF — 2™ &"'Si has the following cost process

t t t
Cy =V — / enTdS, = ho + / ¢JdSs + My — / €TdS, = ho 4+ Hy.
0 0 0



Hence the cost process is a square integrable martingale strongly orthogonal to the martingale
component of S. We conclude that the strategy is mean self financing with V; = H, hence it
is local risk minimizing. Conversely, if the strategy (£'%,'") is local risk minimizing, then we
can write VT = H as

T T
=V = Crt / & Tag, = Gy + / &rT a8, + Cr — Co,
0 0

and we obtain (4.2) with

ho = Co,
(=¢r
H=C - Co,
with A strongly orthogonal to the martingale component of S. O

Equipped with the result above, the objective of identifying a local risk minimizing strategy
can be fulfilled by finding the Follmer-Schweizer decomposition (4.2). To achieve this, two al-
ternative approaches can be found in the literature. On the one side, since we are working in the
setting of continuous semimartingales, the Follmer-Schweizer decomposition can be obtained
from the Galtchouk-Kunita-Watanabe decomposition under the minimal martingale measure.
Here we follow an alternative route by introducing a linear BSDE that we proceed to solve at
a later step by means of deep learning methods. The result in full generality is provided by
[13, Proposition 1.1], here we follow the analog arguments as in [1].

It is clear that S is a special semimartingale. We introduce a BSDE with terminal condition
H and a driver f that we determine in the sequel:

T
S / T, / PETaB, + / F(s, Xoontt o, )ds. (4.3)
t t

Let (X', ') € L&(Q;C([0,T|;R™)) x L2 ([0, T); R™*4) be its solution with o' := (n,n¥).

We assume that the driver f can be chosen such that
t R t t ~
/ g;rdSS = / nirsTdWS - / f(st;rvnllr,s’ng,s)dS‘
0 0
However, from the dynamics (2.2) of S it is clear that
t ~ ¢ ~ ¢ ~
/ ¢, dS, = / ¢) diag(Ss)osdW + / &) diag(Ss) (s — rs1)ds.
0 0 0

Since S is a special semimartingale, the decomposition above is unique, meaning that

= diag(Si)o/ &, (4.4)

Ir, T — Ir, T
FXE e nsy) = =y o e —rel) = —n)y o (4.5)

To summarize the discussion, we have the following:



Proposition 4.3. The Follmer-Schweizer decomposition of H is given by
gl DT G -1 o
=X+ [ o) (diag(S)e,) S+ [ B, (4.6)
0 0
where (X, n) € L2(Q; C([0,T];R™)) x L& ([0, T); R™*4) s the unique solution to the linear

BSDE .
X =H- / mlaw, — / 1y, dB, — / e dsds. (4.7)
t

Remark 4.1. 1. Equations (4.6) and (4.7) correspond, respectively, to equations (1.17) and
(1.18) in [13];

2. We stress that the decomposition is computed under the physical measure P.

We conclude the treatment of local risk minimization with the following corollary.

Proposition 4.4. Under the preceeding assumptions, the optimal hedging portfolio process Xl
admits the following representation

Xl — g [H ‘ ]-"t] , (4.8)

where the minimal martingale measure is defined be the following Radon-Nikodym derivative

d@lr
dP

— ¢ Jo L AWe—3 [5 8] dsds (4.9)

Proof. The result follows from the representation of the value process of the linear BSDE (4.7)
as a conditional expectation. O

Remark 4.2. Tt is interesting to compare the pricing approach implicit in the two techniques we
are considering: local risk minimization and mean-variance hedging imply two different choices
for the pricing measure. In the mean-variance hedging approach we see that both the Brownian
motions W and B are transformed by the Girsanov change of measure which depends on the
solution of the stochastic Riccati equation because of (3.7). In the local risk minimization
approach only the Brownian motion W is transformed: the only requirement on the measure
is that S is a martingale, hence the name minimal martingale measure.

5 Deep quadratic hedging

In this section we first provide a self-contained presentation of the deep BSDE solver proposed
by [12] as it is relevant to our setting. After that, we show how to apply the solver in the
context of mean-variance hedging and local risk minimization.

5.1 The deep BSDE solver

To introduce the solver, we will start from a general Forward-Backward stochastic differential
equation (FBSDE). Let (€2, F,P) be a probability space rich enough to support an R?-valued
Brownian motion W = (Wi)ejo,r)- Let F = (F)ico,r) be the filtration generated by W,
assumed to satisfy the standard assumptions. Let us consider an FBSDE in the following
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general form:
¢ ¢
Xy==x —i—/ b(s, Xs)ds +/ a(s, Xs)dWs, x € R (5.1)
0 0
T T
YV =9(&r) +/ h(s, Xs, Vs, Zs)ds —/ Zldw,, telo,T], (5.2)
¢ t

where the vector fields b : [0,T] xRY - R%, a : [0,T]xR? — R h:[0,T] xRIxRxR? - R
and v : R? — R satisfy suitable assumptions ensuring existence and uniqueness results.
The FBSDE we consider is intimately linked with the following stochastic control problem:

minimise E |[3(Xp) =Y 2 5.3
Y, Z2=(2¢t)¢el0,1) [| (%r) 4 } (5:3)
X, =x+ fg b(s,Xs)ds + fg a (s, Xs) dWs,

5.4
Vi =y — fih(s, X, Vs, Z6)ds + [T ZT AW, t€[0,T). (5.4)

subject to {

More precisely, a solution (Y, Z) to (5.2) is a minimiser of the problem (5.3).

The idea of the deep BSDE solver is to numerically solve a discretized version of the optimal
control problem (5.3)—(5.4). For N € N, we introduce a time discretization 0 =ty < t; < ... <
ty = T. Without loss of generality, we consider a uniform mesh with step At such that
t, =nAt, n =0,...,N, and denote AW,, =W, ., — W;, . We consider an Euler-Maruyama

n+1
discretization of the system (5.3)-(5.4), i.e.
X1 = Xy + b(tn, Xn) At + aty, Xn) AWy, Xo =, (5.5)
Va1 = Vu = htn, X, Y, Zu) At + 2, AW, Yo=1y. (5.6)

The deep BSDE solver consists in approximating, at each time step n, the control process Z,
in (5.6) by means of an artificial neural network (ANN), namely by a function N2 : R — R?
of the form N7 (z) = L} opo L} ;o...0 00 L}(x), where all L7, for all j =1,...,¢ and
n=1,...,N — 1, are affine transformations and p, called activation function, is a univariate
function that is applied component-wise to vectors. Equation (5.6) then becomes

j)\n—',—l :j)\n_h’(tnayn’j;n"/\[nzz)At+'/\/’77,Z,TAW717 5)\0 :y (57)

Since we are approximating the control process Z,, at each time step n, we need in practice a
family (N;Z )7]:[:_11 of ANNs.
By denoting with P((N;Z)N71) the set of all the parameters, i.e. weights and biases, of the

ANNSs family, the stochastic control problem (5.3) reduces then to

_ —~ |2
minimise E Uz?(XN) —yN‘ ] (5.8)
yvp((-/\/nZ)N_ll

n=

By stochastic gradient descent, the deep BSDE solver trains the ANNs and finds the optimal
initial value 7 and the set of parameters P((N? )ff;ll) characterizing the optimal family of

networks (NZ)N-1.

5.2 Details on the parametrization of the solver

In this section we link the setup of the deep BSDE solver with the market model from Section
2.1. With respect to the general presentation of the solver, we set ¢ = m + d and W =
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(W,B)"T € R%. Concerning the forward SDE (5.1), the coefficients appearing in the dynamics
of the risky assets are F-measurable, meaning that they will depend in general on both the
Brownian motions W1, ..., W™ and B!,..., B¢ To capture this, we introduce an additional
R?-dimensional risk factor process Y = (Yt)te[O,T] following the dynamics

dY; = (¢, Yz)dt + T'(¢, Yy)dW, Yo = yo, (5.9)

with v : [0, 7] x RY — R% and I : [0, T] x RY — R4 of the form I' = (T, T'B) for TW Rd*m.
valued and T'B R%*?_valued. Moreover, the coefficients 7, u* and 0™/ in (2.2) are assumed to
be sufficiently regular functions of Y, for ¢,5 = 1,...,m. We omit such dependence to ease the
notation.

The forward process X in (5.1) collects then both the m risky assets St ..., S™ in its first
m components, and, additionally, the factor process Y, so that X = (51, L 8myt ,Yd)T.
From equations (2.2) and (5.9), the precise form of the vector fields in (5.1) is the following:
for the diffusion matrix we set

_ (diag(S;)oy 0
a(t, ;) = <I‘W(t,Yt) FB(t,Yt)>

where 0 € R™*? is a matrix of 0’s, and, similarly, for the drift term we set

b(t, ;) = (diag(%()tf’;jt)_ rt]l)) .

We assume the newly introduced coefficients v and I" to be sufficiently regular so that the SDE
satisfied by X admits a unique strong solution.

The corresponding to the backward process ) in (5.2) is given, case by case, by the BSDE
that the quadratic hedging approach selected require to solve. We shall be more precise about
this in the next two paragraphs.

5.2.1 Deep mean-variance hedging

As illustrated in Section 3, there are two BSDEs we need to solve in the mean-variance hedging
case. As a first step we discretize (3.2), which is the stochastic Riccati equation parametrizing
the variance optimal martingale measure. We get

— — - A A =T
Lpy1 =L, + <]¢n|2Ln + 26, Ay + lznl> At + A, AW, forn=0,...,N —1,
Z0 =YL,

where ¢, = ¢¢,. Next, in order to apply the solver, we assume that, for each time step n,
X (KIH,K;n) is parametrized by an ANN NV of the form

A Nlj}n
Nn — < Nj/}n bl

12



with J\/'lAn :R?+— R™ and N2An : R? — R? The discretized BSDE takes then the form

. . R - A % V) AFA (T _
Los1 = Lo+ (\énPLn 26T N, () + LX) Nm(’““) At+ (NMNXR) " AW,

Ly
forn=0,...,N —1,
LD =YL,
(5.10)
where X', is the discretized forward process (5.5). As a consequence of the previous approxima-
tions, taking into account the terminal condition of the stochastic Riccati BSDE, the stochastic

control problem (5.3) involves a minimization over the initial value y7, and the set of parameters
of the ANNs that we denote by P((N2)N-1). We then need to solve

~ |2
minimise  E Ul - LN‘ ] . (5.11)
v PN

We denote by g7, and (/\7,?)2[:_11 the numerical solution of the above minimization problem
obtained via the application of the deep solver. Substituting in equation (5.10) we also get the
values of the process L, forn=1,...,N.

Equipped with such numerical solution, we focus now on the portfolio dynamics in the
fictiously extended financial market (3.3). Once again, we perform an Euler-Maruyama dis-
cretization, meaning that we consider

—~mv ——mv KT Y v
X1 =X, + (cbln‘f% — 2’21’2*") AL+ TAW,,  forn=0,...,N —1,

~-mv
Xo =yx"

where 72V T = (ﬁrlr?;’T,ﬁgZ’T). Next, we introduce a second family of ANNs N : R? — RY

of the form
N,r]mv _ M]ng 7
n /\G]

v

with Nfzv : R? — R™ and /\gzv : R? — R? depending on the set of parameters, namely

)

weights and biases, that we denote by P((Nﬁmv)ggf). Such networks allow us to introduce the
following approximation:

AN AN mv —— AA X, T nrrlv X, mv — T
TILn—IYl = X0 4 < I-/V?,n (Xn) _ (Nzn(Xn))Z N, (Xn)> At + (-/V:Z (Xn)> AW,

n

forn=0,...,N—1,
X(I)TIV — yAl')I(lv’

~ ~ (5.12)
where /\/'QAH and L, are results of the first optimization problem (5.11), for n =0,..., N — 1.
The associated stochastic control problem (5.3) involves a minimization over the initial value

y%¥ and the networks’ parameters P((NV;) )N1):
minimise ~ E DI:I — )?ﬁv

RPN N5

1 . (5.13)
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We denote by 7%V and (N ) | the numerical solution of the above minimization problem
obtained with a second apphcatlon of the deep solver. From equation (5.12) we also get the
values of the process X}“{“’, form=1,...,N.

The approximated optimal trading strategy and the corresponding value process can then
be recursively computed starting from equation (2.4) and (3.4) as follows:

(‘//\bmv — g//\I)I(IV
_ A 53 ~ ~ mV ——
v _ diag(S,)"! ( H’ [(bn Ai)] (Xmv — Uy 4 (o) TN (Xn)>

(o
= X™ — diag(S,)&m

= Vv {0 [l — ) €08, AL+ 3 €0V, >t ol AW,
forn=0,...,N —1.

5.2.2 Deep local risk minimization

To approximation of local risk minimizing strategies by means of the deep solver poses less
challenges with respect to the mean-variance hedging approach. In fact, thanks to Proposition
4.3, we know that to find the Féllmer-Schweizer decomposition we need to solve the linear
BSDE (4.7). This, in discretized form, reads like

{XLH X AT G A+ AW, forn=0,...,N — 1, (5.14)

XO - yX7

where 70| = (ﬁlr’T ﬁlr’T). We introduce a family of ANNs /\/}?lr ‘RI— R, n=0,...,N—1,

1In 2 '2n
Ir
,,,)lr ./\Gnn
NTL - Ir
N,

Ir Ir
with ./\/'177 n - R?7+— R™ and Nan : R? — RY. Such networks allow us to introduce the following
approximation

of the form

~ ~ Ir — T Ir — T
R = Ry (J\/ﬂn(xn)) dn At + (N;Z (Xn)> AW,, forn=0,...,N—1,
Xo = ?JX

(5.15)

The associated stochastic control problem (5.3) involves a minimization over the initial value
Ir
y% and the set of parameters of the ANNs that we denote by P((Ny] )N 1):

n=1

] . (5.16)

minimise |:

P (s

We denote by 7% and (N a ) ! the numerical solution of the above minimization problem

obtained with the deep solver. From equation (5.15) we also get the values of the process X,lf ,
forn=1,...,N.
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The approximated optimal trading strategy can then be computed from (4.4):

@nr = (diag(gn)o-n)ilﬁln,z (yn) )
i = X — diag(S,)El (5.17)
forn=0,...,N —1.

6 The multidimensional Heston model

We shall introduce a multidimensional Heston model that we want to use as the market model
[23]. Following the notation of Section 2, we set m = d, so that S, W and B are m-dimensional
stochastic processes.

Let A = (Aij)?szl be a m x m matrix of coefficients, and let x = (k1,...,6m)", 0 =
(01,...,0m)", 0 = (01,...,0m)" and p = (p1,...,pm)" be m-dimensional vectors of coeffi-
cients with —1 < p; <1 foreachi=1,...,m. We set

pe = Adiag(YP)i+ 7 Y71,

6.1
re = FTYtZ (6.1)

for some fi,7 € R™. We then consider the following system of SDEs

dsi = 5 (Zj:l Aij Y7 pgdt + Zj:l AintJthJ> J
dY2 = k; (92- - Yf’i) dt + o;Yy (pithi +4/1- pgng) :

where Y7 = /Y27, This representation shows that S = (5’1, ...,5™ T is obtained by com-
bining, by means of the matrix A, all the components of Y2 = (Y21 ..., Y?™)T and of
W= W?'...,W™T. We can also rewrite equation (6.2) in matrix form as

{dS’t = diag(S;) ((Adiag(V?)n) dt + Adiag (Y;) dW3) , (6.3)

dY? = diag(r) (6 — Y;?) dt + diag(o)diag (Y7) (diag(p)th + diag(+/1 — p2)dBt> ,

where diag(y/1 — p?) denotes the diagonal matrix with diagonal elements /1 — p?, for i =
1,...,m.
Remark 6.1. 1. The drift of the S-dynamics in equation (6.3) is a generalization of the

Heston model for the specifications in (6.1), where Adiag(Y;?)ii = p¢ — r¢1, for g and 7
as in equation (6.1). For m = 1 we indeed retrieve a one-dimensional Heston model

{dgt = St (/LY?dt + Y;tth) (6 4)

V2 =k (0= Y2) dt + oYy (pdWi + /T = p2dB;)

with i = iy = pand A = A1 = 1, where p, 5,60, 0 > 0 are real constants with —1 < p <1
and 2k0 > o?. In particular, the model (6.4) was proposed by [7] as a modification of
the classical Heston model [23]: since they work under a zero interest rate assumption,
the market price of risk is then proportional to Y.

2. We notice that the vector process Y2 in (6.3) is a superposition of Heston-type variances,
namely of CIR processes. We then require the Feller condition to hold component-wise,
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namely we assume that
2/@97;>ai2 fori=1,...,m,

in order to guarantee (strict) positivity for all the components of Y 2.

3. We also notice that, if A is a diagonal matrix, then S becomes a superposition of mutually
independent Heston models of the form of (6.4).

Observe that for the multidimensional Heston model (6.3), according with the notation in
Section 5.2, the forward process X is of the form X = (S,Y?) with coefficients

(G yey _ ( dias(S,)Adiag (V) 0
(8 (5. Y)) = (diag(a)diag (Y:) diag(p) diag(o)diag (V) diag(/1 — p2)>

where () € R™*™ is a matrix of 0’s, and

b, Gy = (Ve )

Similarly for the one-dimensional case (6.4).

6.1 Existence and uniqueness results for the BSRE

The aim of the present section is to prove existence and uniqueness for the stochastic Riccati
equation in the case of the multi-dimensional Heston model. We will adapt to our setting the
approach of [37]. Let us first notice that, thanks to the assumption (6.1) on the coefficient and
diffusion coefficients, straightforward computations show that the market price of risk takes
the form

O = Ufl(ut — 1) = diag (Y}) fa.

Let us also notice that we have ¢, ¢; = ji' diag (Y;Q) i = i>TY? where i? denotes a vector
where each component is of the form ﬂ?, j=1,...,m. As a first step, following [37], we obtain

a closed-form solution for a solution to the BSRE, which we generalize to the multi-dimensional
case.

Lemma 6.1. Under assumption (6.1), a solution to the stochastic Riccati equation (3.2) is
given by

Ly = exp {p(t, T) + ¥(t, T) TV}, (6.5)

where p, ¥ satisfy the following system of Riccati ODEs:

00 (1, T) ding (5)0 = 0, A(T,T) =0,
o’ T 5 1 T 5 2 1 2T
5 — VT diag (k) + S9(t,T) " diag (0°) diag ((t, 7)) — > (6.6)

— 2(t,T)" diag (o) diag (p) diag (1)
—(t,T)" diag (o?) diag (p*) diag (¥(¢,T)) =0, %(T,T) =0.
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Proof. We apply the Itd formula to (6.5) and write

OL;  OLi .., 1 9%L

_ Y94 i - 2 2
AL = T + oyadVe + 5 5aapd (Y2 Y?),
T
_ (f;j %@Y) Ludt + Lip(t, )T (ding() (6 - V) dt

+diag(o)diag (Y7) (diag(p)th + diag(/1 — pz)dBt))

+ %L,ﬂ/}(t, T) " diag (0?) diag (Y;?) 1(t, T)dt

=0

.
=L, @f + 1t T)Tdiag(f@)H) dt + Ly <%Z’t —4(t,T) " diag(k)

1
+5 L (t, T)" diag (o?) diag (¢(t, T))) Y2t + Af, dW; + Aj,dB;,

where we defined

Al = 0(t,T)  diag (o) diag (Y;) diag (p) L,

A;t = (t,T) " diag (o) diag (Y;) diag (\/ 1- p2) L.
Concentrating on the drift term, we observe that

T
L (%ﬁ — (¢, T) " diag(r)

AItAl,t
Ly

%Ltw(t, T)" diag (o) diag (¢ (¢, T))) Y2 £ ¢ deLe 20 Ayy £

T
Al,tAl,t
L,

= ¢, eLy + 20 Ay y +

due to (6.6), hence the proof is complete. O

Remark 6.2. It is immediate to observe that we can write the vector Riccati ODE in (6.6) as
a vector of scalar Riccati ODEs that can be solved independently of each other, namely

9

1 ) .
% Vi(t,T)k; + 5#}?(@ T)os — if — 20;(t, T)ojpjfi; — 5 (t, T)os p; =0, (6.8)

meaning that one can resort to a standard existence and uniqueness result for the scalar case.

In the next step, we state a standard result on existence and uniqueness on the Riccati
system (6.8).

Lemma 6.2. Let us assume that p]2~ < % for all j = 1,...,m. Then, there exists a unique
solution 1;(-,T) to the Riccati ODE (6.8) with supg<;< [1;(t,T)| < co. Moreover ;(t,T) <0
for all t € [0,T].

Proof. The result follows from e.g. Lemma 10.12 in [14]| by setting, in his notation, A =
2

o; (% — p?), B = —(kj +2p05p5), C = /]JQ., and by applying the change of variable ¢t — T —¢.

The condition A > 0 holds true if and only if p? < % We also need to check C? > 0, but
this is trivially true. Finally we need to check that B? 4+ 4AC € C\ R_, which is also trivially
satisfied. ]
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We can now prove uniqueness by adapting to our setting the approach of [37].

Proposition 6.3. The triple (L,A1,A2) as provided in (6.5), (6.6) and (6.7) is the unique
solution to the BSRE (3.2).

Proof. Define .Z := log L and Z; := %, i € {1,2}. An application of the It6 formula shows
that

1
4% = <|¢>t!2 +20{ Z1s + 5 21

1
2_ 2|Zu|2) dt + Z| ,dW, + Z; ,dB,.
Let us introduce the measure P defined via

T T
::exp{—Q/ \¢t]2dt—2/ ¢Zth},
0 0
T

which is a true martingale thanks to a component-wise application of Theorem 2.1 in [32].
Under P, .Z has dynamics

1 1 - -
dZ = <|¢)zt|2 + §|Zl,t|2 - 2|22,t|2) dt + 2] dW; + Z5,dB;.
We introduce then a second measure change defined via

1 (T T R T R
= exp {—2 / | Z,|2dt — / Zthth + / Z;:tdBt} ,
Fr 0 0 0

which is a true martingale due to the boundedness of ¥; j = 1,...,m, allowing us to apply
Corollary Al in [37]. The dynamics of .Z under P are given by

P
oP

1 1 . .
dZ = <|¢>t|2 + i\Zu\Z - §|Zz,t|2 — | Z14> + ’Z2,t’2) dt + 2], dW; + Z5 ,dB;.

We now proceed by contradiction. Assume there are two solutions (£, Z) and (.¢’, Z’), define
(AZ,AZ)= (¥ -, Z—Z"). Under the measure P we have

1 1 ; .
dAY, = <—2yAZLt12 - 2\AZQ¢\2) dt + AZ|, dW, + AZ;,dB,,

which is a quadratic BSDE for which there exists a unique solution thanks to the results of
[28]. Such solution is given by (0,0) with 0 € R¥™. This implies .¥ = %', Z; = Z} and
Zo = Z4 which is a contradiction, hence the solution to the BSRE is unique. [

7 Numerical experiments

We present here the numerical results for mean-variance hedging and local risk minimization
under the multidimensional Heston model in Section 6, by means of the deep BSDE solver in
Section 5.1. The code for our experiments is available at https://github.com/silvialava/
Deep_quadratic_hedging.git.

Given a portfolio of m > 1 risky assets, for a strike price K and a terminal time 7', we aim
at hedging and pricing a European type call option, whose payoff function g : R* — R is of
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the form

m
g(x) := max (Zwl —mkK, O> for x € R with = = (z1,.. @),

i=1

so that the discounted contingent claim H becomes

H = e Jo 745 ax (Z Sh—mK, O) . (7.1)

i=1

In the one-dimensional case (6.4), semi-explicit solutions can be computed by following 7]
for the mean-variance hedging and [22] for the local risk minimization. We briefly present the
two approaches in Appendix A as we shall use them as benchmarks for the deep BSDE solver.
Both [7] and [22] rely on a two-dimensional partial differential equation (PDE) which we solve
by adapting |25], see Appendix C for details. These allow us to compare the entire contingent
claim price path, as well as the trading strategies paths in [0, 7.

For higher values of m (indicatively m > 2), however, solving these PDEs is not numerically
feasible. To test the accuracy of the deep BSDE solver one can alternatively perform a change
of measure as illustrated, respectively, in (3.5) and (4.9), and estimate the contingent claim
price via Monte Carlo simulations under the variance optimal martingale measure and the
minimal martingale measure, respectively.

However, from equations (3.5) and (3.7), we observe that the Radon-Nikodym derivative
for the change of measure from P to the optimal martingale measure Qpn, depends on the
solution of the stochastic Riccati equation (3.2), hence it depends on the optimal solution that
is found with the deep solver, see Section 5.2.1. Using this approximated density for Monte
Carlo simulations under Q,, would then lead to biased results.

To overcome this issue, we shall consider for all the experiments a model where the matrix
A is diagonal. As pointed out in Remark 6.1, this leads to an S being the superposition of
mutually independent Heston models. We then apply component-wise to the vector processes
S and Y2 the change of measure proposed by [7, Section 4| for the one-dimensional Heston
model and presented in equation (A.6), and we run the Monte Carlo routine by simulating S
and Y? directly under the variance optimal martingale measure Q..

On the other hand, for the minimal martingale measure Qy;, the Radon-Nikodym derivative
(4.9) only depends on the market price of risk ¢. Then either we simulate under P and multiply
by the density process (4.9), or we simulate directly under Qj, by performing the corresponding
change of measure, namely

AWl = dW; + ¢pdt

: 7.2
dBF = dB; (7.2)

which, in the multi-dimensional Heston model (6.3), leads to

dS, = diag(S;) A diag (Y;) AW},
dYy? = diag(x) (6 — Y;?) dt — diag(o)diag (Y7) diag(p)¢rdt (7.3)
+diag(o)diag (Y7) (diag(p)dI/thr + diag(y/1 — p2)dB%r> .

Without loss of generality, for all the experiments we set 7 = 0 in equation (6.1), so that
the risk-free interest rate is r, = 0 for each t > 0.
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Model configuration Deep solver configuration

m 1,5,20,100 N 10, 50, 100
A diag(1) Number of layers 4
7 0.1-1 Number of nodes 2m + 20
K 0.5-1 Activation function ReLU
0 0.05-1 Total iterations 8000
o 0.1-1 Partial iterations 4000
p —-0.45-1 Initial learning rate 5-1072
So 100.0 - 1 Second learning rate 5-1073
Y 0.025 -1 yy, initial range [0.5,2.0]
K 100.0 yx initial range MC -[0.95, 1.05]
T 1.0 Batch size 128

Table 1: Model configuration and deep solver configuration for the numerical experiments.

7.1 Setup

We conduct several numerical experiments on the multivariate Heston model to test the per-
formances of the deep BSDE solver for quadratic hedging: both model and solver configuration
details are in Table 1, where 1 € R" denotes a vector of 1’s.

In particular, we consider four different portfolio dimensions, respectively m = 1,5, 20, 100.
As we already mentioned above, the matrix A is taken to be diagonal: this allows us to
simulate under the variance optimal martingale measure by performing for each risky asset a
uni-dimensional change of measure as in (A.6). Moreover, we consider all the model parameters
to be constant vectors, so that also the one-dimensional case fits smoothly into the setting. We
fix the strike price to K = 100.0 and the terminal time is T' = 1.0

We consider three different discretization grids, respectively N = 10, N = 50 and N = 100,
which means we have N = 10, 50, 100 neural networks that must be trained. Each of them is
built with 4 inner layers, where each layer has a number of nodes depending on the portfolio
dimension, namely 2m + 20, and with the rectified linear unit (ReLU) as activation function.
For the training of the neural networks, we set to 8000 the total number of stochastic gradient
descent iterations with initial learning rate equal to 5 - 1072. After 4000 iterations (Partial
iteration), the learning rate is reduced to 5- 1073 to improve the convergence of the method.

Finally, we need to define an initial guess for y; and y%%" for the deep mean-variance
hedging, see Section 5.2.1, and an initial guess for y} for the deep local risk minimization, see
Section 5.2.2. Since we know that 0 < L < 1, we set the range for yz, to [0.5,2.0], while for
yx we consider, respectively, the 95% and the 105% of the corresponding Monte Carlo price
simulation (MC).

We stress the fact that both model and solver configurations are kept constant in all the
experiments, unless explicitly stated. This allows to compare the performance of the BSDE
solver consistently. However, we point out that one can aim at improving even further our
numerical results by tuning the hyper-parameters of the deep solver in a tailor-made manner
for each single experiment.

7.2 Deep mean-variance hedging results

The numerical results for the deep mean-variance hedging approach are presented in Table 2,
and in Figure 1 we show the evolution of the logarithmic loss as a function of the deep solver
iterations. Here the black curves represent the log-loss for the first BSDE and follow the black

20



grid on the left-hand side. The red curves represent the log-loss for the second BSDE and
follow the red grid on the right-hand side.

For each portfolio dimension considered, we compute the Monte Carlo (MC) price by simu-
lating 10° samples with 100 points of time discretization under the variance optimal martingale
measure as presented in equation (A.6). Moreover, we compute the initial value of the oppor-
tunity process L (L value in the table) by means of formula (A.1) together with equations
(A.2) and (A.3). For t = 0, Lo is indeed purely deterministic and, in the one-dimensional
case, the value given by (A.1) can be considered the exact value for the opportunity process.
In the multidimensional case, since the vector Y? is a superposition of mutually independent
processes, we can compute the value of L as the products of the m values that one would get
if computing L for each uni-dimensional component. In other words, we consider

Lo = [Texp (xo () +x:(07").
i=1

where each x} and x! is computed as in equations (A.2) and (A.3), fori = 1,...,m.

We then train and run the BSDE solver for solving recursively the two BSDEs as in Section
5.2.1, obtaining, respectively, an estimate of the initial value of the opportunity process (BSDE
solver L value) and an estimate of the call option price (BSDE solver price). For both of them,
we report the training time and the relative error, which is computed in the standard way
starting from the previously simulated L value and MC price. For the portfolio in dimension
1, we also compute the option price with the Cerny and Kallsen approach in |7] (see Section
A.1) and the corresponding relative error.

From Table 2 we observe that in all the experiments (except for the two corresponding to
m = 100 with N = 50 and N = 100 which we shall comment later) the accuracy for the process
L is in the third or forth decimal, and the error for the option price is always below 1%. These
results are confirmed by the evolution of the logarithmic loss in Figure 1. We observe indeed
that the BSDE solver losses for the first equation (black curves) are in average of the order
of 1072°. Different picture appears for the BSDE solver losses for the second equation (red
curves) where we observe values of positive order. However, one needs to take into account
that the loss is computed in the form of absolute value, and not as a relative value. For the
first BSDE, the value of L to be found is between 0 and 1, but for the second BSDE the value
of X to be found is of the order of 10? (since we take Sy = K = 100) and is expected to grow
with the dimension of the problem (because of the contingent claim definition (7.1)). For these
reasons, we observe the log-loss increasing with m and, most importantly, not converging to 0
as one may expect.

Exception is made for the two experiments with portfolio dimension m = 100 and time
grid N =50 and N = 100. Here the relative error for the option price is between 1% and 2%.
Remember that in the mean-variance hedging the second BSDE depends on the solution of the
first BSDE. In these two cases, the solver is failing to solve the first BDSE as we can notice
from the values obtained for L (BSDE solver L value) which exhibit a significant discrepancy
with respect to the true solution. Quite surprisingly, the error for the second BSDE is still
relatively low (below 2%).

By observing the log-loss behavior in these two cases, we see that the solver does not
converge for the first BSDE. We then rerun the experiments by decreasing the initial learning
rate to 1- 1073 and the second learning rate to 5 - 1074, The results are in Figure 2. We see
that the new results are in line with all the rest, and the log-loss is now converging as expected.

For the portfolio of dimension 1, we also compute the call option price and hedging strategies
evolution, namely units of cash account and shares of risky asset, both with the BSDE approach
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and with the approach in [7]. We report them in Figure 3, 4 and 5, respectively for N = 10,
N =50 and N = 100. We observe that not only the solver is capturing the option price path,
but also provides good approximated hedging strategies.

To have a clearer picture of the solver performance when the number of time steps is
increased, we report in Figure 10 the Mean Squared Error (MSE) as a function of time for the
option price, for the units of cash account and for the shares of risky asset in dimension one.
For the option price, we observe that the MSE is increasing with time. However, we also see
a clear improvement when increasing the number of time steps, IN. This means that, despite
the error is accumulating over time, one can still control it by decreasing the mesh size in the
time discretization.

We do not observe the same clear behavior for the units of cash account and the shares
of risky asset. However, we point out that, while the optimization is done to approximate
the BSDE, hence to approximate the option price process, the strategies are in some sense a
by-product of such optimization. So the fact that the MSE in these two cases is not monotone
is to be expected. For these reasons, we also report as a dashed line the mean over time of the
MSE. Here we observe that the mean of MSE decreases from N = 10 to N = 50, while the
line corresponding to N = 100 is not visible because overlapping with the N = 50 one. For
the sake of completeness, we report here their values: for the units of cash accounts, the mean
MSE for N = 50 is 5.33 - 10~ and the mean MSE for N = 100 is 6.73 - 10~%; for the shares
of risky asset, the mean MSE for N = 50 is 4.92 - 10~* and the mean MSE for N = 100 is
6.44 -10~%. Hence it gets slightly worse for N = 100. We point out that when N increases one
has a higher number of ANNs to train, so that the same number of iterations used for lower
values of N may be not sufficient to guarantee an improvement of the results.

7.3 Deep local risk minimization results

The numerical results for the deep local risk minimization are presented in Table 3, and in
Figure 6 we show the evolution of the logarithmic loss as a function of the deep solver iterations.

As before, for each portfolio dimension we compute the Monte Carlo (MC) price by simulat-
ing 10° samples with 100 points of time discretization under the minimal martingale measure
as presented in (7.3). We then train and run the solver for solving the BSDE as in Section 5.2.2,
obtaining an estimate of the call option price (BSDE solver price). We report the training time
and the relative error, which is computed in the standard way starting from the previously
simulated MC price. For the portfolio in dimension 1, we also compute the option price with
the Heath, Platen and Schweizer approach presented in Section A.2 and the corresponding
relative error.

From Table 3 we observe that in all the experiments the error for the option price is below
1.5%, and in particular below 1% for N = 50 and N = 100. Clear convergence is also confirmed
by the evolution of the logarithmic loss in Figure 6.

For the portfolio of dimension 1, we compute the call option price and hedging strategies
evolution, namely units of cash account and shares of risky asset, both with the BSDE approach
and with the Heath, Platen and Schweizer approach. We report them in Figure 7, 8 and 9,
respectively for N = 10, N = 50 and N = 100. We observe that the solver is capturing well
the paths of the option price, of the units and of the shares.

A more complete picture is given by the MSE in Figure 10. Here we indeed observe that
for the option price the MSE accumulates over time, but is clearly decreasing with the number
of time steps, IV, hence the error can be controlled by decreasing the mesh size in the time
discretization. Less clear is the situation for the units of cash account and the shares of risky
asset. However, the dashed lines representing the mean over time of the MSE show that also
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Mean-variance hedging

Portfolio dimension: 1 MC price: 6.837
L value: 0.99984
Time steps 10 50 100

BSDE solver L value 0.99969 0.99970  0.99969

Relative error (%) 0.01476 0.01434  0.01493

1st training time (s) 82 576 1048
7777777 BSDE solver price  6.830 6.854  6.838

Relative error (%) 0.105 0.246 0.0250

2nd training time (s) 1015 3270 5785

PDE price 6.853 6.853 6.853
Relative error (%) 0.245 0.233 0.232

Portfolio dimension: 5 MC price: 15.298
L value: 0.99848
Time steps 10 50 100

BSDE solver L value 0.99848 0.99848  0.99848

Relative error (%) 0.00028 0.00040  0.00019

1st training time (s) 384 2360 3830
7777777 BSDE solver price 15.329 15.363  15.383

Relative error (%) 0.201  0.422 0.554

2nd training time (s) 1702 6065 10345

Portfolio dimension: 20 MC price: 30.560
L value: 0.99393
Time steps 10 50 100

BSDE solver L value 0.99401 0.99396  0.99394

Relative error (%) 0.00797 0.00335  0.00140

1st training time (s) 1396 9547 5763
7777777 BSDE solver price 30.612 30.788  30.800

Relative error (%) 0.171  0.748 0.786

2nd training time (s) 7704 13843 28510

Portfolio dimension: 100 MC price: 68.831
L value: 0.97002
Time steps 10 50 100

BSDE solver L value 0.97044 0.12426  0.27013

Relative error (%) 0.02936 87.19 72.15

1st training time (s) 1757 9860 20917
7777777 BSDE solver price 68.168 69.720 67.602

Relative error (%) 0.964 1.291 1.706

2nd training time (s) 4516 21843 40253

Table 2: Mean-variance hedging results for different portfolio dimensions and different number
of total time steps in the discretization grid. For each configuration, we compute the Monte
Carlo (MC) price by simulating 105 samples under the variance optimal martingale measure,
and we use it to compute the relative error in the classical way. For the portfolio with only one
risky asset, we report the price obtained with the benchmark approach via PDE presented in
Appendix A.1.
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Mean-variance hedging
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Figure 1: Logarithm of the loss functional as a function of the iteration number for the different
experiment configurations presented in Table 2. The black curves represent the log-loss for the
first BSDE and follow the black grid on the left-hand side. The red curves represent the log-loss
for the second BSDE and follow the red grid on the right-hand side.
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Figure 2: Mean-variance hedging results with portfolio dimension m = 100, when we reduce
the learning rates values and improve the experiments in Table 2 and Figure 1.

in these two cases the MSE improves from N = 10 to N = 50, but gets slightly worse for
N = 100. Again, this may be due to an insufficient training of the ANNs for high values of V.

8 Conclusions

In the present paper, we have shown how it is possible to implement quadratic hedging ap-
proaches in a high dimensional setting. Our strategy involves the formulation of local risk
minimization and mean-variance hedging by means, respectively, of BSDEs or systems of BS-
DEs in high dimension, that we solve by means of the deep BSDE solver of [12]. We test the
proposed methodology on Heston’s stochastic volatility model. For the one-dimensional setting,
we validate our algorithms against known analytical approaches showing that we can reach a
high level of precision. Our approach allows us to hedge contingent claims in the presence of a
high number of risk factors, a setting where traditional techniques are not feasible.

There are different directions for future work. On the one side, it could be interesting to
consider counterparty credit risk problems along the lines of 18], who consider only a complete
market setting. Recently, the deep solver we use has been extended to the case with jumps
in [31], hence a natural idea would be to investigate whether the technique we propose could
be employed in a jump-diffusion setting. Since in [17] the stochastic control approach to
mean-variance hedging we are using is extended to include jumps, we conjecture that such an
extension is possibile.
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Mean-variance hedging: m = 10
Deep BSDE solver Benchmark
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Figure 3: Deep solver solution (left) and benchmark solution (right) for the mean-variance
hedging in a 10 points discretization grid for 10 random samples. From above: the call option
price, the units of cash account and the shares of risky asset in the interval [0, 1].
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Mean-variance hedging: m = 50
Deep BSDE solver Benchmark
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Figure 4: Deep solver solution (left) and benchmark solution (right) for the mean-variance
hedging in a 50 points discretization grid for 10 random samples. From above: the call option
price, the units of cash account and the shares of risky asset in the interval [0, 1].
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Mean-variance hedging: m = 100

Deep BSDE solver Benchmark
30
25
3 g
= 20 = 20
o o
S s
B1s =1
2 2
S1o 3
5
0]
0.0 0.2 0.4 0.6 0.8 1.0

Units of cash account
Units of cash account

g
=)

o
®
o
®

o
o
o
o

o
IS

Shares of risky asset
o
Ny

Shares of risky asset

I
N
o
N

Figure 5: Deep solver solution (left) and benchmark solution (right) for the mean-variance
hedging in a 100 points discretization grid for 10 random samples. From above: the call option
price, the units of cash account and the shares of risky asset in the interval [0, 1].
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Local risk minimization

Portfolio dimension: 1 MC price: 6.854
Time steps 10 50 100

BSDE solver price 6.829 6.846 6.855
Relative error (%) 0.360 0.120 0.0162
,,,,,,,, Training time (s) 128 735 1546

PDE price 6.850 6.850 6.850
Relative error (%) 0.0488 0.0613 0.0618

Portfolio dimension: 5 MC price: 15.412
Time steps 10 50 100

BSDE solver price 15.197 15.366  15.365
Relative error (%) 1.395 0.299 0.309

Training time (s) 255 1250 2866
Portfolio dimension: 20 MC price: 30.761
Time steps 10 50 100

BSDE solver price 30.704 30.783  30.828
Relative error (%) 1.322 0.568 0.218

Training time (s) 418 1993 3660
Portfolio dimension: 100 MC price: 68.950
Time steps 10 50 100

BSDE solver price 68.269  68.427  69.020
Relative error (%) 0.988 0.758 0.101
Training time (s) 1772 9096 16527

Table 3: Local risk minimization results for different portfolio dimensions and different number
of total time steps in the discretization grid. For each configuration, we compute the Monte
Carlo (MC) price by simulating 10° samples under the minimal martingale measure, and we use
it to compute the relative error in the classical way. For the portfolio with only one risky asset,
we report the price obtained with the benchmark approach via PDE presented in Appendix
A2.
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Local risk minimization: m = 10
Deep BSDE solver Benchmark
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Figure 7: Deep solver solution (left) and benchmark solution (right) for the local risk mini-
mization in a 10 points discretization grid for 10 random samples. From above: the call option
price, the units of cash account and the shares of risky asset in the interval [0, 1].
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Local risk minimization: m = 50
Deep BSDE solver Benchmark
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mization in a 50 points discretization grid for 10 random samples. From above: the call option
price, the units of cash account and the shares of risky asset in the interval [0, 1].
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Local risk minimization: m = 100
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Mean squared error
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A Semi-explicit solutions for mean-variance hedging and local
risk minimization for the Heston model in one dimension

In order to compare the results of the deep BSDE solver, we derive semi-explicit solutions for
the mean-variance hedging and for the local risk minimization, by adapting, respectively, the
results from [7] and [22]. These will allow us to benchmark the price process and the trading
strategy trajectories for the Heston model in dimension 1, see Section 7.

A.1 The mean-variance hedging of Cerny and Kallsen [7]

In the mean-variance hedging, we solve recursively two BSDEs, respectively equation (3.2) and
equation (3.3), and we find (an approximation of) the two processes L and X,

The process L corresponds to what éerny and Kallsen define as the opportunity process,
which defines the so-called opportunity-neutral measure P*. This is a non-martingale equivalent
measure such that variance optimal martingale measure Q,mv introduced in Section 3 can be
computed as the minimal martingale measure under P*, see [6] or |7] for details.

Following the approach of [7], the opportunity process is of the form

LCK = exp (XO + X1Y2) , (A.1)

Y2 being the variance process for the one-dimensional Heston model (6.4), while the functions
Xo and x1 are solutions of a system of Riccati ODEs, see |7, Proposition 3.2|. In particular, by
adapting |7, Lemma 6.1], the functions xo and x; at time ¢ € [0, 7] are

B 1 (B +D)e2TD/2 _ (5 — D)2T-1)/2

=Fl-—=T-t)-=1 A2
Xo(t) =8 ( sl —1) — zlog ( D . (A2)

B D (B+D)e 2TN2 4 (B D)2/
xi(t) = o 2¢( )679 T—1)/2 : )69 T—t)/2° (A.3)

(B +D)e2T-D/2 _ (B —D)e2T-1)/
where .
A= —p?, B = —r—2pop, €:=350%(1—2p?),

D= VB2 4AC, F:= Kb,

with €,0 # 0. We refer to |7, Lemma 6.1] for the case € =0 and © = 0.
As we mentioned above, the process LCK characterizes the opportunity-neutral measure
P*. In particular, the process

exp <_ /0 t (1 + poxi(s))? ijds) .y < /0 t ox1(s)Y, (des + ﬂdfzs))

CK
Lt

Zt = L(()jK
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is a bounded positive martingale, and by virtue of the Girsanov theorem
¢
Wi =W, —/ poxi(s)Ysds
0

t
B} = B; — / V1= p2ox1(s)Ysds
0

(A.4)

are Brownian motions under P*, with dP*/dP = Z7. The variance optimal martingale measure
coincides then with the minimal measure relative to P*:

AQme T *
?p* =& <_/o (M+P<TX1(8))stWS>,

By the Girsanov theorem

T
Wmv — W* }/Sd
= Wi [ pas) Vids )

B = B;

are uncorrelated Brownian motions under Q,mv. By combining equation (A.4) and (A.5) with
the Heston dynamics (6.4), the dynamics of S and Y2 under the variance optimal martingale
measure become

{dgt S (A.6)

dY? = (k0 — Kk Y}?) dt + oYs <thmV +4/1 - pQB{nV) ’

with &y == K + pou — x1(t)o?(1 — p?).

Let us now focus on X™. Following Cerny and Kallsen, if the value of the contingent
claim H is given by g(YZ, St), with g bounded and continuous function, we consider a function
f € C%22 such that

XCK — gy [H‘ }“t] — (T —1,Y25), (A7)

where XK is the mean-variance hedging contingent claim price in the éerny and Kallsen

approach. From [7, Proposition 4.1], the function f is the unique classical solution of the PDE

—f1+ 59 (0% fo2 + 2005 faz + 57 f33) + (k0 — (5 + pop — x1(H)o* (1 = p?))y) fa = 0 (A8)
f(0,y,5) = g(y, )

where f; := % and f;; = %, for i,7 € {1,2,3}. We point out that the PDE (A.8)
has time-dependent coefficients, hence we need to adapt the classical methodology for solving
the Heston PDE to this situation. We consider the approach of [25], where a finite difference
method is applied in the space dimension and a splitting scheme of the Alternative Direction
Implicit (ADI) type is applied in the time dimension. We refer to Appendix C for a brief
presentation of the methodology, or to [25] directly for a more detailed description. We denote
by f” the approximated value of f in (tn,?i,gn) and by ﬁ" its derivatives, for n =1,..., N
and i € {1,2,3}. Let )?SK be the approximated XK in ¢ = ¢,,.

Remark A.1. By solving the PDE as described in Appendix C, for each time step n we find
the values of the function f on a grid for the bounded domain [0,S] x [0,Y] for a certain S
and a certain Y. Let mg > 1 and m, > 1 be the number of points, respectively, in the s-
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and y-direction, which we denote with si, K =1,...,m,, and yp, £ = 1,...,m,. We then find
ﬂ”ék ~ f(tn,ye, sk) as the e approximation of f in ( ns Yo, Sk), form=1,... N.

If we want to compare X™ found with the deep BSDE solver and the correspondmg XCK
from the Cerny and Kallsen approach for a specific realization of the forward process (S Y2,
we then need first to interpolate f(”’é’k) to find the right values for comparison. Namely,

given a realization (?n,?i), forn=1,..., N, for each time step n we need to find where the
simulated S, and Yi are located in the mesh, this means to find k¥ € {1,...,ms — 1} and
¢ e {l,...,my — 1} such that S,, € (sg, sk+1] and 72 € (Yo, Yos1). We then denote with f
the Value that we obtain with a bi-linear interpolation from J/“\(”M) FlrtLk) - fnbk+l) and
FtHLEFD - Similarly if we want to compute the derivatives f”

The approximated optimal trading strategy and the corresponding value process can then
be recursively computed starting from |7, Equations (3.3) and (4.1)] as follows:

f}OCK _

é\CK _ j(‘\gz n paiél i u+§:x? (J?n _ f/\*nCK)
CK VCK ggKgn

VCK E\T(LJK (Sn+1 _ Sn)

(A.9)

Vn+1

where X7 = x1(tn).

A.2 The local risk minimization of Heath, Platen and Schweizer [22]

In the local risk minimization we solve the BSDE (4.7) and we find (an approximation of) the
process X' by means of the deep BSDE solver. If the dimension is d = 1, we can alternatively
follow the approach of [22].

As in the mean variance setting, we assume that the value of the contingent claim H is
given by a function g(V2, Sr). Then, there exists a function f € C*>? such that

XHPS _ Q" [H‘ ft} — f(T —t,Y2, 5, (A.10)

where XHPS is the local risk minimizing contingent claim price in the Heath, Platen and
Schweizer approach. By adapting the results of [22, Section 2|, the function f is the unique
classical solution of the PDE

{_fl + 5y (02 faz + 2p0s fa3 + 5% f33) + (K0 — (K + pop)y) fa = 0
f

0,9,5) = g(y, ) (A11)

where f; '_87 and fj; := 89“% , for 4,7 € {1,2,3}.

Once solved (A.11) with the solver described in Appendix C, we denote by f” the approx-
imated value of f in (tn7?i7§n) and by ﬁ” its derivatives, forn =1,...,N and i € {1,2,3}.
Of course, the same arguments of Remark A.1 apply here. The approximated optimal trading
strategy can then be computed from [22, Equation (2.3)]:

{/\HPS fn + pafg
Q,/Z)\HPS fn _ é-\HP

forn=0,...,N—1. (A.12)

)
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B Proof of Proposition 3.1

To ease notations, we omit the superscript ™ in the computations below. Since we work with
discounted quantities, for the sake of clarity we adapt the steps of [30], Proposition 3.3. The
dynamics of the discounted wealth satisfy

AV, = & diag(Sy) (e — 1) dt + & diag(S) o, dW.

We also have

- 1 T A{tnlt T T
dX; = 50 Gy Mgt — 7 dt + 11, dWi +15,dBy |
| t

hence
v _ 17 1 A M2t .=
d(X - V) = <SO <¢tTﬁ1,t - 227 — & diag(Sy) (e — 1) | dt
t t
1 1
+ <SO gt dlag(St) ) dW; + SO?]Q tdBt
¢
Now,
~ \2 -~ o~ -~ -~
4(X-7V) =2(X-V)dX - V) +d(X - V)
where

d(X - V) = ((52)2771 M+ (ft dlag(St)Ut> (ft—r diag(gt)0t>T

L S Y 1
—Qngﬁu (§t dlag(st)at) (Sto)zﬁz 4102 t) dt.
Regrouping terms
A(% -7 = |2 (% 70) | T - Aaee| 4L -
. t t S? t Mt L, (50)2771 ATt (St)gﬁz a2t

_|_£tT diag(gt)atcr;r diag(gt)ft

— 2¢, diag(S;) [(,ut —7¢1) (X:t - ‘7t> Tgf)t] dt
¢

~ o~ 1 s -
+2 (Xt - Vt) (5,077;,1: —& dlag(st)0t> dW; + 2 (Xt Vt) SO Up) tdBt
t
We apply again the It6 formula

AL (X‘t - 12)2 - (X‘t - 17,5)2st + Ld(X — V)2 +d<L, (55 - 17)>t.
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The covariation term is given by

AL (X -7)), =2 (%= T8) (gl — 7 dins(S)en ) v+ 2 (%~ ) guf st

hence

T
Al,tALt

aL (% -7)" = (% - 0)’

<’¢t|2 L +2¢) Avy +

+Lt{l2 (% 7)
+ 5; diag(S )atcrt dlag(St)£

- 26/ diag(50) (s - 1) (%, = T5) + o 2t

) dt + A{ , dW; + Ay ,dB;

t

1 T A;:th,t] 1 T 1
0%t M — ST+ ———5 M9 T2t
Si Ly (S7) (S7)

- N |
42 (Xt Vt) ( So’ht &) diag(Sy)o > AW, + 2 <Xt - V;) @77;, tdBt}
+2 <)~(t - ‘Z) i77115 —-& diag(gt)at A +2 ()N(t Vt) 2 tAQ ¢dt.
so : 5

Some lengthy computations show that the drift term can be expressed in the following form:

d@gg_af:{h%mg@g&_@wg”(%m_an+@gq(z_@)+mgg]r
% o107 [dlag (5) & — (ono! )_1 ([(Nt —rd)" + "ﬁ”] (X T3) + at”Slg)]
i o
+ <2 (% - %) <510n;t T diag@)at) +(%-) AIt> aw,
+ <2( Vt) ot (%~ IZ)QAL) dB;.

Let us introduce a localizing sequence (7x)geny with 7, 00 as k — oco. We fix t € [0,T],
integrate on both sides and take expectations

B | Lunn, (Rinm, = Vinn) | = 20 (%o = T)°

[ {Ls aing (5.) & (e207) ™ ([or —rat)T #7202 (%, - 7) 0 20) ]
<o) [ding (5) &~ (o) ([ =T 2] (R - W) 4 o)

= N3.s12,s ¢ ds| -

(50)2 } ]

+E
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We let k — oo and set ¢ = T'. The right-hand side converges by monotone convergence. From
to the definition of admissibility that we currently assume, the left-hand side converges to

~ ~\2
E [(XT — VT) } since we also have L = 1. The expression is minimized by choosing

6t =g (3) " (o) (O r) 4 7] (5 70) )

It remains to show that £* is admissible. For this aim, we substitute £* into (B.1) and we
obtain

~ ~ 2 ~ ~\2 ATk L -
E [Lm (Kinre = Vinn) } — Lo (Xo— Vo) +E [ / (S())ansng,sds} .
0 S

We know that L is bounded in (0,1]. Also, since the interest rate r is bounded, so is the

denominator (5,0)2. We also know that 7o € LZ([0, T]; R™), hence, for any choice of ¢ and k
we have

tATE L T
E [/ 82772Ts772,sd3} <CE [/ ngsngysds} < oo, CeRy,
o (8977 o 7

~ ~ 2
hence the quantity Liar, (Xt/\.rk — W/\rk) is uniformly integrable for any localizing sequence

(Tk)ken, hence £* is admissible.

C The Heston-PDE solver

We briefly present in this section the numerical scheme that we use for solving the two Heston
PDEs arising, respectively, in the mean-variance hedging, Section A.1, and in the local risk
hedging, Section A.2, for the one-dimensional case. The idea is to first discretize in the spatial
variables, and then to apply a splitting scheme of the Alternating Direction Implicit (ADI)
type. In particular, we follow the approach proposed by [25], with the only difference that we
allow the coefficient of the derivative w.r.t. the price to depend on time. Since the rest of
the algorithm is unchanged, we shall omit details such as the meshes and the finite difference
schemes applied. These can be found in [25].

Let f(T —t,y,s) denote the price of a European-type option with maturity 7' and payoff
function g : Ry x Ry — Ry, whose underlying has price at time ¢t equal to s and volatility
equal to y. Under the Heston model (6.4), the price f satisfies the parabolic PDE

—f1 4 3y (02 fo2 + 2p0s faz + s f33) + ke (6 — y) fo =0,
f(0,y,8) = g(y, ) (C.1)
f(t,y,0) =0, for 0 <t <T,

where f; := % and f;; = %aj;j, with 4,5 € {1,2,3}. Here k : Ry — R4 and 6 : Ry — Ry.
We point out that equation (C.1) reduces to the classical Heston PDE when x; = x and 6; = 6
for every 0 < t < T, with x and 6 as in equation (6.4). Moreover, for the mean-variance
hedging in Section A.1 one has that

{mt =K+ pop—x1()o?(1 - p%), (C.2)

— k8
et—ﬁt7
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and for the local risk hedging in Section A.2 one has that
Kt = H9+ PO L, (C.3)
0 = .
t
For numerical purposes, we restrict the spatial domain to a bounded set [0,S] x [0, Y]. In
particular, we shall consider S = 8 K and Y = 5. This is followed by two additional conditions
at s=Sand at y =Y:

fat,y,S)=1 and f(t,Y,s)=s, for0 <t <T. (C4)

We then apply non-uniform meshes in both the s- and y-direction, so that relatively many
mesh points lie in the neighborhood of s = K and y = 0, respectively (see [25, Section 2.2| for
details). We denote with m, > 1 and m,, > 1 the number of points, respectively, in the s- and
y-direction.

The finite difference discretization yields an initial value problem for a large system of
ordinary differential equation of the form

{Ft, = A,F, + by, for 0 <t < T, (C.5)

Fo = fo.
Here A; € R™™ b, € R™ and fy € R™, for m := mym,. In particular, fy is obtained from
the initial condition in (C.1) and the vector function b; depends on the boundary conditions in

(C.1) and (C.4). We solve (C.5) by applying the modified Craig-Sneyd scheme as described in
[25, Section 2.3|, which we adapt so to allow the time-dependent coefficients x and 6.
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