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Abstract
Robots artificially replicate human capabilities thanks to their software, the main embod-
iment of intelligence. However, engineering robotics software has become increasingly
challenging. Developers need expertise from different disciplines as well as they are faced
with heterogeneous hardware and uncertain operating environments. To this end, the soft-
ware needs to be variable—to customize robots for different customers, hardware, and
operating environments. However, variability adds substantial complexity and needs to be
managed—yet, ad hoc practices prevail in the robotics domain, challenging effective soft-
ware reuse, maintenance, and evolution. To improve the situation, we need to enhance our
empirical understanding of variability in robotics. We present a multiple-case study on soft-
ware variability in the vibrant and challenging domain of service robotics. We investigated
drivers, practices, methods, and challenges of variability from industrial companies building
service robots. We analyzed the state-of-the-practice and the state-of-the-art—the former
via an experience report and eleven interviews with two service robotics companies; the
latter via a systematic literature review. We triangulated from these sources, reporting obser-
vations with actionable recommendations for researchers, tool providers, and practitioners.
We formulated hypotheses trying to explain our observations, and also compared the state-
of-the-art from the literature with the-state-of-the-practice we observed in our cases. We
learned that the level of abstraction in robotics software needs to be raised for simplifying
variability management and software integration, while keeping a sufficient level of cus-
tomization to boost efficiency and effectiveness in their robots’ operation. Planning and
realizing variability for specific requirements and implementing robust abstractions permit
robotic applications to operate robustly in dynamic environments, which are often only par-
tially known and controllable. With this aim, our companies use a number of mechanisms,
some of them based on formalisms used to specify robotic behavior, such as finite-state
machines and behavior trees. To foster software reuse, the service robotics domain will
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greatly benefit from having software components—completely decoupled from hardware—
with harmonized and standardized interfaces, and organized in an ecosystem shared among
various companies.

Keywords Autonomous and (self-)adaptive systems · Service robots · Variability ·
Robotics software engineering

1 Introduction

Robots are increasingly involved in our everyday life. In contrast to automatized and repro-
grammable manipulators—industrial robots1 used in assembly lines, for instance—service
robots (https://www.iso.org/standard/55890.html) are autonomous robots that assist human
beings by performing useful tasks. The service robotics market is booming worldwide,
heading towards a value of 24 billion US dollars by 2022.2 Moreover, robots demonstrated
being powerful allies of humanity in the fight against COVID-19, the virus that shook the
world in 2020. Especially relevant are: (i) disinfecting robots that kill bacteria and viruses
in human-populated areas,3 as well as (ii) delivery robots that transport items in hospitals,4

supporting the staff and allowing safety distancing—both subjects in our paper.
Robots are cyber-physical systems blending hardware and software to interact with

their environment. Developing, integrating, and customizing hardware, software, and envi-
ronmental components adds substantial complexity to robotic systems. Managing this
complexity calls for systematic engineering practices as they have been applied successfully
to other cyber-physical domains, such as automotive or aeronautics systems. In fact, there
is growing pressure on the robotics community to promote well-defined engineering prac-
tices that stimulate component supply chains (Bozhinoski et al. 2019), maturing the robotics
market. Unfortunately, software engineering (i) has been traditionally considered an auxil-
iary concern (Brugali and Prassler 2009) and (ii) is still not mature in the robotics domain
(Garcı́a et al. 2020), as witnessed by the absence of best practices in robotics software
engineering. This challenges quality assurance, validation, integration, and the autonomy of
robotics software.

A core challenge is variability—the ability of software to be changed, customized, or
configured (Bosch 2004). Robotics software needs to account for a diversity of hardware,
operating environments, and customer demands. Similar to other domains faced with vari-
ability, such as automotive, avionics, telecommunication, and industrial automation (Berger
et al. 2020), the “drivers of variability” are hardware diversity, environment uncertainty, and
the different purposes and functions of robots. However, while the drivers and the realiza-
tion of variability are reasonably well understood in other domains, that is not the case for
autonomous robots.

Consider a robot needing to operate robustly in open-ended environments. To this end, it
is typically equipped with a mix of perception, control, planning, learning, and interaction
capabilities. The latter depend strongly on the robot’s mechanical structure (e.g., a rover
with zero or multiple arms), the missions to be performed (e.g., cleaning a floor, rescuing

1https://www.iso.org/standard/55890.html
2https://www.marketsandmarkets.com/Market-Reports/ivd-bric-market-198.html
3https://www.forbes.com/sites/richblake1/2020/04/17/in-covid-19-fight-robots-report-for-disinfection-duty
4https://www.mvpromedia.com/article/robots-to-assist-fight-against-covid-19-in-hospitals/

https://www.iso.org/standard/55890.html
https://www.iso.org/standard/55890.html
https://www.marketsandmarkets.com/Market-Reports/ivd-bric-market-198.html
https://www.forbes.com/sites/richblake1/2020/04/17/in-covid-19-fight-robots-report-for-disinfection-duty
https://www.mvpromedia.com/article/robots-to-assist-fight-against-covid-19-in-hospitals/
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Fig. 1 An excerpt of the TIAGo robot family

people after a disaster), and the environmental conditions (e.g., indoor, outdoor, under-
ground). For instance, the robot TIAGo5—one of our target robots—is available in many
different variants, some of which are illustrated in Fig. 1. Not only the different hardware
and mechanical structure but also the missions that TIAGo performs require appropriate
mechanisms to deal with variability.

Not properly handled variability easily leads to failures, for instance, through feature
interactions (Calder et al. 2003; Apel et al. 2014). Consider a robot with the capability
of helping humans transport heavy equipment.6 In some variants it also has the feature to
simultaneously navigate through the environment, and in many other variants it also has
the feature to perform collision avoidance. These features might work well in isolation, but
when combined in a variant, a braking command issued by the collision avoidance feature
might be overridden by the transportation algorithm commanding the robot to maintain the
same path as that of the human.

Our long-term goal is to improve variability management in robotics, where, as we
will show, variability is affected by drivers not seen in other domains and is managed in
ways lagging behind the state-of-the-art. However, we first need to improve our empirical
understanding of variability in service robots—the aim of this study.

We present a study on variability management in service robotics. We investigate the
drivers, practices, and challenges of variability. We triangulate from three different data
sources: our experiences systematically synthesized in an experience report, an in-depth
examination of two companies—i.e., a multiple-case study—based on interviews with nine
engineers from two robotics companies, and a systematic literature review (SLR). Our
research questions are:

RQ1:What are the drivers of variability in the service robotics domain? We identify the
drivers from our subject companies and describe each driver’s impact on the companies’
practices.
RQ2: What variability management practices are applied by the companies to address
the drivers of variability? We study what practices (i.e., strategies and mechanisms) are
applied by our studied companies to manage variability.
RQ3: What challenges do service robotics companies face when managing variability?
We identify the challenges our practitioners face when managing variability for service
robots. We discuss their impact on our companies’ development processes.

5https://pal-robotics.com/robots/tiago
6https://www.youtube.com/watch?v=wzQoWtEHbKA

https://pal-robotics.com/robots/tiago
https://www.youtube.com/watch?v=wzQoWtEHbKA
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Fig. 2 Overview of observations. The figure is structured based on our research questions: in RQ1 we identify
three drivers of variability—i.e., environment, robot hardware, and mission—, in RQ2 we list variability-
management practices applied by our studied companies, and in RQ3 we discuss challenges related to that
management. Each column of the figure represents one of the three drivers of variability identified for RQ1

Our contributions are:

– Qualitative empirical data about variability drivers and realization, together with
challenges.

– A literature review on variability management in service robotics.
– A comparison of the respective state-of-the-art and state-of-practice.
– A replication package as an online appendix (Garcı́a et al. 2021) containing (i) the inter-

view guide, (ii) the codebook from the qualitative analysis, (iii) the literature review
protocol, (iv) the used search strings, (v) the data extraction template, and (vi) the
detailed literature search results.

– Key observations, proposed hypotheses explaining the phenomena we observed, and
actionable recommendations for our intended audience, namely, researchers, tool
providers, and practitioners.

Figure 2 summarizes our findings. For instance, we learned that (and how) the identi-
fied drivers impact development processes, including regulations and standards for safety in
open-ended and human-populated environments. Configuration files are a simple, but nec-
essary mechanism to conditionally load software components in robotic applications (e.g.,
a concrete navigation algorithm). They also parameterize missions the robots perform (e.g.,
location coordinates in patrolling missions). We also learned that behavior trees (Colledan-
chise and Ögren 2018; Ghzouli et al. 2020) and finite-state machines (Risler and von Stryk
2008; Dragule et al. 2021a) are mechanisms used by our studied companies to specify both
mission and adaptation rules. The most pressing challenge stemming from the identified
variability drivers is raising the success rates of configurations and mission specifications
that are usable by different robots in various contexts without requiring extensive tuning.
We present our findings in detail, throughout the paper highlighting our 38 key observa-
tions (labelled as “Obs.” in Fig. 2) with their associated recommendations to researchers
and practitioners.
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This article significantly extends our previous workshop paper (Garcı́a et al. 2019b),
which only relied on the first of the three data sources: on our experiences (one author has
24 years of experience in robotics) and those of two practitioners of two different organiza-
tions developing service robots. We now add two substantial data sources: nine additional
interviews, five of them with a company not considered in the previous paper, and a sys-
tematic literature review. We also systematically investigate the drivers of variability, the
variability-management practices, and the respective challenges. As such, the present article
is a multiple-case study based on systematically elicited empirical data from a total of eleven
interviews (first and second source) and the literature (third source). The latter allowed us
to compare the state-of-practice with the state-of-the-art.

Organization Section 2 introduces the required background and terminology for our study.
In Section 3 we present the research methodology. In Sections 4, 5, and 6 we describe the
results of the study—each section corresponding to one of our research questions, structured
along the codebook derived as part of our methodology—and in Section 7 we discuss them.
Section 8 lists the potential threats to the study’s validity. In Section 9 we position our study
with respect to the related work and conclude in Section 10 with final remarks.

2 Background

We now introduce the necessary background on robotics and variability.

2.1 Robotics

Robots are cyber-physical systems embodying a blend of hardware and software that interacts
with the environment. The software is typically called a robotic control system, described
as a “set of logic control and power functions that allows monitoring and control of the
mechanical structure of the robot and communication with the environment (https://www.
iso.org/standard/55890.html)”. Although we include findings related to the robots’ hard-
ware, our main focus is on the software of service robots, which “perform useful tasks for
humans or equipment excluding industrial automation applications (https://www.iso.org/
standard/55890.html)”. These robots differ from industrial robots in that the latter are con-
fined to a well-defined environment and mostly execute a well-defined program to achieve
repetitive tasks with high precision. In contrast, service robots often operate in uncertain
environments, requiring higher degrees of intelligence and autonomy to handle or transport
objects in social or industrial facilities, such as hotels, hospitals, or production plants.

Multiple categories of service robots exist (IFR 2016; IEEE Robots 2020), depending on
their scope or application field. The following types of service robots are developed by our
robotics companies.

– Research platforms are robots with special features suitable for research. They may
be used to assess the efficiency of robotics software or newly developed appliances.
Therefore, their operation typically requires expert knowledge. Many robots from PAL
Robotics belong to this group.

– Professional service robots are produced by PAL Robotics and Blue Ocean. Such
robots are “used for a commercial task, usually operated by a properly trained operator
(https://www.iso.org/standard/55890.html).” They often provide certain services and
operate in specific environments, and their main features (e.g., functionalities, hard-
ware, embodiment) are not expected to be changed once released to the market. They

https://www.iso.org/standard/55890.html
https://www.iso.org/standard/55890.html
https://www.iso.org/standard/55890.html
https://www.iso.org/standard/55890.html
https://www.iso.org/standard/55890.html
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typically do not require technical knowledge (e.g., programming skills, robotics engi-
neering) from the operator, although they require some training and an expert to
program their behaviors beforehand.

An operator is the person designated to start, monitor, and stop the intended operation of
a robot (https://www.iso.org/standard/55890.html). She is typically also in charge of com-
manding tasks and missions (explained shortly). If the operator is not technically skilled,
missions are often defined previously by an operator with the required skills:

– Technical operators have knowledge of programming languages and are able to use
advanced mechanisms for mission specification—e.g., behavior trees (Ghzouli et al.
2020; Colledanchise and Ögren 2018), finite-state machines or programming languages
with respective libraries.

– Non-technical operators do not possess programming or robotics engineering knowl-
edge and, therefore, typically resort to end-user-oriented, visual environments to specify
missions (Dragule et al. 2021a; Ajaykumar et al. 2021).

Another important concept is the mission, which expresses the desired behavior of a
robot. The implementation of a mission coordinates the robot’s skills—programmed actions
a robot can perform, often developed as software components by experts—to achieve a
mission goal (Garcı́a et al. 2019a; Ghzouli et al. 2020; Menghi et al. 2018, 2019; Dragule
et al. 2021b). An example is: “A robot r1 operating in a hospital consisting of a number of
rooms and corridors must reach room2 and disinfect it.” Note that the terms mission and
task are often used synonymously in the literature, even in reference documents (SPARC
2016). To distinguish both terms, we refer to tasks as repetitive and simpler processes than
missions. So, tasks are repetitive and simple coordinated robotic behaviors that are realized
as a combination of skills. A mission can be constructed by composing several tasks.

The Robot Operating System (ROS) (Quigley et al. 2009) is the current de facto mid-
dleware for robotics (Garcı́a et al. 2020). ROS offers an ecosystem of core software easily
extensible by creating or using existing resources in the form of packages (Estefo et al.
2019). Packages organize software in ROS and may contain libraries, datasets, configuration
files, or third-party software, allowing reuse of robotics software in a standardized packag-
ing format. In ROS, a node represents a process that performs specific computational tasks,
such as controlling actuators, running navigation algorithms, or processing images.

2.2 Variability Management

Software variability is the ability of a software system to exist in different variants. Among
others, variants arise from a diversity of hardware, operating environments, and customer
demands—referred to as variability drivers in the remainder. A variety of strategies and
mechanisms to manage variability has been proposed (Van der Linden et al. 2007; Apel
et al. 2013a; Berger et al. 2014; Nešić et al. 2019; Czarnecki and Eisenecker 2000). In
the following, we introduce some of them, ranging from ad hoc to systematic variability
management.

Clone & own is an ad hoc strategy to create software variants by cloning existing variants
and adapting them to the new requirements, changing ownership and decoupling the devel-
opment lifecycle for the new variants. This strategy is simple and cheap, but does not scale
with the number of variants (Dubinsky et al. 2013; Berger et al. 2020; Krueger and Berger
2020; Businge et al. 2022). Clone management frameworks (Rubin et al. 2013; Mahmood
et al. 2021) reduce this burden to some extent, but ultimately, organizations often need to
re-engineer the cloned variants and integrate them into a configurable platform.

https://www.iso.org/standard/55890.html
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Configurable platforms are software systems with variability mechanisms (Apel et al.
2013a; Van der Linden et al. 2007; Berger et al. 2014). These are implementation techniques
to realize variation points (places in the source code that differ for individual variants).
Since large systems can have many variation points, these are often controlled by features
(Berger et al. 2015) (explained shortly) modeled in a feature model (Berger et al. 2013; Czar-
necki et al. 2012; Nešić et al. 2019)—tree-like structures organizing features in a hierarchy,
together with constraints among the features. Feature models allow keeping an overview
understanding of the platform’s variability and, together with configurator tools (Bashroush
et al. 2017; Krueger 2007; Kastner et al. 2009; Hubaux et al. 2012; Franz et al. 2021), allow
deriving individual variants in an automated process. Variants are determined by a selection
of features—i.e., the configuration—that adhere to constraints specified in the feature model.

Software product line engineering (SPLE) is the paradigm behind building config-
urable platforms. it comprises methods, tools, and processes to systematically engineer
configurable platforms—i.e., software product lines—in a specific application domain (Van
der Linden et al. 2007; Apel et al. 2013a; Clements and Northrop 2001; Czarnecki and
Eisenecker 2000).

Features—distinct and well-understood aspects of a system (Berger et al. 2015)—are
an important abstraction to represent the variability of complex configurable platforms.
Features are typically developed to be individual and independent units of behavior, but
when composed together, may behave differently. This situation, where a feature influences
another feature’s behavior, is known as feature interaction (Apel et al. 2013b, 2014). To
avoid unwanted interactions, developers need to invest time to detect, analyze, and ver-
ify interactions, which is especially crucial in safety-critical systems, such as autonomous
cars (Juarez Dominguez 2012) or robots (Vierhauser et al. 2019). As such, developers
need to manage software variability using proper variability mechanisms. We explore such
mechanisms together with related challenges and practices in the remainder.

3 Methodology

We triangulate data and findings from three different sources, which are in the following
referred to as stages. In the first stage, we gathered our experiences from different projects
and enriched them with two interviews with robotics experts. In the second stage, after

Fig. 3 Research methodology overview
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Table 1 List of interviewees. P1 and P2 correspond to our preliminary interviews from Stage 1 and
interviewees A–I to those of Stage 2 (see Fig. 3)

Company Exp. (years) Role in the company

P1 PAL Robotics 13 Product Manager

P2 PAL Robotics 10 Software Engineer

I1 PAL Robotics 4 Software Engineer

I2 PAL Robotics 10 Software Engineer

I3 PAL Robotics 14 Software Manager

I4 PAL Robotics 12 Chief Technology Officer

I5 Blue Ocean 16 Senior Robotics Architect

I6 Blue Ocean 5 Robotics Architect

I7 Blue Ocean 7 Senior Robotics Developer

I8 Blue Ocean 3 Senior Robotics Developer

I9 Blue Ocean 4 Senior Robotics Engineer

identifying the main topics we wanted to explore in detail, we designed a multiple-case
study and contacted and interviewed nine robotics experts working for two different com-
panies. The third stage consists of a systematic literature review for which we analyzed 213
papers and selected and extracted data from 30 of them. Figure 3 depicts an overview of our
methodology and the stages.

3.1 Stage 1: Experience Report (Authors’ Experiences)

For this stage, we collected our experience on variability management with a focus on
service robots. Our experience stems from various EU, academic, and industrial robotics
software engineering projects. Bischoff et al. (2010)’s project BRICS aimed to provide
researchers and developers with software methods and tools that simplify the configuration
of a robot control software system according to the requirements of a given application.
A key outcome of BRICS is the HyperFlex toolchain (Gherardi and Brugali 2014), which
uses feature models to represent the variation points, variants, and constraints between them
using an automated robotic product generation process. The goal of the project Co4Robots7

was to develop a framework to support robotic applications to perform complex missions
collaboratively (Logothetis et al. 2021; Schillinger et al. 2021). One of the authors has been
the coordinator of the IEEE RAS TC on Software Engineering for Robotics (TC-SOFT) for
more than ten years. TC-SOFT has promoted yearly workshops and discussion groups with
experts in robotics on the synergies between robotics and software engineering, where vari-
ability management has been a recurrent topic (Brugali and Prassler 2009). The same author
is also an active member of the EuRobotics Topic Group on Software Engineering, Systems
Integration, Systems Engineering.

In this stage, we conducted two exploratory interviews (see Fig. 3 and Table 1) to col-
lect experiences from the two industrial partners of Co4Robots, namely PAL Robotics and
the Bosch Center for Artificial Intelligence (BCAI).8 PAL Robotics is involved in sev-
eral EU projects on, among others, service and industrial robotics, benchmarking robotic

7http://www.co4robots.eu
8https://www.bosch-ai.com

http://www.co4robots.eu
https://www.bosch-ai.com
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frameworks, model-driven methodology, multiple-robot collaboration, and home-assisting
robots. The experience at the BCAI stems from a research project on coordinating multiple
robots, as detailed by Schillinger et al. (2018). Variability-related challenges in this context
primarily concern the governance of different robot configurations being incorporated in a
single coordination framework and largely sharing the same software stack.

3.2 Stage 2: Multiple-Case Study (State of Practice)

For the second stage, we obtained rich qualitative data directly from industrial practitioners
as opposed to just our own experiences, which, as academic researchers, might be biased.
To collect that data, we designed a multiple-case study. Given that our research questions
are of an exploratory nature we decided to conduct an exploratory multiple-case study, as
explained by Easterbrook et al. (2008). Our cases are two companies working on the service
robotics domain: PAL Robotics and Blue Ocean Robotics. The chosen cases have multiple
embedded units of analysis (Easterbrook et al. 2008), since we chose to focus on projects.
This decision allowed us to understand the decision-making processes of projects and their
interactions with other projects. We planned this stage of our study to be conducted in
several iterations where data is collected repeatedly and then analyzed.

3.2.1 Selection of Interviewees

The companies that we mainly report on in the first stage of our study work in the areas of
robot manufacturing and research. Therefore, both companies primarily work with develop-
ers, academics, and researchers, that is, a type of customer knowledgeable in robotics and
programming languages. According to our experience in robotics, other companies’ scope
is to provide robotic solutions to end-user domains (e.g., hospitals). To increase the com-
prehensiveness of our study, we included a case of such a type of company in our study,
namely Blue Ocean.

We recruited interviewees from PAL Robotics and Blue Ocean following the criteria of
heterogeneous roles and experience. We asked interviewees about practitioner colleagues
who may fit our selection criteria and might be interested in our study. Following this strat-
egy lead to a variation in the number of interviewees per company, but on the other hand, it
gave us a broader number of cases. We did not ask our interviewees about their experience
with variability management, we selected instead selected practitioners knowledgeable in
robotics and familiar with software development processes.

In total, we conducted nine interviews with nine practitioners from the two companies.
Table 1 gives an overview of our interviewees organized by their company and Table 2
gives a short description of each considered company. For every interviewee, we show their
experience in robotic in years and their role within the company.

3.2.2 Data Collection

In our study, we used semi-structured interviews to collect qualitative data (Myers and New-
man 2007). Semi-structured interviews follow a script prepared beforehand but allow for
improvisation, as opposed to structured interviews. This form of data collection allowed us
to cover certain question blocks while at the same time the interview could flow freely based
on ideas or aspects the interviewee discussed, to which we could choose whether to pay
more attention. We were also able to emphasize special topics depending on the intervie-
wee and their role at the company. Concretely, the information provided by practitioners in
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Table 2 The two companies considered in our study

PAL Robotics (Spain)

Medium-sized robotics manufacturer that mainly produces humanoid robots. One of the authors of the

present article is employed at PAL Robotics. Within the company, each robot platform is assigned to a

product manager. Project teams are not robot-specific but shared among all the business units that

conform PAL Robotics and personnel resources are allocated depending on the work requirements. At

the company, the humanoid robots are considered mainly research platforms while TIAGo basea and

StockBotb are considered professional service robots.

Blue Ocean Robotics (Denmark)

Medium-sized robotics company that offers solutions based on professional service robots. The company’s

strategy is to conduct robotics projects that, if succeed on a feasibility exam through validation in the

market, are then constituted as a company, passing to form part of the Blue Ocean’s portfolio. Each

robotics project or company in the portfolio is the project owner of a robot specialized in offering a

specific service. The main areas in which Blue Ocean works are healthcare, hospitality, construction,

and agriculture. Most of Blue Ocean’s customers are end-users from these areas (e.g., hospital staff).

ahttps://pal-robotics.com/robots/tiago-base/
bhttps://pal-robotics.com/robots/stockbot/

higher positions of each company’s hierarchy contained more details about organizational
aspects of variability management, while software and robotics engineers provided more
technical information on development issues, engineering paradigms, and technological
spaces.

We designed a semi-structured interview guide and piloted it with our exploratory inter-
views, whose results were used to establish the final interview guide (which was still slightly
refined after each semi-structured interview). We provide the interview guide in our online
appendix (Garcı́a et al. 2021). The interviews ranged from 40 to 76 min, averaging around
60 min. All interviewees agreed to record the interview, amounting to a total of 541 min of
interview recordings.

3.2.3 Data Analysis

We analyzed the interviews by transcribing them and then performing collaborative itera-
tive open coding (Corbin and Strauss 1990, 2014). In open coding, data is broken down
analytically, where incidents (i.e., events, actions, or interactions) in the transcribed data are
compared with others for similarities and differences. This comparison is a central aspect
of open coding, and to accomplish it researchers add conceptual labels that help group
together incidents to form categories and subcategories. The result of open coding—i.e., the
labeled categories of incidents in the transcribed data—was then documented in our code-
book (MacQueen et al. 1998). We started creating our codebook by identifying central topics
for our study based on our research questions. Based on these central topics we created a
priori codes, as proposed in the guidelines from Runeson and Höst (2009). Since we read
the transcriptions line by line during the analysis we were able to find appropriate codes for
specific statements. As suggested by Verner et al. (2009), we used NVivo9 to ease the data
analysis and document the large amount of collected interview transcript data. Finally, we

9https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

https://pal-robotics.com/robots/tiago-base/
https://pal-robotics.com/robots/stockbot/
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
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followed an editing approach, as proposed by Runeson and Höst (2009), for which we cre-
ated new codes from the firstly defined a priori codes in a hierarchical manner where new
interesting topics came up. These codes were continuously revised, which resulted in their
occasional merging and splitting.

As suggested by Cornish et al. (2013), performing collaborative coding allowed us to
create and refine our codes under different perspectives, which also enriches our under-
standings and promotes the reliability of our study. The open coding was firstly conducted
by one of the researchers to ensure consistency with the use and meanings of the codes.
Then, a second researcher was informed of the codes through an informal coding workshop
and further refined the coding iteratively. In these iterations, the two authors continuously
discussed and refined the codes and organized them in a hierarchy. These iterations led to
the definition of 386 codes, 2.6% of them being a priori codes. Many initial codes evolved,
and sub-codes were created. For instance, the code “Features acquisition” evolved to three
different sub-codes named “How are features identified,” “How are the features modeled,”
and “How are features implemented/built.” The two authors in charge of coding then pre-
sented and discussed with the rest of the authors the resulting codes to align our knowledge
and refine our codebook.

During our data analysis, we strove to establish a chain of evidence—as remarked by
Verner et al. (2009) and Runeson and Höst (2009)—to provide sufficient information of
each step taken in our study so a reader can follow our derivation of results and conclusions
from the collected data. Concretely, we discussed the codes between two of the researchers,
creating living documents with listings and annotations with that purpose. After some iter-
ations, we created tables, discussed relations, and identified themes, which allowed us to
conceive a story to report on the findings for each research question. Some of these artifacts
(e.g., our codebook) are provided in our replication package, which can be found in our
online appendix (Garcı́a et al. 2021). Another important artifact is represented in Table 8. It
puts together our findings for our research questions based on data from the interviews. The
table shows an overview of the main drivers’ characteristics and a mapping to the applied
variability management practices and challenges faced by service robotics companies. The
mapping was created after several iterations of analyzing the interviews’ data. We also cre-
ated write-ups that give details on the organizations in which the variability management is
done. We append a write-up for each of our studied companies that analyses the collected
data based on the BAPO model (Van der Linden et al. 2007) to our replication package.

We provide summaries of our main findings as observations in boxes in the respective
sections. For each observation we also provide actionable recommendations for our intended
audience, namely researchers, tool providers, and practitioners. Then, the observations are
referenced and exploited when we discuss our hypotheses and recommendations.

3.3 Stage 3: Literature Review (State of the Art)

Following established guidelines (Kitchenham and Charters 2007), our systematic liter-
ature review comprised three steps: planning the review by defining a search strategy
(Section 3.3.1) together with inclusion/exclusion criteria (Section 3.3.2); conducting the
review by extracting data from selected papers (Section 3.3.3) and assessing its qual-
ity (Section 3.3.4); and documenting the paper selection process (Tables 5, 6 and 7) and
the synthesis of results according to our research questions (Sections 4.4, 5.7, and 6.4).
Our replication package (Garcı́a et al. 2021) provides additional artifacts documenting our
review, including the review protocol, data extraction templates, and details of our literature
selection process.
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3.3.1 Search Strategy

A first initial search for systematic literature reviews on variability in robotics software (via
ACM Digital Library, Scopus, and Google Scholar) by September 2020 revealed that no
such publication exists. The search string used for this initial search was divided into three
groups of keywords (forming three categories) and applied to the entire content:

1. ("robot" OR "robotic" OR "robotics") AND
2. ("variability" OR "variant") AND
3. ("SLR" OR "literature review" OR

"systematic literature review")

After the first search, we understood that Google Scholar is not a digital library but
instead a search engine that references multiple digital libraries (Mourão et al. 2020).
Google Scholar’s queries also return many unpublished papers and therefore we replaced
Google Scholar with IEEE Explore to design a search strategy that balances result quality
and review effort. We then defined our search strategy, focusing on the search engines ACM
Digital Library, IEEE Explore, and Scopus.

The search query was applied to abstract, title, and keywords without limiting the time
range and restricted to the subject areas Computer science and Engineering. Papers clas-
sified only in other subject areas were considered not relevant, such as Mathematics,
Materials Science, Physics and Astronomy, Earth and Planetary Sciences, Energy, and
Decision Sciences. These papers typically mention robots and software in the context of
applications where variability is related to domain-specific aspects, e.g., plant density in
wealth crops, leaf nitrogen in coffee, oil spills parameters. Specifically, we created a search
string divided into three groups of keywords as follows:

1. ("service robot*" OR "autonomous robot*" OR
"Autonomous guided vehicle*" OR
"unmanned aerial vehicle*") AND

Table 3 Selection process with filtering results

Scopusa

First Searchd Filtering 1d (−42) Filtering 2f (−10)

70 28 18

ACM Digital Libraryb

First Search Filtering 1 (−3) Filtering 2 (−95)

108 105 10

IEEE Xplorec

First Search Filtering 1 (-15) Filtering 2 (−18)

35 20 2

aQueried Sep. 2020
bQueried Oct. 2020
cQueried Nov. 2021
dTotal number of hits using the final search string
eApplication of inclusion/exclusion criteria (cf. Table 4) to title, keywords, and abstract
fApplication of inclusion/exclusion criteria to entire paper
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2. ("variability" OR "variant*") AND
3. ("software")

With pilot searches, we validated and refined the search string together with the
terms and keywords used. For instance, we experimented with adding more terms,
such as inspection robot*, lawn-mowing robot*, vacuuming robot*,
and entertainment robot*, which, however, did not yield more results.

An overview of the search results using both search engines and the string for each filter-
ing iteration is depicted in Table 3. Our first search in Scopus in September 2020 yielded 70
results, from which we filtered out 42 search results using our inclusion/exclusion criteria
upon the paper title, keywords, and abstract. We filtered out 10 more papers applying these
criteria to the full paper, yielding 18 papers for analysis. We followed the same process
for the ACM Digital Library, obtaining 108 search results, then excluding 3 papers and 95,
respectively, obtaining a total of 10 papers for analysis. Finally, the search in IEEE Xplore
yielded 35 results, from which we filtered out 15 and 18 papers in two steps, resulting in 2
papers.

3.3.2 Inclusion and Exclusion Criteria

Table 4 details our inclusion/exclusion criteria. Notably, we did not restrict the scope of
our paper selection to a time range. Since, as explained above, no prior literature review
on variability in robotics exists, our goal was to obtain a full overview. In fact, our search
resulted in papers published between 1989 and 2021, which is a rather large time span for a
literature review.

One notable criterion of our exclusion criteria is Studies focusing on industrial or toy
robots. As specified in Section 1, according to ISO vocabulary, industrial robots and ser-
vice robots are two different categories of robots. This is particularly true with regards
to the driver of variability considered in this paper: the environment of industrial robots
is typically structured according to the specific robot work space; the hardware consists
of standard manipulator arms, where only the end-effector is replaced; tasks are repeti-
tive and pre-programmed. While entertainment robotics is a subcategory of service robotics

Table 4 Inclusion and exclusion
criteria Inclusion criteria

1. Primary studies.

2. Studies focusing on service robots.

3. Studies that relate to robotics software variability.

4. Studies that identify drivers of variability,

variability management practices, or variability-related

challenges.

Exclusion criteria

1. Studies written in any language other than English.

2. Short publications and posters (< 3 pages).

3. Workshop summaries.

4. Studies focusing on industrial or toy robots.

5. Studies that do not deal with software variability (e.g.

mechanical modeling, statistical modeling).
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considered in our investigation, we conceptualize toy robots as robotic kits consisting of
simple mechanical and electronic building blocks.

3.3.3 Data Extraction

We extracted data from 30 papers for which we have built a database of the identified
drivers of variability, practices, and challenges. The assessment criteria we used to analyze
the search results and record the information that we used to answer our research questions
is based on the generated codebook from our multiple-case study. Concretely, we created a
data extraction template for each digital library (Garcı́a et al. 2021), whose structures were
based on the two top-level codes of our codebook.

The data extraction was performed mainly by one researcher, using the data extraction
templates as ground guidelines. The goal was to match our codes from the multiple-case study
with the analyzed papers to better triangulate the data between these two sources. We then
chose randomly 12 publications out of the total for which a second researcher performed the
data extraction independently and the results were compared as a quality assurance check.
This triggered a discussion that led to the refinement of our data extraction process. For
instance, the researchers agreed to not go deeper than three levels down the codebook’s
hierarchy—which is seven levels deep—to keep a balance between the level of detail and
complexity. The discussion also allowed the researchers to reach an agreement on fine-
grained details, e.g., whether a finite-state-machine-based mechanism for managing mission
variability could also be used for environment variability, making the code cross-cutting.

3.3.4 Quality Assurance

We assured the quality of our paper selection and analysis as follows. First, defining the
inclusion/exclusion criteria that relied on an agreement of five of the authors. Second,
while the selection of papers and their analysis were performed by one author, to mitigate
potential bias, the results were reviewed and compared by another author—as explained in
Section 3.3.3. Once a disagreement was found we involved all the authors, discussed and
reached an agreement. In the case of disagreement we would go for majority vote, but it was
not needed since we reached the agreement in every case.

The comparison revealed a disagreement on applying the inclusion/exclusion criteria to
one paper (i.e., whether the paper is relevant) and five disagreements on the interpretation
of data to answer our research questions (i.e., what aspects of our research questions were
covered by the search results). In the latter case, the disagreement was concerned with the
classification of solutions for the Management of Variability. The selected papers, as well as
the majority of the collected papers, do not clearly specify to which driver of variability the
proposed solution can be applied. As discussed in Section 5.7, these include the adoption
of engineering paradigms such as Model-Driven Engineering, Software Product Line Engi-
neering, Software Frameworks, and Component-Based Software Engineering. One author
proposed to exclude these solutions from the data analysis related to Management of Vari-
ability, but after a discussion the authors decided to classify them as generic solutions to the
Management of Variability for all drivers of variability.

We discussed these disagreements among all authors until consensus was reached. We
then also clarified our inclusion/exclusion criteria to minimize selection bias. Third, the
same two authors met weekly to discuss the progress of paper selection and analysis. These
sanity checks helped us improve our literature review iteratively and maintain its quality by
discussing threats to validity and clarifying the methodology.
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4 Drivers of Variability (RQ1)

Our selection of drivers of variability was strongly influenced by the seminal work by
Brooks (1991), who identifies a set of aspects that characterize every robotic system. These
aspects were contextualized with variability of robotic systems in the taxonomy of factors
by Gherardi (2013). We built upon these studies and triangulated data from the literature,
our experiences, and the interviews with practitioners from PAL Robotics and the BCAI to
design our list of drivers of variability:

– Environment (based on robot situatedness Gherardi 2013). Robots are cyber-physical
systems that are situated in the world—instead of being purely software-based agents—
which influences the behavior of their systems.

– Robot hardware (based on robot embodiment Gherardi 2013). Robots have bodies with
which they perceive the external world and operate and manipulate it.

– Mission (based on robot intelligence Gherardi 2013). Robots are required to operate
based on adequate and useful behaviors, described as missions.

In what follows, we elaborate on the characteristics and impact of the three main drivers—
environment, hardware, and mission—on both our studied companies. We highlight the con-
crete characteristics of these drivers identified from our interviews. Thereafter, we report the
results from our SLR and contrast them with the findings from the interviews in an observation.

4.1 Environment

Service robots are increasingly expected to work in open environments, often populated
by humans, as stated by Bozhinoski et al. (2019) and the H2020 Multi-Annual Robotics
Roadmap.10 In the taxonomy by Gherardi (2013), this variability driver is related to robot
situatedness, or context—that is, robots operate in a dynamic and complex environment. To
this end, robots must be aware of their state and surroundings, which is typically achieved
using a variety of sensors as well as navigation and perception algorithms.

Companies need to deal with various characteristics of variability, namely managing (i)
different scenario and map models, (ii) events that may occur, (iii) specific features
of the environment (e.g., whether humans will populate it), and (iv) dealing with the
inclusion of humans and uncertainty.

Scenario and Map Models The operation of service robots needs to consider several sce-
narios, which compile a set of characteristics of an environment and requirements of the
robotic application. Engineers (i.e., technical operators) need to model such scenarios and
their scope to make their robotic systems able to operate in these contexts. Broader scopes—
i.e., those covering more scenarios—lead to more complex modeling. Also, engineers need
to consider many details for the modeling of a scenario. For instance, the robot’s maxi-
mum speed, which is dictated by its hardware and configuration, will determine execution
times, but also how much space it will need to brake if an obstacle is detected. In the case
of the farming robot from Blue Ocean, the robot requires a special type of tires to drive on
mud, while the motors of other robots from the same company as PTR and UVD must be
powerful enough to allow navigation in hospitals (where the maximum slope in corridors is
under regulation). Standards also affect the definition of the scenario, e.g., by defining the
maximum speed a robot can operate in an environment populated by humans.

10https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf

https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
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For the modeling of scenarios, operators often map the environment to create 3D models,
which are used by robots while they operate or by operators to specify regions of interest—
as described in Section 5.2.

Events A common characteristic of environment variability highlighted by our intervie-
wees is the modeling of events—phenomena that may occur in the environment where
robots operate.11 Service robots must be able to cope with such events so to ensure robust-
ness in their operation. Different robot platforms are designed to adapt their behavior based
on events from the environment; for instance, any of the studied robots that operate in
human-populated environments are expected to avoid collisions with moving objects when
navigating. Furthermore, our studied companies need to model adaptation behaviors to spe-
cific events that may occur in customer-specific environments, typically handled during
the installation process (Obs. 9). This results in these companies managing sets of events
for different customers that are later use for mission specification, which makes this topic
cross-cutting with the mission driver of variability (see Section 4.3).

To guarantee robustness, service robots must be able to cope with events that may
occur in their operating environment. From our studied companies we learned that often
solutions need to be adapted to customer-specific operating environments and this might
cause a high variability demand and customizability needs.
Actionable recommendations for researchers and tool providers: There is the need
for instruments such as configuration management tools and model-driven toolchains to
enable customizability to meet customer-specific operating environments while dealing
with robustness under uncertainty. Examples discussed in this study are the Hyperflex
toolchain and the project RobMosys.

Observation 1 (Environment events)

Specific Features of the Environment The environments where robots operate may also
pose distinguishing characteristics. From our interviews, we identify a number of distinct
categories of environment features:

(i) Outdoors vs. indoors. While outdoor environments are inherently challenging due
to their proneness to changes (e.g., light and surface conditions), operating indoors
presents distinct challenges as well, e.g., robots may be prevented from using GPS or
GNSS sensors. Almost all robots of our considered companies (with the exception of
Blue Ocean’s farming robot) are dedicated to either outdoor or indoor use.

(ii) Light conditions. A well-lit environment rich in visual features requires less powerful
components for robot localization (e.g., cameras and localization algorithm) than a
poorly-lit or feature-less one. Especially in outdoor environments, the light conditions
are prone to change, due to changing weather and daytime.

(iii) Surface conditions. Driving on special surfaces (e.g., mud) can make localization
challenging because the skidding of wheel tires can make the wheel sensors unre-
liable. To address this challenge, Blue Ocean uses additional sensors (IMU and
GNSS) to support localization. Moreover, stairs are an environment feature posing an
insurmountable hurdle for robots that are set up on wheels.

(iv) Type of obstacles. The number, size, and dynamic movement of obstacles found in the
environment leads to variability in the expectations for the navigation components.

11https://www.iso.org/standard/70939.html

https://www.iso.org/standard/70939.html
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A particularly crowded environment may benefit from more sophisticated, adaptive
planning components.

(v) Inclusion of humans. We dedicated a separate discussion (see next paragraph) to the
crucial feature of whether the environment is populated by humans.

Inclusion of Humans The inclusion of humans in the operating environment imposes sev-
eral aspects to be considered by the engineers, including safety regulations and uncertainty.
Safety regulations may entail, among others constraints, reducing the robot’s speed and,
more broadly, maintaining safety instead of reaching a waypoint as the ultimate goal. Based
on the inclusion of humans, our studied companies differentiate the environments between
“factory-like” or “social.” The former represents factory scenarios (e.g., a storehouse), typi-
cally regulated, where efficiency and speed are the aspects to promote. Social environments
(e.g., a hospital, a conference) are less structured and normally have an increased presence
of humans, who may not behave in a pre-defined or deterministic manner.

The following two examples illustrate two different environment types. A TIAGo base
from PAL Robotics is used in an industrial setting (concretely a storehouse) to deliver sup-
plies with the aim of optimizing logistics.12 The robot navigates autonomously, but even
though it must collaborate with human operators the environment is not highly human-
populated. On the other hand, the GoBe, a telepresence robot from GoBe Robots13—a
project within Blue Ocean’s portfolio—is mainly used to remotely attend to social events
such as conferences, hospital visiting, or teaching. I1: “It’s not the same to be grasping from
the top of a table when there’s absolutely no one around than to be grasping on a shelf that
is completely filled with stuff, and while other people are roaming around the robot.”

12https://www.youtube.com/watch?v=eN9Dl1zG3no
13https://www.gobe-robots.com

https://www.youtube.com/watch?v=eN9Dl1zG3no
https://www.gobe-robots.com
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4.2 Robot Hardware

Hardware variability is also a consequence of the cyber-physical nature of robotic systems.
Hardware affects the services a robot may provide since they are directly dependent on their
capabilities; the locomotion system of a mobile robot allows it to navigate, a robotic manip-
ulator can grasp objects thanks to its robotic arm, and a robot equipped with a camera can
“see” the environment where it operates. Due to the cyber-physical nature of robots and the
reasons explained in Section 4.1, the environment strongly influences hardware variability.
For instance, the context in which robots operate influences their hardware design from the
very beginning, e.g., hardware components suitable for an indoor robot may not be adequate
for an outdoor robot. Thus, hardware must conform to the requirements of a robot, includ-
ing the environment where it will operate and the missions it will be commanded to achieve.
In this section we describe several characteristics of robot hardware variability, namely (i)
services, (ii) robotic capabilities, (iii) embodiment, and (iv) customer requirements.

Services Robots are conceived with a purpose, meaning that they are designed to provide
specific services. For instance, Blue Ocean’s UVD robot14 disinfects hospital rooms and
PAL Robotics’ Stockbot helps with retail. The embodiment and hardware design of such
robots are tailored to the services they provide. For example, ultraviolet lamps are a specific
requirement for disinfecting robots.

Robotic Capabilities To fulfill their expected services, robots must be able to carry on
specific capabilities. For example, the PTR robot15 was developed to handle patients’ trans-
portation at hospitals. To accomplish this service, the robot needs at least two capabilities,
namely to cautiously lift the patient and navigate to the target location. Specific mecha-
nisms and sensors are required for the robots to perform such capabilities. For instance,
a robot would need some sort of gripping actuator to grasp objects. Despite efforts from
the companies to harmonize solutions and interfaces to ease the management of variability
among their robots (see Obs. 19), the set of specific capabilities of each of their robots entail
another source of variability. The hardware significantly differs between two robots of the
same company as is the case of UVD and PTR robots because their intended services and
thus capabilities are different.

Embodiment One of the most consequential features of a robot is the mechanical embod-
iment, as discussed by Gherardi (2013). Recent studies (Ventre-Dominey et al. 2019) have
demonstrated that the embodiment of a service robot can increase social closeness and
acceptability by its users. The embodiment can affect the hardware design of a robot due

14http://www.uvd-robots.com
15http://ptr-robots.com

http://www.uvd-robots.com
http://ptr-robots.com
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Fig. 4 Feature model of the TIAGo robot (excerpt). The model shows several features that a TIAGo robot
may incorporate and the versions that can be equipped (e.g., different types of navigation lasers or RGBD
cameras). The cross-tree constraints at the top-left indicate that the equippment of fingertip sensors require a
specific parallel gripper and the force-torque sensor a robotic arm with seven degrees of freedom (DoF)

to various factors, including its size, e.g., an RGBD camera might be too big to substitute
a monocular camera. Another aspect of the robot influenced by the mechanical side is the
design and selection of hardware; for instance, different types of motors and actuators would
require different motor controllers, drivers, or feedback sensors. The embodiment directly
affects the software since the robotic sensors and actuators describe which capabilities and
services a robot can perform. For instance, different navigation algorithms are used based
on the kinematics of a robot. That is, a drone would require a different navigation algorithm
than a ground robot, and in turn, a differential drive would require a different navigation
algorithm than an omnidirectional one.

Hardware-Related Customer Requirements As described in Section 3, the scope of both
companies is different and it hugely affects the impact of hardware variability in each of
them. PAL Robotics mainly manufactures research platforms whose hardware modules can
be configured by customers, as described in leaflets of their products, having more than 30
variants for one of them, i.e., TIAGo.16 An excerpt of the possible features of this robot is
depicted in the feature model of Fig. 4. Differences between the configurations based on
customer requirements generally lead to static variability in this context. Hardware choices
of sensors and actuators define the required interfaces and controllers to be deployed into
de robot. Although PAL Robotics creates variants of their robots based on tailored cus-
tomer requirements, the company also provides some pre-defined variants of their products,
e.g., TIAGo Iron, Steel, Titanium, and TIAGo++ (see Fig. 1). As opposed, Blue Ocean’s
robots are considered professional service robots, and thus, once released to the market their
hardware design is fixed.

16http://pal-robotics.com/wp-content/uploads/2020/05/TIAGo-Datasheet.pdf

http://pal-robotics.com/wp-content/uploads/2020/05/TIAGo-Datasheet.pdf
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4.3 Mission

We define missions as coordinated combinations of skills that express the desired goals of
the robots. Missions must be specified by operators, either customers (e.g., end-users, devel-
opers) or engineers at the company. Missions possess several characteristics of drivers of
variability, namely (i) expertise of the human operator, (ii) means of human-robot inter-
action, and (iii) expected and unexpected events (already discussed in Section 4.1). Both
companies strive to raise the levels of abstraction of their mission specification methods to
promote reusability, modularity, and improve their user-friendliness.

Expertise of Human Operator As described in Section 3, the scope of each of the stud-
ied companies varies, resulting in a difference between customer groups. As detailed in
Section 5.6 technical operators, since they have knowledge of programming languages, are
able to use advanced mechanisms for mission specification—e.g., behavior trees, finite-state
machines, general-purpose languages. PAL Robotics’s main portion of customers is devel-
opers with programming skills. Operators working with professional service robots from
Blue Ocean are mostly non-technical operators and therefore cannot modify the underlying
mission used by the robotic application and instead can only modify some parameters via a
GUI. A reason for this policy, apart from the expertise it would require, is safety concerns.
Allowing non-technical operators without technical and safety regulations knowledge to
modify the underlying missions would breach the safety of the robots. To a lesser extent,
PAL Robotics also provides robotic applications to non-technical operators, specifically
based on TIAGo Base and Stockbot.

Means of Human-Robot Interaction It includes mechanisms and strategies between robots
and operators. The operator needs to communicate the mission to be executed by the
robot and the robot might need to communicate when it has completed the mission. The
ISO 8373:20121 defines human-robot interaction as the “information and action exchanges
between human and robot to perform a task by means of a user interface” and in turn, user
interface as “means for information and action exchanges between human and robot during
human-robot interaction.” For instance, robots may communicate the state of the mission
they are performing (e.g., changing behavior to charging mode), which could be accom-
plished by prompting a message in a graphical user interface (as is the case of UVD robots),
via voice commands or flashing LEDs. Interaction via communication could also compre-
hend altering aspects of the mission at runtime (e.g., the operator specifies to a robot which
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object to grasp17), which could be performed using buttons in the robot, a GUI, or gestures
(Garcı́a et al. 2018).

4.4 Drivers of Variability from the Literature

We now present the results from our systematic literature review (SLR) that identifies
drivers of variability in robotics. Table 5 provides an overview of the analyzed papers on
the topic, indicating with black dots which driver of variability is addressed in each paper.
While conducting our SLR, we realized that the selected papers were concerned with two
main types of robots. Concretely, 17 papers refer to wheeled ground robots (with or without
an onboard robotic arm) used in indoor environments, while 13 papers refer to professional
or low-cost unmanned air vehicles (UAV). We will highlight this distinction in every table
listing our SLR results.

The drivers of variability are mostly described in the introduction section of each paper
and used as motivation for the proposed scientific approach. We interpret this data as an
indicator of the relevance of the topic addressed by our investigation.

Most papers (29 out of 30) identify one or more of the three drivers of variability that
we hypothesized when we formulated RQ1. We interpret this as a confirmation of the
significance of the research question.

Regarding the drivers of variability investigated in our study, environment variability is
addressed more explicitly in papers that refer to ground robots as they have to operate in
everyday open-ended environments with changing operational conditions (e.g., illumina-
tion) that affect the correct acquisition of sensory measurements. Some papers focus on
robotic applications working in diverse environments, as the study by Álvarez et al. (2006),
which discusses the variety of ship types and shipyards their robotic applications must adapt
to. The main horizontal domain to which UAVs of the studied papers are applied is agri-
culture, where environment variability mostly consists of the different field types during
agricultural tasks.

Hardware variability in ground robots typically refers to the variety of sensors that can
be used for common robot functionalities, while for UAV robots it refers to differences in
the mechanical structure.

Service robots operating in hostile environments, such as nuclear plants, vessel internals,
and disaster scenarios (Álvarez et al. 2006; Niemczyk and Geihs 2015), are equipped with
specific sensors (e.g., RGB cameras, infrared cameras, depth cameras) according to the task
to be performed and the operational conditions (e.g., illumination, radiations).

Home service robots (Kimour et al. 2009) perform tasks that require interaction with
humans using a variety of human-robot interfaces, such as physical buttons, microphones,
speakers, cameras, and touch screens.

17https://www.youtube.com/watch?v=GdMmyrzIP8o

https://www.youtube.com/watch?v=GdMmyrzIP8o
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Table 5 Drivers of variability from the literature (RQ1)

Ea Hb Mc

Ground robots P1 Lee et al. (2006) •
P2 Álvarez et al. (2006) • • •
P3 Kimour et al. (2009) • • •
P4 Steck and Schlegel (2011) • • •
P5 Lotz et al. (2013) • • •
P6 Brugali and Gherardi (2016) • • •
P7 Brugali and Valota (2016) • • •
P8 Brugali and Hochgeschwender (2017) • • •
P9 Brugali and Hochgeschwender (2018) • • •
P10 Brugali et al. (2018) • • •
P11 Rollenhagen et al. (2019) • • •
P12 Wirkus et al. (2020) •
P13 Seiger et al. (2015) •
P14 Niemczyk and Geihs (2015) • • •
P15 Goldsby and Cheng (2008) •
P16 Saglietti and Meitner (2016) •
P17 Buchmann et al. (2015) •

UAVs P18 Brown et al. (2007) • • •
P19 Steiner et al. (2013) • •
P20 Silva et al. (2013) • • •
P21 Fragal et al. (2013) • • •
P22 Ozdemir et al. (2014) • • •
P23 Queiroz and Braga (2014) • •
P24 Czerniejewski et al. (2016) • • •
P25 Feng et al. (2015) •
P26 Braga et al. (2012) • • •
P27 Olaechea et al. (2018) • • •
P28 Brooks and Iagnemma (2009) •
P29 Pant et al. (2015) • • •

aEnvironment variability
bHardware variability
cMission variability

Service robots for logistics and factory automation (Brugali and Valota 2016; Rollen-
hagen et al. 2019) consist of mobile manipulation platforms that can be customized for the
transportation and manipulation of various types of loads. Hardware customization requires
adequately configuring kinematics, dynamics, and control parameters (e.g., speed, acceler-
ation, impedance). Parameters configuration might be performed before the execution of a
task (i.e., at startup) or even during the execution of a task (i.e., at runtime); for example,
when the robot automatically changes the manipulation tool.

Similarly, UAVs used for service robotics tasks have a customizable kinematics struc-
ture. This permits, for instance, to dynamically activate or deactivate additional motors for
short-distance transportation of heavy loads or long distance transportation of lighter loads
(Olaechea et al. 2018; Silva et al. 2013; Fragal et al. 2013) and change the carried tool (e.g.,
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a thermal camera for transmission line inspection or an RGB camera for traffic monitor-
ing) (Braga et al. 2012; Czerniejewski et al. 2016; Brown et al. 2007). Different kinematics
structures account for variability in the flight operations, as for example as taking off from
limited runway space or using a parachute for landing (Ozdemir et al. 2014; Steiner et al.
2013).

Robot capabilities (e.g., mobility, manipulation, user interaction) are greatly affected by
the available hardware resources (i.e., sensors, actuators) as hardware variability induces a
corresponding variability in the software implementation of common functionality, such as
perception and motion control. This variability demands for architectural design approaches
that promote flexibility and configuration of the robot control system.

Mission variability is discussed in relation to the specific purpose and application of
the robotic system—e.g., cleaning of ship-hull surfaces (Álvarez et al. 2006), home enter-
tainment (Kimour et al. 2009), and factory logistics (Rollenhagen et al. 2019). A concrete
example of mission variability for UAVs consists of different payloads that require fine-
tuning of flight control parameters. Two papers (Niemczyk and Geihs 2015; Rollenhagen
et al. 2019) mention robotic applications working with humans, as of rescue robots by
Niemczyk and Geihs (2015).

In addition, some papers identify new drivers of variability. Concretely, the study by Lotz
et al. (2013) identifies variability associated with Quality of Service (QoS), including non-
functional properties like safety. In this paper, the authors use the example of a robot running out
of battery that might prioritize power consumption over task efficiency to fulfill its mission.

5 Variability Management Practices (RQ2)

Each driver of variability entails different challenges and, therefore, requires special strate-
gies and mechanisms to manage them. In our study, strategies refer to more abstract ways of
tackling a specific problem (e.g., decoupling services provided by a robot from specific sen-
sors), while mechanisms refer to technical approaches (e.g., using behavior trees to define
the robotic missions). The variability drivers studied in this paper are related to each other,
thus, some of the practices applied by companies are cross-cutting, intending to address
multiple variability drivers. For instance, the adaptation rules used by companies to make
their robots adapt to the environment are also used during mission specification to define
possible robotic behaviors. For each of the three identified variability drivers, one subsec-
tion is devoted to strategies and mechanisms applied for addressing it. A final subsection
presents results from our SLR and concludes with an observation of the triangulation of
those results with our interviews’ findings.
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5.1 Environment: Strategies

The main strategies we identified for environment variability management are (i) installa-
tion process, (ii) scenario modeling, (iii) generic configurations, and (iv) collecting and
analyzing customers’ feedback.

Installation Process It is a well-known term in industry for setting a robot to a new environ-
ment. The term has been already standardized in the ISO 8373:2012. During this process,
the robots are “installed” in the new environment by mapping the area, setting regions of
interest, and creating event-catching solutions. As anticipated in Section 4, the drivers of
variability studied in this paper are sometimes intertwined. The installation process also
concerns the mission driver since during this process missions can be already defined by a
knowledgeable operator from the company.

Our studied companies support customers during the installation process since it cannot
be completely automated and requires specialized knowledge. According to two inter-
viewees, Blue Ocean is developing tools that will enable end-user customers to perform
the installation. The same company has also performed this process remotely due to the
situation caused by COVID19, which still requires the involvement of an expert operator.

Scenario Modeling It is performed by our studied companies in the first steps to develop
a robotic application. As explained in Section 4.1, the modeling of a scenario encompasses
identifying the requirements of a robotic application to cover certain scenarios and the
characteristics and constraints of the operating environment.

Generic Configurations Besides those early-stage decisions, the studied companies also
configure their robotic applications based on the environment using configuration files and
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parameters. These mechanisms will be further explained in Section 5.2. The purpose of
making configurations tailored to a specific environment is to maximize the efficiency of
robotic applications in certain scenarios. On the other hand, the studied companies opt to
configure their robotic applications by including generic values that are given by rules or
features of the environment. The goal is to create generic solutions that work in most of the
scenarios without having to fine-tune parameters for each context with the overhead in terms
of effort it would entail. For instance, in the case of configurations made for UVD robots,
some values are given by the regulations of hospitals—i.e., their most typical operating
environment. I9: “The process of selecting the wheels that we would have to use [...] takes
into account the maximum slope that you would find in a hospital, and that’s because there is
a maximum slope that someone can climb using a wheelchair.” In the case of PAL Robotics,
the Stockbock robot always works with the same configuration of parameters, which are
produced during the installation process.

Customers’ Feedback The feedback from customers can be used to update the models and
knowledge of the companies of the environments where their robots operate. These updates
may lead to the tuning of existent configurations or to identify and model new events that
our studied companies use to generate adaptation rules for their robots. I2: “If we have per-
mission to do so, we collect the data [from a reported error from the customer] and then we
can reconstruct what happened. [For instance,] in this situation the laser beam reflected on
a mirror, which caused the crashing of the robot’s operation. We can integrate this situation
into the set of situations that we tried to handle with a generic set of parameters.”

5.2 Environment: Mechanisms

In the following, we discuss mechanisms used for making configurations based on the
environment broadly divided into operator-driven and self-configuration.

5.2.1 Operator-Driven Configuration

Several mechanisms are applied by both companies to manage the variability coming from
the environment, mostly to configure the operating scenario and its map (before run-time)
and for the robotic application to adapt to such an environment (at run-time). Specifically, in
this section we discuss as mechanisms (i) parameters, (ii) configuration files, (iii) map-
editing tools, and (iv) mechanisms for customers.

Parameters Both companies make use of parameters to define some aspects of robotic
applications for specific operating scenarios. These parameters are primarily tuned when
launching the required packages to run the scenario but could be changed during run-time as
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well. Some of those parameters are low-level details of certain algorithms, e.g., the drifting
rate of a navigation algorithm, as stated by a PAL Robotics interviewee. Both companies
report on the usage of a tool from the ROS ecosystem, namely rqt reconfigure.18 The
tool permits tuning parameters both before and during run-time.

This mechanism is cross-cutting with hardware variability (see Section 5.4): to pro-
mote the reusability of components and skills among their platforms, PAL Robotics uses
parameters to configure their codebase (Obs. 21).

Configuration Files Configuration files are used by both companies to adjust the con-
figuration of their robots. Commonly used configuration files in ROS are yaml19 and
roslaunch20 files. The first use the well-known YAML format to easily loading sets of
configuration parameters (e.g., from calibration) and the latter is a tool that allows launch-
ing multiple ROS nodes while at the same time setting parameters on the ROS parameter
server. Configuration files are used by both companies to launch packages and software
components required for specific scenarios as well as for defining values for parameters.
According to interviewees from PAL Robotics, configuration files are created in a rather ad
hoc way at the company. I1: “At the end, what we have is a bunch of configuration systems
for each different scenario that we’ve been in.”

Configuration files are also used as a mechanism for hardware variability management
(Section 5.4). Concretely, PAL Robotics makes use of configuration files to load sets of
parameters to make certain skills usable by different robots. Tuning parameters and loading
configuration files are two mechanisms used together at PAL Robotics to keep a unified,
common codebase that is also configurable. PAL Robotics implements robot-specific con-
figuration files that are loaded at startup. These are specific YAML files to robots’ serial
numbers that specify the dependencies and libraries required for the functioning of each
robot (Observations 25, 26).

Map-editing Tools Both companies model the environment and provide tools to config-
ure those models. Blue Ocean provides an application to its customers with which they can
configure the map of the environment by making map annotations and removing or adding
virtual obstacles. It does not require specialized knowledge from the operator, since the typ-
ical customer target of the company are non-technical operators—e.g., staff from a hospital.
PAL Robotics provides a similar editor on-demand, which is a rviz21 plugin. The edi-
tor adds functionalities to rviz including downloading and uploading maps, changing the
active map, as well as defining virtual obstacles and points and groups of interest.

18https://wiki.ros.org/rqt reconfigure
19https://yaml.org
20http://wiki.ros.org/roslaunch
21http://wiki.ros.org/rviz

https://wiki.ros.org/rqt_reconfigure
https://yaml.org
http://wiki.ros.org/roslaunch
http://wiki.ros.org/rviz
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Mechanisms for Customers Generally, configurations based on the environment are to be
made either by the company, the system integrator, or self-tuned by the robots, especially if
the customer is a non-technical operator. In Blue Ocean, most environment-related config-
urations are made by an expert practitioner or autonomously by the robots during run-time.
However, this company also allows customers without programming knowledge to tune
some parameters of the environment model. For instance, the time a UVD robot needs to
stay in every position to consider it disinfected is a parameter a customer can tune by using
a graphical user interface (GUI) in a tablet. Since PAL Robotics also provides services to
researchers and developers, the company provides specific interfaces and an API to allow
technical operators to configure their systems.

5.2.2 Self-configuration

Since service robots typically operate in open environments, they must be able to self-
configure or adapt to their operating context. As mechanisms for self-configuration we
identified (i) adaptation rules, (ii) contextual navigation, and (iii) in-house tools.

Adaptation Rules Both studied companies conceive adaptation rules that are applied based
on conditions that are predefined before execution. Adaptation rules may also be used for
failure detection, recovering after failing (i.e., fallback behaviors), and to define safety rules
that override the running controller. Adaptation rules can be defined using systematic mech-
anisms (described shortly) or can be also hard-coded into the robot control system. As stated
by an interviewee from PAL Robotics, a problem related to the generation of hard-coded
rules is that they may grow to a number difficult to manage after some time.

At PAL Robotics, developers use an in-house variant of SMACH22 to define finite-state
machines (FSMs), which are the mechanism to define the adaptation rules and robotic mis-
sions at the company. According to one interviewee from the company, one advantage of

22http://wiki.ros.org/smach

http://wiki.ros.org/smach
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using SMACH is that it allows updating the FSMs after compilation time. All PAL Robotics
interviewees acknowledge that they are planning to migrate from FSM to behavior trees for
generating robotic missions and adaptation rules. The main reason they gave is that behavior
trees are easier to understand by humans.

As opposed to PAL Robotics, Blue Ocean currently uses behavior trees to define adap-
tation rules and their robotic missions; for a better understanding of behavior trees we refer
to the work of Colledanchise and Ögren (2018). At Blue Ocean, software components in
the lower-level layers of their architectures are used to monitor the environment and trigger
events (Obs. 1) that may affect the behavior tree of the robotic application. I9: “The way
that we are following the adaptations now is we have some software bits that are respon-
sible for watching the external events, and then they can trigger another event to have the
behavior tree follow another path or reconfigure using other parameters.”

We elaborate on these mechanisms in Section 5.6.

Contextual Navigation In point-to-point navigation, distance or time are the dimensions
typically optimized. However, in open environments, other factors like minimum distance
to a human due to safety reasons or due to what is considered socially acceptable must be
considered. The goal of contextual navigation is to adapt the navigation of the robot to the
specific and instantaneous current context where it is operating (Lu 2014). A contextual
navigation solution would load or unload planning algorithms or configure them based on
the context detected for each instant by the robot. This approach aims to increase the success
rate of the algorithm. A concrete example given by a Blue Ocean interviewee is the process
of a UVD robot crossing a door; in that situation, the robot will detect a change of context
and will need to tune some parameters of its working planner or load a more appropriate
planner for the new task. Within Blue Ocean, the UVD project is planning to integrate this
approach in a near future. The farm-robot project has already applied this approach to their
robotic applications, which are able to load and unload appropriate planners when a change
in the context (e.g., indoors or outdoors setting) is detected.

In-house Tools While Blue Ocean partially relies on standard tools, including the ROS
middleware, their contextual navigation mechanism (see previous paragraph) is imple-
mented in a custom in-house framework. The framework allows developers to define
navigation skills by implementing them with available planners and ROS-provided function-
ality. Examples of such skills are covering an area as much as possible, following a line, or
following a certain talking thing. The framework is responsible for monitoring the context of
the robot and for responding to changes of context (e.g., moving through a door, or observ-
ing that the current room is getting crowded with people) by exchanging or re-configuring
the used navigation skills.
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5.3 Hardware: Strategies

Due to the cyber-physical nature of robots, hardware massively impacts many phases of
their development. Hardware is typically decided during the design stage of the robot, but
at later stages also influences the software skills it may implement. Furthermore, one of our
studied companies made robotic hardware configuration a company policy for their robots.

Strategies for managing hardware variability in both studied companies mainly serve two
topics, namely developing robotic skills and hardware customization.

5.3.1 For the Development of Robotic Skills

This section discusses strategies used by companies to develop robotic skills, namely (i) the
reuse of resources, (ii) the collaboration with customers, (iii) iterative development and
documentation, (iv) decoupling, (v) harmonized interfaces, and (vi) inter-department
communication.

Reuse of Resources Instead of developing skills from scratch, both companies strive to
reuse already available software components for specific skills when possible. According
to two interviewees, this sometimes requires modifying the components to specific needs,
especially when reusing packages from the internet. Examples of such modifications are
parameters tuning, as the distance between the robot’s wheels or the position of a spe-
cific sensor on the chassis of the robot. An interviewee mentions that licensing constraints
impeding the usage of certain resources might exist.

Collaboration with Customers Regarding skills reuse, a factor that greatly impacts each
company’s strategy is its target clients—mainly technical operators for PAL Robotics and
non-technical operators for Blue Ocean (Obs. 6). A consequence of this is that PAL Robotics
can benefit from solutions developed by their clients if they consent. I4: “One example is
the [research group from] Koblenz University, they use the TIAGo for the Robocup@Home
competition. And they developed the complete application of the robot, which understands
natural language commands and autonomously navigates in a domestic environment, opens
a fridge, grasps an object, and brings it back to the initial user. In so they go even beyond
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what we have been able to do.” However, according to the CTO from PAL Robotics, inte-
grating such solutions into the company’s system is complicated or sometimes impossible
due to the diversity of the used developing tools I4: “It’s complicated for us to integrate
back all this knowledge and all these functionalities because sometimes they use the new
version of libraries, a new version of a sensor [...]. So let’s say that because of the real
variability of the use case it is really difficult for us to inject back all this functionality.”

A possible and interesting outcome of this collaboration with customers is the creation
of an ecosystem where solutions from both the company and customers must conform to
given rules. This ecosystem, similar to ROS’s ecosystem but thoroughly tested and docu-
mented so to make it company-complaint would facilitate software reuse. This may reduce
the overhead caused by skills and glue code development and provide a new way to manage
their associated variability. Supporting practitioners to find specific solutions for their con-
cerns would help to reduce the impact of the “reinvent the wheel” phenomenon discussed
by Garcı́a et al. (2020). Three interviewees from PAL Robotics and one from Blue Ocean
find such an ecosystem valuable for the development pace in the robotics domain.

Decoupling Despite the efforts from both companies to reuse existing resources, they also
need to develop new skills for their robotic applications. Developers from both companies
strive to decouple their software from hardware. The main goal is that hardware can evolve
without affecting the codebase. As an example, services are decoupled from specific sen-
sors, so a specific brand of camera is not required for detecting objects as far as the camera
provides an image stream. One interviewee from Blue Ocean describes the application of
the 5Cs method to decouple computation, communication, configuration, coordination, and
composition in their robotic applications.

Iterative Development and Documentation One interviewee from Blue Ocean states that
the skills’ development is performed iteratively through a try and error process. Another
interviewee from the same company declares that this development process is thoroughly
documented, detailing the tasks to perform and the time expectations.

Harmonized Interfaces To simplify the usage and development of robotic skills, both stud-
ied companies strive to harmonize the interfaces among their software components: they
put effort into explicitly defining their interfaces in a way that bridges the heterogeneity of
different software and hardware components. In our interviews, we found three main prac-
tices being applied towards this goal: (i) Relying on software development paradigms that
encourage developers to explicitly think and reason about interfaces. I6: “That is because
of the service-oriented architecture, which requires to put focus on the contracts, and that is
what we do.” (ii) Decoupling robotics skills from hardware via minimal interfaces. I4: “If
you need to move a robot in a certain environment, you need to define an interface and some
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resources that are the minimum requested by the algorithm for making this possible. But it’s
better to make it decoupled from the hardware because the hardware is going to evolve.”
(iii) Separating the 5C. I1: “One of the concepts I learned in the past and I promote with
my colleagues is the separation of the 5C: [...] computation, communication, configuration,
coordination, and composition. This means that, for example, you want to have your com-
ponent configurable, and nowadays we have many ways to do that, your URDF in ROS or
you can have your own XML or json file, you just need to care and not use any hard-coded
value. [...] This gives you already some flexibility.”

Inter-department Communication An approach followed by both companies to promote
the development of robotic skills and their reusability within the company is the dialogue
between departments in charge of the development of robotic platforms. In the case of Blue
Ocean, to assess whether developing a feature for a certain robot is feasible, a group of
experts consisting of a brand manager, a project technical leader, a business owner from
another project of the company, and a user-requirements specialist is assembled. Once
the feasibility of the development is evaluated, a group of developers that follow SAFe-
like23 processes is assigned to the task. To promote collaboration among the company’s
projects, practitioners at Blue Ocean maintain oral-based communication, i.e., the architects
of each of the robot projects meet regularly to keep each other synchronized and updated on
development decisions. The company prioritizes oral communication over written commu-
nication since the latter gets quickly updated. Collaboration at the company follows a quick
pace and practitioners keep informed using communication platforms such as Slack.

In the case of PAL Robotics, they hold several types of meetings. First, they hold weekly
Scrum meetings to which “areas” (i.e., workshops & mechanics & electronics, software,
business) of the company participate separately. They also have bi-weekly meetings to
which the company’s business units attend separately.

23https://www.scaledagileframework.com

https://www.scaledagileframework.com
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5.3.2 For Hardware Customization

In some cases, it is desirable to make hardware customizable, either because the company
wants to provide such flexibility to customers or to ease possible future hardware updates.

The points of view of both companies on this topic are quite different, since, as explained
in Section 3, the scope of both companies differs with respect to their products. Blue Ocean
does not aim to support hardware customization since their products are professional service
robots whose hardware is fixed once released to the market. According to two intervie-
wees from Blue Ocean, this customization is technically possible, but they try to avoid it to
reduce costs and effort I6: “It is technically feasible. In UVD, we are using camera A. Let’s
say, that then the product goes to the market and then we find out this camera A is not any-
more in production. We can do camera B, and then we can do everything that is needed to
deploy camera B, but it’s usually very expensive because it is not about just doing a piece of
software, that is the easy part. We usually have to modify mechanical parts, covers, which
implies new molds and there is a lot of costs associated with hardware changes.” Instead,
they try to stick to hardware components they know they work after studying and testing
their performance. Special cases of customization happen in Blue Ocean at the product-
level. Then, instead of creating variants of the same product, they create two different
products—e.g., the company provides two types of GoBe robots.

On the other hand, PAL Robotics aims to provide products tailored to their customers
by allowing the customization of their robots. This is a core policy within the company
that gives rise to variability stemming from such customization. In this section, we dis-
cuss the following strategies identified from the interviews: (i) developing a unified and
customizable codebase, (ii) to harmonize interfaces, and (iiii) to provide add-ons.

Unified and Customizable Codebase PAL Robotics has invested time to develop a system
that allows the easy integration of new hardware components by creating a unified codebase.
All of their robots have the same core of code, which hugely simplifies code development
and maintenance. However, they also make assumptions when developing this code. For
instance, when they first developed TIAGo, they assumed it would only have one arm, but
at the time of releasing TIAGo++24 (i.e., a new model of TIAGo with two arms), they had to
revisit the code, which is considered a costly task by the company. To avoid such problems,
the company now develops its code in a parameterizable way to also ease the reuse of its
core code for future robot models. Besides parameterization, the success of PAL Robotics’
unified codebase relies on the harmonization of interfaces and on automatically generating
configuration files that deal with interfaces, libraries, and dependencies.

The parametrization options are maintained in configuration files, in YAML format. I2:
“We try to put as much as possible in configuration files because they are very easy to see
what has changed. They are centralizing one or a couple of locations, and you can make
changes without recompiling your code, which is a pain. So yeah, I think they are quite cost
effective. The parameter settings can be changed before and during runtime with a graphical
user interface that allows the user to inspect and change the value of every parameter.
In addition, there is also support for automated parameter-runing at runtime, especially
for those parameters that are generally heavily affected by environment conditions (e.g.,
temporary drift compensation).”

24http://blog.pal-robotics.com/tiago-bi-manual-robot-research/

http://blog.pal-robotics.com/tiago-bi-manual-robot-research/
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PAL Robotics interviewees consider that despite the time and effort it took them to reach
the state of maturity of their hardware customization strategies and mechanisms it hugely
simplifies managing hardware-customization-related variability. Therefore, they consider
their current hardware-customization strategies and mechanisms cost-effective. I1: “Most
of the software is designed in such a way that it’s easy to extend [...] Quite often, inside our
software, you find pieces that are not yet used but exist just in order to be able to integrate
something new like [...] new planers for navigation [...] or the whole body control stack.”

Despite the advances made by PAL Robotics to ease the processes related to hardware
customization, there still exist limitations, mostly related to the time such customization
would take. If a requirement from a customer is considered not feasible or not realistic
from the company’s point of view, it is communicated to the customer. The process for
deciding whether a requirement is feasible or not is not formalized and typically includes a
discussion among developers I2: “We do not have a formal process but typically it involves
discussing internally with some fellow developers [...] It’s not a formal process, its common
sense and corroboration from your partners.” Another limitation is related to the physical
connections of sensors and actuators. If, for instance, a specific camera model requested
from a customer requires a voltage supply not provided by the panel of a robot, the camera
cannot be integrated.

Harmonized Interfaces To promote the reusability of skills among platforms as well as
hardware customization and software development, a common practice applied by both
companies is to harmonize interfaces of software components of their architectures—see the
discussion earlier in this section, in the context of robotic skills development. This strategy
is especially important at PAL Robotics, where hardware customization is one of the main
goals. For instance, at PAL Robotics, robotic hand manipulators—either a five-finger hand
or a gripper—use the same harmonized interface so they can be easily replaced without
modifying the software control system of the robot. I5: “At the end of the day, it’s about
having clear interfaces and contracts. [...] Given these requirements you can build software
that is reusable.”

Add-ons One Blue Ocean interviewee indicates that an alternative they use to hardware
customization is hardware add-ons. For example, a common addition to their products is
dock stations.

5.4 Hardware: Mechanisms

Mechanisms applied by both companies for managing hardware variability are mainly
focused on control system design and developing and maintaining inter-usable skills among
robotic platforms.
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5.4.1 For Control System Design

This section discusses the mechanisms used by the studied companies to design the system
in charge of executing the robots’ behaviors. Concretely, we discuss (i) software archi-
tectures, (ii) middleware, (iii) ROS control, (iv) standards and safety layers, and (v)
version control.

Software Architectures Robot control systems are often developed and structured adher-
ing to a software architecture (Garcı́a et al. 2018; Kortenkamp et al. 2016; Ahmad and Babar
2016). PAL Robotics’s robots follow a unique reference architecture, which is realized as
a platform that contains the unified codebase of their robots (Obs. 21). The platform con-
sists of modular and reusable software components and their interfaces. At Blue Ocean,
each product is developed adhering to a unique architecture, most commonly being lay-
ered and component-based. A company policy is to reuse as much software (Obs. 26) and
mechanisms as possible, which may somewhat constraint the architectures.

Middleware Robotics companies usually rely on frameworks and middleware to support
the building of their software systems, as found by Garcı́a et al. (2020). According to most
of our interviewees, robotics software development has been hugely simplified since ROS,
which promotes software engineering best practices like modularity and reusability. ROS
provides an infrastructure, drivers for most sensors and actuators, and hardware abstrac-
tions. ROS helps managing variability stemming from the hardware (providing hardware
abstractions and drivers) and the robotic skills, which are modularized as reusable software
components. Part of the benefits of ROS is not related to the middleware itself but to other
factors like its community and existing ecosystem. I6: “To me, ROS middleware is like 10%
and 90% of ROS are other things. Like [...] the implementation that it has of a service-
oriented architecture, creating nodes as packages, all the building infrastructure, and the
community.” A possible outcome of the usage of ROS at both companies is that they both
use Linux-based operating systems. Ubuntu and ROS distributions25 are drivers of variabil-
ity that we studied in the first stage of our study (Garcı́a et al. 2019b). It is worth remarking
that PAL Robotics also uses OROCOS (Bruyninckx 2001) for components with real-time
requirements.

ROS control26 It is a mechanism for ROS users that helps software development by
abstracting hardware details and providing standard interfaces for the drivers of actuators
and sensors, which make controllers robot-agnostic. This simplifies the variability man-
agement of hardware from the robot control system point of view. I4: “From this, we can
abstract the type of model that we are using, the type of communication bus, the number
of models, the kinematics of the robots because this is embedded in the robot description
file.”

25http://wiki.ros.org/Distributions
26https://wiki.ros.org/ros control

http://wiki.ros.org/Distributions
https://wiki.ros.org/ros_control
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Standards and Safety Layers Another important characteristic of robot control systems is
that robots must be designed according to some certifications and standards. For instance,
safety standards have an impact on the embodiment of the robot, since the mechanical
part, sensors, and hardware must adhere to specific certifications. The standards also con-
cern the operating environment; for instance, if the robot must interact with humans special
certifications apply. Companies need then to manage variability stemming from hardware
components or specific robotic skills affected by safety standards. To manage such variabil-
ity, both studied companies integrate safety layers that override some autonomy aspects of
the robot to conform to the standards and other safety measures I9: “We do have a safety
certified layer that overrides all the autonomy of the robot in case we detect any danger.
Imagine a Roomba or some of these cleaning robots[...] You have those drop-off sensors so
that the Roomba does not fall from the stairs. They just override the control algorithm that’s
running the autonomy cleaning procedure.”

Version Control Both companies make use of version control mechanisms for code devel-
opment and maintenance of their robot control systems. They both rely on Git-based
mechanisms.

PAL Robotics follows a clone&own strategy, using a branching policy similar to
ROS’s—i.e., developers create a new branch for each new ROS version. PAL Robotics
developers use a single branch “master” to simplify maintenance. However, when it is not
possible to keep backward maintainability—if, for instance, interfaces or data of earlier ver-
sions cannot be successfully used by newer versions—the new code must be adapted and
developers in PAL Robotics create a new development branch. An example of such adapta-
tion is some new code to adapt from ROS Indigo to ROS Kinetic. Then, the branch major
version is changed (e.g., from 1.2.3 to 2.0.0). Finally, developers from PAL Robotics leave
the old default branch with the name of the old development branch (e.g., “indigo-devel”
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branch), leaving it in the state of backward compatible with the newer branch. Branches are
maintained forever and backward-compatible bug fixes are conducted for all the branches
if possible and necessary.

Blue Ocean uses Bitbucket and the Atlassian universe and work with a unique combina-
tion of ROS and Ubuntu distributions, that is, ROS Melodic with Ubuntu 18.04. Blue Ocean
maintains a forked repository of rosdistro,27 which contains the packages and depen-
dencies used for specific ROS distributions. The company customizes the rosdistro
repository. For example, by substituting the URLs of the repositories for the software pack-
ages of the original ROS distribution with the URLs of company-developed repositories. To
modify a repository, the company creates a branch and a pull request, which needs to be
approved by one or two developers. The company uses an in-house tool that allows choos-
ing specific commits/tags of each of their software packages from a superbundle generated
by the same tool. The tool extracts the system dependencies and generates a deb file that
contains their customized version of ROS. Blue Ocean works with a private advanced pack-
age tool (APT) to which developers publish the binaries and to which robots have access.
Blue Ocean’s robots then access the APT to retrieve the software packages required for their
operation.

5.4.2 For Inter-usable Skills Among Platforms

Both companies strive to make skills and components as reusable as possible. The goal is
to ease development efforts by making skills usable by as many robots as possible within
the company. This includes robots that are developed by different projects I3: “From the
beginning, we choose to have the same software layers in all the robots. So pretty much, once
the component is working in one of the platforms, you can make it work in another platform
right away.” An important case of skill reuse among projects is navigation. Companies strive
to abstract the locomotion details of each robot: There are substantial differences between
a bipedal or a wheeled robot. However, there are limitations to the reusability of software
components and skills, being the main reasons:

– The layers of the architecture which are closer to hardware may differ among robots—
i.e., robots providing different services or operating in different environments often
equip different actuators.

– The robot-specific missions vary among robots that provide different services. To
accomplish such missions, robots usually perform specialized skills—e.g., the PTR
robot lifts patients and moves them to different locations, which is completely different
from what a GoBe robot is intended to accomplish.

27https://github.com/ros/rosdistro

https://github.com/ros/rosdistro
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To deal with these limitations and manage variability, both companies make use of dif-
ferent mechanisms. Namely, we discuss (i) configuration files and parameters (discussed
previously, in Section 5.2), (ii) in-house tools, and (iii) libraries.

In-house Tools At PAL Robotics, practitioners use an in-house tool that automatically gen-
erates configuration files and deploys them within the robot during its installation (Garcı́a
et al. 2019b).

Libraries Software modularization is pursued by both companies to promote their software
reusability. It is accomplished by the studied companies by following a component-based
software development approach, which is enforced by the usage of ROS. In line with the
implementation of ROS is the usage of libraries and packages, which in turn promote mod-
ularity and reusability in the robotic applications of both companies. These libraries are
either publicly available (e.g., BehaviorTree.CPP28 and py trees29) or developed in-house.
One policy from Blue Ocean is to make the implementation of packages and libraries com-
mon to all projects within the company. For instance, libraries and packages concerning the
cognitive layer (i.e., py trees as the mission specification mechanism) and the planners are
common among projects. This policy simplifies decision-taking, the harmonization of inter-
faces, and variability management within the company but at the same time may constrain
the design of the robot control systems.

5.5 Mission: Strategies

Our studied companies apply one strategy to manage variability in missions, namely generic
missions.

28https://behaviortree.github.io/BehaviorTree.CPP
29https://github.com/splintered-reality/py trees

https://behaviortree.github.io/BehaviorTree.CPP
https://github.com/splintered-reality/py_trees
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Generic Missions Similar to the generic configurations discussed in Section 5.1 (Obs. 11),
interviewees from both companies detailed their strategy to conceive generic missions that
can be applied to a wide range of scenarios without requiring major modifications. Nor-
mally, scenarios where professional service robots operate are quite specific; for instance,
a UVD robot’s most common type of environment is hospitals and therefore many features
of the environment are standardized and known beforehand—e.g., the maximum slope in
the corridors. An example of a generic mission is the following. A UVD robot that operates
in a hospital idly waits in its charging dock until it is commanded to disinfect a room. This
mission encodes a set of tasks or sub-goals, including navigating from the charging dock to
the target room, going through the room’s door, and interacting with an operator to ensure
that there are no unexpected obstacles that would impede the robot’s operation and that no
human is inside the room while disinfecting. These generic missions use specific param-
eter values (e.g., the robot’s speed while navigating the hospital corridors or while going
through a door) that are used at run-time by the robot. The goal of these generic missions
is to simplify the mission specification process and avoid parameter fine-tuning during this
process. However, their conception and lifting their success rate is considered a challenge
by the company, as we will explain in Section 6.

5.6 Mission: Mechanisms

In the following, we detail mechanisms utilized by the studied companies to manage vari-
ability that stems from robotic missions, concretely: (i) state machines, (ii) behavior trees,
(iii) flowcharts, (iv) task frameworks, (v) GUIs, and (vi) navigation frameworks.

Finite-state machines (FSMs) are the main mechanism that PAL Robotics uses and
provides to their customers to specify missions. Concretely, they make use of an in-house
implementation of SMACH, a Python-based library from ROS’s ecosystem used to spec-
ify robot behaviors using hierarchical state machines. SMACH is also used to define the
adaptation rules for their robotic applications (Obs. 15).

Different interviewees come to a different assessment of state machines as a means of
implementing variability in missions. Several PAL Robotics interviewees consider them
user-friendly. While they acknowledge that FSMs are not suitable for non-technical oper-
ators due to their complexity, they assume their customers to be technically skilled. PAL
Robotics’s CTO considers that FSMs are hard to comprehend due to their associated learn-
ing curve. Furthermore, they express concern about the scalability of FSMs, which quickly
become very complex when adding conditional and nested states, leading to increased main-
tenance costs. A similar concern is shared by our interviewees from Blue Ocean, describing
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situations where a large amount of dynamic variability needs to be supported. In line with
this sentiment, one engineer at PAL Robotics mentions that state machines are quite often
used for demos and small projects.

Behavior trees are the underlying mechanism used by Blue Ocean to define missions
for their robots. The company uses either py trees or its derivative BehaviorTree.CPP, both
domain-specific languages realized as libraries based in Python and C++, respectively. Blue
Ocean uses an in-house framework to enforce the trees’ topology and a template for the
action providers—e.g., GoToPosition. The behavior trees are built using this framework and
are generic for all clients. To customize their missions, Blue Ocean creates a database for
each customer that contains customer-specific information. When loaded into the cognition
layer of the robots, the behavior tree can query the customer’s database and configure itself
based on that information.

Compared to FSMs, behavior trees are on a higher abstraction level, focusing on high-
level actions that are implemented in the code using an asynchronous request-reply pattern.
Interviewees at both considered companies point out greater flexibility and reuse potential
when using behavior trees for supporting variability. One interviewee illustrates this in an
elaborate example:

I6: “What we are using the most is that we can prune and inject trees in the run time.
For example, in the predefined disinfection mode, let’s say we have five disinfection
positions where the robot has to go. Now, let’s say that the robot goes to the first one
and fails the second and third ones: suddenly someone tries to enter the room, and the
disinfection is interrupted. Now, the operator has to decide what to do. You can repeat
all the disinfection positions, repeat the failing positions or continue the disinfection
as it was before. We don’t know what is the right answer from the robot’s perspective.
The operator might not want to go back to the other two points, we might know the
distance or we don’t know the urgency of that operator. Maybe a person is coming,
and they need to be in the room right now. We give the person the option of selecting
what to do next. Based on the selection of the user, then we inject the tree accordingly.
We can reconfigure, prune, and inject trees and sub-trees. That’s why we prefer to use
behavior trees rather than state machines, because state machines are much stricter.”

Flowcharts One of the first steps to design a product at Blue Ocean is specifying the scenar-
ios (Obs. 10) that describe the intended operation of the product using flowcharts, internally
known as “technical workflows.” These workflows also detail the required functionalities
for the different software levels of their robots. This encompasses from mission specifi-
cation to the actual code implementation in low-level layers of software and its expected
behavior in certain contexts. Therefore, this mechanism is cross-cutting across all the drivers
of variability studied in this paper, and orthogonal to the more technical mission specifica-
tion mechanism being used, such as FSMs or behavior trees. The technical workflows are
used by the company to infer the requirements of a product, which need then to be evaluated
to assess their business value. Concretely, the mission specification aspects of the workflows
are defined in collaboration with the customer, from which the requirements are inferred.
Once the mission workflow of a robot is properly defined, it is translated into behavior trees.

Task Frameworks PAL Robotics also uses and provides to their customers a task frame-
work, which is used to manage the scheduling of simple, highly repetitive tasks (e.g., going
from point A to point B). They also provide a graphical user interface for the operator to
schedule these tasks, including timing and generating maps.
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A future goal for PAL Robotics is to develop a task planner where high-level missions
can be easily defined and which automatically generates a specification based on a target
mechanism, namely behavior trees or state machines. In this way, the company would avoid
hard-coding the missions, which would enhance its mission-related variability management
while simplifying mission specification for its customers.

GUIs Besides the infrastructure provided by the company, the complexity of behavior trees
is still high for non-technical operators, and therefore this specification is hidden from them.
Instead, the operator will be presented with a graphical interface or GUI installed on a
tablet. The GUI presents rather simple information to the operator, who just needs to push a
button to start the mission. The operator may also set a few parameters—e.g., in the case of
a UVD robot, the room to disinfect—to configure the mission to their needs. Note that non-
technical operators are not able to change the underlying mission-specification mechanism
(i.e., a behavior tree) but rather to configure it.

Navigation Frameworks Regarding the navigation aspect of mission specification—
inherent to mobile robots—, both companies use frameworks that are made common to
all their robots. Blue Ocean works with an in-house solution that implements their cus-
tom contextual navigation mechanism (explained in Section 5.2.2). PAL Robotics relies on
move base,30 a well-known package for navigation-related tasks from ROS’s ecosystem.
move base performs a navigation task by combining two planners: a global and a local
one. The global planner solves a global path-finding problem, whereas the local planner
provides adjustments based on dynamic sensor input (e.g., collision avoidance). Global and
local planners can be exchanged freely, as long as they implement the interfaces provided
by move base.

5.7 Variability Management Practices in the Literature

The studied papers aim at promoting the adoption of effective software engineering meth-
ods for developing robotics software. Papers from Table 6 discuss engineering paradigms
such as Model-Driven Engineering (MDE) (Brugali and Gherardi 2016; Goldsby and Cheng
2008; Silva et al. 2013), Software Product Line Engineering (Brugali and Hochgeschwender
2018; Lotz et al. 2013), Software Frameworks (Kimour et al. 2009), and Component-Based
Software Engineering (Niemczyk and Geihs 2015).

30http://wiki.ros.org/move base

http://wiki.ros.org/move_base
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Table 6 Variability management in the literature (RQ2)

Ea Hb Mc

Ground robots P1 Lee et al. (2006) •
P2 Álvarez et al. (2006) • • •
P3 Kimour et al. (2009) • • •
P4 Steck and Schlegel (2011) • • •
P5 Lotz et al. (2013) • • •
P6 Brugali and Gherardi (2016) • • •
P7 Brugali and Valota (2016) • • •
P8 Brugali and Hochgeschwender (2017) • • •
P9 Brugali and Hochgeschwender (2018) • • •
P10 Brugali et al. (2018) • • •
P11 Rollenhagen et al. (2019) • • •
P12 Wirkus et al. (2020) •
P13 Seiger et al. (2015) •
P14 Niemczyk and Geihs (2015) • • •
P15 Goldsby and Cheng (2008) •
P16 Saglietti and Meitner (2016) •
P17 Buchmann et al. (2015) •

UAVs P18 Brown et al. (2007) • • •
P19 Steiner et al. (2013) • •
P20 Silva et al. (2013) • • •
P21 Fragal et al. (2013) • • •
P22 Ozdemir et al. (2014) • • •
P24 Czerniejewski et al. (2016) • • •
P25 Feng et al. (2015) •
P26 Braga et al. (2012) • • •
P27 Olaechea et al. (2018) • • •
P28 Brooks and Iagnemma (2009) •
P29 Pant et al. (2015) • • •

aEnvironment variability
bHardware variability
cMission variability

A few papers address the interplay of the various drivers of variability in robotics and
propose approaches for their effective management. Brugali and Valota (2016) present an
MDE approach that allows engineers to model both variability in robot functionalities (pack-
aged in reusable software components) and in application requirements (related to hardware,
environment, and task variability). The HyperFlex tool supports the automatic configuration
of system functionality from a selection of application requirements. Steck and Schlegel
(2011) developed an MDE approach for runtime automatic selection of different execu-
tion variants of a robot control system. The proposed approach exploits several variability
models related to component-based architectures and task plans (i.e., missions).

A limited number of papers do not specifically address software variability in robotics,
but present general-purpose variability management approaches that are exemplified using
a case study in robotics, as reported by Lee et al. (2006) and Olaechea et al. (2018).
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6 Variability-Related Challenges (RQ3)

We now describe the challenges we identified that practitioners from both studied com-
panies face, structured into subsections for each driver of variability. We then present the
related findings from our SLR and an observation that details the triangulation of these
findings with the results from the interviews.

6.1 Environment

Our interviewees discussed a variety of challenges related to their robots’ operating environ-
ments, from which we identified (i) conceiving generic solutions for various scenarios,
(ii) developing parametric configurations, and (iii) the installation process.
Conceiving Generic Solutions for Various Scenarios Both companies collect feedback
from their customers to identify the causes of failures for their robotic applications. For
instance, PAL Robotics records data from scenarios where their customers reported fail-
ures, which triggers an update in the robots’ software to fix derived issues and make the
robots more robust. However, PAL Robotics practitioners realized that it is intractable in
the long term to manage several configuration files (typically yaml and launchfiles,
see Section 5.2) for each scenario. I2: “These configurations [...] are cost-effective but they
are not cheap either. So you cannot configure everything because you would have endless
parameters for everything and then you end up with something that no one knows how to
use.” Similarly, a Blue Ocean interviewee claims that trying to cover every possible corner
case of robot operation using adaptation is unfeasible. Therefore, a goal for both compa-
nies is to find the “sweet spot” where robots succeed their missions without handling every
potential event. This strategy to manage environment variability (either through configura-
tion files or adaptation rules) requires of generic solutions that fit most scenarios and allow
robotic applications to accomplish their missions with a high success rate. However, accord-
ing to interviewees from both companies, conceiving such solutions and finding a good
balance between performance and error-handling complexity is challenging.

To conceive generic solutions, companies need to first carefully study the environments
where their robots may operate, which requires several iterations with the customer. Then,
companies follow different strategies. At Blue Ocean, developers first describe missions
and scenarios using workflows in collaboration with customers (Obs. 28), which they use to
specify the context and events their robots are expected to adapt to. A second step, common
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for both companies, is performing several testing iterations to validate the configuration of
the robotic application and its robustness.

Developing Parametric Configurations Some scenarios make generic configurations
unfeasible, either due to the scenario’s complexity or uniqueness. For these scenarios, com-
panies create sets of configuration files that use parameters (Obs. 12). Companies elicit
and model the parameters needed to adapt their generic applications from the customers.
Also, some environmental features are unique for certain scenarios. For instance, practi-
tioners from Blue Ocean explain that hospital rooms are different around the world and
that sizes and shapes of toilets change for every country. Our studied companies choose to
hard-code those special environmental features into the system, increasing the complexity
of variability management.

Performing the Installation Process Even when companies are able to provide generic
solutions that fit the customer requirements, the installation process explained in Section 5.1
(Obs. 9) needs to be performed. This consumes time and resources from organizations.
Blue Ocean interviewees mention that they are working on APIs that will guide customers
through this process, allowing them to install the robots in their environments by themselves.
From PAL Robotics, two practitioners mention that their goal and the main challenge in this
regard is to ship robots that are able to adapt to a known environment. This requires eliciting
environmental features from the customer before shipping the robot but also dealing with
dynamic variability. This remains an open challenge for PAL Robotics, as documented in
our previous study (Garcı́a et al. 2019b).

According to one interviewee from Blue Ocean, the lack of standardized solutions (e.g.,
tools and interfaces) impedes that an operator such as a system integrator could perform the
installation process.
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6.2 Hardware

According to our interviewees, there exist many challenges related to hardware variability
in robotics, namely (i) conceiving generic solutions for different robots, (ii) hardware-
driven assumptions, (iii) achieving reliability of variant-rich systems, (iv) multiple
options for hardware design, (v) lack of standardized hardware options, (vi) perform-
ing integration, (vii) aligning conventions for hardware, (viii) trade-offs, (ix) handling
real-time components, and (x) influence from environment.

Conceiving Generic Solutions for Different Robots In Sec. 5.1 and 6.1 (Obs. 11, 30), as
well as in Section 5.5 (Obs. 27), we discussed how companies strive to create generic and
reusable configurations that have a high success rate while avoiding continuous configura-
tion. On top of that, to make those configurations of missions and scenarios truly generic, the
studied companies invest resources in making such configurations robot-agnostic. To achieve
that, companies need to raise the level of abstraction of software components that realize
robotic functionalities (i.e., skills) to make them usable by different robots within the same
company (Obs. 19, 25, 26). This simplifies variability management, but, according to one
interviewee from PAL Robotics, complicates software development, as explained below.

Hardware-Driven Assumptions Both studied companies strive to reuse their code for their
robots’ control systems and skills as much as possible to simplify development and reduce
time to market (Obs. 17, 18, 19, 20). However, assumptions made in the software based on
the hardware design of the robots threaten its reusing. I2: “If making a single robot to nav-
igate in a crowded environment is already a tremendous task, making the same code work
for any kind of robot [..] doesn’t make it simpler. It also limits you by not being able to
make certain assumptions, which makes the code more verbose: you have to add more code
to handle different scenarios.” An example given by one interviewee from PAL Robotics is
that they developed skills for TIAGo assuming that the robot has one arm. However, PAL
Robotics has recently released a new model of the robot that has two arms (TIAGo++24),
which required developers to refactor the code of their robots’ control systems to accommo-
date the new hardware design. This was complicated since the hardware-driven assumptions
were not documented when the code was developed. The lack of documentation also hin-
ders the maintainability of such code and the integration of other robotic platforms that may
not share the same assumptions, according to this interviewee.

PAL Robotics’s current strategy to palliate this challenge is to parametrize their robot
control system and skills to make them flexible to different platforms, as explained in
Section 5.3 (Obs. 21, 25).



Empir Software Eng           (2023) 28:24 Page 45 of 67   24 

Achieving Reliability of Variant-Rich Systems Building reliable variant-rich systems is
one of PAL Robotics’s most pressing challenges, according to one of their software engi-
neers. Some of the company’s robots have more than 40 variants. To ensure a robust
operation of such variant-rich products, PAL Robotics tests independently all the low-level
features of their system—e.g., the different end-effectors a TIAGo may equip, see Figs. 1
and 4. In this way, developers can test the performance of missions—higher in the abstrac-
tion layers—without conducting separate tests for each variant. I2: “Once you go higher in
the abstraction layers you have to assume that the lower layers are behaving properly, so
when you are doing a grasping experiment you don’t need to repeat the same experiment
with three different cameras, four lasers, and one dozen combinations for the arm.”

Multiple Options for Hardware Design One interviewee from each company consider the
robot hardware design the most challenging issue to deal with regarding robotics variability.
According to these interviewees, there is a vast supply of electrical components, sensors,
and actuators that could be integrated into the robot hardware design, which directly impacts
the robot control system and its variability. Managing this variability becomes challenging
when the selection of components, sensors, and actuators is often decided upon developers’
personal preferences and backgrounds. This is exacerbated by the lack of standard options,
which also affects the reliability of the product.

Lack of Standardized Hardware Options One interviewee from each company argue that
having standards would immensely simplify the process of integration at many levels of
robotics, ranging from sensors, via their drivers and necessary software for the robot control
system, to software components that make use of them. I1: “What a camera does in one
way, another camera does in a completely different way [...] and you have to rebuild half
your software to take into account the possibility of having one camera or the other.”

Integration A challenge highlighted by one interviewee from Blue Ocean is the complex-
ity of the integration of hardware and software components tailored to robotic capabilities
due to the existing variety of electronics, mechanics, protocols, and software. The vast sup-
ply of hardware and personal preferences complicates the integration for each development
project within the company if not standardized or harmonized. Similarly, the integration of
software in charge of controlling the variety of electronics, functionalities, mechanics, and
protocols is also challenging. A robotic software application is typically developed follow-
ing a component-based approach (Obs. 22) (Brugali and Scandurra 2009; Ahmad and Babar
2016) where each software component may be developed by a different person—e.g., a
control engineer may have developed the motion control aspects of the robot while a soft-
ware engineer carries on with the cognitive layer. These components need to be integrated
into a common platform. This, according to our interviewees, consumes a high amount of
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effort. Interviewees from both companies explain that they rely on ROS for software inte-
gration since it simplifies this task by providing standardized interfaces and message types
(Obs. 22).

Trade-offs We noticed a series of trade-offs related to hardware variability that are
perceived as challenges by our interviewees, which we synthesize in the following.

Costs versus time. Some hardware elections influence the integration of the whole robot
in terms of time, according to one interviewee from Blue Ocean. For instance, a more
expensive sensor could have an existing ROS driver, which would make the sensor
integration and software development much faster.
Flexibility and costs versus performance and usability. Making a robotic application spe-
cialized to certain scenarios could reduce its complexity or improve its success rate, as
discussed by one interviewee from each company. However, as discussed in Obs. 11, 27,
30, and 32, generic solutions help simplifying variability management, reducing the com-
pany’s costs related to developing, maintaining, and tuning of configuration options. For
instance, to make navigation skills as reusable as possible, the locomotion mechanisms
are abstracted, and generic or harmonized interfaces are provided. Still, implementation
difficulties may arise if the same interfaces are provided for ground, aerial or underwater
robots, which operate using different parameters—e.g., a ground robot does not neces-
sarily need to care about the aircraft principal axes of yaw, pitch, and roll. Companies try
to find a balance between generalization and performance from tailored solutions.

Handling Real-Time Components Achieving real-time performance of the robot control
system is crucial for robots that operate or collaborate with humans (Rouxel et al. 2020),
as is the case of most service robots from our studied companies. Since ROS does not
handle real-time, developers at PAL Robotics use OROCOS to develop and manage real-
time constrained components. Besides the complexity of controlling real-time systems, PAL
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Robotics needs also to manage the variability stemming from the usage of two middleware
(i.e., ROS and OROCOS) to develop and control their robot control systems.

Influence from the Environment The hardware a robot equips is strongly influenced by
the environment where it is intended to operate (Obs. 2). As an example, a robot operating
outdoors may incorporate GNSS sensors to improve its self-localization capabilities, but the
same sensors will not work indoors. Moreover, there exist LIDAR sensors suitable only for
indoor scenarios and some that also work outdoors. Similarly, a robot navigating on rough
surfaces may experience problems with sensors using a USB connection, more suitable for
indoor environments, due to vibration. Adapting to such requirements increases hardware
variability and its management complexity.

6.3 Mission

Challenges our interviewees normally face concerning robotic missions are (i) mission
specification, and (ii) promoting user friendliness.

Mission Specification Missions for service robots typically fulfill requirements requested
by the customer, as explained in Sections 4.3 and 5.6. Associating high-level user require-
ments from customers to individual robot configurations is deemed as a challenge by two
interviewees from Blue Ocean.

One interviewee from PAL Robotics and two from Blue Ocean rate generating the mis-
sion that describes the set of goals a robot must achieve while being able to deal with the
environment as the most important challenge for robotics variability management. Among
the main issues is the uncertainty present in the environments where service robots oper-
ate (Obs. 3). That is, dealing with unexpected events or failure of systems complicates the
specification of missions and managing their variability.

One interviewee from Blue Ocean highlights the impact of time-sensitive constraints,
which also need to be managed during mission specification. For instance, timing may vary
in a social context where robots need to move carefully to not harm humans or in an indus-
trial scenario, where timing is intrinsically related to performance. Related to the context,
missions that fulfill the specification from customers must meet existing standards of safety.

PAL Robotics’s CTO states that a high-level tool that explores the existing skills set
of a system and automatically builds execution graphs that in turn can self-reconfigure at
runtime based on requirements and the environment would be highly beneficial for their
organization. As an example of reconfiguration, a robot could lock some arm joints to reduce
power consumption in case that no grasping task is required. Similarly, if a robot’s motor
stops working properly, it may deliberate whether is more efficient to keep working in a
slower way to finish the mission or to call for a failure.
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Promoting User-Friendliness Two interviewees from each company state that promoting
user-friendliness in their mission specification tools is challenging. The common goal for
both companies of developing an expressive tool that supports the operator by providing
simple and enough information during mission execution entails many difficulties related
to variability management. For non-technical operators, the tool should be able to provide
an easy-to-understand interface and automatically deal with the variability from the under-
lying mission specification mechanisms (i.e., behavior trees in Blue Ocean and finite-state
machines in PAL Robotics). That is, the tool should configure such underlying mechanisms
based on the mission specification and the setting of parameters specified by the customer.
In summary, the tool should support and keep the user informed while hiding the unnec-
essarily complex back end of the tooling. To do so, the studied xcompanies rely on the
specification of generic missions that allow reliable mission execution in certain scenarios
with minimum configuration (Obs. 27).

Moreover, the companies consider that users should not be constrained by dealing with
operating system distributions, versions of ROS, or the compiler and libraries. According
to PAL Robotics’s CTO, developing a graphical tool able to generate code without the
mentioned constraints is a future business goal for the company.

Finally, an interviewee from Blue Ocean states that they are working on user-friendly
tools that will allow operators to perform mission-related tasks like mapping the environ-
ment and setting regions of interest (Obs. 9). This would reduce the complexity of variability
management and the installation process for companies. In the context of the two studied
companies, user-friendliness alludes to the effort they carry out to make as accessible and
simple as possible their complex products and processes, especially for non-expert users.

6.4 Variability-Related Challenges in the Literature

Only a few papers (11 out of 30) from our SLR discuss challenges related to the adoption
of variability management approaches in real-world scenarios, as listed in Table 7. The
most significant challenges are related to the difficulties of (i) recreating in simulation the
complexity found in variable real-world deployments, as proposed by Czerniejewski et al.
(2016); (ii) managing the combinatorial explosion of product configurations in UAV product
line development, as proposed by Olaechea et al. (2018), and of testing and certifying them,
as might be found in Braga et al. (2012), Steiner et al. (2013); and (iii) associating high-level
user requirements to individual robot configurations, as proposed by Duncan and Murphy
(2017). In addition, Pant et al. (2015) discuss how variability related to the type of sensor
induces a variability in the computational cost and accuracy of robot functionality.
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Table 7 Variability challenges in the literature (RQ3)

Ea Hb Mc

Ground robots P6 Brugali and Gherardi (2016) • • •
P10 Brugali et al. (2018) • • •
P13 Seiger et al. (2015) •

UAVs P19 Steiner et al. (2013) • •
P22 Ozdemir et al. (2014) • • •
P24 Czerniejewski et al. (2016) • • •
P26 Braga et al. (2012) • • •
P27 Olaechea et al. (2018) • • •
P28 Brooks and Iagnemma (2009) •
P29 Pant et al. (2015) •
P30 Duncan and Murphy (2017) •

aEnvironment variability
bHardware variability
cMission variability

7 Discussion

We now discuss and compare our findings among the interviews and the SLR, specifically:
(i) drivers of variability (Obs. 8), (ii) variability management practices (Obs. 29), and (iii)
variability management challenges (Obs. 38). We also discuss our finding’s impact and the
possible exploitation of the results of our investigation by summarizing them, proposing
hypotheses for our observed phenomena, and giving recommendations to practitioners and
researchers.

7.1 Drivers of Variability

Observations Almost every paper we studied in our SLR addresses one or more of the
drivers of variability we identified. The characteristics of environment variability mostly
discussed in the literature refer to the features and changing conditions of the scenarios
where robots operate, similar to some of the findings from our interviews (Obs. 2). Some
papers also mention managing the variability entailed to perform the same mission in several
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environments. According to our interviewees, this is performed by the studied companies
using generic and parametrizable mission specifications (Obs. 27).

Only two papers of the SLR show evidence of dealing with environments populated by
humans. They deal with human-robot collaboration in disaster scenarios (Niemczyk and
Geihs 2015) and factory automation (Rollenhagen et al. 2019). As opposed, both of our
studied companies need to manage the variability stemming from the inclusion of humans
to the operating environments of their robots (Obs. 3). As opposed to our interviewees (Obs.
5), the literature does not focus on variability stemming from hardware-related customer
requirements. Mission variability in the literature is mostly focused on the variety of mis-
sions and scenarios robots may perform within a concrete domain or set of scenarios, such
as logistics, home entertainment or cleaning of ship-hull surfaces. Human-robot interaction
is mentioned only in one study from the SLR, while this topic has been thoroughly discussed
in the interviews (Obs. 7).

Hypotheses We hypothesize that service robots are highly change-centric software sys-
tems for two main reasons. First, the variability of robotic software artifacts is driven by
the evolution of the underlying technologies in mechanics, electronics, computer science,
and cognitive sciences (Obs. 4 and 5). Second, service robotics is a research field that
pursues ambitious goals, such as to “expect robots to function on their own with people
and each other under whichever environmental conditions they happen to find themselves”
(Sukhatme and Matarik 2002). This means that the variability of robotic software appli-
cations is driven by the complexity of everyday environments (Obs. 1 and 3) and by the
potential uses of service robots for everyday tasks (Obs. 6). We believe that these two rea-
sons reflect the different interests of industrial development and academic research and
explain the different emphasis on the various variability drivers that emerged from the
interviews and from the SLR.

Recommendations Our analysis revealed that robotic variability is commonly expressed
in fuzzy and ambiguous or project-specific terms, and this makes it hard to understand
what functionality the robotic system being built must express (Obs. 8). We recommend
researchers work on creating a common ontology to describe the variability drivers existing
in service robotics following the steps of previous research groups as Olszewska et al. (2017)
and Köster et al. (2016). This would require collaboration with practitioners who should
provide personal experiences on the topic. This would result in the definition of a common
language for expressing the variability in robotic technologies and in robotic requirements
that can support robotics engineers in the development of new service robotic applications.
Using a common ontology and language would promote the reuse of available technologies
for solving common and recurrent design problems and favor the comparison and evaluation
of robotic systems. With our current study, we made the first steps toward such an ontology
and the enlargement of the current body-of-knowledge of variability in service robotics.

7.2 Variability Management Practices

Observations Most studies from the literature propose adopting effective software engi-
neering practices to manage the variability of specific drivers. Examples are Model-Driven
Engineering (MDE), Software Product Line Engineering (SPLE), Software Frameworks,
and Component-Based Software Engineering (CBSE) (Obs. 29). Findings from our inter-
views show that companies also adhere to such software engineering practices, e.g.,
promoting reusability and modularity (Obs. 19, 21, 22, 26). On the other hand, we learned
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that our studied companies also developed strategies and mechanisms tailored to specific
drivers of variability, like in-house tools (e.g., Obs. 25) and configuration files (Obs. 12).

Hypotheses Systematic approaches and paradigms such as MDE and SPLE, which have
been successfully implemented in other domains (e.g., automotive, avionics) are not cur-
rently used by robotic companies. Our insights give rise to the hypothesis that one of the
chief reasons is the lack of awareness of such paradigms by robotics experts, not least due to
a general lack of maturity of the robotics software engineering domain (Garcı́a et al. 2020).
On the other hand, the field of SPLE still assumes a low-tech approach, targeting static and
fine-grained variability (Berger et al. 2013, 2014) as opposed to dynamic variability with
late binding. For the latter, we believe that the problem lies in the lack of means for manag-
ing such features centrally, including techniques for keeping an overview understanding and
using that for centralized and controlled configuration. This problem is exacerbated by the
variety of mechanisms to implement variability in robotics software; there, various ad hoc
mechanisms exist, but no standardized solution on how to do that within ROS. For instance,
dynamic features can be realized using parameterization31 or loadable ROS plugins.32 Static
features with binding time compile-time might need a preprocessor and some inclusion into
the build system; so, while a diversity of techniques exist, there are no guidelines on which
to use and how in robotics—a call to arms for future research.

Recommendations Robotic companies make use of well-known middleware and frame-
works to ease software development (Obs. 22). The most common example is ROS, a
middleware that provides a framework and enables certain software engineering practices
(e.g., modularity, reusability) and enforces development paradigms such as CBSE (Garcı́a
et al. 2020). In this light, mainstream middleware used by roboticists should also integrate
means and techniques for planning, designing, and implementing variability. The recom-
mendation is two-fold: (i) mechanisms comprising techniques to model the variability with
binding times and modes, and (ii) mechanisms for realizing that variability in the actual
robotics source code. The latter should be ideally integrated into concrete technological
support by middleware, frameworks, or robotic reference architectures (Garcı́a et al. 2018,
Kramer and Magee 2007), but could also be in the form of guidelines, templates, or design
patterns. This would improve current software development practices and also raise the
awareness of industrial practitioners. We propose as an action for researchers the study of
current middleware and the identification of paradigms that might benefit developers and
practitioners. Developers and industrial practitioners could use that information to integrate
those paradigms into current mainstream middleware that meets industrial needs. Indus-
trial practitioners might share their experiences to conceive, lead by researchers, guidelines,
templates, or design patterns for the systematical plan, design, and implementation of vari-
ability. We believe that the community has been taking the right steps in the last years
towards adopting systematic approaches to manage variability. Promising examples are
the framework extensible via plugins of the official navigation stack for ROS2 (Macenski
et al. 2020) and initiatives such as RobMoSys33 that are working to apply model-driven
methods and tools to current robotics software development processes.

31http://wiki.ros.org/Parameter%20Server
32http://wiki.ros.org/pluginlib
33https://robmosys.eu

http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/pluginlib
https://robmosys.eu
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7.3 Variability-Related Challenges

Observations Only few papers from our SLR identify variability-related challenges in
industrial applications. This is probably due to the fact that most papers present approaches
that have been applied only to research prototypes and not to industrial case studies. How-
ever, we saw commonalities between the most significant variability-related challenges
proposed in the literature and some of the challenges stated by our interviewees. The com-
monalities cover challenges concerning managing the combinatorial explosion of product
configurations (Obs. 34) and the association of high-level user requirements to individual
robot configurations (Obs. 36). The most repeated challenge in the SLR concerns testing
(Obs. 33) and certifying (Obs. 23) products and product configurations.

Hypotheses We hypothesize that testing and certification are considered among the most
pressing challenges by both the SLR and the interviewees due to the inherent complexity
of service robots (Foster et al. 2020), especially those that can be customized. Software
product line (SPL) testing, part of SPL certification, is still considered a challenge by the
literature due to the variety of products that can be derived from a single product line (Braga
et al. 2012; Pérez et al. 2009; Engström and Runeson 2011). This is especially important
for cyber-physical systems, which integrate hardware and software components into sys-
tems that operate in real-world scenarios. This integration needs to be assessed through
system testing. In this light, we hypothesize that a core issue related to this challenge is that
variability in complex systems introduces interdependencies among variation points and
features. These interdependencies may lead to feature interactions, which are often difficult
to identify solely based on the behaviors of the features in isolation. So, bindings among
features need to be modeled and tested, to verify the absence of incorrect bindings. Until
the features and variation points are bound, complete integration and system testing cannot
be performed.

Recommendations According to the literature (Braga et al. 2012), a common approach
to validate complex systems is to test each of its components separately. This approach
is followed by PAL Robotics, as discussed in Obs. 33. To simplify this approach, robotic
companies might strive to reduce redundant testing and to reuse test artifacts so to reduce
testing effort. We see the necessity of test automation mechanisms that can ease software
development for companies, as previously highlighted by Engström and Runeson (2011).
These mechanisms should support developers in performing large numbers of isolated tests
(unit tests) and integration tests to validate the interaction and bindings of features. Because
service robots operate in real-world scenarios, the mentioned mechanisms should support
real-world data over prolonged timeframes to evaluate possible failures and unexpected
environmental events. As a recommendation for researchers, we identify a need for testing
mechanisms that consider real-world data to perform automated and systematic testing of
variant-rich systems. To achieve this goal, collections of real-world and industry-based data
and scenarios—which in our opinion should be conducted by industrial practitioners—are
required for generation test cases, as mentioned by Cleland-Huang et al. (2018). In this light,
automatic test generation (Nebut et al. 2006) could complement the automated testing of
variant-rich systems as a cost-efficient and reliable solution, as discussed by Mossige et al.
(2014).

Finally, a well-defined SPL simplifies the management of variability of complex systems
and eases the definition and reuse of test artifacts (Engström and Runeson 2011). Initiatives
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such as the research incubator Dronology (Cleland-Huang et al. 2018), if conducted together
with industry, could pave the road towards flexible, yet well-tested cyber-physical systems.

8 Threats to Validity

We discuss the threats to the validity of our empirical study, using the standard categoriza-
tion by Wohlin et al. (2012).

External Validity According to Maxwell (1992), generalizability is the extent to which we
can extend our findings to other situations or cases than the ones we focused on in this
case study. It is important however to remark that describing particular cases and deriving
insights is the main goal of qualitative research rather than arriving at generalizable conclu-
sions, as discussed by Creswell and Creswell (2017). We might have incurred a sampling
bias since we asked for knowledgeable practitioners from both studied companies, who may
have a positive attitude toward the topic. Our interviewees work with robotic systems, cov-
ering a wide range of domains, contexts, and backgrounds. They come from two different
companies whose headquarters are located in two different countries, namely Denmark and
Spain. The practices, characteristics, and challenges we describe are applicable to service
robots in similar domains.

Minimizing potential threats to the external validity of our study was key for us due to
the nature of an SLR, which aims at being as generalizable as possible. As an attempt to
mitigate this issue we adopted conservative exclusion criteria that disregarded grey literature
papers, position papers, workshop summaries, and short papers.

Construct Validity Practitioners in the robotics domain come from a variety of backgrounds
and, therefore, might use different terminology (Garcı́a et al. 2020), which was the main
threat to construct validity. To mitigate this threat, we introduced and explained terms that
could lead to confusion, including requirements, features, variants, and mission during the
interviews.

Another potential threat to construct validity is the misinterpretation of our interviews.
To avoid this issue, we made recordings and transcribe all of them, so we could have a
word-by-word analysis. However, other behavioral aspects from our interviewees such as
gestures, pauses, or irony were not captured in our transcripts. This could lead to some
misinterpretation of the statements. To alleviate this problem we referred to the recordings
to clarify confounding parts in the transcripts.

Internal Validity A large number of our interviewees are volunteers, most of whom we did
not know personally. According to Wohlin et al. (2012), the selection of volunteers may
threaten internal validity because they tend to be more motivated and suited for a new task
than the whole population, and therefore they are not representative of the whole population.
As discussed by Verner et al. (2009), a reduction of this bias to minimize the effect of con-
founding factors can be made by increasing the sample of the study, making it more diverse,
and increasing the rates of volunteering. With this aim, we (i) asked interviewees about
practitioner colleagues who may fit in our selection criteria and might be interested in our
study, (ii) recruited practitioners with a variety of roles from both companies, and (iii) strove
to show our study as theoretically and practically relevant for our potential interviewees.

According to Creswell and Creswell (2017), the researcher cannot avoid influencing the
setting of an interview. The context of the interview, the way questions are phrased and
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possible reactions from the interviewer might influence the behavior of the interviewee and
subsequent answers. Creswell states that even though the interviewee is always influenced
by the interviewer, there are things one can do to mitigate such bias. We strove to formulate
the questions in an unbiased fashion and to identify potentially misleading questions.

Conclusion Validity A risk of analyzing qualitative data is the possibility of being biased
by the researchers’ background, values, and theories. Also, the analysis of qualitative data
through coding as we performed may be subject to the researcher’s interpretation. How-
ever, we were not evaluating a solution, method, or tool and therefore we did not risk being
biased in trying to arrive at certain conclusions. To mitigate this bias, we conducted the qual-
itative analysis of our data collaboratively, that is, the open coding was performed by two
authors. We also cross-checked and refined the codebook obtained after the analysis itera-
tively between two authors. Furthermore, we conducted a workshop among all the authors
to discuss the codebook to align ideas and concerns and to enhance our study’s validity.

Another potential threat to conclusion validity is given by the substantial work carried out
by a single researcher during the conduction of the SLR. The potential bias introduced by
this researcher was mitigated by the inclusion of a second researcher during the selection of
primary studies and data extraction as quality control. These two researchers held iterative
discussions and led an informal workshop with five of the authors of this paper to iteratively
refactor the data extraction process.

To make a meaningful evaluation of our findings we discussed them among all authors,
including one industrial practitioner. This allowed us to evaluate whether our findings were
in line with industry reality.

9 RelatedWork

We already compared specific aspects of our study with related works in the previous sec-
tions. Specifically, in Section 4.4 we make a comparison with the literature on drivers of
variability, in Section 5.7 with the literature on variability management practices, and in
Section 6.4 with the literature on variability-related challenges. In the current section, we
complement the comparison with a discussion of empirical studies that focus on variability
management in other domains. Overall, we confirm some of the variability drivers, variabil-
ity management practices, and variability challenges already identified in other domains,
and we add characteristics that are specific from robotics. In the following, we provide a
more detailed comparison for each of the identified related works.

Berger et al. (2020) study systematic variability management techniques and software
product line engineering (SPLE) concepts in twelve cases that include domains such as
automotive, aerospace, or railway systems. The authors use a multiple-case study to identify
challenges to the adoption of systematic variability management. They claim that hardware
is one of the most significant drivers of variability among their studied industrial cases
and that the automotive domain is the most advanced in terms of adopting SPLE concepts.
The work also identifies some characteristics of the environment driver of variability, how-
ever, without putting much focus on inclusion of humans, as, instead, we do. The driver
of variability that is instead completely missing is mission. This is not surprising since,
currently, mission is a rather specific driver of variability of the robotic domain. However,
we expect that it will become increasingly important also for autonomous systems used in
other domains. For example, when autonomous vehicles will be deployed in the streets of
our cities, we will need to “program” their behavior. Berger et al. (2020) conclude that one
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of the main challenges of adopting SPLE concepts is tool-integrating problems due to the
diversity of tools and artifacts needed for software development in the studied domains.
Also for what concerns challenges, in this work we identified challenges that are specific of
the robotic domain, e.g., related to the involvement of non-technical operators who might
not be skilled in computer science and/or robotics.

Krüger et al. (2017) identify and categorize relevant aspects of variability as well as
challenges of variability modeling of cyber-physical systems (CPS). The identification of
aspects and challenges of variability stems from their experience. This work does not explic-
itly identify drivers of variability and variability management practices. For what concerns
challenges, the main identified ones are modeling, interaction, configuration, and quality.
We are very aligned with their findings for what concerns configuration, which should not
be confined into design-time configuration. We did not find much emphasis in modeling but
instead we found challenges in integration also intended in the context of iterative devel-
opment that poses some constraints in upfront modeling. About quality, we indeed found
the challenges related to safety. In particular, we found challenges related to reliability of
variant-rich systems. Finally, as discussed for the previous work, we identified challenges
that are raised by the involvement of end-users.

The study by Flores et al. (2012) details how General Motors34 applied SPLE to their
organization in the automotive domain. The authors introduce the challenges the company
faced to apply the SPLE paradigm to such a big organization, highlighting the com-
plexity levels of variants. The authors complement the study by explaining the technical
and organizational lessons learned in an experience report style. Similarly, the study by
Dumitrescu et al. (2013) reports on the authors’ experience in modeling a family of parking
brake systems and discusses the requirements of Renault regarding variability manage-
ment. The authors discuss modeling techniques and tools to support variability modeling
and present an approach for adopting the product line paradigm in systems engineering
in the context of Renault. The paper concludes with the challenges the authors were con-
fronted with when implementing their approach. Thomas et al. (2011) also focus on the
implementation of SPLE to the automotive domain. Concretely, the authors discuss the
challenges of a hypothetical introduction of a software product line approach to the develop-
ment of automotive-based applications using the AUTomotive Open System ARchitecture
(AUTOSAR), proposed by Fürst et al. (2009). These works do not explicitly identify drivers
of variability, as well as variability management practices. About the challenges, it is quite
difficult to make a comparison with our work since these papers are mostly reporting some
experiences and the challenges are at a different level of granularity since are those that the
company faced in applying the SPLE paradigm or in bridging the gap between product line
and systems engineering. Examples of these challenges are that vehicles are complex, the
organization is very large, huge number of variants, etc.

On a more general note, the study of Chen and Babar (2010) uses focus groups (Kitzinger
1995) to gather data about challenges faced by industrial practitioners in variability manage-
ment. The authors distinguish between technical and non-technical challenges and discuss
their results by comparing them with the study by Bosch et al. (2001). The latter is an expe-
rience report where the authors identify and describe variability issues related to variability
management of software product lines. As opposed to Chen et al., Bosch et al. discuss their
identified challenges relating them to phases of a software product line life cycle. These
works do not explicitly discuss drivers of variability and variability management practices.

34https://www.gm.com

https://www.gm.com
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Our work do not focus much on non-technical issues. Moreover, our work is tailored to the
robotics domain and reports on challenges that are specific from the domain, like mission
specification and user-friendliness coming from the need of involving users without a deep
knowledge in computer science and/or robotics.

On the same note, Chen and Babar (2011) conducted a systematic literature review of
variability management approaches in software product lines. This work does not explicitly
discuss drivers of variability and challenges. Instead, the work collected 91 approaches for
dealing with variability management during different development phases. We found some
relation with our management strategies and mechanisms.

An interesting conclusion of the work is that the variability management approaches used
in those papers were not evaluated using scientifically rigorous methods. Even though we do
not investigate this aspect in our work, considering the findings in Bozhinoski et al. (2019),
we expect similar results to hold also in robotics. In fact, Bozhinoski et al. (2019) surveys
approaches managing safety for mobile robotic systems and concludes that very few of the
existing solutions are compliant to standards35 that specifically target safety aspects, and
also that existing solutions are not yet ready to be used in everyday life.

10 Conclusion

We presented an empirical study on variability in service robotics based on the state-of-
practice and the state-of-the-art. We conducted (i) a multiple-case study relying on a total
of eleven interviews with practitioners from two companies, and (ii) a systematic literature
review in which we considered 213 papers and thoroughly analyzed 30 of them. We triangu-
lated from these two sources as well as from another source: our own previous experiences.
We contribute: (i) characteristics and impacts of drivers of variability in service robotics,
(ii) variability management practices applied by service robotics companies, (iii) challenges
faced by industrial practitioners as a result of variability in their products, (iv) a discus-
sion of the gap between state-of-practice and state-of-the art, with formulated hypotheses to
explain our observations. Our results contribute to improving the empirical understanding of
the specific variability-related characteristics and challenges of the service robotic domain.
We hope that these results will support tool builders, practitioners, and researchers to raise
awareness for variability, devise better tool support, as well as to guide future research.

Among the findings, we highlight the following four:

– Abstraction and customizability: We learned the challenge for practitioners of bal-
ancing raising the level of abstraction in their robot control systems and customizing
them to specific requirements and scenarios. While higher levels of abstraction could
ease variability management and integration, tailored solutions pose great levels of effi-
ciency and effectiveness. Similarly, for robots to operate in several scenarios developers
need to both realize variability and integrate robust abstractions. The former represents
what can be planned before the deployment or execution of the robotic mission, whereas
the latter are meant to deal with unplanned situations that may occur in the scenarios in
which robots operate. To better understand what practices and tools lie in any of these

35Like IEC61508—Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Sys-
tems, ISO13855—Safety of machinery—Positioning of safeguards with respect to the approach speeds of
parts of the human body, ISO13482—Robots and robotic devices—Safety requirements for personal care
robots
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two categories, empirically-validated criteria are needed. This is, however, out of the
scope of this paper and we consider it valuable future work.

– Robustness and variability: Either using variability mechanisms or robust abstrac-
tions, robotic applications must be able to operate robustly in a variety of scenarios,
many of them being only partially known and controllable. To support the robustness
of their systems, our studied companies make use of modeling notations, two important
ones being finite-state machines and behavior trees. Behavior trees are found particu-
larly useful for scaling up to scenarios with many sources of variability since they focus
on high-level actions that are coordinated in an asynchronous request-reply pattern.

– Installation process: In the robotic domain, part of the variability can only be resolved
in the installation phase, e.g., properly mapping the operational environment, speci-
fying the missions to be performed and configuring the robots accordingly, defining
adaptation rules of the environment. Until now this phase is specifically important for
professional robots. In the near future, with the advent of multi-purpose and more com-
plex robots to be used in everyday life, the installation process could be delegated
to customers—as nowadays happens with consumer robots such as vacuum cleaning
robots—, which, in general, will lack knowledge in robotics and computer science. This
will ask for easy way means to install the robots in the customer environment and to
correctly specify safe missions robots should perform.

– Standard interfaces and ecosystem: The service robotics domain needs mature solu-
tions for managing reusable and modular libraries and packages with standardized
and harmonized interfaces. Decoupling between hardware and software is a necessary
step. Then, libraries and packages should be organized in an ecosystem where vari-
ous companies, research institutes, and in general developers can find consolidated and
validated solutions and contribute their own. In fact, one of our findings is that the rea-
son behind the success and popularity of ROS might be found in its community and
ecosystem.

Table 8 summarizes our actionable results. It lists the characteristics of our identified
drivers of variability as well as maps the characteristics to the strategies and mechanisms
used by robotics companies. It can be used by researchers and practitioners to match their
concerns with actual practices applied by the service robotics industry to tackle those chal-
lenges. Table 8 can also serve as a template, to be extended by companies, that may also
include their own identified driver characteristics along with the practices applied to deal
with the challenges associated with them.

Our results give rise to the following future work:

– Consolidate the drivers of variability in service robotics in a common ontology, acting
as a standard.

– Develop better mechanisms for realizing variability in the actual robot code.
– Define guidelines, templates, and design patterns for planning, designing, and imple-

menting variability.
– Develop testing techniques that consider real-world data to perform automated test-

ing of variant-rich systems by systematically enforcing reducing redundant testing and
reusing test artifacts.

– Define a variability-aware development process that builds on current practices in
both academia (independent open-source community efforts) and industry (in-house
hardware product lines).
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