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BPS Algebras in 2D String Theory

Sarah M. Harrison, Natalie M. Paquette, Daniel Persson and
Roberto Volpato

Abstract. We discuss a set of heterotic and type II string theory com-
pactifications to 1 + 1 dimensions that are characterized by factorized
internal worldsheet CFTs of the form V1 ⊗ V̄2, where V1, V2 are self-dual
(super) vertex operator algebras. In the cases with spacetime supersym-
metry, we show that the BPS states form a module for a Borcherds–
Kac–Moody (BKM) (super)algebra, and we prove that for each model
the BKM (super)algebra is a symmetry of genus zero BPS string am-
plitudes. We compute the supersymmetric indices of these models using
both Hamiltonian and path integral formalisms. The path integrals are
manifestly automorphic forms closely related to the Borcherds–Weyl–Kac
denominator. Along the way, we comment on various subtleties inherent
to these low-dimensional string compactifications.
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1. Introduction

Critical string theories compactified to low dimensions provide a useful formal
playground for exploring various theoretical phenomena. They enjoy enhanced
(nonperturbative) duality groups, uncommon supersymmetry algebras, exhibit
relatively explicit but rich mathematical structures in their spacetime physics,
and may still possess an interesting family of moduli enabling one to decom-
pactify back to more physically relevant dimensions. Distinguished points in
such low-dimensional moduli spaces exhibit maximal symmetry groups that
can usefully organize or classify (broken) symmetries in higher-dimensional
models upon decompactification. Alternatively, one can use the enhanced sym-
metries at special points to construct orbifolds of the original theory; such
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orbifolds with respect to large symmetry groups can produce exotic models
with few moduli. These models may even be completely rigid, sitting at iso-
lated points in moduli space, and are hence distinguished in their own right. It
is also interesting and non-trivial to determine the duality webs among these
exceptional theories.

It is known that some of the points of maximal symmetry are given by
string models whose internal worldsheet theories factorize into holomorphic
and anti-holomorphic factors. Such holomorphically factorized theories must
be built from consistent (self-dual)1 vertex operator algebras (VOAs) of ap-
propriate central charge. The latter are quite rare for low values of the central
charge and have been determined at several key values of interest, including
c = 24 for bosonic VOAs and c = 12 for super-VOAs (SVOAs). In this work,
we will focus on compactifications of IIA string theory to two spacetime di-
mensions built from holomorphically factorized worldsheet theories of the form
V1 ⊗ V̄2, where V1, V2 are self-dual SVOAs with c = 12, and V̄2 denotes the
anti-holomorphic (right-moving) version of the SVOA V2. Much of our analysis
also carries through for heterotic string theories built from V1 ⊗ V̄2, where V1

is now a self-dual VOA with c = 24.
One nice feature of these factorized models is that BPS states are closely

related to infinite-dimensional Lie (super)algebras called Borcherds–Kac–
Moody algebras [10]. For a variety of instances of BKMs in string theory,
see, e.g., [15,18,31,38,39,46,54]. Such algebras can be constructed by apply-
ing a certain functor to a self-dual VOA that looks analogous to constructing
a “chiral” string theory: that is, tensor in the vertex algebra corresponding to
the even self-dual lattice of signature (1, 1) (a chiral analogue of the light-cone
directions) to obtain a theory with critical central charge, tensor in the vertex
algebra corresponding to ghosts, and compute the BRST cohomology of the
resulting complex. The resulting cohomology classes generate a BKM.

BKM algebras were originally defined by Borcherds in the course of his
proof of the monstrous moonshine conjectures [7,9,10]. Harvey and Moore later
proposed that BKM algebras should play a role as the underlying organizing
structure of BPS states in string compactifications [38,39]. While a complete
understanding of the elusive “algebra of BPS states” is still lacking (though
see, e.g., [48] for a mathematical perspective), the fact that BKM algebras are
intimately connected with BPS states is indisputable.

Let us explain this connection in some more detail. Consider heterotic
string theory compactified to two dimensions with an internal CFT of the form
V � ⊗ V̄ f�. Here, V � is the monster module, constructed by Frenkel, Lepowsky
and Meurman [29,30], and V f� is Duncan’s super-moonshine module for the
Conway group [25]. This theory was used in [55,56] to provide a physical
interpretation of the genus zero property of monstrous moonshine. A key aspect
is that it gives a spacetime description of the McKay–Thompson series, which

1Throughout this paper, we use the same definition of self-dual as the authors of [21]: essen-
tially, that an SVOA V is self-dual (or holomorphic) if V is the only irreducible, admissible
V -module up to isomorphism. The name “holomorphic VOA” is often used to denote self-
dual VOAs, but this name is potentially confusing in the context of this article.
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appear in certain BPS indices. In particular, after compactifying the space
direction on a circle S1, one can consider the following index:

TrHBPS

(
(−1)F e2πiTW e2πiUM

)
, (1.1)

where HBPS is a second quantized space of BPS string states, F is the fermion
number and (W,M) are the winding and momenta along the circle S1. In addi-
tion, (T,U) are the associated chemical potentials which involve the spacetime
radius R and inverse temperature β. It was shown in [55] that this index can
be written as an infinite product

⎛
⎜⎝e2πi(w0T+m0U)

∏
m>0
w∈Z

(1 − e2πimUe2πiwT )c(mw)

⎞
⎟⎠

24

, (1.2)

where c(n) are the Fourier coefficients of the modular invariant J-function.
This is recognized as the (24th power of) the Borcherds–Weyl–Kac denomi-
nator formula of the monster Lie algebra m. The roots α of the monster Lie
algebra are labeled by pairs of integers (m,w) and the Fourier coefficients
c(mw) encode the root multiplicities multα. This implies that the denomina-
tor formula of the monster Lie algebra can be viewed as a generating function
of BPS states in this model. The denominator function turns out to be a special
type of automorphic form on SO(2, 2)/(SO(2) × SO(2)).

One can further show that the space of BPS states is actually a module
for the monster Lie algebra m. This gives m a natural interpretation as a BPS
algebra [55]. This analysis extends to all CHL orbifolds [14] of V � ⊗ V̄ f� in
which case the relevant algebras are the mg’s constructed by Carnahan in his
proof of generalized monstrous moonshine [11–13].

The VOA V f� was further studied in [37], where a BKM algebra was
constructed upon which the Conway group Co0 acts faithfully. This is a can-
didate for an algebra of BPS states in a certain compactification of type IIA
string theory. In a similar spirit, in reference [36], we constructed a family of
BKM algebras associated with F24, the holomorphic c = 12 SCFT based on 24
free fermions. More precisely, we obtained one BKM for every choice of N = 1
superconformal structure on F24. Additionally, for these BKM algebras one
can identify the denominator formulas with certain higher-rank automorphic
forms. A similar story unfolds if one instead starts with the self-dual SVOA
based on the E8 lattice, V fE8 [61,62].

It is the purpose of the present work to provide a spacetime interpretation
of the aforementioned BKM (super)algebras, along the lines of [55,56]. The
models we consider are now full (non-chiral) string theory, whose spacetime
BPS states moreover still enjoy a close relationship with these BKMs, in the
sense that 1) they form a module for a BKM (super)algebra and 2) the BKM
(super)algebras act as symmetries of amplitudes which contain insertions only
of BPS vertex operators. This provides a realization of these BKM algebras as
algebras of BPS states in type II string theories, such that their denominator
formulas correspond to BPS indices.
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Summary and outline
Now, we come to highlight the key results in the present work. Let us con-
sider 2d type IIA and heterotic string compactifications with holomorphically
factorized worldsheet theories of the form V1 ⊗ V̄2, as introduced above. Let
g be the BKM (super)algebra associated with V1 via the standard chiral con-
struction due to Borcherds, briefly reviewed above.2 In this work, we show the
following:

1. The spacetime BPS states in the 2d compactification associated with
V1 ⊗ V̄2 form a representation of the BKM algebra g (Sect. 4).

2. g acts as a symmetry on certain genus zero BPS saturated amplitudes in
the theory (Sect. 4).

3. A suitably defined spacetime supersymmetric index in the theory repro-
duces the (super)denominator formula of g (Sect. 5).

4. This index can also be reproduced via a path integral computation on a
2d Euclidean spacetime torus. The path integral precisely reduces to a
familiar theta lift in the theory of automorphic forms (Sect. 6).
The plan of the rest of the paper is as follows. In Sect. 2, we describe ba-

sic features of the 2d spacetime string theories we are interested in, including
worldsheet SCFTs, massless field content, spacetime supersymmetry algebras,
and gravitational anomalies. In Sect. 3, we explicitly construct the cohomology
of physical states in our holomorphically factorized models, leaving some tech-
nical details to “Appendix B.” In Sect. 4, we focus on the subspace of spacetime
BPS states HBPS and describe the action of the BKM algebra g (constructed
from the (S)VOAs V1) on HBPS. We further show that g is a symmetry of
genus zero BPS amplitudes. In Sect. 5 we consider a second quantized version
of our 2d string theories, where we allow for an arbitrary number of funda-
mental strings, and study the resulting Hilbert space. We compute a number
of natural supersymmetric indices in the second quantized theories from the
Hamiltonian point of view and explain their relation to denominators of the
BKM algebras from the previous section. In Sect. 6, we revisit the computa-
tion of the indices from the path integral point of view using the formalism of
theta lifts from the theory of automorphic forms and clarify some subtleties
that arise in these low-dimensional models. Finally, we conclude in Sect. 7 with
a discussion of several open questions that emerged during the course of this
work.

This paper also contains four appendices. In “Appendix A,” we give a de-
tailed analysis of gravitational anomalies and the B-field tadpole in our models.
In “Appendix B,” we provide a careful treatment of the semirelative cohomol-
ogy of physical states. In “Appendix C,” we discuss some details related to
the zero-momentum R-R spectrum in one of our models, relevant to certain
computations carried out in Sect. 5. And finally, in “Appendix D” we review
some standard facts about theta lifts of vector-valued modular forms.

2We note that it is not a priori obvious that this construction always gives rise to a BKM
algebra, although this is verified in all cases. See Sect. 4.2 for more details.
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Conventions and notation

• Gamma matrices. We use the two-dimensional metric ημν = diag(−,+).
The gamma matrices Γ0 =

(
0 1−1 0

)
, Γ1 = ( 0 1

1 0 ) obey the algebra rela-
tions {Γμ,Γν} = 2ημν and the chirality matrix is Γ ≡ Γ0Γ1 =

(
1 0
0 −1

)
.

Majorana–Weyl spinors of positive and negative chirality have the form
( u+

0 ) and
(

0
u−

)
, respectively. The massless Dirac equation is

0 = kμΓ0Γμu =
(−k0 + k1 0

0 k0 + k1

)(
u+

u−

)

=
(

k0 + k1 0
0 −k0 + k1

)(
u+

u−

)
,

such that a positive chirality fermion exists only with k0 = −k1 and a
negative chirality one only for k0 = k1.

• Supersymmetry algebra. We say that a theory has (N+,N−) supersym-
metry when there are N+ supercharges Qi

+ of positive chirality and N−
supercharges Qi

− of negative chirality. In the absence of central charges,
the supersymmetry algebra in two uncompactified dimensions is

{Qi
α,Qj

β} = 2δij(Γ0Γμ)αβPμ = 2δij(P 0δαβ + P 1Γαβ); (1.3)

i.e.,

{Q+,Q+} = 2δij(P 0 + P 1), {Q−,Q−} = 2δij(P 0 − P 1),
{Q+,Q−} = 0. (1.4)

2. Two-dimensional Models

In this section, we discuss the class of models of interest in this paper. These
models are string theory compactifications to 1+1 dimensions where the world-
sheet CFT takes the holomorphically factorized form V1 ⊗ V̄2. We will al-
ways take V2 to be one of the three self-dual SVOAs of central charge 12 (see
Sect. 2.1). In the case of type IIA compactifications, we will also take V1 to be
one of these three theories. For the heterotic models we consider, we will allow
V1 to be one of the 71 known self-dual VOAs of central charge 24 [63–66]. In
all the SVOAs we consider, the representations of the Virasoro algebra obey
the standard spin-statistics relation, namely that even states have integer L0

eigenvalues, while odd states have half-integer L0 eigenvalues.

2.1. The Three c = 12 SVOAs

First, we briefly review the three c = 12 SVOAs we will consider. In [21], using
a strategy employed in [40], it was proven that there are exactly three so-called
self-dual SVOAs with central charge 12. These theories are:

1. V fE8 : This is the supersymmetric vertex operator algebra based on the
E8 lattice. It contains 8 chiral free bosons compactified on the E8 root
lattice, and their 8 fermionic superpartners.
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2. V f�: This is the unique self-dual SVOA with c = 12 and no fields of
conformal weight 1/2 in the NS sector. In [25] it was proved that, up
to automorphisms, it admits a unique choice of N = 1 superconformal
current which is stabilized by Conway’s group Co0. (The Z2 center of
Co0 acts non-trivially only on the Ramond sector.)

3. F24: This is a theory of 24 free chiral fermions. An N = 1 supercurrent can
be defined by taking a linear combination of cubic Fermi terms, and the
8 inequivalent choices are in one-to one correspondence with semisimple
Lie algebras of dimension 24. Given a choice of N = 1 superconformal
structure, the 24 currents that are supersymmetric descendants of the
free fermions generate an affine Kac–Moody algebra, of which there are
eight possibilities [33]:

(ŝu(2)2)
⊕8, (ŝu(3)3)

⊕3, ŝu(4)4 ⊕ (ŝu(2)2)
⊕3, ŝu(5)5, ŝo(5)3 ⊕ ĝ2,4,

ŝo(5)3 ⊕ ŝu(3)3 ⊕ (ŝu(2)2)
⊕2, ŝo(7)5 ⊕ ŝu(2)2, ŝp(6)4 ⊕ ŝu(2)2.

We discussed further aspects of this theory in [36].
Strictly speaking, a self-dual SVOA corresponds to the NS sector of a

chiral superconformal field theory, while the Ramond sector is a (canonically)
twisted module. We will be slightly imprecise in this respect and use the word
self-dual SVOA to denote the sum of the NS and Ramond sector.

In the NS sector of each holomorphic SCFT, there is a canonical Z2

symmetry—the fermion number operator (−1)F —which acts trivially on states
of integral L0 eigenvalue and as multiplication by −1 on states with half-
integral eigenvalue. The Ramond sector can be seen as a twisted module with
respect to this symmetry. For all the theories we consider, the definition of
the fermion number can be extended to the Ramond sector in such a way
that it is a symmetry of the OPE of order 2. However, there is an ambiguity
by an overall sign in this definition. For F24 and V fE8 , the zero mode of any
weight 1/2 NS field provides an isomorphism between the Ramond eigenspaces
of positive and negative fermion number, so the choice of the sign of (−1)F is
immaterial. For V f�, there is no such weight 1/2 NS field, and indeed all the
24 Ramond ground states (i.e., of conformal weight 1/2) have the same (−1)F

eigenvalue, with can be chosen to be +1 or −1. This choice will be important
when we discuss the GSO projection in superstring compactifications in the
next subsections. It is useful to introduce the notation V f�

+ and V f�
− to denote

the SVOA V f� with the choice of fermion number equal, respectively, to +1
and −1 on the Ramond ground states. For conformal weight strictly greater
than 1/2, the Ramond subspaces with positive and negative fermion number
are again isomorphic, with the isomorphism given by the zero mode of the
N = 1 supercurrent (see below).

For each of these theories V ∈ {V fE8 , V f�, F24}, we can define a set of
four torus partition functions, corresponding to the four choices of boundary
condition for the fermions,

φNS(τ ;V ) := TrNS(qL0−1/2) =
η48(τ)

η24(τ/2)η24(2τ)
− 24 + χNS(V ) (2.1)
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φ
ÑS

(τ ;V ) := sTrNS(qL0−1/2) =
η24(τ/2)
η24(τ)

+ 24 − χNS(V ) (2.2)

φR(τ ;V ) := TrR(qL0−1/2) = 212 η24(2τ)
η24(τ)

+
(
χR

+(V ) + χR
−(V )

)
(2.3)

φR̃(τ ;V ) := sTrR(qL0−1/2) = χR
+(V ) − χR

−(V ), (2.4)

where by sTr we denote the supertrace, i.e., the trace with the insertion of
the fermion number operator (−1)F , and χNS(V ), χR

+(V ), and χR
−(V ) are con-

stants. The partition functions {φNS, φ
ÑS

, φR} form a three-component vector-
valued representation of SL(2, Z), whereas φR̃ is a singlet under the action of
SL(2, Z). We have expressed them explicitly in terms of eta quotients, where
we have used the Dedekind eta function, defined as

η(τ) := q1/24
∞∏

n=1

(1 − qn), (2.5)

and throughout we use the definition q := e2πiτ . The first several terms in the
q-expansion of each of these functions are

φNS(τ ;V ) = q−1/2 + χNS(V ) + 276q1/2 + 2048q + 11202q3/2 + · · · (2.6)

φ
ÑS

(τ ;V ) = q−1/2 − χNS(V ) + 276q1/2 − 2048q + 11202q3/2 + · · · (2.7)

φR(τ ;V ) =
(
χR

+(V ) + χR
−(V )

)
+ 4096q + 98304q2 + 1228800q3 + · · · (2.8)

φR̃(τ ;V ) =
(
χR

+(V ) − χR
−(V )

)
. (2.9)

The constant χNS(V ) captures the number of spin-1/2 fields of V in the
NS sector. All of these fields are odd under the fermion number operator. The
constants χR

+(V ) and χR
−(V ) capture the number of even and odd spin-1/2

fields in the Ramond sector, respectively. The values of these constants for
each choice of V ∈ {V fE8 , V f�, F24} are listed in the following table.

SVOA V χNS(V ) χR
+(V ) χR

−(V )

V f
E8

8 8 8

V f�
+ 0 24 0

V f�
− 0 0 24

F24 24 0 0.

Note that each of these theories has a total of 24 spin-1/2 fields across both
of the NS and R sectors.

In order to construct a physical string model, one also needs a choice of
N = 1 supercurrent in these theories. As shown in [25], V f� admits a unique
(up to isomorphism) N = 1 supercurrent, which is stabilized by the sporadic
group Co0, the group of automorphisms of the Leech lattice. In the theory
V fE8 , there is a standard choice of supercurrent of the form

G(z) ∼
8∑

i=1

: ∂Xiψi : (z),
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which is left invariant by the group of inner automorphisms U(1)8 : W (E8),
i.e., a split extension of W (E8), the Weyl group of E8, by the group U(1)8.
Finally, the theory F24 has 8 inequivalent choices for a supercurrent, all of the
form

G(z) ∼
∑
i,j,k

cijk : λiλjλk : (z),

where the coefficients cijk are the structure constants of a semisimple Lie
algebra g of total dimension 24 [33].

As described in [21], the three theories V fE8 , V f�, F24 can be related to
each other via orbifolding by a cyclic group of symmetries, that preserve the
N = 1 superconformal structure. This is described in detail in §3 of [36] for
orbifolds relating F24 and V fE8 . When we turn to full string theory models
where these SVOAs are components of the worldsheet theory, we expect these
relations will be important for understanding string dualities relating these
models.

2.2. Superstring Models

We can build two-dimensional compactifications of type II string theory by
taking worldsheet theories of the form V1 ⊗ V̄2 with V1, V2 ∈ {V fE8 , V f�, F24}.
For each such model, we list the number of fields of spin 0 or 1/2 in the massless
spectrum (there are also fields with no propagating local degrees of freedom,
namely containing only Gμν , Bμν , the dilaton φ, and possibly gravitinos and
vector fields) and the number of spacetime supersymmetries in table 1.3

The theory V fE8 ⊗ V̄ fE8 is equivalent to the type IIA string compactified
on T 8 = R8/ΛE8 at the holomorphically factorized point in moduli space. As
both V f� and F24 can be realized as orbifolds of V fE8 , all other theories in the
table can be thought of as asymmetric orbifolds of the type IIA string on T 8

at the holomorphically factorized point. Some of these models were recently
considered in [28].

Table 1. The two-dimensional type IIA models we consider
in this paper

Theory NS-NS R-R NS-R R-NS SUSY

V fE8 ⊗ V̄ fE8 8 × 8 8 × 8 8 × 8 8 × 8 (16, 16)

V fE8 ⊗ V̄ f�
− 0 8 × 24 8 × 24 0 (8, 32)

F24 ⊗ V̄ fE8 24 × 8 0 24 × 8 0 (8, 8)

V f�
+ ⊗ V̄ f�

− 0 24 × 24 0 0 (0, 48)

V f�
− ⊗ V̄ f�

− 0 24 × 24 0 0 (24, 24)

F24 ⊗ V̄ f�
− 0 0 24 × 24 0 (0, 24)

F24 ⊗ F̄24 24 × 24 0 0 0 (0, 0)

We enumerate the number of massless fields from each sector in the first four columns and
identify the spacetime supersymmetry algebra in the fifth column

3Note that F24 ⊗ F 24 has massive spacetime fermions, though it has no spacetime
supersymmetries.
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Table 2. The two-dimensional heterotic models we consider
in this paper

Theory NS R SUSY

V1 ⊗ V̄ fE8 N × 8 N × 8 (8, 8)

V1 ⊗ V̄ f�
+ 0 N × 24 (0, 24)

V1 ⊗ F̄24 N × 24 0 (0, 0)

Here, N is the number of currents in the VOA V1

Similarly, we will also consider two-dimensional compactifications of het-
erotic string theory by considering worldsheet theories of the form V1 ⊗ V̄2,
with V1 a self-dual bosonic VOA with c = 24 and V2 ∈ {V fE8 , V f�, F24}. In
Table 2, we list the number of massless fields and spacetime supersymmetries
in terms of N , the number of currents in V1.

When considering type IIA or heterotic string theory compactified to
two dimensions, there is the possibility that there is a tadpole for the B-field
[49,50,69] (see also [68] and [67]). Such a tadpole can be canceled by adding a
certain number of spacetime-filling strings. In “Appendix A,” we discuss the
derivation of the tadpole for the theories we consider.

3. Physical States in Type II on V1 ⊗ V̄2

In this section, we will identify the physical states of type II string theory
compactified on V1 ⊗ V̄2, where V1 and V2 are each one of the self-dual N = 1
SVOAs with c = 12, i.e., V f�, VE8 , or F24 with a choice of N = 1 structure.
The final outcome of this section is that, roughly speaking, the space of phys-
ical states furnishes a tensor product of the physical states for the “chiral”
superstring on V1 times the physical states for the “anti-chiral” superstring on
V2.

A similar factorization holds for the physical states in the heterotic string
models on V1⊗V̄2, where V1 is a self-dual bosonic VOA of central charge c = 24
and V2 a self-dual N = 1 SVOA with c = 12.

3.1. Chiral Compactification

Let us first recall the main steps in the construction of the physical states
for the “chiral” version of superstrings compactified on a self-dual c = 12
N = 1 SVOA V . This material is largely standard, and we closely follow the
notation and treatment of [36], to which we refer for further details. One starts
from a product vertex algebra with underlying Hilbert space Hm ⊗ Hgh. The
“matter sector” Hm is itself the product of the internal SVOA V and the
super-vertex algebra (SVA) of 1 + 1-dimensional spacetime chiral bosons Xμ

and fermions ψμ, μ = 0, 1. The “ghost” sector Hgh is the product of a bc
ghost and a βγ superghost system.4 Recall that the βγ system has a class of

4More precisely, we restrict as always to the relevant subalgebra of the ηζφ-VA, where
β = ∂ζe−φ, γ = ηeφ.
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irreducible modules labeled by the “picture number” p, which takes values in
Z (NS sector) or in 1

2 + Z (R sector) [59]. The module at picture number p
is constructed starting from a state |p〉 satisfying βr|p〉 = 0 = γs|p〉 for all
r ≥ − 1

2 − p and s > 1
2 + p, and acting in all possible ways on |p〉 with the

(mutually commuting) modes βr, γs with r < − 1
2 − p and s ≤ 1

2 + p. The
L0 eigenvalues of the representation at picture number p are bounded from
below only for p = −1, −1/2 or −3/2; these are called the “canonical picture
numbers.”

The product H = Hm ⊗Hgh splits into four sectors HNS+, HNS−, HR+,
and HR−, corresponding to the four spin structures on the torus. Here,

HNS = Hm
NS ⊗ Hgh

NS

and

HR = Hm
R ⊗ Hgh

R

denote the NS and Ramond sector, respectively, and HNS± and HR± are the
projections onto states of positive or negative fermion number (−1)F .5 Next we
perform the GSO projection, which restricts to the subspace of total fermion
number +1, i.e.,

HGSO := HNS+ ⊕ HR+ . (3.1)

We further restrict to the ker b0 ∩ ker L0

C := HGSO ∩ ker b0 ∩ ker L0. (3.2)

The theory contains the conserved currents jgh = − : ξη : + : bc :, jp = ∂φ+ :
ξη : and (P 0, P 1) = (i∂X0, i∂X1), whose zero modes eigenvalues correspond,
respectively, to the ghost number n, the picture number p, and the winding-
momenta k := (k0, k1). The space C can be decomposed into components
Cn

p (k) with definite n, p, and k, as

C =
⊕

{k;n,p}
Cn

p (k). (3.3)

In [36,37], the momenta k were assumed to take values in the even unimodular
lattice Γ1,1; here, we leave them unspecified, for the time being.

The nilpotent BRST charge Q commutes with L0, picture number, and
winding-momenta and has ghost number 1, so that for each momentum k and
picture number p it defines a complex

· · · → Cn−1
p (k) → Cn

p (k) → Cn+1
p (k) → · · · (3.4)

graded by the ghost number n. From this complex, one builds the BRST
cohomology Hn

p (k). Note that the picture number takes integral values in the
NS sector and half-integral values in the Ramond sector.

5In the Ramond sector of the ψμ, Xμ theory, the fermion number acts on the ground states

|±〉 by ±i (i.e., (−1)F coincides with iΓ, where Γ is the chirality matrix in 1+1 dimensional
spacetime), while in the β, γ theory (−1)F acts by eπip on the ground state with picture
number p. Since p is integral in the NS sector and half-integral in the Ramond sector, the
fermion number (−1)F has order 2 in the full matter+ghost theory.
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It is also useful to recall the picture-changing homomorphism

X : Hn
p (k) → Hn

p+1(k), (3.5)

which is an isomorphism for k �= 0. This allows us to focus on the “canonical
pictures” p = −1 for the NS sector and p = −1/2 for the R sector. Furthermore,
for k �= 0 the chiral cohomology groups Hn

−1(k) and Hn
−1/2(k) are trivial unless

n = 1. Given this, we define the Hilbert space of (chiral) physical states as

Hphys :=
⊕

k

H1
−1(k) ⊕ H1

− 1
2
(k) =

⊕
k

H1(k), (3.6)

where

Hn(k) := Hn
−1(k) ⊕ Hn

−1/2(k). (3.7)

Note that the same construction could be implemented starting from the GSO
projection HGSO = HNS+ ⊕HR− ; the corresponding physical states are related
by a spacetime parity transformation, which inverts the sign of X1, ψ1, and
k1.

Analogously, starting from anti-holomorphic rather than holomorphic
vertex algebras, one can define a space of physical states for an anti-chiral
superstring, in terms of the cohomology groups H̄ n̄

p̄ (k) of a complex C̄•
p̄ (k)

with respect to a nilpotent BRST operator Qr.

3.2. Non-chiral Compactification

We are now ready to construct the non-chiral (left- and right-moving) com-
pactification of type IIA on V1 ⊗ V̄2, where V1 and V2 are not necessarily the
same SVOA. We define the spaces Hm,Hgh and their right-moving analogues
H̄m, H̄gh as above. Similarly, we define NS± and R± sectors for both the left-
and the right-moving spaces of states and the corresponding spaces HNS± ,
HR± , H̄NS± , H̄R± . The GSO projected space of states is

HGSO := (HNS+ ⊗ H̄NS+) ⊕ (HNS+ ⊗ H̄R−) ⊕ (HR+ ⊗ H̄NS+)

⊕(HR+ ⊗ H̄R−). (3.8)

Note that we are only considering type IIA GSO projection. We could also
consider type IIB theories, by projecting the NS-R and R-R sectors on the
subspace with positive, rather than negative right-moving fermion number.
However, we would not obtain anything new in this way: As stressed in Sect. 2,
there is a choice of sign for the fermion number in the Ramond sector of the
internal SVOA V2, and type IIB on V1 ⊗ V̄2 with one choice of sign for V2

is equivalent to type IIA with the opposite choice. In particular, type IIA on
V1 ⊗ V̄ f�

± is equivalent to type IIB on V1 ⊗ V̄ f�
∓ ; when V2 is either V fE8 or F24,

type IIA and type IIB GSO projections give equivalent theories.
We now restrict to the space

C := HGSO ∩ ker b0 ∩ ker b̄0 ∩ ker L0 ∩ ker L̄0, (3.9)
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which decomposes as

C =
⊕

{kl,kr}
C(kl, kr) =

⊕
{kl,kr;n,n̄,p,p̄}

Cn,n̄
p;p̄ (kl, kr), (3.10)

where kl := (k0
l , k1

l ) and kr := (k0
r , k1

r) are left- and right-moving momenta,
i.e., the eigenvalues of (P 0

l , P 1
l ) and (P 0

r , P 1
r ), respectively. Here, Pμ

l and Pμ
r are

the zero modes of i∂Xμ(z) and i∂̄Xμ(z̄), respectively. We will consider two
possibilities for the values of these momenta: In the “uncompactified case,”
where the target spacetime is R

1,1, one has that k0
l = k0

r and k1
l = k1

r and
both take values in R; in the “compactified case,” where a spacelike direction
of spacetime is compactified on a circle of radius R, one has

k1
l =

1√
2

(m

R
− wR

)
, k1

r =
1√
2

(m

R
+ wR

)
, m,w ∈ Z, (3.11)

and again k0
l = k0

r ∈ R.
Throughout this section, we will construct physical states in relative co-

homology for simplicity, from the space C above. We will treat the physical
states of the complete, non-chiral superstring more properly in semirelative co-
homology (i.e., imposing the condition b0 − b̄0 = 0 rather than b0 = b̄0 = 0) in
“Appendix B.” These two cohomologies are isomorphic at nonzero momentum,
and hence in particular are both supported in ghost number (1, 1). The relative
and semirelative cohomologies differ, however, at zero momentum. Moreover,
zero momentum states in both relative and semirelative cohomologies are sup-
ported in various ghost numbers. At ghost number 2, which are the states on
which we will construct a BKM algebra action in the next section, the semirel-
ative cohomology only differs from the relative cohomology (ker b0 ∩ ker b̄0) by
a single state at zero-momentum which is largely unimportant for our subse-
quent analyses.

Now, if we denote by Cn
p (kl) and C̄n̄

p̄ (kr) the respective spaces that we
would obtain by the chiral and anti-chiral construction described above for V1

and V̄2 (with the appropriate GSO projections), one has

CN
p,p̄(kl, kr) =

⊕
n+n̄=N

Cn
p (kl) ⊗ C̄n̄

p̄ (kr), (3.12)

where N is the total (holomorphic plus anti-holomorphic) ghost number. Fur-
thermore, if Ql and Qr are the chiral and anti-chiral BRST charges for the
corresponding left- and right-moving complexes, the operator Q := Ql +Qr ≡
Ql ⊗ 1 + 1 ⊗ Qr is nilpotent (in particular, {Ql, Qr} = 0) and has total ghost
number 1, so that it defines a complex

· · · → CN−1
p,p̄ (kl, kr) → CN

p,p̄(kl, kr) → CN+1
p,p̄ (kl, kr) → · · · (3.13)

This complex defines a Q-cohomology HN
p,p̄(kl, kr) such that

HN
p,p̄(kl, kr) =

⊕
n+n̄=N

Hn
p (kl) ⊗ H̄ n̄

p̄ (kr), (3.14)

where Hn
p (kl) and H̄ n̄

p̄ (kr) are the corresponding left- and right-moving coho-
mologies of Ql and Qr, respectively.
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Finally, we restrict to the canonical pictures p, p̄ ∈ {−1/2,−1}, and total
ghost number N = 2. If k �= 0, then the cohomology group reduces to

H2
p,p̄(kl, kr) = H1

p (kl) ⊗ H̄1
p̄ (kr), (3.15)

because the other components are zero. Again, see “Appendix B” for a dis-
cussion of (unimportant for our purposes) subtleties at zero-momentum. We
define the Hilbert space of physical states as

Hphys :=
⊕

{kl,kr}
H2(kl, kr)

=
⊕

{kl,kr}
(H2

−1,−1(kl, kr) ⊕ H2
−1,− 1

2
(kl, kr) ⊕ H2

− 1
2 ,−1(kl, kr)

⊕ H2
− 1

2 ,− 1
2
(kl, kr)),

where the four summands correspond, respectively, to the NS-NS, NS-R, R-NS
and R-R sectors, and

HN (kl, kr) :=
⊕

p,p̄∈{−1,−1/2}
HN

p,p̄(kl, kr). (3.16)

3.3. Heterotic Strings

Similar results hold for the physical states of heterotic strings compactified on
V1 ⊗ V̄2, where V1 is a bosonic self-dual VOA of central charge 24 and V2 is one
of the self-dual SVOA of central charge 12. The spacetime matter SCFT in
1+1 dimensions includes only right-moving fermions ψ̄μ(z̄), in addition to the
usual bosonic fields Xμ(z, z̄). Similarly, the holomorphic ghost sector includes
only the bc-system and not the βγ-system; the anti-holomorphic ghost sector
is as in type II theories.

The GSO-projected space of states is

HGSO := (H ⊗ H̄NS+) ⊕ (H ⊗ H̄R+), (3.17)

where H is the space of states of the holomorphic bosonic matter and ghost
CFT. We restrict to the space

C := HGSO ∩ ker b0 ∩ ker b̄0 ∩ ker L0 ∩ ker L̄0, (3.18)

which decomposes as

C =
⊕

{kl,kr}
C(kl, kr) =

⊕
{kl,kr;n,n̄,p̄}

Cn,n̄
p̄ (kl, kr), (3.19)

where now only the anti-holomorphic picture number p̄ is defined. The spaces
Cn,n̄

p̄ (kl, kr) decompose as

CN
p̄ (kl, kr) =

⊕
n+n̄=N

Cn(kl) ⊗ C̄n̄
p̄ (kr), (3.20)

where C̄n̄
p̄ (kr) is as in the previous section, and Cn(kl) is the space one would

obtain by a chiral bosonic string construction starting from the internal VOA
V1, tensoring with the chiral bosonic spacetime matter in 1 + 1 dimensions
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and bc-ghost system, and restricting to ker b0 ∩ ker L0. One can define a nilpo-
tent BRST charge Q of ghost number 1 that is the sum Q = Ql + Qr of
BRST charges Ql and Qr acting only on the left- and right-moving sectors,
respectively. For each p̄ and (kl, kr), one has a complex

· · · → CN−1
p̄ (kl, kr) → CN

p̄ (kl, kr) → CN+1
p̄ (kl, kr) → · · · (3.21)

and the corresponding cohomology HN
p̄ (kl, kr) is given by

HN
p̄ (kl, kr) =

⊕
n+n̄=N

Hn(kl) ⊗ H̄ n̄
p̄ (kr). (3.22)

Here, H̄ n̄
p̄ (kr) is as in the type II case, while Hn(kl) is the cohomology of the

complex C•(kl) with respect to the nilpotent operator Ql. For kl, kr �= 0, the
cohomology group HN

p̄ (kl, kr) is non-trivial only at ghost number N = 2 and
factorizes as

H2
p̄(kl, kr) = H1(kl) ⊗ H̄1

p̄ (kr). (3.23)

Thanks to the picture-changing isomorphism, one can focus on the canonical
pictures p̄ = −1 (NS sector) and p̄ = −1/2 (Ramond sector). The space of
physical states of the heterotic strings is then defined as

Hphys :=
⊕

{kl,kr}
H2(kl, kr) =

⊕
{kl,kr}

(H2
−1(kl, kr) ⊕ H2

− 1
2
(kl, kr)), (3.24)

where the sum over momenta depends on whether the 1+1-dimensional space-
time is compactified or not, as in the type II case.

4. BKM Algebras of BRST Exact States

Now that we have constructed the physical states of our model, we can de-
fine the corresponding action of a Borcherds–Kac–Moody (BKM) algebra on
a particular subsector of the space of physical states. A BKM algebra is a type
of infinite-dimensional Lie algebra introduced by Borcherds [10] expanding the
notion of a Kac–Moody algebra. The construction of a BKM superalgebra on
a chiral superstring is well known [61,62], so at a point in string theory mod-
uli space where the worldsheet theory holomorphically factorizes, one might
naively expect two complementary BKM algebras acting on the left and right.
However, a tensor product of two Lie algebras is not a Lie algebra, so a more
complicated action of a BKM algebra must arise in the physical superstring
if it is to arise at all. Moreover, the chiral superstring construction of a BKM
requires all spacetime dimensions to be compactified, and it would be far more
interesting if the algebra structure arose in a standard non-chiral string theory
where at least the time direction remains uncompactified.

To set the notation, we will begin this section with a brief overview of
the basic structure theory of BKMs. Then, we proceed to discuss BPS states
and show that they form a representation of a BKM algebra g. Finally, we
demonstrate that g is also a symmetry of BPS saturated genus zero amplitudes.
We also offer some speculations on the physical interpretation of these results.
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Throughout the paper we will use the short term “BKM algebra” to collectively
refer to both BKM Lie algebras and BKM Lie superalgebras. We hope that this
will not cause confusion.

4.1. Basic Structure Theory of BKM Algebras

Let us review the definition of a Borcherds–Kac–Moody superalgebra. For
more details, see [60]. Recall that, in general, a Lie superalgebra is a Z2-graded
vector space g = g0 ⊕ g1 equipped with a Lie bracket satisfying the Z2-graded
version of the usual skew-symmetry properties and Jacobi identity. A BKM
Lie superalgebra g is characterized by a Cartan matrix A, which is allowed
to have infinite rank and is generically of indefinite signature [7,60]. Let I
be a set (finite or countably infinite) indexing the simple roots of g and let
S ⊆ I be a subset indexing the odd simple roots. Let hR be a real vector space
with generators hi, i ∈ I, and equipped with a non-degenerate symmetric
real-valued bilinear form (·|·). The bilinear form satisfies the following three
properties:

(1) (hi|hj) ≤ 0 if i �= j,

(2) If (hi|hi) > 0 then
2(hi|hj)
(hi|hi)

∈ Z for all j ∈ I,

(3) If (hi|hi) > 0 and i ∈ S then
(hi|hj)
(hi|hi)

∈ Z for all j ∈ I. (4.1)

Now set h = hR⊗RC. The Cartan matrix is the symmetric matrix A with
entries Aij = (hi|hj). The BKM superalgebra associated with the vector space
h and (generalized) Cartan matrix A is the Lie superalgebra g generated by
the elements hi, ei, fi, i ∈ I, subject to the relations:

[ei, fj ] = δijhi, [hi, hj ] = 0
[h, ei] = (h|hi)ei, [h, fi] = −(h|hi)fi, ∀h ∈ h,

deg(ei) = deg(fi) = 0 if i /∈ S and deg(ei) = deg(fi) = 1, if i ∈ S

ad1−2Aij/Aii
ei

ej = 0, ad1−2Aij/Aii

fi
fj = 0 if Aii > 0 and i �= j,

ad1−Aij/Aii
ei

ej = 0, ad1−Aij/Aii

fi
fj = 0 if i ∈ S, Aii > 0 and i �= j,

[ei, ej ] = [fi, fj ] = 0 if Aij = 0. (4.2)

Here, deg denotes the Z2-grading. In the special case when Aii > 0 for all i ∈ I
the resulting algebra g is a Kac–Moody Lie superalgebra.

Just like for ordinary Kac–Moody algebras, the diagonal elements hi

generate the Cartan subalgebra h and the ei’s and fj ’s generate nilpotent
subalgebras g+ and g−, respectively. This implies that g has a triangular de-
composition

g = g− ⊕ h ⊕ g+ (direct sums of vector spaces). (4.3)

The bilinear form (·|·) on hR induces a bilinear form on the dual space h∗
R
.

An important difference compared to standard Kac–Moody algebras is that
the diagonal entries of the Cartan matrix A are not required to be positive.
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This implies that the simple roots of g come in two classes: real simple roots
satisfying (αi|αi) > 0, and imaginary simple roots satisfying (αi|αi) ≤ 0.

We denote by Δ the set of all roots. We say that a root is positive (resp.
negative) if it is a nonnegative (resp. non-positive) integer linear combination
of the simple roots. We therefore have a natural splitting into positive and
negative roots

Δ = Δ+ ⊕ Δ−. (4.4)

Accordingly, the nilpotent subalgebras g− and g+ can be written as direct
sums

g± =
⊕

α∈Δ±
gα, (4.5)

where the root spaces gα are finite-dimensional mult(α) := dim(gα) < ∞.
The bilinear form (·|·) on h extends uniquely to a (super-)symmetric, non-
degenerate, invariant bilinear form on g, such that gα and gβ are orthogonal
unless β = −α. The integral span of all simple roots is the root lattice

Φ =
rank g∑
i=1

Zαi ⊂ h∗. (4.6)

The Weyl group W(g) is the group of reflections in Φ ⊗ C with respect
to the even real simple roots αi, i ∈ I \ S. It is generated by the fundamental
reflections

si : α �−→ α − 2
(α|αi)
(αi|αi)

αi. (4.7)

An additional important property of a BKM algebra is the existence of a Weyl
vector ρ, satisfying

(ρ|α) ≥ 1
2
(α|α), (4.8)

with equality if and only if α is a simple root.
Let us focus on the case where S = ∅, so that g is a (purely even) BKM Lie

algebra, rather than a Lie superalgebra. For any irreducible (integrable) lowest
weight representation R(λ) of g one has the Weyl–Kac–Borcherds character
formula

ch R(λ) =
∑

w∈W ε(w)w(T )eρ

∏
α∈Δ+(1 − eα)mult(α)

, (4.9)

where ε(w) = (−1)	(w) with �(w) the length of the Weyl element w. This
differs from the standard Weyl–Kac character formula by the factor w(T )
which contains a correction due to the imaginary simple roots

T = eλ−ρ
∑

μ

ξ(μ)eμ. (4.10)

The sum is taken over all (unordered) sets of distinct mutually orthogonal
imaginary simple roots, whose sum is denoted by μ. Here ξ(μ) = (−1)m if
μ is a sum of m distinct pairwise orthogonal imaginary simple roots which



3684 S. M. Harrison et al. Ann. Henri Poincaré

are orthogonal to λ, and ξ(μ) = 0 otherwise. For our purposes we are mainly
interested in the simplest case of the trivial representation λ = 0, for which
ch R(λ) = 1, and the character formula reduces to the so-called denominator
formula ∑

w∈W
ε(w)w(T ) = e−ρ

∏
α∈Δ+

(1 − eα)mult(α)
. (4.11)

This formula relates a sum over the Weyl group W to an infinite product over
all positive roots of g.

Let us generalize the denominator formula to the case where g is a BKM
superalgebra. To this end, we need a little bit of additional structure. Again,
we refer to [60] for details. Denote the set of roots of g by Δ. This splits into
even or odd roots Δ0,Δ1, respectively. Define the corresponding even and odd
root multiplicities as follows

m0(α) = dim(gα ∩ g0), m1(α) = dim(gα ∩ g1) = mult(α) − m0(α).
(4.12)

Any root α ∈ Δ can be expanded as α =
∑

i∈I kiαi. Define the height ht(α)
and even height ht0(α) of α as follows

ht(α) =
∑
i∈I

ki, ht0(α) =
∑

i∈I\S

ki. (4.13)

Now introduce the following expressions where the sums are taken over all
sums μ of distinct pairwise orthogonal imaginary simple roots:

T = e−ρ
∑

μ

(−1)ht(μ)eμ, T ′ = e−ρ
∑

μ

(−1)ht0(μ)eμ, (4.14)

where ρ is the Weyl vector.
For any BKM superalgebra g, we have the denominator formula and

superdenominator formula:

∑
w∈W

ε(w)w(T ) =
e−ρ

∏
α∈Δ+

0
(1 − eα)m0(α)

∏
α∈Δ+

1
(1 + eα)m1(α)

,

∑
w∈W

ε(w)w(T ′) =
e−ρ

∏
α∈Δ+

0
(1 − eα)m0(α)

∏
α∈Δ+

1
(1 − eα)m1(α)

. (4.15)

4.2. Lie Algebras from the Chiral Superstring

In this section, we review how infinite-dimensional Lie (super)algebras, and in
particular BKM (super)algebras, can be defined on the BRST cohomology of
a chiral (super)string. This is the first step in understanding the appearance
of BKM algebras in non-chiral superstring models that will be discussed in the
next subsection.

Let us first consider the case of a bosonic chiral superstring theory ob-
tained from the compactification on a holomorphic CFT of the form VΓ1,1 ⊗V ,
where VΓ1,1 is the lattice vertex algebra related to the even unimodular lat-
tice Γ1,1 of signature (1, 1), and V is one of the bosonic self-dual VOAs of
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central charge c = 24. As mentioned in Sect. 3, upon tensoring with a bc
ghost system and restricting to the ker b0 subspace, for each k ∈ Γ1,1 one can
consider a complex C•(k) with respect to a nilpotent BRST operator Q, and
the corresponding cohomology H•(k), k ∈ Γ1,1. For k �= 0, the cohomology
is concentrated at degree (ghost number) 1, so one can focus on the space
Hphys =

⊕
k∈Γ1,1 H1(k).

Following Lian and Zuckerman [51,52], one can introduce a bilinear map
{·, ·} : Cn(k) × Cn′

(k′) → Cn+n′−1(k + k′) given by

{u, v} = (b−1u)0v, (4.16)

for u ∈ Cn(k) and v ∈ Cn′
(k′), where (b−1u)0 denotes the zero mode of the

vertex operator b−1u. The BRST charge Q acts on the bracket as a derivation,
i.e., [52]

Q{u, v} = {Qu, v} + {u,Qv}. (4.17)

In particular, if Qu = 0 = Qv, then Q{u, v} = 0; furthermore, if Qu = 0
and v = Qw, then {u, v} = Q{u,w} − {Qu,w} = Q{u,w} is exact. This
implies that {·, ·} induces a well-defined bilinear map on cohomology {·, ·} :
Hn(k) × Hn′

(k′) → Hn+n′−1(k + k′) (we use the same symbol {·, ·} with
abuse of notation). When acting on cohomology, the bracket is antisymmetric
{u, v} = −{v, u} and satisfies the Jacobi identity

{u, {v, w}} + {w, {u, v}} + {v, {w, u}} = 0. (4.18)

As a consequence, one can define a Lie algebra g with underlying vector space
Hphys and Lie bracket [·, ·] : Hphys×Hphys → Hphys which coincides with {·, ·}.

For a more explicit description of g, first notice that all Q-closed states
u ∈ ker b0 are necessarily in ker L0, so that b−1u is a current, i.e., has conformal
weight 1. The Lie algebra g is essentially the quotient of the algebra of zero
modes of these currents by the ideal of zero modes of states of the form b−1Qw.

This construction generalizes easily to the supersymmetric case. In this
case, one has a BRST complex C•

p (k) and the corresponding cohomology
Hn

p (k) for each momentum k ∈ Γ1,1 and picture number p ∈ 1
2Z. For k �= 0,

the cohomology is concentrated at degree 1, and the picture changing homo-
morphism X : Hn

p (k) → Hn
p+1(k) is an isomorphism, so that one focuses on

Hphys = ⊕k∈Γ1,1H1
−1(k) ⊕ H1

−1/2(k).
The bilinear map of Lian and Zuckerman admits a simple generalization

{·, ·} : Cn
p (k) × Cn′

p′ (k′) → Cn+n′−1
p+p′ (k + k′) given by [52]

{u, v} = (−1)|u|(b−1u)0v, u ∈ Cn
p (k), v ∈ Cn′

p′ (k′) (4.19)

where |u| ∈ Z/2Z is defined as |u| = n + 2p mod 2. A Z2-graded version
Q{u, v} = {Qu, v}+(−1)|u|−1{u,Qv} of (4.17) holds, so that the bracket is well
defined on cohomology {·, ·} : Hn

p (k) × Hn′
p′ (k′) → Hn+n′−1

p+p′ (k + k′), where it
satisfies a Z2-graded skew-symmetry relation {u, v}+(−1)(|u|+1)(|v|+1){v, u} =
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0 and a Z2-graded version of the Jacobi identity. The action of the picture-
changing operator X is compatible with the bracket, in the sense that

X{u, v} = {Xu, v} = {u,Xv}. (4.20)

One can now use this bracket to define the structure of a Lie superalgebra
g on Hphys, where g0 := ⊕k∈Γ1,1H1

−1(k) is the even component and g1 :=
⊕k∈Γ1,1H1

−1/2(k) is the odd component. The Lie bracket [·, ·] between two odd
elements is simply defined as

[u, v] := {u, v}, u, v ∈ g1. (4.21)

When one of the elements is even, for example if u ∈ ⊕k∈Γ1,1H1
−1(k) and

v ∈ ⊕k∈Γ1,1H1
p (k), p ∈ {−1,−1/2}, then the Lian–Zuckerman bracket {u, v} ∈

⊕k∈Γ1,1H1
p−1(k) is not contained in Hphys. In this case, one needs to use the

picture-changing operator to define the Lie bracket

[u, v] := X{u, v}, u ∈ g0, v ∈ g or u ∈ g, v ∈ g0. (4.22)

Both in the bosonic and in the supersymmetric case, the algebra g is
graded by momentum g = ⊕k∈Γ1,1g(k). The zero momentum subalgebra g(0)
always contains two commuting (even) generators Pμ, μ ∈ {+,−} correspond-
ing to spacetime momentum, so that the spaces g(k) are the eigenspaces of Pμ

(in their adjoint action on g) with eigenvalue kμ. The momentum generators
Pμ are usually included in the Cartan subalgebra h ⊂ g; as a consequence,
h is contained in the zero-momentum subalgebra g(0). In the supersymmetric
case, g(0) can also contain some odd elements corresponding to spacetime su-
persymmetry generators. In fact, the construction that we just described, when
restricted to zero momentum, provides the standard spacetime supersymmetry
algebras in general superstring models, see [59].

A case-by-case analysis shows that the infinite-dimensional Lie (super)
algebra g obtained from the BRST cohomology of a chiral (super)string on
V ⊗ VΓ1,1 is always a BKM (super)algebra. In particular, in the bosonic case,
this has been first proved in [9] and [10] when V is the monster VOA V � or one
of the lattice VOAs related to Niemeier lattices, and in [22,42,43,53] for the
other bosonic VOAs of central charge 24. The proofs for the supersymmetric
cases V fE8 , V f�, and F24 can be found respectively in [36,37,61]. For most of
these algebras, these references also provide some descriptions of g in terms
of generators and relations, as in the definition of Sect. 4.1. An exception is
F24, where for some choices of N = 1 superVirasoro algebra of F24, the set of
simple roots is not even known [36].

More generally, the Lian and Zuckerman construction can be applied to
superstring compactifications where the chiral algebra is a generic VOA of
central charge 26, not necessarily of the form V ⊗ VΓ1,1 [51,52]. For these
general cases, there is no reason to expect the Lie (super)algebra of the chiral
BRST cohomology to be a BKM; in particular it might not admit an analog
of the Borcherds–Kac–Weyl (super-)denominator formula.
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4.3. BPS States in Superstring Models

In [55,56], several of the authors conjectured the appearance of a BKM algebra
in a string theory whose worldsheet matter CFT, prior to compactification on
a spatial circle, was holomorphically factorized. In this section, we will expand
upon and generalize the BKM action studied in [55,56].

The basic idea of [55,56] was as follows. We began with a heterotic string
theory whose internal worldsheet CFT was given by the c = 24 holomorphic
monster VOA, V �, tensored with the anti-holomorphic c = 12 SVOA V f�

(for the NS sector), or its “canonically twisted module” (for the R sector).
Completing the standard string theory voodoo (adding ghost sectors, GSO
projecting, etc) resulted in a (1+1)-d theory with N = (0, 24) supersymmetry.
In 2d string theory, the GSO projection relates the internal fermion number
of the worldsheet CFT to fermion chirality in spacetime. Compactifying the
remaining spatial direction on a circle S1 of radius R enables one to write the
supersymmetry algebra as

{Qi,Qj
}

= 2δij(P 0
r − P 1

r ), i, j = 1, . . . , 24, (4.23)

expressed in terms of the temporal and spatial components of the right-moving
momenta around the circle. BPS states in this model are annihilated by all
supercharges and hence satisfy k0

r = k1
r , having equal eigenvalues of the P 0

r , P 1
r

operators. BPS states furnish a subspace of physical states in the (0+1)-d
string theory, and the latter arise as usual from BRST cohomology classes
with respect to a nilpotent operator Q = Ql + Qr, which can be expressed
as a sum of left- and right-moving pieces. When the right-moving momentum
is nonzero, the space of physical states factorizes into a product of left- and
right-moving cohomology classes, graded by momenta, picture number, and
ghost number. To the left-moving factor, we can associate a BKM algebra
following precisely the chiral construction; on the subspace of BPS states, the
right-moving factor degenerates into 24 copies of the trivial representation
of this algebra, contributing only a (24-fold) multiplicity to each BPS state.
In other words, although we cannot tensor two Lie algebras to obtain a Lie
algebra, a single copy of the BKM structure is preserved upon tensoring with
(copies of) the trivial representation. It turns out that in this non-chiral string
theory, for each choice of BRST-representative satisfying the BPS condition
k0

r = k1
r , there is a corresponding nonzero BRST-exact state obtained from

it by acting with a single supercharge Qi. The BRST-exact state is the Qr-
image of a Ql-closed state. One can then obtain a correspondence between
generators of a BKM algebra (in this case, the monster Lie algebra) and the
quotient space coming from the space of Qr-exact Ql-closed BPS states by the
space of Ql-exact states.

In the remainder of this section, we will expand and improve upon this al-
gebra construction, generalize to the type II case, and clarify various subtleties
and issues along the way.

Let us consider either a heterotic or type II superstring theory model
compactified on (V1 ⊗ V̄2)⊗S1, where V2 is a self-dual SVOA of central charge
12 and V1 is either a self-dual VOA of central charge 24 (in the heterotic case)
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or a self-dual SVOA of central charge 12 (in the type II case). Following the
analysis of the previous section, the space of physical states has the form

Hphys :=

⎛
⎜⎜⎝
⊕

kl,kr �=0
k0

l =k0
r

H1(kl) ⊗ H̄1(kr)

⎞
⎟⎟⎠⊕ H2(0, 0), (4.24)

where H1(k) and H̄1(k) are the cohomology space for the chiral and anti-chiral
models with respect to the left- and right-moving BRST charges Ql and Qr.
We have separated the nonzero-momentum states from the zero-momentum
states, which do not necessarily factorize (see “Appendix B”). In the fermionic
case, H1 is a direct sum of −1 (NS) and −1/2 (R) picture components.

We want to focus on the subspace

HBPS :=

⎛
⎜⎜⎝

⊕
kl,kr �=0

k0
l =k0

r=k1
r

H1(kl) ⊗ H̄1(kr)

⎞
⎟⎟⎠⊕ H2(0, 0)′, (4.25)

of physical states satisfying

k0
r = k1

r . (4.26)

The zero-momentum sector H2(0, 0)′ is obtained from H2(0, 0) by taking a
certain quotient of a suitable subspace; we will give the precise definition in
Sect. 4.5. If the model has spacetime supersymmetry, corresponding to grav-
itinos of positive chirality in the NS-R sector of the theory, then HBPS is the
subspace of states annihilated by those supersymmetries, hence BPS states.
We use the same notation HBPS even when there are no spacetime supersym-
metries. The possible momenta for states in HBPS are labeled by two integers
m,w ∈ Z as follows:

k0
l = k0

r = k1
r =

1√
2

(m

R
+ wR

)
, k1

l =
1√
2

(m

R
− wR

)
, (4.27)

where R is the radius of the circle.
Recall that with the self-dual VOA or SVOA V1 is canonically associated,

via the “chiral (super)string construction,” a BKM algebra (if V1 is bosonic)
[10] or superalgebra (if V1 is an SVOA) g [61,62].

In the remainder of this section, we will prove the following:
1. There is a representation δ

δ : g → End(HBPS) (4.28)

x �→ δx (4.29)

of the BKM (super)algebra g associated with V1 on the space HBPS of
physical BPS states. The elements x ∈ g are identified with certain Ql-
closed states vx of ghost number (1, 0) in the superstring theory satisfying
the “BPS” condition k0

r = k1
r , or equivalently with their BRST variation

Qvx, which only has components with ghost numbers (1, 1). For the het-
erotic string, the BRST variations Qvx are exact “BPS” states in the
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NS sector; in the type II case, the even and odd components g0 and g1

correspond to exact “BPS” states in the NS-NS and R-NS sector, respec-
tively. Here, “BPS” is in quotes because these states satisfy the condition
k0

r = k1
r , but they are not physical states since they are cohomologically

trivial. Note that the algebra action does not mix the right-moving NS
sector with the right-moving R sector of HBPS, so that the representa-
tion HBPS is, in general, the sum of two representations corresponding
to these sectors. This is proven in Sect. 4.4.

2. The action of g on HBPS is a symmetry of tree-level string theory ampli-
tudes involving only states in HBPS (purely BPS amplitudes). Explicitly,
for each x ∈ g and every �1, . . . , �n ∈ HBPS, we have

δx

(∫

M0,n

〈
n∏

i=1

V�i

〉)
≡

n∑
j=1

∫

M0,n

〈
Vδx(�j)

∏
i�=j

V�i

〉
= 0, (4.30)

where
∫

M0,n
denotes the integration over the appropriate (super)moduli

space of genus 0 with n punctures. Here, V� is the vertex operator cor-
responding to a state � ∈ HBPS. Roughly speaking, this result will be
obtained as follows. One considers an n + 1-point amplitude where the
additional vertex operator corresponds to the insertion of the BRST-
exact state Qvx associated with x ∈ g. By standard arguments, since
this amplitude includes one BRST-exact and n BRST-closed states, it is
expected to vanish. One then integrates over the modulus parametrizing
the position of the exact state.6 The amplitude is a total derivative with
respect to this modulus, so it gets contributions only from the boundary
of the moduli space, i.e., from the limit where the insertion of the exact
vertex operator coincides with one of the other n punctures. One then
just needs to prove that the sum over the boundary contributions has the
form (4.30).

Claim 1 above is proven in Sect. 4.4 and claim 2 is proven in Sect. 4.6.
We further conjecture that g is a symmetry of BPS amplitudes at all

loops, by analogous reasoning to that outlined above. On the other hand, we
do not expect the action of g to extend to the whole space of physical states
Hphys.7

Similarly, the superalgebra ḡ associated with the anti-holomorphic SVOA
V̄2 acts on the space H̄BPS of states satisfying k0

l = k1
l , and is a symmetry of

the amplitudes built only from the states in such space. Note that the space
H̄BPS is different from HBPS, so that there is apparently no space of states
where both g and ḡ act.

6When x is an odd element of a superalgebra, so that vx is in the R-NS sector, this statement
needs to be refined; see Sect. 4.6.
7Of course, the zero-momentum subalgebra of g, which corresponds to the standard sym-
metries related to conservation of spacetime momentum and winding number, will act on
all of Hphys.
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4.4. The BPS Subspace as a Representation of the BKM Algebra

In this section, we define the action of g on HBPS. We begin by focusing on
the states of nonzero momentum, which factorize into chiral and anti-chiral
components. The algebra g associated with V1 is the direct sum of finite-
dimensional components graded by “momentum” k taking values in the even
unimodular lattice Γ1,1 ∼= Z ⊕ Z:

g =
⊕

k∈Γ1,1

g(k) =
⊕

m,w∈Z

g(m,w), (4.31)

where the components g(k) are isomorphic, as vector spaces, to the BRST
cohomology with respect to the left-moving BRST charge Ql at momentum
k,

g(k) ∼= H1(k), k ∈ Γ1,1. (4.32)

There is an analogous BKM superalgebra ḡ associated with the SVOA V2,
which admits a similar decomposition

ḡ =
⊕

k∈Γ1,1

ḡ(k) =
⊕

m,w∈Z

ḡ(m,w), (4.33)

with

ḡ(k) ∼= H̄1(k), k ∈ Γ1,1. (4.34)

We work in the relative, rather than semirelative, cohomology, so that the
BPS states in HBPS admit representatives that are holomorphically factorized

� ⊗ ς̄ (4.35)

as tensor products of representatives � and ς̄ for classes in H1(kl) ∼= g(kl)
and H̄1(kr), respectively. (Here, the isomorphisms are to be understood as
isomorphisms of vector spaces; we do not claim that an algebra structure is
preserved on the tensor product.) The BPS condition k0

r = k1
r , together with

the quantization of momentum k1 along the circle S1 of radius R and the
conditions k0

l = k0
r (from the uncompactified time direction), implies that

k0
l = k0

r = k1
r =

1√
2

(m

R
+ wR

)
, k1

l =
1√
2

(m

R
− wR

)
, m,w ∈ Z

(4.36)

where m and w are the quantized momentum and winding number along S1,
respectively. This means that the left-moving momentum takes values in a
lattice isomorphic to Γ1,1 ∼= Z ⊕ Z. The right-moving momentum takes values
in a null subspace of R

1,1, i.e., k2
r = 0, and depends on m,w ∈ Z as

k0
r = k1

r =
1√
2

(m

R
+ wR

)
. (4.37)

Let us focus on the space H̄1(kr). Suppose that {v̄a}a=1...,χNS and {ūi+}i=1,...,χR
+

are bases for the spaces V̄ NS
2 (1/2) and V̄ R+

2 (1/2) of states of conformal weight
1/2 in, respectively, the NS and positive fermion number Ramond sector of
the anti-holomorphic SCFT V̄2. For k0

r = k1
r �= 0, the space of Qr-closed states
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with ghost number 1, picture number −1 and weight 0 in the anti-holomorphic
matter+ghost CFT is spanned by:

v̄a
−1/2e

−φ̃c̄1e
ikrXr |0〉,

(
ψ̄0

−1/2 − ψ̄1
−1/2

)
e−φ̃c̄1e

ikrXr |0〉, (4.38)

and the latter state is the only Qr-exact state. It is proportional to
Qrβ̄−1/2e

−φ̄c̄1e
ikrXr |0〉. In the −1/2 picture, the space of Qr-closed states

with k0
r = k1

r �= 0 is spanned by

ūi+
−1/2e

−φ̃/2c̄1e
ikrXr |0,−〉, i = 1, . . . , χR

+(V2), (4.39)

where |0,−〉 is a Ramond ground state of the (ψ̄μ, ∂̄Xμ) SVOA with negative
chirality. This shows that all cohomology spaces H̄1(kr), with k0

r = k1
r �= 0,

have dimension χNS(V2) + χR+(V2) and are all isomorphic to each other. In
fact, there is a distinguished isomorphism among them. One considers the
vertex operator ei(k′

r−kr)Xr , which has conformal weight 0 and non-singular
OPE with all the states (4.38) and (4.39). It is easy to see that the zero mode
(ei(k′

r−kr)Xr )0 induces a well-defined map(
ei(k′

r−kr)Xr

)
0

: H̄1(kr) → H̄1(k′
r), (4.40)

which is an isomorphism for kr, k
′
r �= 0.

With these preparations, one can then define the action of an element
x ∈ g(m,w) on a physical state � ⊗ ς̄ ∈ HBPS by

δx(� ⊗ ς̄) := [x, �] ⊗ (e
i√
2 (m

R +wR)Xr )0ς̄ . (4.41)

Here, we use the fact that the left-moving factor � ∈ H1(kl) ∼= g(kl) can
be seen as an element of the algebra g itself. The shift in the right-moving
momentum is necessary to preserve the condition k0

l = k0
r = k1

r .
If we have two elements x ∈ g(m,w), x′ ∈ g(m′, w′), one has

(δxδx′ − δx′δx)(� ⊗ ς̄) = ([x, [x′, �]] − [x′, [x, �]]) ⊗
(

e
i√
2

(
m+m′

R +(w+w′)R
)
Xr

)

0

ς̄

(4.42)

= [[x, x′], �] ⊗
(

e
i√
2

(
m+m′

R +(w+w′)R
)
Xr

)

0

ς̄

= δ[x,x′](� ⊗ ς̄) (4.43)

where in the second line we used the Jacobi identity. This shows that δ is
indeed a representation of g—in fact, it is the tensor product of the adjoint
representation of g times a trivial (in general, not irreducible) representation
of dimension χNS(V2) + χR

+(V2). This proves the first claim in Sect. 4.3.

4.5. Subtleties with Zero Momentum

The procedure described in the previous subsection is problematic when either
� ⊗ ς̄ ∈ HBPS or δx(� ⊗ ς̄) has zero right-moving momentum.8 The problem

8As explained below, we are going to exclude the ghost dilaton from the space HBPS. This
allows us to represent the states in HBPS as elements in the tensor product H1(kl)⊗H̄1(kr)
even at zero momentum kl = kr = 0. See “Appendix B” for details.
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is that the operator (ei(k′
r−kr)Xr )0 from states of momentum kr to states of

momentum k′
r does not map, in general, Qr-closed states to Qr-closed states

and Qr-exact states to Qr-exact states.
Indeed, the vertex operator eiprXr (z̄), with p1

r = p0
r, does not commute

with Q

[Q, eiprXr ] = prμ(c̄∂̄Xμ + γ̄ψ̄μ)eiprXr . (4.44)

Given this result, it is quite surprising that, at least for certain momenta,
the zero mode (eiprXr )0 gives a well-defined map on the cohomology at all.
Note, however, that the zero mode of prμ∂̄Xμ, when acting on states with
k0

r = k1
r , gives a term proportional to kr · pr = 0, since kr and pr are both null

and proportional to each other. As for the second term, the only cases where
it is potentially nonvanishing is when the commutator [Q, eiprXr ] is applied
to the ghost number 0 state β̄−1/2e

−φ̄c̄1|kr〉 or the ghost number 1 states
ψ̄μ

−1/2e
−φ̃c̄1|kr〉 and ūi∓

−1/2e
−φ̃/2c̄1|kr,±〉. In these cases, we have

(eiprXr )0Qr β̄−1/2e
−φ̄c̄1|kr〉 = krμψ̄μ

−1/2e
−φ̃c̄1|kr + pr〉, (4.45)

Qr(eiprXr )0 β̄−1/2e
−φ̄c̄1|kr〉 = (krμ + prμ)ψ̄μ

−1/2e
−φ̃c̄1|kr + pr〉, (4.46)

as well as

(eiprXr )0Qrεμψ̄μ
−1/2e

−φ̃c̄1|kr〉 = εμkμ
r γ−1/2e

−φ̃c̄1|kr + pr〉, (4.47)

Qr(eiprXr )0εμψ̄μ
−1/2e

−φ̃c̄1|kr〉 = εμ(kμ
r + pμ

r )γ−1/2e
−φ̃c̄1|kr + pr〉, (4.48)

and

(eiprXr )0Qrū
i∓
−1/2e

−φ̃/2c̄1|kr,±〉 = krμγ̄0ψ̄
μ
0 ūi∓

−1/2e
−φ̃/2c̄1|kr + pr,±〉, (4.49)

Qr(eiprXr )0ūi∓
−1/2e

−φ̃/2c̄1|kr,±〉 = (krμ + prμ)γ̄0ψ̄
μ
0 ūi∓

−1/2e
−φ̃/2c̄1|kr + pr,±〉.

(4.50)

Since kr and kr + pr are proportional to each other, then so long as both
kr �= 0 and kr + pr �= 0, exchanging (eiprXr )0 and Qr gives just a rescaling
of the resulting state. This explains why (eiprXr )0 provides an isomorphism of
cohomology in these cases. Of course, these arguments only work for states in
HBPS, so there seems to be no natural way to extend the action of g to the
whole space of physical states Hphys.

The problems arise when either kr or kr + pr is zero. Recall that for
k0

r = k1
r = 0 and ghost number 1 the Qr-closed states are

νa := v̄a
−1/2e

−φ̃c̄1|0〉, a = 1, . . . , χNS(V2) (4.51)

ν− := (ψ̄0
−1/2 − ψ̄1

−1/2)e
−φ̃c̄1|0〉, (4.52)

ν+ := (ψ̄0
−1/2 + ψ̄1

−1/2)e
−φ̃c̄1|0〉, (4.53)

in the −1-picture (NS sector), and

υi
+ := ūi−

−1/2e
−φ̃/2c̄1|0,+〉, i = 1, . . . , χR

−(V2) (4.54)
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υi
− := ūi+

−1/2e
−φ̃/2c̄1|0,−〉, i = 1, . . . , χR

+(V2) (4.55)

in the −1/2-picture (Ramond sector). None of these states is Qr-exact.
Therefore, we have two kinds of problems:

1. The state εμψ̄μ
−1/2e

−φ̃c̄1|0〉 at zero momentum, which is closed for every

choice of polarization εμ, is mapped by (eiprXr )0 to εμψ̄μ
−1/2e

−φ̃c̄1|pr〉,
which is closed only when εμ is proportional to prμ. Similarly, the Qr-
closed states υi+ in the Ramond sector are mapped to the states
ūi−

−1/2e
−φ̃/2c̄1|pr,+〉 that are not closed for p0

r = p1
r. Therefore, (eiprXr )0

maps physical states with zero momentum to non-physical states with
momentum pr.

2. The state krμψ̄μ
−1/2e

−φ̃c̄1|kr〉 at momentum kr �= 0, which is exact, is

mapped by (e−ikrXr )0 to the state krμψ̄μ
−1/2e

−φ̃c̄1|0〉, which is closed but
not exact. Therefore, (e−ikrXr )0 maps exact states with momentum kr

to non-exact states with momentum 0.

As a consequence, (eiprXr )0 does not induce a well-defined map on coho-
mology in these cases.

Possible resolutions. For problem 1 above, there is actually a simple (though
perhaps slightly unnatural) solution. In the NS sector, we can just exclude the
states εμψ̄μ

−1/2e
−φ̃c̄1|0〉 from HBPS, with the exception of the combination

ν− = (ψ̄0
−1/2 − ψ̄1

−1/2)e
−φ̃c̄1|0〉. (4.56)

Similarly, in the Ramond sector, we only include the states υi
− and exclude

the states υi
+. Since we are already considering a particular subspace of Hphys,

there seems to be nothing wrong with making one further restriction. Note
that by acting with the algebra g on HBPS there is no way to obtain a linear
combination εμψ̄μ

−1/2e
−φ̃c̄1|0〉 different from (4.56), nor a state of the form υi

+,
so the restricted space is still a representation of g. In the same fashion, we
also exclude the ghost dilaton (see “Appendix B”).

Problem 2, related to the fact that the state (4.56) is not exact at zero
momentum, is more subtle. This state, when tensored with an appropriate left-
moving counterpart, corresponds to a soft particle. Soft particles in amplitudes
couple to other particles through conserved charges. In this case, the conserved
charge is k0 − k1. (The 0 picture version of the corresponding vertex operator
is proportional to the current ∂̄X0 − ∂̄X1.) Therefore, ν− should decouple
from any amplitude with states in HBPS, i.e., amplitudes with one state (4.56)
and all the other states in HBPS are always zero. In Sect. 4.6, we check this
expectation by a direct calculation. This implies that, so long as we consider
symmetries of purely BPS amplitudes, the state ν− is equivalent to 0 (or to a
BRST-exact state). For these reasons, it seems reasonable that the action of g,
which is a symmetry of these purely BPS amplitudes, is only defined modulo
ν−.
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The conclusion is that, at zero momentum, one should really consider a
quotient of H̄1(0) by the state (4.56). Altogether, the zero-momentum space
H2(0, 0)′ that should be included in HBPS is

H2(0, 0)′ = H1(0) ⊗ H̄1(0)′, (4.57)

where

H̄1(0)′ =

⎛
⎝

χNS⊕
a=1

Cνa ⊕ Cν− ⊕
χR

+⊕
i=1

Cυi
−

⎞
⎠ /Cν− ∼=

χNS⊕
a=1

Cνa ⊕
χR

+⊕
i=1

Cυi
−.

(4.58)

The restricted quotient space H̄1(0)′ has dimension χNS + χR
+, and it is

isomorphic to the cohomology at nonzero momentum, with the isomorphism
given by operators (eiprXr )0.

With this definition, the action of g on HBPS is well defined, but it remains
to show that it acts in the appropriate way on BPS amplitudes.

4.6. Symmetry of BPS Amplitudes

In this subsection, we will prove (4.30).
Let us consider a purely BPS genus zero string amplitude

An =
∫

M0,n

〈
n∏

i=1

V�i⊗ς̄i
(zi, z̄i)

〉
(4.59)

with n ≥ 3 insertions of vertex operators V�i⊗ς̄i
corresponding to BRST-closed

states �i ⊗ ς̄i representing classes in the BPS subspace HBPS, i.e., such that
k0

r = k1
r for all i. The picture numbers are chosen so as to give a nonzero

answer, and n − 3 vertex operators are integrated.
For states in HBPS, the integrand factorizes into a holomorphic times an

anti-holomorphic factor〈
n∏

i=1

V�i⊗ς̄i
(zi, z̄i)

〉
=

〈
n∏

i=1

V�(zi)

〉〈
n∏

i=1

Vς̄i
(z̄i)

〉
. (4.60)

Let us focus on the right-moving factor, which must be anti-holomorphic in
the variables zi, with possible singularities when two insertion points coincide.
The BPS and physical state conditions imply that the Vς̄i

are built using only
the following combinations of right-moving “spacetime” operators

ψ̄0 − ψ̄1, ∂̄X0 − ∂̄X1, eikrXr (with k0
r = k1

r), (4.61)

multiplied by (super-)ghost and internal matter operators. Using the OPE

∂̄Xμ(z̄)∂̄Xν(0) = −ημν

z̄2
+ O(1), ψ̄μ(z̄)ψ̄ν(0) =

ημν

z̄
+ O(1) (4.62)

∂̄Xμ(z)eikrXr (0) =
ikμ

r

z̄
eikrXr (0) + O(1), (4.63)

eikrXr (z̄)eik′
rXr (0) = z̄kr·k′

r (±ei(kr+k′
r)Xr (0) + O(z̄)), (4.64)

it is easy to see that the spacetime operators (4.61) have non-singular OPE
with each other.
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Now, suppose that one of the vertex operators Vς̄(z̄) (taken in the 0-
picture, integrated form) is just a product of spacetime operators (4.61), with
no further “internal” matter or ghost factor. An example is

Vς̄(z̄) =: (∂̄X0 − ∂̄X1)eikrXr : (z̄)dz̄, (4.65)

which is the 0-picture vertex operator of the closed state ς̄ = (ψ̄0
−1/2 − ψ̄1

−1/2)

e−φ̃c̄1e
ikrXr |0〉.

In this case, the anti-holomorphic factor 〈Vς̄(z̄)
∏n

i=1 Vς̄i
(z̄i)〉 has no sin-

gularities in z̄, so it must be a constant in this variable. It follows that, for
these closed states, the CFT correlator 〈V�⊗ς̄(z, z̄)

∏n
i=1 V�i⊗ς̄i

(zi, z̄i)〉 is mero-
morphic in the insertion position z.

Note that the state ς̄ = (ψ̄0
−1/2 − ψ̄1

−1/2)e
−φ̃c̄1e

ikrXr |0〉 is BRST-exact if
and only if kr �= 0, and in this case the full vertex operator V�⊗ς̄(z, z̄) is a total
derivative

V�⊗ς̄(z, z̄) ∝ ∂z̄(V�(z)eikrXr (z̄)). (4.66)

Let us consider an (n+1)-point amplitude where the final vertex operator
is of the form (4.66) for kr �= 0.

An+1 =
∫

M0,n

∫

P1
dzdz̄

∂

∂z̄

〈
n∏

i=1

V�i⊗ς̄i
(zi, z̄i)V�(z)eikrXr (z̄)

〉
. (4.67)

Since the vertex operator (4.66) corresponds to an exact state, we expect the
amplitude to vanish. We will now prove that this is the case.

The integral in z needs to be regularized by cutting a small disk around
each of the other insertion points z1, . . . , zn and then taking the limit where
the radius of each disk goes to zero. Since the integrand is a total derivative
of a meromorphic function in z, by Stokes’ theorem we obtain

An+1 =
∫

M0,n

n∑
j=1

∮

γzj

dz

〈
n∏

i=1

V�i⊗ς̄i
(zi, z̄i)V�(z)eikrXr (z̄)

〉
. (4.68)

where γzj
is a small circle centered in zj . Each contour integral picks up the

residue of the correlator at the corresponding singularity. For a (single-valued)
meromorphic function, the sum over all residues vanishes, so that

An+1 = 0, (4.69)

as expected.
An analogous result holds even when the state ς̄ has zero momentum

kr = 0. In this case, ς̄ coincides with the state υ− of Eq. (4.56). The vertex
operator can still be written as a total derivative, if one allows for the fields
Xμ

r (z̄) to appear without derivatives or exponentials

V�⊗ς̄(z, z̄) ∝ ∂z̄(V�(z)(X0
r − X1

r )(z̄)). (4.70)

In general, there are some subtleties in trying to apply the previous argument
in presence of the fields Xμ

r (z̄). Indeed, these fields might in principle lead
to logarithmic singularities that spoil the single-valuedness of the correlator.
However, this never happens in the case of the pure BPS amplitudes we are
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interested in, because the combination X0
r − X1

r has non-singular OPE with
itself and with all the operators in (4.61). We conclude that, while υ− is not
an exact state at zero momentum kr = 0, a pure BPS amplitude with an
insertion of the corresponding vertex operator always vanishes, as anticipated
in the previous subsection.

Coming back to (4.68), the singularity at the point z = zi arises from
the OPE of V�(z)eikrXr (z̄) with V�i⊗ς̄i

(zi, z̄i). In order to prove (4.30), we just
need to show that the residue of this OPE is the action of the algebra element
corresponding to � acting on the state �i ⊗ ς̄i, i.e.,∮

γzi

dz Vu(z)eikrXr (z̄)V�i⊗ς̄i
(zi, z̄i) = Vδ�(�i⊗ς̄i)(zi, z̄i). (4.71)

The OPE of the anti-holomorphic operators eikrXr (z̄) and Vς̄i
(z̄i) is non-

singular and gives just a shift in the momentum of ς̄i

eikrXr (z̄)Vς̄i
(z̄i) = V(eikrXr )0 ς̄i

(z̄i) + O(z̄ − z̄i). (4.72)

Note that the terms of order O(z̄ − z̄i) in this OPE will not contribute to the
full anti-holomorphic correlator, since, as we argued above, the correlator is
constant in z̄. Let us focus on the case where � is in the NS sector, so that it is
a representative of a left-moving BRST cohomology class with ghost number
1 and canonical (−1)-picture. The vertex operator V� is in the integrated form
and in the 0-picture, so it corresponds to the state b−1X� with picture and
ghost numbers 0. The latter state has conformal weight 1 and the residue picks
up the zero mode acting on the state �i:∮

γzi

dz V�(z)V�i
(zi) = V(b−1X�)0ui

(zi). (4.73)

Now, we recall that the Lie bracket of the (even part of the) BKM algebra g
is precisely defined to be (see Sect. 4.2)

[�, �i] = (b−1X�)0�i. (4.74)

We conclude that∮

γzi

dz V�(z)eikrXr (z̄)V�i⊗ς̄i
(zi, z̄i) = V[�,�i](zi)V(eikrXr )0 ς̄i

(z̄i)

= Vδ�(�i⊗ς̄i)(zi, z̄i). (4.75)

A similar result holds when � is in the Ramond sector, and represents a left-
moving BRST cohomology classes with ghost number 1 and canonical (−1/2)-
picture. The vertex operator V� is in the integrated form and corresponds to
the state b−1� of conformal weight 1 and picture number −1/2, and the residue
picks out the zero mode of this current acting on �i,

(b−1�)0�i. (4.76)

When �i is in the Ramond sector with canonical (−1/2)-picture, the state
(b−1�)0�i is in the NS sector with canonical picture number −1 and is simply
the commutator [�, �i]. When �i is in the NS sector with canonical picture
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number −1, one should move the picture-changing operators so that the re-
sulting Ramond state is X(b−1�)0�i ≡ [�, �i] with picture number −1/2. This
seemingly ad hoc prescription for the placement of picture-changing operators
in fact arises naturally when one describes the superstring amplitude in terms
of an integration over supermoduli.9 This concludes the proof of the second
claim in Sect. 4.3.

4.7. Physical Interpretation

Let us pause for a moment and discuss the physical interpretation of the results
of this section. We have shown that the subspace HBPS of physical states is
a representation of a BKM (super-)algebra g. Furthermore, g arises as an
algebra of symmetries of the string tree-level amplitudes where all insertion
points correspond to states in HBPS.

If the uncompactified spacetime were higher dimensional, the physical
interpretation would be straightforward: g is an algebra of symmetries of the
S-matrix for the scattering of these BPS states, at least at tree level. In the
present case, the spacetime we are considering is 0+1-dimensional (or 1+1 di-
mensional on a cylinder). Naively, it seems natural to interpret the amplitudes
as transition amplitudes between an initial asymptotic state at time t = −∞
and a final state at time t = +∞.

However, this interpretation is problematic. Let us regard our models as
theories in a 1 + 1-dimensional cylindrical spacetime. The states in HBPS, in
general, represent spacetime-filling strings. The initial and final states in our
transition amplitudes, therefore, represent arbitrary numbers of spacetime-
filling strings. However, these states are coupled to the metric and B-field, so
they cannot make sense in general: The field equations for these massless de-
grees of freedom require a precise number of spacetime-filling strings to cancel
the B-field tadpole and cosmological constant (see “Appendix A” for a calcula-
tion of such a tadpole). In Sect. 5, we will consider a second quantized version
of this theory in a zero coupling limit. In this limit, one can neglect any back-
reaction and regard the massless fields as a non-dynamical fixed background;
these kind of inconsistencies can be safely ignored in this case. However, when
considering amplitudes, as in this section, we are implicitly assuming that the
string coupling is nonzero, so that this solution is not available here.

One possible attitude is to view the amplitudes as a purely formal con-
struction. We can build a collection of functions that are symmetric under the
BKM algebra. This statement is certainly true, even if the quantities do not
have a sensible spacetime interpretation.

9In particular, the limit where z coincides with another insertion point zi corresponds to
a degeneration of the (n + 1)-punctured sphere into two spheres joined through a nodal
point, with the first sphere containing the two insertion points z and zi and the second
containing all the other punctures. The nodal point is an additional puncture in each of
the two spheres, and the puncture is of Ramond type if 	 and 	i are one NS and one R,

and of NS type otherwise. While an NS degeneration is parametrized only by one even

supermodulus, a Ramond degeneration corresponds to one even and one odd supermodulus,

and the integration over the odd one corresponds to the insertion of a picture-changing

operator. See for example [71], sections 3 and 5, for more details.
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On the other hand, the existence of this rich collection of functions is
suggestive and hints that there should be a reasonable way to interpret our
results. One possibility could be that the vertex operators are accompanied
by a background charge that offsets their coupling to the massless fields. This
would be analogous to matter coupled to Liouville gravity in two dimensions,
where the Liouville and the matter part are coupled in such a way that the
combined stress energy tensor is always traceless. A more suggestive possibility
is that there exists a topological version of these string models, where only the
states in HBPS survive, and the dangerous massless fields are either not present
or decouple.

While we are not going to further investigate these proposals in the
present article, let us conclude by mentioning evidence that the BKM sym-
metry persists in BPS amplitudes at all loops. We believe this provides an
additional hint that a sensible physical interpretation of these amplitudes ex-
ists.

To start, we consider the possibility that, at least, the even subalgebra g0

is g is a symmetry of pure BPS amplitudes at all orders in perturbation theory.
The argument of the previous subsection generalizes in a straightforward way.
One considers an (n + 1)-point amplitude on a genus g Riemann surface Σ,
where one of the vertex operators corresponds to a BRST-exact NS-NS state,
and has the form (4.70), i.e., a total derivative in the insertion position. One
then integrates the position of this BRST-exact state over Σ. Technically, this
is an integration over the even supermodulus parametrizing this position, i.e.,
an integration along the fibers of the forgetful map Mg,n+1 → Mg,n. Being a
total derivative, this integral would vanish trivially if the integrand was non-
singular. However, there are singularities when z collides with one of the other
insertion points, so one needs to cut out from Σ small disks around each of
these insertion points. For pure BPS amplitudes, the integrand still factorizes
into left- and right-moving factors, and the right-moving factor is non-singular
in z̄. Therefore, the integrand is a total derivative of a meromorphic form.
The integration reduces to a sum over all the residues of this meromorphic
form, and this sum vanishes. The sum over residues can again be interpreted
as a variation of an n-point amplitude with respect to the action of some
element of the algebra g0, so its vanishing implies that the n-point amplitude
is invariant. This is a highly non-trivial result, that points toward the existence
of a meaningful physical interpretation of these amplitudes.

The odd component of the algebra requires a more sophisticated formal-
ism. In this case, the BRST-exact vertex operator is in the R-NS sector, and
there is no even supermodulus that simply parametrizes the position of this
operator. Equivalently, there is no map Mg,n+1 → Mg,n where one “forgets”
about one Ramond puncture.10 In this case, one needs to integrate over all
supermoduli at once. The integrand is still a total derivative, so one gets only

10To show that such a forgetful map does not exist, it is sufficient to note that the number
of Ramond punctures must always be even.
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contributions from the boundary components of the Deligne–Mumford com-
pactification of the supermoduli space. To prove that our result at tree level
generalizes to higher genus, one needs to show that the only nonvanishing
boundary contributions are the ones coming from degenerations of the Rie-
mann surface Σ, of genus g and n + 1 punctures, into a surface Σ′ of the same
genus g and n−1 punctures and a sphere with two punctures (one of them be-
ing the exact state), joined through a double point. Furthermore, the sum over
all such degenerations should vanish. In the previous case of NS-NS punctures,
these kind of boundary components in the Deligne–Mumford compactification
correspond exactly to the limits where the exact vertex operator collides with
one of the other punctures.

These conditions are similar (though not exactly the same) as the con-
ditions for spacetime supersymmetry in general string perturbation theory. In
that case, one can show (see for example [70]) that there are only a few, partic-
ular degeneration limits that can potentially spoil spacetime supersymmetry
at higher loop, and that these cases are related to either tadpoles, sponta-
neous supersymmetry breaking, or to higher loop modifications of supersym-
metry transformations. Checking that the full algebra g (including the odd
component) is a symmetry of purely BPS amplitudes at all orders in string
perturbation theory would provide strong evidence that a consistent physical
interpretation of this theory does exist.

5. Second Quantization and BPS Indices

Starting from the space of physical states in our type IIA or heterotic theory
on V1 ⊗ V̄2, let us now define a “second quantized” Hilbert space describing an
arbitrary number of strings. We will consider only the limit where the string
coupling constant is zero, so that we have a theory of free strings.

We begin by constructing our second quantized Hilbert space and we
define an associated supersymmetric index which only receives contributions
from BPS states. We show that the second quantized space of BPS state forms
a representation for the BKM algebra g associated with the (super)VOA V1,
so that the index is a character for that representation. We then proceed to
consider two examples in detail: a family of heterotic string compactifications
on V ⊗ V̄ f� (Sect. 5.3) and type IIA compactifications on V ⊗ V̄ f� (Sect. 5.4).
In these cases, we calculate the BPS indices and show that they correspond to
known (super)denominator formulas of BKM algebras.

5.1. A Second Quantized Hilbert Space

Let us consider type IIA or heterotic string theory on V1 ⊗ V̄2, where V2 ∈
{V fE8 , V f�, F24}. Occasionally, we will compactify one further space-like di-
rection on a circle S1. In order to construct this second quantized space, we
first introduce one operator ηa for each physical state a ∈ H2(k) with k �= 0.
The operators obey a free oscillator algebra, with (anti-)commutation rela-
tions determined by the string two point functions. The k �= 0 operators can
be separated into creation (k0 > 0) or annihilation (k0 < 0) operators. The
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idea is that each creation/annihilation operator ηa creates or destroys a string
in the state a in the (1 + 1)-dimensional spacetime.

For the physical states with k = 0 (i.e., kl = kr = 0), the construction
is slightly more complicated. First note that the k = 0 physical states are the
same in the uncompactified and in the compactified theory; for these defini-
tions, it is convenient to work in the uncompactified theories. We separate the
space of zero-momentum physical states into two orthogonal subspaces, the
“propagating” and “non-propagating” states. The “propagating” states are
the ones that can be obtained starting from massless (kl)2 = (kr)2 = 0 states
with k �= 0 and then taking the k → 0 limit (this limit is well defined only
in the uncompactified case, which is why we prefer to give the definition in
this set up). The “non-propagating” states are the states that are orthogonal
to the propagating ones. The physical interpretation is clear: The propagat-
ing states are the zero modes of some local propagating degrees of freedom in
the 1 + 1-dimensional spacetime, corresponding, for example, to some mass-
less scalars (excluding the dilaton) or spin 1/2 fermions in spacetime. The
non-propagating degrees of freedom correspond, for example, to the metric,
B-field, dilaton, gravitinos and gauge vectors, that have no local propagating
degrees of freedom in 1 + 1-dimensions. The presence of the latter states in
the physical spectrum of the superstring correspond to the possibility to de-
form the background, such as the geometry of the spacetime and the string
coupling constant. In the construction of the second quantized space of states,
we will introduce one operator ηa for each “propagating” state a ∈ H2(0), and
no operator for the “non-propagating” ones. For each of the latter, we can
instead introduce a fixed non-dynamical background field: For example, in the
compactified case, one can set the radius of the circle, a background B-field, or
Wilson lines of gauge fields along the circle (besides the string coupling, which
we always fix to zero).

We can now define the second quantized Hilbert space as the Fock space
for the operators ηa, where a runs over a basis of ⊕k �=0H

2(k) and of the
subspace of states in H2(0) that are “propagating,” in the sense above. A
ground state in this Hilbert space is a state in the kernel of all annihilation
(k0 < 0) operators; physically, these states should correspond to the vacuum,
i.e., no strings are present. The ground states might be degenerate if there
are k = 0 “propagating” operators. The second quantized Hilbert space is
then constructed by acting in all possible ways on the ground states with the
creation operators ηa with k0 > 0.

Let us consider the theory compactified on a circle S1 of radius R. We
define a supersymmetric index

ZV1⊗V̄2(β, b, v,R,Ak) := Tr(e−βHe2πibW e2πivMe2πi
∑

k Akqk(−1)F), (5.1)

where the trace is taken over the second quantized Hilbert space we have just
defined, H, M , and W are the total Hamiltonian, momentum, and winding,
the qk are charges with respect to some abelian background gauge fields (cor-
responding to a maximal abelian subgroup of the possibly non-abelian gauge
group), and (−1)F is the spacetime fermion number. The superscript denotes
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Table 3. The vacuum winding w0 (i.e., the B-field tadpole)
and momentum m0 for the type IIA and heterotic compacti-
fications we are interested in

Type IIA w0 m0

V fE8 ⊗ V̄ fE8 0 0

F24 ⊗ V̄ fE8 0 0

V fE8 ⊗ V̄ f�
− 0 0

V f�
+ ⊗ V̄ f�

− 0 −24

V f�
− ⊗ V̄ f�

− −24 0

F24 ⊗ V̄ f�
− 24 24

F24 ⊗ F̄24 0 0

Het w0 m0

V ⊗ V̄ fE8 0 0

V ⊗ V̄ f�
± ±(N − 24) ±N

V ⊗ F̄24 0 0

The details of the calculations are given in “Appendix A”

the factorized worldsheet theory in which we are computing the index. The real
chemical potentials β, b, v, Ak admit natural physical interpretations: β is the
usual inverse temperature; b is a constant background B-field; v is a constant
off-diagonal term in the 1+1 dimensional metric; Ak are constant background
for the gauge fields in a maximal abelian torus of the gauge group, giving
non-trivial Wilson lines along the circle S1. If η is an oscillator corresponding
to momentum k0

l = k0
r = E and k1

l,r = 1√
2
(m

R ∓ wR), one has

[H, η] = Eη [M,η] = mη [W,η] = wη. (5.2)

The ground states of the second quantized Hilbert space are (possibly degen-
erate) eigenstates for H,M,W

H|0〉 = E0|0〉, M |0〉 = m0|0〉, W |0〉 = w0|0〉. (5.3)

Here, w0 and m0 have a straightforward physical interpretation as a B-field
tadpole and a “vacuum momentum,” respectively, since they couple to the
background B-field b and to the off-diagonal metric component v. They arise
as a 1-loop effect in superstring theory, and can be easily computed for all the
theories we are considering, see “Appendix A.” The “cosmological constant”
E0 is usually fixed in terms of w0,m0 by spacetime supersymmetry.

The theories we are considering often contain some spacetime supersym-
metries Qi

α (see Tables 1 and 2), where i = 1, 2, 3, . . . and α ∈ {±} denote the
chirality. In this case, the index gets nonvanishing contributions only from a
BPS subspace of the second quantized Hilbert space, which can be constructed
as a Fock space by acting on the vacuum only with the creation operators that
(anti-)commute with the supercharges. In turn, these operators correspond
to single string states that are annihilated by the supercharges (BPS states).
Thus, we can restrict our analysis to these BPS single string states. In heterotic
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models, the two-dimensional supersymmetry algebra is

{Qi
±,Qj

±} = 2δij(P 0
r ± P 1

r ), {Qi
+,Qj

−} = 0, (5.4)

and involves only the right-moving momentum. The same relations hold in type
II theories when the supercharges arise from the NS-R sector, while for the
R-NS sector we have the analogous relations with the left-moving momenta,

{Qi
±,Qj

±} = 2δij(P 0
l ± P 1

l ), {Qi
+,Qj

−} = 0. (5.5)

Type II supercharges coming from different sectors anticommute with each
other.

When any of these supersymmetries is present, the BPS condition is
equivalent to a linear relation between the energy E = k0

l = k0
r and the wind-

ing and momentum m,w of a single string state. By linearity, the same relation
must hold between the Hamiltonian H and the momentum and winding opera-
tors M and W in the BPS subsector of the second quantized Hilbert space. For
example, when negative chirality supersymmetries Qi

− from the right-moving
Ramond sector are present, the BPS condition implies

H =
1√
2

(
M

R
+ WR

)
. (5.6)

Note that if we require the ground states of the second quantized Hilbert space
to be supersymmetric, we have the corresponding relation E0 = 1√

2

(
m0
R + w0R

)
of vacuum eigenvalues. By restricting the trace to the BPS subsector of the
second quantized Hilbert space, we can reexpress the above index as

ZV1⊗V̄2(β, b, v,R,Ak)

= TrBPS

(
e
− β√

2

(
M
R +WR

)
e2πibW e2πivM

∏
i

e2πi
∑

k Akqk(−1)F
)
. (5.7)

It is convenient to reorganize the real parameters β, R, b and v into two
complex variables,

T = b + i
βR

2
√

2π
, U = v + i

β

2
√

2πR
. (5.8)

Both T and U take values in the upper half-plane and parametrize, respectively,
the Kähler and complex structure of the Euclidean spacetime torus obtained
upon Wick rotation of the time direction. In terms of these variables, the index
becomes

ZV1⊗V̄2(T,U,Ak) = TrBPS

(
e2πiTW e2πiUM

∏
i

e2πi
∑

k Akqk(−1)F
)

= TrBPS

(
pW qM

∏
k

yqk

k (−1)F
)
, (5.9)

where we introduced the variables

p := e2πiT , q := e2πiU , yk := e2πiAk . (5.10)

If there are bosonic or fermionic zero modes, this definition may need to
be modified. Bosonic zero modes might lead to a divergence that needs to be
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regularized. In the examples we consider below, massless scalars always come
from the R-R sector. Since there is no physical string states representing the
zero momentum of R-R fields, their contribution is automatically factored out.
Fermionic zero modes λ1, λ2 . . . make the index vanish (unless they carry non-
trivial charges qk). In all the examples, we will consider, the fermionic zero
modes will arise as gauginos, i.e., superpartners of the gauge fields, and thus
transforming in the adjoint representation of the spacetime gauge group. The
number of neutral fermionic zero modes in this case is equal to the rank of the
gauge group. In order to get a nonvanishing quantity, one can absorb these
zero modes by inserting them in the trace

ZV1⊗V̄2(β, b, v,R,Ak) := Tr
(
e−βHe2πibW e2πivMe2πi

∑
k Akqk(−1)F

∏
i

λi
)
.

(5.11)

We will use the notation Z(T,U,Ak) throughout this section to refer to the
minimal nonvanishing index for each of the theories we study: If the theory
has no fermionic zero modes, then Z indicates (5.9), while if the theory does
have fermionic zero modes, we absorb them as in (5.11).

There are further modifications to the index which one may want to
consider. First, in type II theories, the spacetime fermions may come either
from the NS-R or from the R-NS sector. If there are supercharges coming from
both of these sectors, then only the ground states will contribute to the index,
thus giving a constant. To get a more interesting quantity, one can consider a
modified index

Z̃V1⊗V̄2(β, b, v,R,Ak) := Tr
(
e−βHe2πibW e2πivMe2πi

∑
k Akqk(−1)Fr

∏
i

λi
)
,

(5.12)

where the fermion number (−1)F is replaced by an operator (−1)Fr anti-
commuting only with, say, states in the right-moving R sector (NS-R and
R-R) and commuting with states in the right-moving NS sector (NS-NS and R-
NS). Under this definition, the states contributing to the index obey k0

r = k1
r ,

but not necessarily k0
l = k1

l . As above, we use Z̃ to refer to the minimal
nonvanishing (with any fermionic zero modes inserted) modified index for a
given theory.

When the string theory has V2 = V f�
− as its right-moving SVOA, Z, Z̃

evaluate to the 24th powers of the superdenominator and denominator (re-
spectively) of the BKM algebra constructed from the left-moving (S)VOA. We
will derive this in detail in Sects. 5.3 and 5.4, but the basic idea is that V f� has
24 states of conformal weight 1/2 in the Ramond sector and none in the NS
sector. The contribution from these 24 fermionic ground states is to produce a
24-fold multiplicity of single-string BPS states, resulting in a second quantized
Fock space that has the form of a 24th tensor power. Any of the 24 factors
effectively counts contributions from the left-movers, and produces the BKM
(super)denominator.
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There are other options to modify the index. We could impose anti-
periodic boundary conditions on the fermions around the spacelike S1 circle.
This corresponds to taking a different quantization for the spacelike momenta
k1

l and k1
r in the NS-R and R-NS sectors, where n takes values in 1

2 +Z instead
of Z. We could also impose anti-periodic boundary conditions only on (say) the
NS-R fermions and periodic ones on the R-NS fermions. We will not consider
these modifications in the rest of the text and focus on computing the indices
in Eqs. (5.11) and (5.12).

5.2. The BPS Fock Space as an Algebra Module

As mentioned in the previous subsection, when the string theory has the right-
movers fixed to be V2 = V f�, the supersymmetric indices (5.11), (5.12) repro-
duce the 24th power of the denominator and superdenominator of the BKM
associated with the left-movers. The factor of 24 simply comes from the right-
moving ground state degeneracy. In fact, the supersymmetric index can be
viewed as the graded supercharacter of a certain algebra module for the left-
moving BKM superalgebra g. Let us restrict for simplicity to the case where g
is bosonic, i.e., with no odd components; the generalization to the case where
g is a superalgebra is straightforward. Let us consider the usual triangular
decomposition as g = g+ ⊕ h⊕ g− in terms of positive and negative roots and
the Cartan subalgebra. As discussed below, the module describing the second
quantized states is (

∧
g−)⊗24, 24 copies of the graded sum of all exterior pow-

ers of the subalgebra associated with the negative roots. It is well known that
for ordinary Lie algebras or Kac–Moody algebras, this is an irreducible Z2-
graded module with highest weight the Weyl vector. It also inherits the weight
space grading from g. In the case of the heterotic string with V1 = V �, the
BKM algebra g is the monster Lie algebra, and the module was constructed in
[55]. We will briefly review its construction and the relation with the second
quantized Hilbert space described in Sect. 5.1, and then comment on subtleties
in the generalization to our other examples. We will focus on the construction
of a single copy of

∧
g−, since the 24 copies do not interact with one another.

The g-representation
∧
g− can be formally constructed as follows. Recall

that g decomposes as g = h ⊕⊕α∈Δ gα, and has a non-degenerate invariant
bilinear form (·|·) with respect to which gα is orthogonal to h and gβ , for all
α, β ∈ Δ with α �= −β. The basic idea is to build a module Ag over the Clifford
algebra whose underlying vector space is g endowed with (·|·). More precisely,
let us consider an algebra of fermionic operators ξa,∀a ∈ g, transforming in the
adjoint representation of g. The fermionic modes satisfy the Clifford algebra

{ξa, ξb} = (a|b) (5.13)

where the right-hand side vanishes whenever a ∈ gα and b ∈ gβ , with α, β ∈ Δ,
α �= −β. Let us define a module Ag for this Clifford algebra as follows: We start
from a space of ground states, forming an irreducible representation for the
finite-dimensional Clifford algebra of operators ξa, a ∈ h, and annihilated by
all ξa with a ∈ g+; the module Ag is obtained by acting in all possible ways on
such ground states by the operators ξa, a ∈ g−. We can view g as a subalgebra
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of the orthogonal algebra so(g) that preserves the bilinear form (·|·), since (·|·)
is preserved by the adjoint action of the BKM on itself. This Clifford module
can be understood as a spinorial representation of the orthogonal algebra so(g)
and hence of its subalgebra g.

The space of ground states of Ag forms a module for the Clifford subal-
gebra associated with h ⊂ g. Each of these ground states is a highest weight
vector for a representation of g ⊂ so(g). This immediately shows that, in gen-
eral, the Clifford module Ag is not irreducible as a g-representation. In the
case of the rank-2 monster Lie algebra, one has a twofold ground state de-
generacy of opposite chirality. Indeed, for general g of even rank, the module
always splits, as a representation over so(g), into two spinors of definite chi-
rality. Focusing on the rank-2 case for the moment, it is natural to consider
the g-representation obtained by restricting to a subspace A+

g of definite chi-
rality, which effectively allows us to skirt vacuum degeneracy issues relating to
the Cartan operators, as follows. If we take a light-cone decomposition of the
Cartan as h = h+ ⊕h− such that {ξ+, ξ−} = 1 (and all other anticommutators
zero), we may define a vacuum

ξa|0〉 = 0, a ∈ g+ ⊕ h+. (5.14)

The Clifford module Ag is recovered by acting on the vacuum in all possible
ways with the ξa, a ∈ g− ⊕ h−. Next, we consider a chirality operator (−1)J ,
distinct from the fermion parity operator used in the index definition, which
leaves the vacuum invariant but acts on all ξa with a minus sign. We project
to the positive chirality subspace of our module Ag, to obtain a graded vector
space A+

g isomorphic to
∧
g−. Namely, to obtain the even powers of g−, simply

act on the vacuum with an even number of ξa, a ∈ g−, and to obtain the odd
powers, act first with ξ− on the vacuum, and then with an odd number of ξa,
a ∈ g−.

We stress that the set of modes {ξa} are different from the set {ηa}
considered in Sect. 5.1: In that case, we exclude the modes corresponding to
gravitinos, while here we include all modes. Excluding the gravitinos leads, in
the rank-2 case, to a non-degenerate vacuum for the second quantized Fock
space. This suggests that the second quantized space is isomorphic to the
positive chirality subspace A+

g of the ξa Clifford module; as such, it is naturally
a representation for the BKM algebra g. Indeed, the operators ηa considered in
Sect. 5.1 can be identified with the operators ξ−ξa, that are even with respect
to (−1)J and carry the same grading with respect to Φ ⊂ h∗. Implicitly, then,
we may imagine that our index can be defined as a trace over the full Clifford
module Ag, with an additional insertion of (1 + (−1)J )/2 in the trace that
has so far been suppressed. With this identification, the spacetime fermion
number (−1)F can be defined as an operator acting trivially on the vacuum,
commuting with ξ−, ξ+ and anti-commuting with the other ξa. The fact that
we have two Z2 operators to employ in defining our index, (−1)J and (−1)F,
is special to supersymmetric indices in 0+1 dimensions. We prove in [55] that
the resulting module is indeed a suitable highest weight representation of g.
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A similar construction holds for the more general, higher-rank BKMs we
discuss in this paper. In the construction of the second quantized Fock space
in Sect. 5.1, we consider oscillators ηa at zero momentum only when they
correspond to the zero-momentum limit of “propagating” massless degrees of
freedom, while we exclude the modes that exist only at zero momentum, i.e.,
the two gravitinos. The space spanned by the gravitino zero modes correspond
to a subspace of signature (1, 1) in the Cartan subalgebra of g. In particular,
gravitinos can be associated with a pair of fermionic modes ξ+, ξ− obeying
{ξ±, ξ±} = 0, {ξ+, ξ−} = 1. The other elements of the Cartan subalgebra now
correspond to gaugino zero modes, which we absorb in the definition of the
index. Once again, the second quantized Fock space can be identified with
the positive chirality subspace A+

g of the ξa-Clifford module Ag, where the ηa

operators correspond to the generators ξ−ξa of the even Clifford algebra. For a
BKM of even rank r, the Clifford module Ag has ground state degeneracy 2r/2,
where each chirality A±

g of the orthogonal algebra splits as A±
g

∼= (
∧
g−)⊕2r/2−1

into 2r/2−1 representations of g, each isomorphic (as a graded vector space) to∧
g−.

The separation between the gauginos and gravitinos zero modes looks
unnatural from the algebra point of view, since the adjoint action of g can
rotate the ξ+, ξ− operators into any other ξa, a ∈ h. In fact, the distinction
between propagating and non-propagating zero modes makes sense only in the
decompactification limit, where the radius R of the circle S1 goes to infinity.
When the rank of the algebra is greater than 2, there are different decompact-
ification limits, which correspond to different choices of a null direction of the
Cartan subalgebra.

We therefore have the option of defining the full BPS Fock space using the
full module Ag of the Clifford algebra, including both chiralities of the spinorial
rep of so(g). This necessitates absorbing the gravitino modes to get a nonzero
index. Alternatively, we may project onto a single chirality A+

g of the spinorial
rep, as we did with the monster. As a graded vector space, the resulting chiral
representation is isomorphic to the second quantized Fock space obtained from
ignoring the gravitino zero modes. This is simpler and seems natural from the
physical viewpoint, in particular if one sees the superstring model as a (1+1)-
dimensional theory on the cylinder. The downside of privileging the gravitinos
relative to the gauginos in this way is that it requires choosing a null direction
in the Cartan subalgebra, viewed as a space of rank (1, r − 1). The resulting
BKM algebra action on the Fock space module is rather unnatural.

5.3. Heterotic Strings on V ⊗ V̄ f �

Let us now apply the general formalism described in Sect. 5.1 to some specific
superstring models. As a first example, let us consider the heterotic string
on VL ⊗ V̄ f�

+ , where VL is a lattice VOA for one of the 24 Niemeier lattices
L and contains N currents. Each massless string state is the tensor product
of a chiral and an anti-chiral physical state, which in turn are in one-to-one
correspondence with, respectively, a left-moving weight 1 state and a right-
moving weight 1/2 state is the internal CFT.
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Let us adopt the following notation for these chiral and anti-chiral states:
• νa, a = 1, . . . , N denote the currents in V ;
• ῡi

+, i = 1, . . . , 24 correspond to the 24 Ramond ground states in V̄ f�;
• α++, α−−, ψ̄++, ψ̄−− correspond to the light-cone components of ∂Xμ

and ψ̄μ from the sigma model with target R
1,1.

The + and − subscripts keep track of the action of the SO(1, 1) spacetime
Lorentz group: Each + or − is ±1/2 in the spin; spacetime parity exchanges
+ and −.

By taking the tensor products of chiral and anti-chiral states, we obtain
the massless content of the theory:

• Graviton α++ψ̄++ and α−−ψ̄−−; B-field α++ψ̄−− − α−−ψ̄++; dilaton
α++ψ̄−− + α−−ψ̄++. These states are non-physical, except for k = 0.

• 24 chiral gravitinos α++ῡi
+ (spin +3/2); 24 anti-chiral dilatinos α−−ῡi

+

(spin −1/2). These states are also only physical for k = 0.
• N gauge vectors Aa = νaψ̄++, νaψ̄−−. These states are only physical for

k = 0.
• 24N chiral gauginos λai = νaῡi

+ (spin 1/2); these states are physical for
all k with k2 = 0 (they are the only massless propagating degrees of
freedom).

The N gauge vectors Aa correspond to a semi-simple Lie algebra g of dimension
N ; the propagating gauginos λai form 24 copies of the adjoint representation
for g.

The zero-momentum modes of the gauginos form a Clifford algebra, and
the ground states of our second quantized Hilbert space must form a module
over this Clifford algebra. The full Clifford algebra is a direct sum of 24 copies
of the Clifford algebra generated by a single set (i.e., a fixed i, say i = 1) of N
gauginos λai, a = 1, . . . , N . The Clifford module of ground states, therefore,
is the tensor product of 24 copies of the Clifford module for a single set of
gauginos. Thus, we can focus on one of these sets and simply take the tensor
product at the end.

We choose a Cartan subalgebra h ⊂ g and take a triangular decomposi-
tion g = g− ⊕ h ⊕ g+. We have an associated decomposition of the gauginos
zero modes into a Cartan subspace plus the positive and negative roots sub-
spaces. We turn on non-trivial Wilson lines y1, . . . , yr, where r = rank g (for
the theories we are considering we always have r = 24) for the gauge vec-
tors Aa in the Cartan subalgebra, under which the gauginos in g− ⊕ g+ are
charged. To get a nonvanishing supersymmetric index, one needs to absorb
the zero modes of the neutral λai, i.e., the ones in the Cartan subalgebra. The
ground states of the Hilbert space live in a tensor product of a Clifford module
for the “Cartan” gauginos times a Clifford module for the g+ ⊕ g− gauginos.
After absorbing the zero modes, the trace over the “Cartan” Clifford module
just gives a nonzero constant, which, with the appropriate normalization, can
be taken to be 1. Thus, we can just focus on the factor corresponding to the
Clifford module for g+ ⊕g−. The latter module can be constructed by starting
from a state (a highest weight vector) annihilated by all gauginos in g− and
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then acting in all possible ways with the gauginos in g+. The ground state
contribution to the supersymmetric index is a trace Tr((−1)F

∏
yqi

i ) over this
module, where qi are the charges with respect to the background gauge fields
in the Cartan torus. The final result is the Weyl denominator of the algebra g

y−ρg

∏

α∈Δ+
g

(1 − yα), (5.15)

where Δ+
g are the positive roots of the Lie algebra g and ρg is the charge of the

lowest weight vector, which equals the Weyl vector of the Lie algebra g. (We
implicitly use the notation that yα for any vector α is shorthand for

∏
k yαk

k ).
Note that there are 24 copies of this set of gauginos, and hence one needs to
take the 24th power of this Weyl denominator in computing the index.11

The full supersymmetric index is given by multiplying this trace over the
ground states by the contributions of the positive energy oscillators. For k �= 0,
the BRST quantization of the string is equivalent to the light-cone quantiza-
tion, so that the classes in H2(kl, kr) are in one-to-one correspondence with
states in the internal CFT VL ⊗ V̄ f�

+ satisfying the physical state conditions

L0 − 1 = −(kl)2/2, L̄0 − 1
2

= −(kr)2/2. (5.16)

The BPS condition forces (kr)2 = 0, and since V f�
+ contains no NS states with

weight 1/2, all BPS states come from the Ramond sector and are therefore
spacetime fermions. This means that the corresponding operators ηa obey a
free fermion oscillator algebra.

In order to count the number of such oscillators, let us consider the “fla-
vored” partition function for the lattice VOA VL

ZVL
(τ, ξ) := TrVL

(qL0− c
24 e2πi

∑
k ξkqk).

Here, ξ ≡ (ξ1, ξ2, . . .) are chemical potentials, and qk are the weights with re-
spect to the Lie algebra generated by the zero modes of the N currents in VL;
as the notation suggests, these are also the charges of the corresponding physi-
cal string states with respect to the background gauge fields A = (A1, A2, . . .).
For a lattice VOA VL based on the Niemeier lattice L, this is given by

ZVL
(τ, ξ) =

ΘL(τ, ξ)
η(τ)24

=
∑

n∈Z,	∈Z24

c(n, �)qne2πi
∑

k ξk	k , (5.17)

where ΘL is the “flavored” lattice theta series

ΘL(τ, ξ) =
∑

	∈Z24

q
1
2

∑
j,k 	j	kμj ·μke2πi

∑
k ξk	k , (5.18)

11The ground states of the second quantized Hilbert space must form a representation of
the gauge algebra g. It is clear what kind of representation this is: One considers the group
G, the adjoint group of g, as a subgroup of the orthogonal group SO(g) acting on the
vector space of the algebra g, and preserving the Cartan Killing form. The gauginos form a
vector representation for SO(g). The ground states form a module for the Clifford algebra
associated with the vector space underlying g, so they form a spinorial representation of
Spin(g), the universal cover of SO(g). The group G being a subgroup of SO(g) lifts to a
subgroup of Spin(g), and this determines the representation of G on the ground states.
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where μ1, . . . , μ24 is a basis of L.
Let us first express the ground state factor (5.15) in terms of the Fourier

coefficients c(n, �) of the partition function ZVL
(τ, ξ). The number of currents

in V is

N =
∑

	∈Z24

c(0, �),

and the rank of the algebra is c(0, 0), which is always equal to 24 for L a
Niemeier lattice. The set of roots {λ ∈ L, λ2 = 2} correspond to the roots
of the algebra g, and can accordingly be written as the disjoint union of the
sets of positive or negative roots. For � ∈ Z

24 such that λ =
∑

i �iμi is a root,
we write � > 0 or � < 0 depending on whether λ is positive or negative. The
ground state contribution to the index (5.15) can thus be written as

y−24ρ
∏
	>0

(
1 −

24∏
i=1

y	i
i

)24c(0,	)

, (5.19)

where for each � �= 0, c(0, �) is either 1 (if the vector
∑

i �iμi has length 2) or
0 (otherwise).

For the contribution of positive energy string oscillators to the second
quantized index, we note that, for BPS states of winding and momentum
(w,m), one has −(kl)2/2 = mw. Therefore, the number of BPS single string
states of winding-momentum (w,m) and charge vector � ≡ (�1, . . . , �24) is
24c(mw, �) (the factor 24 comes from the fact that there are 24 Ramond ground
states in V f�). The positive energy condition E = 1√

2
(m

R + wR) > 0 in the
large radius regime R > 1 is satisfied for w > 0,m ∈ Z (the only possible
state with m < 0 is m = −1, w = 1) or for w = 0,m > 0. Therefore, the
contribution from positive energy oscillators is

∏
m>0

∏
	∈Z24

(
1 − qm

24∏
i=1

y	i
i

)24c(0,	) ∏
w>0,m∈Z

∏
	∈Z24

(
1 − pwqm

24∏
i=1

y	i
i

)24c(mw,	)

.

(5.20)

Altogether, we find the index can be written as

ZVL⊗V̄ f�
+ (T,U,Ak) = pN−24qNy−24ρ

∏

m,w∈Z,	∈Z
24

(m,w,	)>0

(
1 − pwqm

24∏
i=1

y	i
i

)24c(mw,	)

,

(5.21)

where (m,w, �) > 0 means w ≥ 0, with m ≥ 0 if w = 0, and with � > 0 if m =
w = 0. The winding-momentum (w0,m0) of the ground states is computed in
“Appendix A” and is given by w0 = N − 24 and m0 = N . This index is equal
to the 24th power of the denominator for the BKM algebra constructed from
any Niemeier lattice VOA, which is known as the fake monster Lie algebra
[9,10].
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This algebra denominator turns out to be equal to the automorphic form
Φ12 [34], whose appearance in string theory has been explored earlier [35]. Φ12

enjoys 24 expansions associated with 24 “Niemeier cusps” in moduli space cor-
responding to the 24 complementary constructions of the BKM. The fact that
there is a unique BKM algebra associated with all the 24 VOAs VL associated
with a Niemeier lattice L is not a coincidence. Indeed, the (non-chiral) CFTs
obtained as the product of any of the VL with the CFT of a single free boson
on a circle S1 are all equivalent to each other. These CFTs admit a uniform
description as theories of 25 chiral and 1 anti-chiral free boson compactified
on the unique even unimodular lattice Γ25,1 of signature (25, 1). The Narain
moduli space of this CFT is O(25)×O(1)\O(25, 1)/O(25, 1, Z), and is spanned
by the radius R and the Wilson lines (A1, . . . , A24). The different descriptions
of this theory as a product S1 × VL correspond to the 24 inequivalent ways
of writing the lattice Γ25,1 as an orthogonal sum of a Niemeier lattice and a
unimodular lattice of signature (1, 1). These descriptions are related to one
each other by the action of the T-duality group O(25, 1, Z), which mixes the
radius and the Wilson line moduli, as well as the winding-momentum (w,m)
with the gauge charges qk.

In general, if we turn off some of the Wilson lines (i.e., set yi = 1 for
some i), the index vanishes because of the zero modes of some combination of
gauginos in g+ ⊕ g−. The only exception is when VL is the VOA associated
with the Leech lattice L = Λ, where g is the abelian algebra u(1)⊕24 and
c(0, �) = 0 for all � �= 0. In this case, we can turn off all Wilson lines, and by
setting

c(n) =
∑

	

c(n, �), (5.22)

such that c(n) are the Fourier coefficients of

ZVΛ(τ, 0) =
ΘΛ(τ, 0)
η(τ)24

= J(τ) + 24 =
∑
n∈Z

c(n)qn = q−1 + 24 + 196884q + · · · ,

(5.23)

the index reduces to

ZVΛ⊗V̄ f�
+ (T,U,Ak = 0) =

⎛
⎝q

∏
m>0

(1 − qm)c(0)
∏

w>0,m∈Z

(1 − pwqm)c(mw)

⎞
⎠

24

.

(5.24)

Recall the Koike–Norton–Zagier identity

p−1
∏

w>0,m∈Z\{0}
(1 − pwqm)c(mw) = J(T ) − J(U)

(5.25)
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which can be interpreted as the denominator identity for the monster BKM
algebra [10]. Multiplying this factor by the w = 0 and the m = 0 parts yields

ZVΛ⊗V̄ f�
+ (T,U, 0) =

(
q
∏
m>0

(1 − qm)c(0)

)(
p
∏
w>0

(1 − pw)c(0)

)

× p−1
∏

w>0,m∈Z\{0}
(1 − pwqm)c(mw)

= η(U)24η(U)24(J(T ) − J(U))
= η(U)24ΘΛ(T ) − η(T )24ΘΛ(U), (5.26)

which is the denominator of the fake monster Lie algebra [9].
This construction should generalize straightforwardly to all 71 self-dual

VOAs V with c = 24. When we compactify one further direction on a circle
S1, we expect many non-trivial equivalences between these different models,
as is the case for the 24 Niemeier lattice VOAs VL. It is known [19,41] that
there are only 11 isomorphism classes of holomorphic vertex algebras of central
charge 26 of the form VΓ1,1 ⊗V , where VΓ1,1 is the lattice vertex algebra based
on the even unimodular lattice of signature (1, 1) and V is a self-dual VOA of
central charge 24 with currents. In particular, the 24 VOAs VΓ1,1 ⊗ VL are all
isomorphic to each other; the proof is similar to the one showing that the (non-
chiral) CFTs on S1 ⊗ VL are all isomorphic. Conjecturally, there is only one
additional isomorphism class VΓ1,1 ⊗ V where V is a self-dual VOA of c = 24
without currents—it is the case where V = V � is the monster VOA [30]. From
each of these isomorphism classes of vertex algebras, one can define a BKM
algebra using Borcherds’ construction based on chiral bosonic string theory
compactified on VΓ1,1 ⊗ V ; see [9,10,22,42,43,53] for explicit descriptions and
denominator identities.12 It is natural to conjecture that by tensoring any self-
dual VOA of c = 24 with the bosonic (non-chiral) CFT on a circle S1, one
gets one of precisely 12 distinct CFTs of left and right central charges (25, 1).
If this is correct, then there are only 12 inequivalent compactifications of the
heterotic string of the form (V ⊗ V̄ f�) ⊗ S1. We expect that our construction
can be used to show that the corresponding second quantized indices Z are
just the (24th powers of the) denominators of the 12 associated BKM algebras.

5.4. Type IIA Strings on V ⊗ V̄ f �

Now, we consider the type IIA string compactified on V ⊗ V̄ f�
− , where V is

one of the self-dual N = 1 SVOAs with c = 12.13 We assume that V contains
χNS states of weight 1/2 in the NS sector, χR

+ states of weight 1/2 in the
R+ sector and χR

− states in the R− sector. These VOA states correspond to

12These references describe 10 out of 12 distinct BKM algebras; N. Scheithauer informed us
that he calculated the denominator identities for the two remaining cases (unpublished).
13Note that in these type IIA examples we take V f�

− as the right-moving internal SVOA,

while for the heterotic examples we took V f�
+ . The reason is that in heterotic string theory

the GSO projection restricts to the right-moving R+ sector, while in the type IIA string the
projection is onto the right-moving R− sector. Our choice then corresponds to having 24
gravitinos with positive chirality in all examples.
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massless physical states in the chiral cohomology, denoted, respectively, by
νa, a = 0, . . . , χNS, υi

+, i = 1, . . . , χR
+, υi

−, i = 1, . . . , χR
−. As discussed in

Sect. 2, we distinguish between the two cases V = V f�
± which have 24 Ramond

ground states in the R± sector. The anti-holomorphic V̄ f�
− contains 24 Ramond

ground states in the R− sector corresponding to anti-chiral physical states
ῡi

+, i = 1, . . . , 24. The subscripts + or − on the Ramond states υi
± and ῡi

+

refer to the spin with respect to the SO(1, 1) spacetime Lorentz group; note
that the type IIA GSO projection identifies the sign of the spacetime spin
with the internal fermion number in the holomorphic Ramond sector, and
with the opposite of the fermion number in the anti-holomorphic Ramond
sector. Additionally, there are the left- and right-moving states arising from
the N = (1, 1) supersymmetric nonlinear sigma model with target R

1,1. The
massless single string states are

• Gravitons ψ++ψ̄++ and ψ−−ψ̄−−; B-field ψ++ψ̄−− − ψ−−ψ̄++; dilaton
ψ++ψ̄−− + ψ−−ψ̄++. These states are non-physical, except for k = 0.

• (24+χR
+) chiral gravitinos ψ++ῡi

+, i = 1, . . . , 24, and υi
+ψ̄++ i = 1, . . . χR

+

(spin +3/2); χR
− anti-chiral gravitinos υi

−ψ̄−− i = 1, . . . χR
− (spin −3/2);

(24 + χR
+) anti-chiral dilatinos ψ−−ῡi

+, i = 1, . . . , 24 and υi
+ψ̄−− i =

1, . . . χR
+ (spin −1/2); χR

− chiral dilatinos υi
−ψ̄++ i = 1, . . . χR

− (spin
+1/2). These states are only physical for k = 0.

• χNS gauge vectors Aa = νaψ̄++, νaψ̄−− from the NS-NS sector. These
states are only physical for k = 0.

• From the R-R sector, 24χR
+ states υi

+ῡj
+, i = 1, . . . , χR

+, j = 1, . . . , 24 cor-
responding to derivatives ∂+φij of scalar chiral fields φij with ∂−φij = 0,
and 24χR

− states υi
−ῡj

+, i = 1, . . . , χR
−, j = 1, . . . , 24, corresponding to

field strengths of U(1) vectors. When the theory is uncompactified, only
the scalar fields have propagating degrees of freedom. When we compact-
ify the space direction on a circle S1, the equations of motion force the
scalars to carry no winding along S1, while the vectors can carry wind-
ing but not momentum. There are no physical string states representing
the zero modes of the scalars or of the vectors—this is standard for R-R
bosons. See “Appendix C” for more detail.

• 24χNS chiral gauginos λai = νaῡi
+ (spin 1/2) from the NS-R sector; these

states are physical for all k with k2 = 0 (massless propagating degrees of
freedom).

In total, the spacetime theory has (χR
−, 24 + χR

+) SUSY. When we compactify
the space direction on a circle S1, the corresponding supercharges obey slightly
different algebras then presented previously:

• The “standard” (0, 24) supercharges Qi
r− from the NS-R gravitinos ψ++ῡi

+

obey the algebra

{Qi
r−,Qj

r−} = δij(P 0
r − P 1

r ). (5.27)



Vol. 23 (2022) BPS Algebras in 2D String Theory 3713

• The (0, χR
+) supercharges Qi

l− from the R-NS gravitinos υi
+ψ̄++ obey the

algebra

{Qi
l−,Qj

l−} = δij(P 0
l − P 1

l ). (5.28)

Note that here only left-moving momenta appear, while in the previous
equation we had only right-moving momenta. In the uncompactified the-
ory, one has P 0

l = P 0
r and P 1

l = P 1
r and the algebra is the same; in the

compactified theory, P 1
l and P 1

r are independent operators.
• The (χR

−, 0) supercharges Qi
l+ from the R-NS gravitinos υi

−ψ̄−− obey the
algebra

{Qi
l+,Qj

l+} = δij(P 0
l + P 1

l ). (5.29)

Now, we are going to discuss the computation of the supersymmetric
indices defined in Eqs. (5.11), (5.12) for these theories. Since the time direction
is always uncompactified, we have P 0

l = P 0
r . The spacetime index Z gets

contributions only from states that are annihilated by all the supercharges.
Since the 24 supercharges Qi

r− are always present, this implies that k1
r = k0

r =
k0

l . If χR
+ �= 0, then the states contributing to Z have momenta satisfying

k1
r = k0

r = k0
l = k1

l , (5.30)

which means that they cannot have any winding around the circle S1, so that
the index is independent of T . If χR

− �= 0, we get the condition

k1
r = k0

r = k0
l = −k1

l (5.31)

which implies that states contributing to the index cannot carry any units of
momentum along S1, and Z is independent of U . If both χR

+ and χR
− are not

zero (this happens if V = V fE8) then the only states contributing are the ones
with zero momentum

k0
l = k0

r = k1
l = k1

r = 0, (5.32)

so the index is just a number.
As we will show below, the supersymmetric index ZV ⊗V̄ f�

− (5.11) and the
modified index Z̃V ⊗V̄ f�

− (5.12) reproduce, respectively, the superdenominator
and the denominator of the BKM superalgebra corresponding to V . Passing
from Z to Z̃ amounts to inserting a “left-moving” spacetime fermion number
(−1)Fl in the trace, which acts by −1 on the left-moving Ramond and by +1
on the left-moving NS sector. With this insertion, the states contributing to Z̃
are the ones that are annihilated by the 24 supercharges Qi

r− from the NS-R
gravitinos ψ++ῡi

+. Thus, the only condition is

k0
l = k0

r = k1
r , (5.33)

with no constraints on k1
l . Indeed, all the other supercharges do not commute

with the operator (−1)Fl , so there are no cancellations between states that
are related by these supersymmetries. Then, Z̃ will in general be a function
of both T and U for all algebras. This is indeed what happens for the algebra
denominators.
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The only propagating massless fermions are the 24χNS chiral gauginos
λai, that are the superpartners of the gauge vectors Aa. The gauge algebra
g⊕24 consists of 24 copies of a χNS-dimensional Lie algebra g. Therefore, when
χNS �= 0, we can consider Wilson lines corresponding to the Cartan generators
of g. Furthermore, in order to get a nonvanishing result for the index, one needs
to absorb the zero modes of the gauginos corresponding to Cartan generators,
which are neutral under the Wilson lines. This situation occurs when V = V fE8

(χNS = 8) and for V = F24 (χNS = 24).
Let us now consider a case-by-case analysis of the three possibilities for

V .

1. For V = V f�
+ (or V = V f�

− ) one has χR
+ �= 0 and χNS = χR

− = 0 (resp.,
χR

− �= 0 and χNS = χR
+ = 0), so the index Z receives contributions only

from states with w = 0 (resp., m = 0) and therefore is a function of U
only (resp., of T only). This fits with the fact that the superdenominator
of the Conway superalgebra associated with V f� depends on one variable
only (see equation 4.30 and the surrounding discussion in [37]). The two
cases V = V f�

+ and V = V f�
− are related by exchanging winding and

momentum along S1, i.e., by T-duality along this circle; this fits with the
idea that T-duality is a “left-moving parity” exchanging the left-moving
R+ and R− sectors while keeping the right-moving sectors fixed. The
conditions (5.30) (or (5.31)) on momenta imply that only propagating
massless states contribute to the index. The only such states are the 242

massless bosons in the R-R sector; they are either scalars carrying only
momentum for V = V f�

+ , or vectors carrying only winding number for
V = V f�

− . The index is therefore

ZV f�
+ ⊗V̄ f�

− (U) =

(
q−1

∞∏
m=1

1
(1 − qm)24

)24

=
(

1
η24(U)

)24

, (5.34)

ZV f�
− ⊗V̄ f�

− (T ) =

(
p−1

∞∏
w=1

1
(1 − pw)24

)24

=
(

1
η24(T )

)24

, (5.35)

that are indeed the 24th power of the superdenominator of Conway BKM
superalgebra [37].
The modified index Z̃ receives contributions from both massive and mass-
less states with k0

r = k1
r . Let cNS(n) and cR(n) be the multiplicities of

the GSO-projected NS and R states in the internal SVOA V at level
L0 − 1

2 = n—these multiplicities are the same for both V f�
− and V f�

+ .
For winding and momenta m, w, we have 24cNS(mw) fermions from the
NS-R sector and 24cR(mw) bosons from the R-R sector. The multiplic-
ities are nonzero only for mw ≥ 0, and the positive energy condition
E = 1√

2
(m

R + wR) > 0 implies that m,w ≥ 0. As discussed above, the

24cR(0) = 242 massless bosons must have w = 0 for V = V f�
+ or m = 0

for V = V f�
− . The product (−1)F(−1)Fl = (−1)Fr of spacetime fermion

number (−1)F and the “left-moving” fermion number (−1)Fl acts by a
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minus sign on all of these states. The final result for the modified index
is therefore

Z̃V f�
+ ⊗V̄ f�

− (T,U) =

(
q−1

∞∏
m=1

1
(1 + qm)24

∞∏
w=1

(1 − pwqm)cNS(mw)

(1 + pwqm)cR(mw)

)24

,

(5.36)

Z̃V f�
− ⊗V̄ f�

− (T,U) =

(
p−1

∞∏
w=1

1
(1 + pw)24

∞∏
m=1

(1 − pwqm)cNS(mw)

(1 + pwqm)cR(mw)

)24

.

(5.37)

These are indeed the 24th power of the superalgebra denominator (as
computed in [37]).

2. When V = F24, we have χNS = 24 and χR
+ = χR

− = 0. Thus, for both the
index and the modified index, the states giving nonzero contribution to
the trace may carry any value of winding and momentum. To be precise,
there are 8 different string models, depending on the choice of a N = 1
supercurrent for F24 (as described in Sect. 2.) Each choice is associated
with a semi-simple Lie algebra g of dimension 24; g is also the algebra
of gauge symmetries in spacetime for the corresponding model. One can
turn on r Wilson lines for these gauge fields where r is the rank of the
algebra. We are left with r neutral massless gauginos that need to be
absorbed in order to get a nonzero result. The treatment of the massless
modes is completely analogous to the case of heterotic strings with N
currents that we saw in the previous section. The only difference is that
in this case we have massive BPS bosons, while in the heterotic case all
BPS states were fermions. Let us denote by cNS(n, λ) and cR(n, λ) the
GSO-projected NS and Ramond multiplicities of states in the internal
CFT F24 with level L0 − 1

2 = n and charge λ with respect to the algebra
g. The result for the index is then

ZF24⊗V̄ f�
−

=

⎛
⎜⎜⎝pqy−ρ

∏
λ∈Δ+

g

(1 − yλ)cNS(0,λ)
∞∏

m,w=0
(m,w)�=(0,0)

∏
λ∈Δg

(1 − pwqmyλ)cNS(mw,λ)

(1 − pwqmyλ)cR(mw,λ)

⎞
⎟⎟⎠

24

,

(5.38)

and for the modified index

Z̃F24⊗V̄ f�
−

=

⎛
⎜⎜⎝pqy−ρ

∏
λ∈Δ+

g

(1 − yλ)cNS(0,λ)
∞∏

m,w=0
(m,w)�=(0,0)

∏
λ∈Δg

(1 − pwqmyλ)cNS(mw,λ)

(1 + pwqmyλ)cR(mw,λ)

⎞
⎟⎟⎠

24

.

(5.39)



3716 S. M. Harrison et al. Ann. Henri Poincaré

where, for any vector α, yα is shorthand for
∏

k yαk

k = e2πi
∑

k Akαk . Again,
up to the power 24, these are, respectively, the superdenominator and
denominator of the associated BKM superalgebra (see [36]).

3. Finally, for V = V fE8 , we have χNS = χR
+ = χR

− = 8. The 8 · 24 vectors
from the NS-NS sectors are the gauge bosons of an abelian U(1)8·24 alge-
bra. The 8 · 24 massless gauginos from the NS-R sector are all neutral, so
their zero modes force the indices to vanish independently of the Wilson
lines, unless they are absorbed. For simplicity, we consider the case where
the Wilson lines are set to zero. The theory contains supersymmetries of
the form Qi

l+ and Qi
l− from the R-NS sector and Qi

r− from the NS-R
sector; as discussed above, this implies that the contributions to the in-
dex Z from states of nonzero momentum always cancel. So, the index
ZV fE8⊗V̄ f�

is simply a nonzero constant that can be normalized to 1.
The modified index is more interesting, and gives

Z̃V fE8⊗V̄ f�

(T,U) =

⎛
⎜⎜⎝

∞∏
m,w=0

(m,w) �=(0,0)

(1 − pwqm)cNS(mw)

(1 + pwqm)cR(mw)

⎞
⎟⎟⎠

24

, (5.40)

where cNS(n) = cR(n) are the Fourier coefficients of the GSO projected
NS and Ramond characters of V fE8 (that are actually equal to each
other). This is the denominator of the fake monster superalgebra (to the
power 24) [10,61,62].

6. Path Integrals and Theta Lifts

The index described in the previous section, and its variations, can be calcu-
lated using a path integral. In this section, we discuss this point of view, first
reviewing the structure and modular properties of second quantized partition
functions (Sect. 6.1), and then discussing the relationship between the path
integral and operatorial formalism in more detail (Sect. 6.2). In Sect. 6.3, we
show that the path integral reduces to a so-called theta lift in the theory of au-
tomorphic forms. We then demonstrate how to recover the (super)denominator
identities using this approach (Sects. 6.4 and 6.5).

6.1. First and Second Quantized Partition Functions

Let us first consider the relation between first and second quantized partition
functions in particle physics/ quantum field theory. For a single point particle
of mass m in a d-dimensional spacetime, one defines a (first quantized) parti-
tion function by summing over worldlines all possible ways to embed a single
(Euclidean) loop in spacetime

Zparticle(m2) = Vd

∫
ddk

(2π)d

∫ +∞

0

dl

2l
e− 1

2 (k2+m2)l. (6.1)

Here, l is the length of the loop, 1
2 (k2 + m2) is the worldline Hamiltonian,

and the factor 2l takes into account the translation and reflection invariance
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of the worldline parametrization. To obtain the (second quantized) partition
function in a quantum field theory, one needs to sum over an arbitrary number
n of disconnected worldlines describing n particles going around a closed loop
in spacetime, where on each worldline one sums over all possible particles in
the theory. One should also divide by a factor n! to take into account the
permutations of the n worldlines. The final result is

ZQFT = exp

(∑
i

Zparticle(m2
i )(−1)Fi

)
, (6.2)

where the factor (−1)Fi takes into account that fermions running in the loop
contribute with negative sign with respect to the bosons (see [58], §7.3.).

Now, let us turn to the analogue of this in string theory. In order to
obtain the second quantized partition function in string theory, one needs to
exponentiate the (first quantized) torus partition function for a single string,
with opposite signs for spacetime fermions and bosons, namely

Z = exp

(
1
2

∫

SL(2,Z)\H

d2τ

τ2
Tr
(
qL0 q̄L̄0e2πi

∑
k Akqk(−1)F

))
, (6.3)

where τ = τ1 + iτ2 and q = e2πiτ . The trace is over the GSO-projected single
string states and (−1)F is a spacetime fermion number. The factors of 1/2 and
1/τ2 in the exponential are needed in the torus amplitude to take into account,
respectively, of the reflection and translation automorphisms of the worldsheet
torus [58]. The Ak are background gauge fields (if present), and qk are the
corresponding charges. The Virasoro operators L0 and L̄0 depend implicitly
on the geometry of the spacetime and on the background B-field. The target
space should be a Euclidean two-dimensional spacetime on a torus S1 × S1,
where the first S1 corresponds, in Lorentzian signature, to the spacelike circle
of radius R, while the second S1 is a thermal circle, i.e., a Euclidean time
circle with radius the inverse temperature β. This means that both k0 and k1

are quantized in the path integral. The standard quantization of momenta in
the path integral will lead, on the operatorial side, to the index with fermions
that are periodic along the spacelike circle S1 and with (−1)F inserted. Non-
standard quantizations of momenta in the path integral (i.e., with half-integral
rather than integral momentum, either in the space or in the Euclidean time
directions) for some of the sectors will lead, in the operatorial side, to either
anti-periodic fermions around the space circle, or to modifications of the (−1)F

factor in the trace.
The path integral representation of the index should make invariance

under a suitable subgroup of O(2, 2, Z) ∼ SL(2, Z) × SL(2, Z) manifest. The
precise invariance subgroup depends on the periodicity conditions imposed on
the fields around the spatial and Euclidean time circles. The two SL(2, Z)
factors in O(2, 2, Z) act by fractional linear transformations on the complex
variables T,U parametrizing, respectively, the complexified Kähler and the
complex structure moduli of the spacetime torus. Thus, duality invariance
implies that the index is a modular function in both variables T and U . This
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invariance may be modified in the presence of non-trivial Wilson lines, which
give rise to (possibly multivariate) Jacobi forms rather than modular functions.

The path integral might have infrared divergences in the presence of
massless or tachyonic modes. These can be regularized in a way that preserves
spacetime diffeomorphism invariance and T-duality invariance, by cutting a
suitable region in the integration over the fundamental domain SL(2, Z)\H.
Therefore, one expects the path integral to be O(2, 2, Z)-invariant even in this
case.

This is in contrast with the expected modular properties of the index Z,
as obtained from the operatorial formalism of Sect. 5. For example, suppose
that our theory contains some fermionic zero modes that need to be absorbed
as in Eqs.(5.11) and (5.12). In this case, one expects a nonzero modular weight
depending on the number of fermions one needs to absorb. For example, con-
sider a modular transformation U → aU+b

cU+d of the complex structure of the
Euclidean torus. Spacetime fermions are sections of a spinorial bundle on the
torus; in particular, a left-moving fermion is a section of K1/2, a square root
of the canonical bundle on the torus, and thus transforms as dz1/2, where z
is a complex coordinate on the torus. Similarly, right-moving fermions trans-
form as dz̄1/2. This means that if one needs to absorb nl left-moving and nr

right-moving fermions, the corresponding index is a modular form of weights
(nl, nr), rather than a modular invariant function.

In order to explain this mismatch, we will now discuss in more detail the
relationship between the path integral Z and the corresponding index Z.

6.2. Path Integral Versus Operatorial Formalism

Some of the theories we are considering contain chiral massless fermions or
bosons, whose path integral description is notoriously problematic. For a sin-
gle chiral free boson or fermion, a standard method to overcome this issue
consists in introducing additional massless degrees of freedom with the oppo-
site chirality, so as to make the whole theory non-chiral. One can then easily
compute the path integral Z for this non-chiral theory. Finally, the chiral
partition function Z is obtained by extracting a suitable “holomorphic square
root” of the non-chiral one Z —this last step might be quite non-trivial, as
discussed below.

Including spurious degrees of freedom. Since we are interested in comput-
ing indices in free theories, a similar method can be generalized to our case.
Actually, it is simpler to modify the indices computed in Sect. 5 directly in
the operatorial formalism, by introducing suitable spurious degrees of freedom
that make the theory non-chiral. The “non-chiral” indices we obtain this way
can be compared with the path integral results we discuss in the following
subsections.

Let us take a closer look at the chiral content of the superstring com-
pactifications. Chiral massless fields can appear when the SVOA V f� is the
holomorphic or anti-holomorphic factor in the internal CFT. All 24 Ramond
ground states of this SVOA have the same worldsheet fermion number, which
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can be taken to have either positive (for V f�
+ ) or negative (V f�

− ). The GSO
projection relates the fermion number of these ground states to the spacetime
spin of the corresponding massless fields. Finally, the mass-shell condition,
arising from the requirement that the state is BRST closed, relates the spin
to the spacetime momentum. For example, for chiral fermions of spin +1/2 or
−1/2, the massless Dirac equation admits a nonzero solution only for k0 = −k1

or k0 = k1, respectively. As a result, we obtain massless fields that are either
purely left-moving or purely right-moving in spacetime. This phenomenon does
not occur for V fE8 or F24, for which the Ramond sector contains the same
number of states with positive or negative worldsheet fermion number.

In a path integral formulation, the mass-shell condition is not imposed
on fields, so that the relationship between spacetime momentum and spin
(and, in turn, with the internal fermion number) is lost. One simply sums over
all possible spacetime momenta and, independently, over all possible internal
states. Nevertheless, this procedure gives the correct result if the number of
internal states with positive and negative worldsheet fermion numbers is the
same. Therefore, it is clear how to modify the operatorial description so as
to obtain a “non-chiral” index that can be compared with the path integral:
For each (holomorphic or anti-holomorphic) internal SVOA V f�, containing
24 Ramond ground states having fermion number +1 or −1, one needs to add
24 “spurious” ground states with the opposite fermion number.

Het/Type IIA on V ⊗ V̄ f �
− . Let us analyze how the index is modified by

these spurious degrees of freedom. Let us first suppose that the theory is
heterotic string theory on V ⊗ V̄ f�

+ or type IIA on V ⊗ V̄ f�
− , where V is a

VOA or SVOA different from V f�. As described in Sect. 5, in this case, the
only single string physical states relevant to the supersymmetric index are the
ones with k0

r = k1
r , and correspond to products v ⊗ ῡi

+, where v is a state
in V and ῡ1

+, . . . , ῡ24
+ are the anti-holomorphic Ramond ground states in V̄ f�

+

(heterotic) or V̄ f�
− (type IIA) (the subscript + in ῡi

+ denotes positive spacetime
chirality, and not the worldsheet fermion number; notice that, according to our
conventions, the GSO projection on the anti-holomorphic internal factor for
type IIA is the opposite than for heterotic). For each of these states, there is a
creation or annihilation (depending on the sign of the energy) operator acting
on the second quantized Hilbert space. Adding 24 further anti-holomorphic
Ramond ground states ῡ1

−, . . . , ῡ24
− with opposite worldsheet fermion number

to V̄ f� corresponds to introducing a second copy of each creation/annihilation
operator, but now with right-moving momenta satisfying k0

r = −k1
r rather than

k0
r = k1

r . This means that, for these new operators, the relation between energy
and winding-momentum changes sign and becomes E = − 1√

2
(m

R + wR), so
that the second copy of a creation (i.e., positive energy) operator has the same
energy and the opposite winding and momentum with respect to the first copy.
Changing the sign of m and w while keeping the energy fixed is equivalent to
the transformation (T,U) �→ (−T̄ ,−Ū). In turn, this is equivalent to applying
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complex conjugation Z(T,U) to the index, because the latter is a power series
in p = e2πiT and q = e2πiU with integral coefficients.

This construction generalizes to the case where Wilson lines are present.
In this case, one has

Z(T,U,Ak) = Z(−T̄ ,−Ū ,−Ak) = Z(−T̄ ,−Ū , Ak). (6.4)

The last equality follows because the spectrum of a self-dual VOA V is in-
variant under charge conjugation—in general, applying charge conjugation to
a VOA V leads to a different V -module, but since V is self-dual the charge
conjugate V -module must be isomorphic to V itself.14

Finally, the “non-chiral” index obtained by including both the original
and the spurious degrees of freedom, therefore, is just the modulus square,

|Z(T,U,Ak)|2 = Z(T,U,Ak)Z(T,U,Ak), (6.5)

of the original index. A similar result was already discussed in [55] in the case
of a heterotic string theory on V � ⊗ V f�.

Type IIA on V f �
± ⊗ V̄ f �

− . The treatment is slightly more complicated for type
IIA compactified on V f�

+ ⊗V̄ f�
− or V f�

− ⊗V̄ f�
− , because one needs to add spurious

degrees of freedom to both the holomorphic and the anti-holomorphic factor.
Let us start with V f�

+ ⊗ V̄ f�
− . For the index Z (corresponding to the superde-

nominator of the associated BKM superalgebra), the only relevant single string
physical states are the ones satisfying k1

l = k0
l = k0

r = k1
r , i.e., with zero wind-

ing w = 0 along the circle, so that the index equals Z(T,U) = (1/η(U)24)24.
Let us first add 24 spurious ground states with fermion number −1 to the
holomorphic factor V f�

+ . This amounts to introducing creation/annihilation
operators with momentum −k1

l = k0
l = k0

r = k1
r , i.e., with m = 0, which

multiply the index by a factor (1/η(T )24)24. Similarly, the modified index Z̃,
corresponding to the denominator of the associated BKM superalgebra, gets
multiplied by

(
p−1

∏∞
w=1

1
(1+pw)24

)24. Therefore, once these holomorphic spu-
rious states are introduced, the index Z becomes

ZV f�
+ ⊗V̄ f�

−
sp (T,U) =

( 1
η(T )24η(U)24

)24

, (6.6)

and the modified index Z̃ becomes

Z̃V f�
+ ⊗V̄ f�

−
sp (T,U)

=

(
q−1

∞∏
m=1

1
(1 + qm)24

)24(
p−1

∞∏
w=1

1
(1 + pw)24

)24

( ∞∏
m,w=1

(1 − pwqm)cNS(mw)

(1 + pwqm)cR(mw)

)24

. (6.7)

14In VOA language, charge conjugation associates a VOA module with its contragredi-
ent module; here, we are simply observing that a self-dual VOA V is necessarily self-
contragredient.
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Exactly the same result can be obtained by adding spurious states to the
holomorphic factor of V f�

− ⊗ V̄ f�
− . This is obvious, since the only difference

between these two theories is the fermion number of the Ramond ground states.
But we are not done yet: One needs to add also the spurious states for

the anti-holomorphic factor V̄ f�. The treatment is similar to the other V ⊗ V̄ f�

compactifications: The new spurious degrees of freedom just introduce a second
copy of each creation and annihilation operator with the same energy but with
opposite winding and momentum. Therefore, the complete non-chiral index
(respectively, non-chiral modified index) is just the modulus square of Zsp in
(6.6) (respectively, of Z̃sp in (6.7)).

Scalar and fermionic zero modes. One final subtlety occurs when there are
scalar or fermionic zero modes. It is well known that the path integral rep-
resentation for the partition function of a free massless scalar field on a two
dimensional torus is not holomorphically factorized, i.e., it is not simply the
modulus square of a function depending holomorphically on the complex struc-
ture modulus U . Something similar can happen for a free fermion on the torus
with doubly periodic boundary conditions, due to the zero modes. In Euclidean
signature, the fermion is necessarily complex, and its partition function is a reg-
ularized determinant det′ Δ1/2, where Δ1/2 is the two-dimensional (spacetime)
Laplace operator acting on 1/2-differentials, and the symbol det′ means that
the zero eigenvalues are excluded, i.e., the zero modes have been absorbed. At
first sight, there seems to be no problem with the holomorphic factorization of
det′ Δ1/2. Indeed, if one chooses a conformal gauge ds2 = ρ(z, z̄)dz dz̄ for the
metric of the spacetime torus, the functional determinant can be regularized
in such a way that it is the modulus square of a chiral determinant det′ ∂̄1/2

depending homolorphically on U (in fact, it is the modulus square of an eta
function). This is the standard result one obtains in two-dimensional confor-
mal field theory for the torus 1-point function of the free fermion with periodic
boundary conditions. This factorized expression for det′ Δ1/2, however, is not
invariant under diffeomorphisms of the spacetime torus: Indeed, being a 1-
point function on a torus, it transforms as a section of K1/2, a square root
of the cotangent bundle. On the other hand, the path integral we are consid-
ering in this section is manifestly diff-invariant—it depends on the spacetime
metric only through diff-invariant quantities, such as the volume, the lengths
of geodesics or the angle between them. Therefore, it must correspond to a
different, diff-invariant regularization of the functional determinant det′ Δ1/2.

A classical result by Belavin and Knizhnik [3] shows that, in general, a
diff-invariant regularized determinant det′ Δn of the Laplacian acting on n-
differentials on a Riemann surface Σ fails to be holomorphically factorized.
More precisely, det′ Δn is related to a chiral determinant det′ ∂̄n by

det′ Δn

det〈φn
a |φn

b 〉det〈φ1−n
a |φ1−n

b 〉 = e−cnSL(ρ)|det ′∂̄n|2. (6.8)

Here, {φn
1 , φn

2 , . . .} and {φ1−n
1 , φ1−n

2 , . . .} are bases of, respectively, the kernel
and cokernel of ∂̄n, i.e., holomorphic n- and 1 − n-differentials, SL(ρ) is the
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Liouville action, depending on the metric ρ(z, z̄) used to define the Laplacian,
cn is the conformal anomaly, and (det′ ∂̄n)φn

1 ∧φn
2 ∧· · ·∧φ1−n

1 ∧φ1−n
2 ∧· · · is a

section of a holomorphic line bundle on the moduli space of Riemann surfaces.
Furthermore, the scalar product 〈φn

a |φn
b 〉 is defined by

〈φn
a |φn

b 〉 =
∫

Σ

(ρ(z, z̄)dz dz̄)1−nφn
a(z)φn

b (z), (6.9)

and an analogous definition holds for the scalar product between 1 − n differ-
entials.

In our case, Σ is the Euclidean spacetime torus T 2, which can be
parametrized by the complex coordinate z taking values in C/(Z + UZ), with
respect to which the metric is of the form ds2 = ρ(z, z̄)dz dz̄. The holomorphic
1-differential dz is canonically normalized

∮
A

dz = 1,
∮

B
dz = U , where the

A- and B-cycles are identified with the spatial and the Euclidean time circle,
respectively. The metric is constant ρ(z, z̄) ≡ ρ and normalized so that the
torus volume is Im T . These conditions imply that∫

T 2
dz dz̄ = Im U,

∫

T 2
ρdz dz̄ = Im T. (6.10)

There is a one-dimensional space of holomorphic 1/2-differentials with doubly
periodic boundary conditions, and we can take a generator to be φ1/2(z) =
(dz)1/2. Note that free chiral fermions with standard normalization of the
OPE, such as the ones used to absorb the zero modes in the indices Z and
Z̃ in eqs. (5.11) and (5.12), correspond, up to a numerical (T,U -independent)
factor, to the half-differential (dz)1/2. The square norm of φ1/2 is

〈φ1/2|φ1/2〉 =
∫

T 2
(ρdz dz̄)1/2(dz)1/2 (dz̄)1/2 = (Im U)1/2(Im T )1/2. (6.11)

For a flat torus, the Liouville factor e−SL admits holomorphic factoriza-
tion so that it can be reabsorbed into the definition of the chiral determinants

det ′Δ1/2 = (Im U)(Im T )ec1/2SL |det ′∂̄1/2|2 = (Im U)(Im T )|d̃et′∂̄1/2|2.
(6.12)

An analogous result holds for scalar fields. The partition function of a free
complex scalar field is the inverse (det′ Δ0)−1 of the regularized functional
determinant for the scalar Laplacian. We can choose φ1(z) = dz and φ0(z) = 1
as generators of the spaces of holomorphic 1- and 0-differentials on the torus,
respectively, so that

〈φ1|φ1〉 =
∫

T 2
dz dz̄ = Im U, 〈φ0|φ0〉 =

∫

T 2
ρdz dz̄ = Im T. (6.13)

We conclude that

det ′Δ0 = (Im U)(Im T )|d̃et′∂̄0|2, (6.14)

where, once again, the Liouville factor is absorbed in a redefinition of the chiral
determinant.

This discussion finally suggests the correct relation between the indices
Z and Z̃ of Sect. 5 and their path integral representation Z considered in
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this section. In particular, if the string theory we are considering contains nb

massless scalars and nf massless fermions, then the path integral equals

Z = [(Im U)(Im T )]nf −nb |Zsp|2, (6.15)

where Zsp possibly contains additional “spurious” degrees of freedom, as in
Eq. (6.6).

Note that if the massless degrees of freedom are charged with respect to
some non-trivial background gauge fields, then the corresponding Laplacian is
modified in such a way that the zero modes are lifted. This means that one can
take the full regularized determinant det Δ, without projecting onto nonzero
modes, and such a determinant automatically factorizes. As a consequence,
in the presence of non-trivial Wilson lines for the gauge fields, the correct
power [(Im U)(Im T )]nf −nb in Eq. (6.15) is given by the number nf of neutral
massless fermions minus the number nb of neutral massless scalars.

An analogous formula to (6.15) holds for the path integral Z̃ correspond-
ing to Z̃. The insertion of the factor (−1)Fl in the trace corresponds, in the
path integral formulation, to requiring the fermions and bosons to obey pe-
riodic or anti-periodic boundary conditions along the Euclidean time circle,
depending on their (−1)Fl eigenvalue. Fermions and bosons with anti-periodic
boundary conditions on the torus have no zero modes; therefore, the analog
(6.15) holds if nf and nb are the number of zero modes of periodic fermions
and bosons.

Examples. Let us consider some examples:

• For heterotic strings on VL ⊗ V f�
+ , where VL is the lattice VOA of the

Niemeier lattice L, the number of massless fermions is 24N , where N is
the number of currents in the VOA VL. Only 242 of them are neutral with
respect to the background gauge fields in a maximal abelian torus of the
gauge group. Therefore, nf = 242. There are no massless propagating
scalars, so nb = 0. Thus, we expect the path integral to reproduce

Z VL⊗V f�
+ (T,U,Ak) = [(Im U)(Im T )]24

2 |ZVL⊗V f�
+ (T,U,Ak)|2, (6.16)

where ZVL⊗V f�
+ (T,U,Ak) is given in (5.21).

• Consider type IIA on V f�
± ⊗ V f�

− . Once the spurious states are included,
the theory contains 242 massless scalars from the R-R sector, and no
propagating massless fermions. When we consider the index Z, we have
nb = 242 and nf = 0, so that the path integral will reproduce

Z (T,U) = [(Im U)(Im T )]−242 |Zsp(T,U)|2

=
1

[(Im U)(Im T )]242

∣∣∣∣
1

η(T )242η(U)242

∣∣∣∣
2

, (6.17)

where Zsp was calculated in (6.6). As for the modified index Z̃, recall
that (−1)Fl acts by −1 on the R-NS and R-R sector and trivially on the
NS-R and NS-NS sector. Therefore, all 242 massless R-R scalars obey
anti-periodic boundary conditions along the Euclidean time circle, and
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there are no zero modes. It follows that nb = nf = 0 and the path integral
Z̃ factorizes as the modulus square

Z̃ V f�
± ⊗V f�

− = |Z̃V f�
± ⊗V f�

−
sp |2 (6.18)

of the index in Eq. (6.7).
• In type IIA on F24 ⊗V f�

− , there are 242 massless fermions from the NS-R
sector and no massless bosons. Only 24r of these fermions are neutral,
where r is the rank of the gauge group, which depends on the choice
of the N = 1 supercurrent in F24. Thus, both for the index Z and the
modified index Z̃, one has nf = 24r and nb = 0, so that the path integral
is expected to give

Z F24⊗V f�
− (T,U,Ak) = [(Im U)(Im T )]24r|ZF24⊗V f�

− (T,U,Ak)|2 (6.19)

and

Z̃ F24⊗V f�
− (T,U,Ak) = [(Im U)(Im T )]24r|Z̃F24⊗V f�

− (T,U,Ak)|2 (6.20)

where ZF24⊗V f�
− and Z̃F24⊗V f�

− are given in (5.38) and (5.39), respectively.
• Finally, in type IIA on V fE8 ⊗ V f�

− , there are 8 · 24 bosons from the
R-R sector and 8 · 24 fermions from the NS-R sector. The gauge group
is abelian and all of these states are neutral. For the index Z, one has
nb = nf = 8·24, so that the path integral Z is holomorphically factorized
(in fact, it is just a constant). For the modified index, the scalars obey
anti-periodic boundary conditions, so that nf = 8 · 24 and nb = 0. Thus,
we expect the path integral to reproduce

Z̃ V fE8⊗V f�
− = [(Im U)(Im T )]8·24|Z̃V fE8⊗V f�

− |2, (6.21)

where Z̃V fE8⊗V f�
− is given in Eq. (5.40).

In Sects. 6.4 and 6.5, we will verify some of these expectations by explicit path
integral calculations. In particular, we compute explicitly the path integrals
corresponding to the superdenominators of type IIA on F24 ⊗V f�

− , V fE8 ⊗V f�
−

and V f�
± ⊗ V f�

− , as well as the denominators of type IIA on V f�
± ⊗ V f�

− .

6.3. Path Integrals and Theta Lifts

Let us consider heterotic or type II superstring theory on a generic internal
CFT V1 ⊗ V̄2. Let us first consider the case where there are no Wilson lines.
As mentioned above, the path integral representation of the second quantized
index is given by

Z = exp

(
1
2

∫

SL(2,Z)\H

d2τ

τ2
Tr
(
qL0 q̄L̄0(−1)F

))
. (6.22)

The trace in the integrand is taken over the full GSO-projected ghost and
matter CFT, restricted to ker b0 ∩ ker b̄0. The latter condition corresponds
to the insertion of suitable ghost vertex operators in the path integral. The
operator (−1)F is a spacetime fermion number; for example, in type II theories
it acts trivially on the NS-NS and R-R sectors and by a minus sign on the
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NS-R and R-NS sectors. As usual, the contributions from nonzero modes of
the ghosts and superghosts exactly cancel the bosonic and fermionic matter
oscillators in the 1 + 1 spacetime directions. Thus, the trace is the product of
a term coming from a sum over winding-momenta along the two-dimensional
Euclidean spacetime torus, times the partition function of the internal CFT
V1 ⊗ V̄2.

The winding-momenta take values in an even unimodular lattice Γ2,2 of
signature (2, 2), so that their contribution gives a Narain–Siegel theta function

ΘΓ2,2(τ ;T,U) = τ2

∑
m1,w1,m0,w0∈Z

q
k2

l
2 q̄

k2
r
2 , (6.23)

(we included a factor τ2 to make it modular invariant and match with the
mathematical literature) where

k2
l =

∣∣∣∣
(
T 1
)( w0 w1

−m1 m0

)(−U
1

)∣∣∣∣
2

2T2U2
(6.24)

k2
r = k2

l − 2m1w1 − 2m0w0. (6.25)

The partition function of the CFT V1 ⊗ V̄2 factorizes as a product
f(τ, V1)f(τ, V2) of a holomorphic and an anti-holomorphic factor.

Let us focus on type II models; in this case, the spacetime fermion number
factorizes as (−1)F = (−1)Fl(−1)Fr , where (−1)Fl,r acts by a minus sign on
the (left- or right-moving) Ramond sector. In terms of the traces of Eq. (2.1),
for each given SVOA V , one has

f(τ, V ) =
φNS(τ, V ) − φ

ÑS
(τ, V )

2
− φR(τ, V ) ± φR̃(τ, V )

2

=

⎧
⎪⎨
⎪⎩

0 for V = V fE8 ,

−24 for V = V f�
± ,

24 for V = F24.

(6.26)

In this formula, the first two terms yield the GSO-projected NS sector. The
relative sign between the NS and the Ramond sector is due to the spacetime
fermion number. The last two terms can be explained as follows. In the Ramond
sector, the GSO projection should be implemented by taking just one of the
two spacetime chiralities for each Ramond state of the internal SVOA V ,
depending on the eigenvalue of the internal worldsheet fermion number (−1)F .
However, in our Euclidean path integral, the description of chiral fermions is
problematic. A way out is as follows. For V = F24 or V = V fE8 , one observes
that φR̃(τ, V ) = 0, i.e., the number of states with positive and negative fermion
number is the same for each L0 eigenvalue. This means that the states in
the Ramond sector come in pairs with opposite fermion number, and we can
count one complex (non-chiral) spacetime fermion for each such pair, thus
giving φR(τ,V )

2 as a counting function. The same reasoning applies to V f�
± with

L0 > 1/2: The number of states with positive and negative fermion number
is the same for L0 > 1/2, so we can count one complex fermion for each pair
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of states. On the other hand, the 24 Ramond ground states (L0 = 1/2) in
V f�

± , only appear for either positive (for V f�
+ ) or negative (for V f�

− ) fermion
number, i.e., they would correspond to a chiral spacetime fermion. Since we
are not able to describe these chiral fermions in our Euclidean path integral
formulation, we simply count one complex non-chiral fermion for each of these

24 states, irrespective of their fermion number; this gives φR(τ,V f�
± )±φR̃(τ,V f�

± )

2 .
In this way, we have a slight overcounting of Ramond ground states: This is
the origin of the “spurious states” discussed in Sect. 6.2.

By (6.26), in type IIA theories, the partition function f(τ, V1)f(τ, V2) is
just a constant. Note that when either V1 or V2 is V fE8 , the partition function
vanishes.

For heterotic models on V1⊗V̄2, we have a similar result for f(τ, V1)f(τ, V2),
where the anti-holomorphic factor f(τ, V2) is a constant given in (6.26), while
the holomorphic factor

f(τ, V1) = J(τ) + N = q−1 + N + 196884q + · · · (6.27)

is the partition function of the bosonic VOA V1, which equals the J-function
up to the constant term.

Thus, in all cases we are interested in, the integrand τ2 Tr(qL0 q̄L̄0(−1)F)
is just the product F (τ)ΘΓ2,2(τ ;T,U) of a theta series and a holomorphic
function F (τ) = f(τ, V1)f(τ, V2).

We conclude that the path integral will amount to performing an integral
of the form

∫

SL(2,Z)\H
F (τ)ΘΓ2,2(τ ;T,U)

d2τ

τ2
2

. (6.28)

This is recognized as a theta lift in the mathematics literature. More generally
one can lift a modular form F on H to an automorphic form on SO(m,n) via
[6]

F �−→ ΘF (g) =
∫

SL(2,Z)\H
F (τ)ΘΓm,n(τ ; g)

d2τ

τ2
2

. (6.29)

Here, ΘΓm,n is a Siegel–Narain theta series for the lattice Γm,n, depending on
τ ∈ H and g ∈ SO(m,n; R). The image ΘF (g) of the theta lift is then an
automorphic form on

Γ\SO(m,n; R)/(SO(m) × SO(n)), (6.30)

where Γ ⊂ SO(m,n; R) is an arithmetic subgroup (T-duality group).
Consider the case of the lattice Γ2,d, which is the level of generality that

we are interested in. The case when d > 2 corresponds to including Wilson
lines. Then ΘΓ2,d transforms like a modular form of weight d/2−1 with respect
to SL(2, Z). Assume further that F (τ) is a weakly holomorphic modular form
of weight 1 − d/2 with Fourier coefficients c(m,n). Since F may have singu-
larities at the cusps the integral diverges. However, it can be regularized by
introducing a cutoff �(τ) ≤ t and computing the integral in the limit t → ∞
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[24,38]. Physically, the divergence is an IR effect, due to the presence of mass-
less or tachyonic modes (the latter only arises in off-shell heterotic strings).
The result is of the form

ΘF (g) = log ||ΦF (g)||2Pet + const, (6.31)

where || · ||Pet denotes the Petersson metric on the line bundle L of modular
forms of weight c(0, 0)/2 over SO(2, d; R)/(SO(2) × SO(d)). Moreover, in the
neighborhood of a cusp, ΦF (g) has an infinite product expansion. The theta
lift generalizes to the case where ΘΛ is the theta series of a lattice Λ that
is not unimodular, and F (τ) is a vector-valued modular form for a suitable
SL(2, Z)-representation, see “Appendix D” for details and references.

To illustrate this, let us restrict again to the case of having no Wilson
lines, i.e., d = 2, as in the beginning of this section. In this case, F (τ) is a
weight 0 modular form. The simplest possibility is to let F be a constant, say
c. Then we obtain

Θc(T,U) =
∫

SL(2,Z)\H
c · ΘΓd,d(τ ;T,U)

d2τ

τ2
2

= −c log ||η(T )2η(U)2||2Pet + const, (6.32)

where the Petersson metric is given explicitly by

||η(T )2η(U)2||2Pet = �(T )�(U)
∣∣η2(T )η2(U)

∣∣2. (6.33)

The constant in (6.32) is explicit and involves the Euler–Mascheroni constant
(see, e.g., [38]). We recognize the general structure of the path integral (6.15),
where we recall that the prefactors �(T )�(U) arise from the bosonic and
fermionic zero modes.

As mentioned in Sect. 6.2, the path integral we started from is manifestly
invariant under spacetime diffeomorphisms. The dependence on the metric is
only through the complex moduli T and U , which in turn are defined in terms
of diff-invariant quantities, such as the volume of the spacetime torus, the
length of geodesics or the angle between them. The infrared regularization
is also manifestly diff-invariant—we just cut a region of integration over the
moduli of the worldsheet torus. Thus, the final result is expected to be free
of gravitational anomalies. In particular, the arithmetic T-duality group Γ ⊂
SO(2, d; R) contains a group of large spacetime diffeomorphisms, so that the
absence of gravitational anomalies can be seen as the physical counterpart of
the automorphy properties of the theta lift.

6.4. The Path Integral for the Superdenominator

Let us consider a type IIA model on V ⊗ V̄ f�
− , where V is a self-dual N = 1

SVOA with c = 12. The second quantized supersymmetric index Z corre-
sponding to this model is (the 24th power of) the superdenominator of the
BKM superalgebra associated with V .

In the following subsections, we will describe how the superdenominator
arises explicitly from the path integral for the type II string on V ⊗ V f�, with
V = F24, V f�, and V fE8 .



3728 S. M. Harrison et al. Ann. Henri Poincaré

The case F24 ⊗ V̄ f �
− . For V = F24 we have χR

+ = χR
− = 0. Let us consider

the case when we turn off all Wilson lines, i.e., yi = 1 for all i, so that the
lattice is Γ2,2. We expect the index to depend on both T and U , the Kähler
and complex structure moduli of the torus. By (6.26), we have f(τ, F24) = 24
and f(τ, V f�

− ) = −24. The result of the theta lift is thus

ΘF24⊗V̄ f�(T,U) =
∫

SL(2,Z)\H
24 · (−24) · ΘΓ2,2(τ ;T,U)dμ

= 24 · 24 log ||η2(T )η2(U)||2Pet. (6.34)

The full non-holomorphic partition function in this case is given by

Z F24⊗V̄ f�∣∣
y=1

= e
1
2Θ

F24⊗V̄ f�
(T,U)

= const · ||(η24(T ))24(η24(U))24||2Pet.

(6.35)

Now, let us give a rough idea of the generalization to the case where the
Wilson lines are turned on. Recall that yi = e2πiAi , i = 1, . . . , r, where Ai are
Wilson line moduli and r is the rank of the gauge group G. The integral now
involves the Siegel–Narain theta function ΘΛ(τ ;T,U,A) for a lattice Λ = Γ2,2⊕
L of signature (2, 2 + r), where L is the r-dimensional lattice of charges with
respect to gauge group G. The partition function F becomes a Jacobi form,
with theta decomposition of the form F =

∑
Fγθγ , where γ label the cosets

in L∨/L. Using the vector-valued theta lift of F discussed in “Appendix D,”
we arrive at

Z F24⊗V̄ f�
− = e

1
2Θ

F24⊗V̄ f�
(T,U,A)

= const · ||Φ(T,U,A)24||2Pet, (6.36)

where Φ(T,U,A) has the following infinite product representation

Φ = e−2πi(T+U+(ρ,A))
∏

λ∈Δ+
g

(1 − e2πi(λ,A))c(0,λ)

∞∏
m,w=0

(m,w)�=(0,0)

∏
λ∈Δg

(1 − e2πi(mT+wU+(λ,A)))c(mw,λ) (6.37)

This matches perfectly with the index ZF24⊗V̄ f�
− obtained in Sect. 5.4.

The case V f E8 ⊗ V̄ f � . In this case, we have both χR
+ �= 0 and χR

− �= 0, and
only states with all momenta vanishing will contribute. Thus, we expect the
theta lift to be independent of T and U . Indeed, the contribution to F (τ) from
the f(τ, V fE8) vanishes (see Eq. (6.26)). Hence, the partition function is just

Z V fE8⊗V̄ f�

= e
1
2Θ0 = 1, (6.38)

which agrees with the result in Sect. 5.4.
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The cases V f �
± ⊗ V̄ f �

− . For V f�
± , we have χR

± �= 0 (but χR
∓ = 0). Recall from

Sect. 5.4 the case χR
+ �= 0 implies that, on-shell, there is a constraint on the

winding and momenta such that there is no winding around the spacelike S1.
Similarly, the case χR

− �= 0 implies that there is no momenta around the S1.
Therefore, in the operatorial formalism, one has that ZV f�

+ ⊗V̄ f�
− depends only

on U , while ZV f�
+ ⊗V̄ f�

− depends only on T . In the path integral (6.22), these
conditions are not imposed, so one expects Z to depend on both T and U and
be the same function for both V f�

+ ⊗ V̄ f�
− and V f�

− ⊗ V̄ f�
− .

The calculation is very similar to the case F24 ⊗ V̄ f�
− , but now

c = f(τ, V f�
± )f(τ, V f�

− ) = (−24)2. (6.39)

The result is

Z V f�
± ⊗V̄ f�

− (T,U) = const · ||η−24(T )η−24(U)||2·24
Pet . (6.40)

The superdenominator formula should correspond to the 24th power of
the holomorphic piece of this partition function, namely η−24(T ) (or η−24(U)).
This indeed agrees with Eq. (6.17).

6.5. Path Integral for the Denominator of Type II on V f �
± ⊗ V̄ f �

−
We shall now move on to compute the path integral for the modified index
Z̃V1⊗V̄ f�

− for type IIA on V1 ⊗ V̄ f�
− , corresponding to the denominator function

of the BKM superalgebra associated with V1. The modified index Z̃ is obtained
by inserting an operator (−1)Fl in the trace over the second quantized Hilbert
space. The left-moving fermion number (−1)Fl acts by +1 on the physical
states in the left-moving NS sector (which give the even elements of the BKM
superalgebra) and by −1 on physical string states in the left-moving R sector
(corresponding to odd elements in the BKM superalgebra). In the path integral
formulation of the index, this insertion corresponds to taking either integral
or half-integral quantization for the momenta in the time direction, depending
on the (−1)Fl eigenvalue of the string running in the loop. Formally, this is
equivalent to taking the standard path integral for an orbifold theory, anal-
ogous to the CHL string models. One starts from a theory whose Euclidean
time circle has twice the radius, and then takes an orbifold by a symmetry z
acting as a half-period shift along the Euclidean time circle, together with the
action of (−1)Fl . As a result, we get a theory whose fields obey (−1)Fl -twisted
boundary conditions along the Euclidean time circle. From a mathematical
viewpoint, this procedure amounts to taking the theta lift of vector-valued
(rather than scalar) modular forms in the integrand. The general structure of
such integrals is recalled in “Appendix D.”

Now, let us apply this machinery to our setting. Let us consider the
example of type IIA string theory on V f�

− ⊗V̄ f�
− . Recall that the path integral for

the superdenominator, in this example, is given by (6.22), where the integrand
is ΘΓ2,2(T,U, τ)f(τ, V f�

− )f(τ, V f�
− ). In particular, in the CFT trace inside the

integral, the spacetime oscillators cancel against the ghost and superghost
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contributions, and we are left with the theta series for the winding-momentum
lattice on the Euclidean torus times the trace over the internal CFT.

Now, in order to compute the path integral for the denominator, we have
to take an orbifold by an order 2 symmetry z acting by a half-period shift
along the Euclidean time circle and simultaneously by (−1)Fl . This symmetry
acts trivially on the spacetime oscillators and (super)ghosts, so that the same
cancellations as for the superdenominator case occur. Therefore, the CFT trace
in the integral of (6.22) is still f(τ, V f�

− ) = −24 times the contributions from
the holomorphic internal SVOA and from the winding-momentum. We claim
that the integrand has the form

∑
r∈Z/2Z

Trzr

⎛
⎝qL0 q̄L̄0(−1)F

1
2

∑
s∈Z/2Z

zs

⎞
⎠

=
1
2

∑
r,s∈Z/2Z

f(r, s; τ)Θr,s(T,U ; τ)f(τ, V f�
− ). (6.41)

Here, Trzr denotes the trace over the zr-twisted sector, and 1
2

∑
s z

s is the
projection onto the z-invariant states. The anti-holomorphic SVOA V̄ f�

− con-

tributes with the usual factor f(τ, V f�
− ) = −24, since z acts trivially on this

theory. For each r, s ∈ Z/2Z, f(r, s; τ) is the contribution from the holomor-
phic internal SVOA V f�

− , while Θr,s(T,U ; τ) comes from the sum over winding
and momentum along the spacetime torus. Explicitly,

f(0, 0; τ) =
φNS(τ) − φÑS(τ)

2
− φR(τ) − φR̃(τ)

2
= −24

f(0, 1; τ) =
φNS(τ) − φÑS(τ)

2
+

φR(τ) − φR̃(τ)
2

= 24 + 4096q + 98304q2 + 1228800q3 + · · ·
f(1, 0; τ) =

φNS(τ) + φÑS(τ)
2

− φR(τ) + φR̃(τ)
2

= q1/2 + 276q1/2 − 2048q + 11202q3/2 + · · ·
f(1, 1; τ) = −φNS(τ) + φÑS(τ)

2
− φR(τ) + φR̃(τ)

2
= −q−1/2 − 276q1/2 − 2048q − 11202q3/2 + · · ·

where in the second line we use the fact that z = (−1)Fl on V f�
− , and the third

and fourth line follow from modular transformations of the second (recall that
fNS, fÑS, and fR span a three-dimensional representation of SL(2, Z), while
fR̃ is SL(2, Z)-invariant). As for the theta series, we have

Θr,s(T,U ; τ) = τ2

∑
m1,w1,m0∈Z

∑
w0∈Z+ r

2

q
k2

l
2 q̄

k2
r
2 (−1)sm0 , (6.42)

where kl, kr are given in (6.24) and (6.25). This follows from the fact that the
winding number w0 is half-integral in the z-twisted sector, and that a shift by
half a period corresponds to multiplication by (−1)m0 .
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The connection with vector-valued theta lifts can be easily made manifest
(see “Appendix D” for notation). Let us consider the lattice Λ = Γ1,1⊕Γ1,1(2),
where Γ1,1 is the unique even unimodular lattice of signature (1, 1), and Γ1,1(2)
is the same lattice with the quadratic form rescaled by 2. This implies

Λ∨ = Γ1,1 ⊕ 1
2Γ1,1(2), Λ∨/Λ ∼= 1

2Γ1,1(2)/Γ1,1(2) ∼= Z2 × Z2. (6.43)

The elements λ ∈ 1
2Γ1,1(2) can be parametrized by

λ = (m/2, n/2), λ2 = mn. (6.44)

The cosets γ ∈ Λ∨/Λ are represented by pairs (r/2, s/2) with r, s ∈
Z/2Z. With the lattice Λ is associated a vector-valued representation ρΛ (Weil
representation) of SL(2, Z), as in (D.3). We define a vector-valued modular
form F for ρΛ via the discrete Fourier transform as follows:

Fr,s(τ) :=
1
2

∑
t∈Z/2Z

e−πitsf(r, t; τ)f(τ, V f�
− ). (6.45)

This yields

F00(τ) = −24(2048q + · · · )
F01(τ) = −24(−24 − 2048q − · · · )
F10(τ) = −24(−2048q − · · · )
F11(τ) = −24(q−1/2 + 276q1/2 + · · · ). (6.46)

For later reference, let us denote the Fourier expansions of these functions by

Fr,s(τ) = −24
∑

n∈ 1
2Z

Cr,s(n)qn. (6.47)

These functions represent the components Fγ(τ) of the vector-valued modular
form F (τ).

Now, let us turn to the theta function. The shifted theta series θΛ+γ can
be written as follows in terms of the shifted Narain theta series Θr,s:

θΛ+γ =
1
2

∑
t∈Z/2Z

eπistΘr,t(T,U ; τ), (6.48)

where γ ≡ (r/2, s/2) ∈ Λ∨/Λ.
The inner product in the integrand of the theta lift can now be written

out explicitly as follows:
(
ΘΛ, F

)
=

∑
γ,γ′∈Λ∨/Λ

θΛ+γFγ′δγ′−γ,0

=
1
2

∑
r,s∈Z/2Z

f(r, s; τ)Θr,s(T,U ; τ)f(τ, V f�
− ). (6.49)

Thus, the theta integral that we wish to perform is explicitly given by
1
2

∫

SL(2,Z)\H

(
ΘΛ, F

)
dμ. (6.50)
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We can now invoke the general theorems of Borcherds [6] and Carnahan [12]
to deduce that the result of this integral is15

log ||ΦF (T,U)||Pet + const, (6.51)

where ΦF (T,U) is an automorphic form on O(2, 2; R)/(O(2)×O(2)), with the
following product representation:

ΦF (T,U) = p−24q−24
∏

m,w∈Z

(λ,W )>0

∏
t∈Z/2Z

(1 − (−1)tpwqm)24C0,t(mw). (6.52)

The condition (λ,W ) > 0 includes all states λ = (m,w) such that m,w ≥ 0,
and (m,w) �= (0, 0).16 We may separate this into states with w = 0,m > 0
and states with w ≥ 1,m ≥ 0. Since C0,0(0) = 0 and C0,1(0) = −24 the first
set of states (with the q−24 factor) give

(
q−1

∞∏
m=1

(1 + qm)−24

)24

(6.53)

which we can rewrite in terms of η-functions according to
(

η(U)24

η(2U)24

)24

. (6.54)

The complete function ΦF may now be written as

ΦF (T,U) =

(
q−1

∞∏
m=1

1
(1 + qm)24

)24

Ψ(T,U)24, (6.55)

where we defined

Ψ(T,U) = p−1
∞∏

w=1

∏
m≥0

(1 − pwqm)C0,0(mw) (1 + pwqm)C0,1(mw)
. (6.56)

Here, C0,0 and C0,1 are the Fourier coefficients defined in (6.47). The function
Ψ(T,U)24 matches exactly with the modified index Z̃V f�

− ⊗V̄ f�
− in Eq. (5.37),

and its 24th root Ψ(T,U) is the denominator formula in Eq. (4.18) of [37].

The factor
(
q−1

∏∞
m=1

1
(1+qm)24

)24

is the contribution of the spurious states,

so that ΦF matches with Z̃V f�
− ⊗V̄ f�

−
sp (T,U) in Eq. (6.7).

Using similar techniques, one may compute the path integrals for the
other cases and reproduce the corresponding denominator functions obtained
in Sect. 5.4.

15The function ΦF considered here is the inverse of the automorphic function ΦM defined
in theorem 13.3 of [6]. With our conventions, ΦF can be directly identified with the path

integral Z̃sp.
16We thank Scott Carnahan for clarifications about this point.
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7. Discussion

In this paper, we construct a family of distinguished type IIA and heterotic
string compactifications to two spacetime dimensions. These compactifications
are distinguished by the fact that there exists an action of a BKM algebra on
the BPS subspsace of the Hilbert space of physical states in the models, which
we illustrate in Sect. 4, following the original construction for the monster
BKM algebra in [55,56]. Furthermore, we demonstrate how a spacetime su-
persymmetric index in our theories—computed from both a trace in the Hilbert
space (Sect. 5) and via a path integral (Sect. 6)—furnishes an automorphic
form which is (closely related to) a denominator function for the corresponding
BKM algebra. In this family we find a spacetime string-theoretic setting for
the BKM algebras constructed in [36,37,61], among many others.

The compactifications we consider in this paper are also distinguished be-
cause they are highly symmetric, and the corresponding BKM algebras which
arise have large finite symmetry groups, in some cases sporadic groups. For
example, V f� has an action of the Conway group [25], which carries over to
an action on the corresponding BKM arising from the chiral string compact-
ification [37]. The lattice VOAs VL based on the Niemeier lattices L have
symmetry group corresponding to (extensions of) the automorphism group of
the lattice.17 (For L the Leech lattice, this is the group Co0, while other cases
have symmetry groups M24 and 2.M12 arising from the Mathieu groups.) In
light of this fact, a natural question is to explore so-called CHL models [14]
based on these compactifications, which arise from orbifolds of string theory
on C × T d. These orbifolds arise by quotienting by a symmetry of the internal
CFT C combined with a translation along the torus T d. For a general discus-
sion, see [57]. In the monster case of [55,56], where C = V � ⊗ V̄ f�, considering
these CHL models leads to a family of “twisted” denominator formulas for the
spacetime BKM algebra. It would be interesting to generalize this to the case
of models considered in this paper.

Furthermore, these CHL models also inspired a proposed physical ex-
planation for the genus zero property of monstrous moonshine [20]. As the
Conway moonshine arising from the SVOA V f� also satisfies a genus zero
property [26],18 it would be very interesting to offer a physical explanation
along the lines of that in [55,56] based on the constructions in this paper and
their corresponding CHL models.

Besides finding explicit physical models where one can explore the physics
of BPS algebras, another one of our original motivations for this work was to
uncover new 2d spacetime string-theoretic dualities, where one can explore
connections to BKM algebras and automorphic forms. It is the case that a
single automorphic form on the moduli space M of some family of string

17These are the groups appearing in the umbral moonshine phenomenon [17]. It would
be very interesting if there was a connection between these physical models and umbral
moonshine.
18To be precise, Conway moonshine is usually expressed in terms of V s�, which is an SVOA

isomorphic to V f�, but with a different action of the Conway group. In our setup, it would
be more natural to re-formulate this moonshine phenomenon in terms of V f�.
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compactifications can have multiple distinct Fourier expansions at different
“cusps” of M, and that the expansion at each cusp corresponds to the (su-
per)denominator formula a unique BKM (super)algebra, as in [34]. In a string
theory context, these BKMs arise as symmetries of different perturbative dual-
ity frames of a given compactification, which can be related by discrete duality
transformations. We imagine that this furnishes a physical explanation for the
following observations:

1. The denominator of the Conway BKM superalgebra constructed in [37]
arises as the Fourier expansion of automorphic form on (H×H)/O(2, 2, Z)
at a given cusp. The authors of this paper gave evidence for the existence
of a distinct BKM superalgebra, which also has an action of the Conway
group, and whose denominator and superdenominator should correspond
to the expansion of the same automorphic form at a different cusp of (H×
H)/O(2, 2, Z). The construction in the present article provides a natural
description of this new mysterious superalgebra. In Sect. 6, we described
the denominator of the Conway superalgebra as a path integral with
“twisted” boundary conditions along the Euclidean time circle, i.e., with
the fields being periodic or anti-periodic depending on their eigenvalue
with respect to the left-moving spacetime fermion number (−1)Fl . The
expansions of this automorphic function at different cusps are related to
one another by O(2, 2, Z) T-duality transformation. A general T-duality
does not necessarily preserve these boundary conditions, but can map
them to (−1)Fl -twisted boundary conditions along the spacelike circle or
around both circles. In particular, the path integrals obtained from these
two boundary conditions are related, respectively, to the denominator and
superdenominator of a different BKM superalgebra, the one obtained by
taking the CHL model by (−1)Fl along the spacelike circle.

2. Along similar lines, one of the BKM superalgebras discussed in [36] (and
originally constructed by Borcherds in [8–10]) arises from the expansion of
an automorphic form for a group of the form Γ\SO(2, 10)/SO(2)×SO(10)
(where Γ is a discrete group of automorphisms of a particular lattice.)
Expanding this automorphic form at a different cusp gives rise to another
BKM superalgebra, based of the SVOA V fE8 and originally constructed
by Scheithauer in [61]. See example 13.7 in [6] for a description of this re-
lation, and sections 6 and 7 of [36] for further elaboration of this point. We
expect this connection arises physically from dualities of certain models
we consider in this paper.

These are just two examples where we believe string dualities acting on models
of the type we study in this paper lead to non-trivial relations among different
BKM algebras, though we expect there are many more.

Finally, we close with a number of additional natural questions which are
raised by our analysis:

• While our analysis in this paper has been limited to two-dimensional
string compactifications, we hope that BKM algebras act as symmetries
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of special string solutions in higher dimensions in a similar way. For ex-
ample, it would be interesting to study decompactification limits of our
models to higher dimensions (perhaps along similar lines as [44]), and
understand what, if any, symmetries of the BKM algebras are preserved
in these limits. One could also try to construct such algebras directly
from worldsheet theories of certain higher-dimensional string compactifi-
cations.

• It would be very interesting to understand the D-brane states in the fam-
ily of type II string compactifications considered here, which we imagine
may furnish representations of the BKM algebras we have constructed.

• The denominator of the fake monster superalgebra, arising as the modi-
fied index for type IIA strings on V fE8 ⊗ V̄ f�

− , also appears as the genus
one topological amplitude F1 in type II string theory on the Enriques
Calabi–Yau threefold X (the “FHSV-model”) [47]. From this point of
view the modified index can be interpreted as a generating function for
Gromov–Witten invariants on X. It would be interesting to understand
more generally whether such geometric interpretations exist for other de-
nominator formulas obtained in this paper. In view of heterotic-type II
duality, the perturbative BPS states contributing to our indices should
correspond to non-perturbative states in another duality frame. Mathe-
matically, this would correspond to counting Donaldson–Thomas invari-
ants on K3, T 4, or the Enriques Calabi–Yau threefold X.

• Many of the (S)VOAs which appear as part of the worldsheet theory in
our models have connections to large sporadic symmetry groups, arising
as automorphisms that preserve some suitable subVOA (see, e.g., [2,16,
27].) It would be interesting to understand if these structures are present
in the BKM algebras which appear in the spacetime of our models.

• In [45], it was observed that the denominator formula for one of the BKM
superalgebras in [36] can be obtained starting from the SL(2, Z)-invariant
J-function. Can this connection be explained in terms of heterotic-type
II string duality?

• It would be interesting to determine if any of our models arise as special
points in the moduli space of any of the 2d string models considered in
[67], where certain dual pairs of 2d superstring compactifications were
identified.

• As discussed in more detail in Sect. 4, it would be satisfying to study a
twisted version of our models, so that our space of BPS states becomes
a space of physical states in a topological string theory, perhaps with a
natural action of the BKM algebras.

Acknowledgements

It is a pleasure to thank Scott Carnahan and Nils Scheithauer for very help-
ful email correspondences. The work of S.M.H. is supported by the National



3736 S. M. Harrison et al. Ann. Henri Poincaré
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A Anomalies and Tadpoles

In this section, we discuss the tadpole for the B-field which may arise when
compactifying string theory to two dimensions. This was first computed in
[49,50,69]; see also [67] and [68]. We will adapt their methods to the theories
of interest to us in this paper.

As a consistency check, we also verify that gravitational anomalies cancel
in all the models we are interested in. In the second quantized theory considered
in Sect. 5, where one further spatial direction is compactified on a circle S1, the
B-field tadpole can be interpreted as a vacuum winding number w0 along S1.
In this case, we argue that the vacuum might also carry non-trivial momentum
m0 along S1, and we compute m0 for the models we are interested in.

A.1 Type II Models

Let us compute the B-field tadpole w0 in the type IIA models we are interested
in. As argued in [69], the relevant contribution to the tadpole is a 1-loop string
amplitude with the insertion of one B-field vertex operator at zero-momentum,
as well as the suitable ghost and superghost insertions to make the amplitude
nonvanishing. The only nonzero contribution to this 1-point function comes
from path integral with either (even,odd) or (odd,even) spin structure.19

19A reminder about spin structures: The odd spin structure means fully periodic boundary
conditions for fermions on the torus. In the Hamiltonian formalism, this is the Ramond
sector with the insertion of worldsheet fermion number in the trace, which we denote by R̃;

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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According to [69], the (even,odd) and the (odd,even) spin structures give
the same contribution, so they just compute the (even,odd) case and put a
factor 2 in front of the final result. This step assumes that the internal CFTs are
left-right symmetric, which is not necessarily true in our case; therefore, with
respect the formulas in [69], we drop the factor 2 and consider the explicit sum
of the (even,odd) and the (odd,even) spin structures. The computation of the
(even,odd) case is completely analogous to [69]; after the usual cancellations
between ghost, superghosts and light-cone oscillators, plus some further non-
trivial steps, the final result is that one has to take the coefficient of the q0-term
of the combination

− 1
48

(ZNS,R̃(τ) − Z
ÑS,R̃

(τ) − ZR,R̃(τ))q0 . (A.1)

where ZX,Y denotes the partition functions of the internal CFT in the X,Y
sector. The relative signs arise because the central charge of the internal CFT
is not a multiple of 24, so that ZNS,R̃(τ +1) = −Z

ÑS,R̃
(τ). Note that ZNS,R̃(τ)

and −Z
ÑS,R̃

(τ) only differ for the sign of the half-integral powers of q, while
the integral powers of q (in particular, the q0 term) are the same. Thus, we
can set nNS,R̃ = (ZNS,R̃(τ))q0 = (−Z

ÑS,R̃
(τ))q0 and nR,R̃ = (ZR,R̃)q0 , and

get the formula

− 1
48

(2nNS,R̃ − nR,R̃), (A.2)

which is, up to a factor 2, Eq. (2.6) in [67]. The sum ZNS,R̃(τ) − Z
ÑS,R̃

(τ)
effectively gives twice the GSO-projected partition function in the NS sector,
so nNS,R̃ is also the q0 term in the GSO-projected partition function.20

The (odd,even) contribution is completely analogous (it is given by the
q̄0 term in the analogous combination of partition functions), so that the total
contribution to the tadpole is

w0 = − 1
48

(2nNS,R̃ − nR,R̃ + 2nR̃,NS − nR̃,R). (A.3)

For left-right symmetric internal CFTs, one has nNS,R̃ = nR̃,NS and nR,R̃ =
nR̃,R, so that one reobtains formula (2.6) in [67]. When the internal CFT is
holomorphically factorized and of the form V1⊗V̄2, then one has nX,Y = nX n̄Y ,
where nX refers to the left-moving SVOA V1 and nY to the right-moving SVOA
V̄2, so that the tadpole is

w0 = − 1
48

[(2nNS − nR)n̄R̃ + nR̃(2n̄NS + n̄R)]. (A.4)

it is SL(2,Z)-invariant. The even spin structures have some anti-periodic boundary condition
for fermions. In the Hamiltonian formalism, these are NS sector with or without fermion
number insertion, or the Ramond sector without fermion number. We denote these sectors

by ÑS, NS and R, respectively; the three sectors are permuted by SL(2,Z) transformations.
20This explains Sen’s comments in [67] that the nNS,R̃ count states that are GSO-projected

on the left- but not on the right-moving side, while nR,R̃ counts states that are not GSO-

projected either on the left or on the right.
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In the following table, we report nNS = −n
ÑS

= χNS, nR = χR
+ + χR

−, nR̃ =
χR

+ − χR
− and 2nNS − nR = 2χNS − χR

+ − χR
− for the SVOAs we are interested

in. The quantities χNS, χR
± are the same as presented in Sect. 2.1.

SVOA V χNS(V ) χR
+(V ) χR

−(V ) nR nR̃ 2nNS − nR

V f
E8

8 8 8 16 0 0

V f�
− 0 0 24 24 −24 −24

V f�
+ 0 24 0 24 +24 −24

F24 24 0 0 0 0 48.

Note that for V fE8 one has nR̃ = 2nNS −nR = 0, so that when either V1 or V2

is V fE8 there is no tadpole. More generally, the tadpole is always an integer,
so it can be canceled by a suitable number of spacetime-filling strings.

In terms of χNS, χR
+, χR

− and their right-moving counterparts χ̄NS, χR
+,

χR
− the tadpole is

w0 =
1
48
[
(2χNS − χR

+ − χR
−)(χR

− − χR
+) + (χR

− − χR
+)(2χNS − χR

+ − χR
−)
]
.

(A.5)

The values of w0 for the theories we are interested in are given in Table 3 in
the main text.

Let us now check that the gravitational anomaly always cancels. The
chiral massless content of these theories, as a function of χNS, χR

+, χR
−, χ̄NS,

χR
+, χR

−, is (the NS-NS sector does not contain chiral bosons):

Spin NS-R R-NS R-R Total
+3/2 χR

− χR
+ 0 χR

+ + χR
−

−3/2 χR
+ χR

− 0 χR
− + χR

+

+1/2 (dilatinos) χR
+ χR

− 0 χR
− + χR

+

−1/2 (dilatinos) χR
− χR

+ 0 χR
+ + χR

−
+1/2 (gauginos) χNSχR

− χR
+χNS 0 χNSχR

− + χR
+χNS

−1/2 (gauginos) χNSχR
+ χR

−χNS 0 χNSχR
+ + χR

−χNS

chiral +1 0 0 χR
+χR

− χR
+χR

−
anti-chiral −1 0 0 χR

−χR
+ χR

−χR
+

The contribution to the gravitational anomaly polynomial of each of these
massless chiral fields is [1]21

• Gravitinos (spin ± 3
2 ): ± 23

48p1;

• Chiral fermions (spin ± 1
2 ): ∓ 1

48p1;

• Chiral bosons (spin ±1): ∓ 1
24p1.

21Here, we consider Majorana–Weyl spin 1/2 and 3/2 fields and real chiral and anti-chiral
bosons. The contributions of the spin 1/2 and 3/2 fields are half of the ones calculated in
[1], because in that case complex Weyl fermions were considered.
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Here,

p1 =
1

16π2
Tr(R ∧ R) (A.6)

is the first Pontryagin class and R denotes Riemann tensor. Therefore, the total
gravitational anomaly is (note that each gravitino of spin ± 3

2 comes with a
dilatino of spin ∓ 1

2 , so it is easier to consider these fields together, contributing
± 24

48p1 each)
(
χR

+ + χR
− − χR

− − χR
+

) 24
48

p1

+
(
χNSχR

+ + χR
−χNS − χNSχR

− − χR
+χNS

) p1

48
+
(
χR

−χR
+ − χR

+χR
−
) p1

24
=

p1

48
[(

χNS + χR
− + χR

+ − 24
) (

χR
+ − χR

−
)

+
(
χR

− − χR
+

) (
χNS + χR

+ + χR
− − 24

)]
= 0 (A.7)

where the last equality follows because all internal SVOAs satisfy χNS + χR
− +

χR
+ = 24. Therefore, there is no gravitational anomaly.

Finally, when the theory is further compactified on a circle of radius R,
there might be a nonzero vacuum momentum 2πm0

R [23,32].22 This momentum
is related to the B-field tadpole w0 of the T-dual theory. A similar phenomenon
arises in two-dimensional conformal field theory on a cylinder, where L0 − L̄0

along the circle might have a nonzero vacuum level. More precisely, L0 − L̄0

is the generator of translations when the radius is rescaled so that R = 2π, so
that m0 is precisely the vacuum value of L0 − L̄0. This analysis shows that a
massless chiral boson of spin ±1 contributes ∓ 1

24 to m0, while a chiral fermion
of spin ± 1

2 with periodic boundary conditions contributes ± 1
24 (with anti-

periodic boundary conditions, the contributions is ∓ 1
48 ). For this calculation,

we take into account only propagating degrees of freedom, so from the previous
description of massless chiral fields we exclude all gravitinos of spin ± 3

2 and
the same number of dilatinos of spin ∓ 1

2 . Therefore, for periodic fermions, one
has

m0 =
1
24
[(

χNSχR
− + χR

+χNS + χR
−χR

+

)− (χNSχR
+ + χR

−χNS + χR
+χR

−
)]

.

(A.8)

This expression can be obtained from the B-field tadpole (A.5) by exchanging
χR

− and χR
+, as expected from T-duality

m0 =
1
48
[(

2χNS − χR
+ − χR

−)(χR
− − χR

+) + (χR
+ − χR

−
) (

2χNS − χR
+ − χR

−
)]

.

(A.9)

22The vacuum momentum can arise in type IIB theories, while it is usually forbidden in

type IIA theories, because it violates spacetime parity. In our models, while we impose a

type IIA GSO projection, the final theory in general is not invariant under spacetime parity,

due to the fact that the internal CFT is not necessarily left-right symmetric; therefore, there

is no reason to expect m0 to be 0.
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The values of m0 for the theories that are relevant to our construction are
listed in Table 3.

A.2 Heterotic models

In the heterotic string case, the B-field tadpole is given by [49,50]

w0 =
1
24

(ZR̃(τ)E2(τ))q0 , (A.10)

where ZR̃(τ) is the partition function of the internal CFT in the R̃ sector, and
E2(τ) = 1 − 24q + O(q2) is the Eisenstein series of weight 2.

For a holomorphically factorized theory V1⊗V̄2, one has ZR̃(τ) = n̄R̃ZV1(τ),
where n̄R̃ = χ̄R

+ − χ̄R
−, ZV1(τ) = N + J(τ) is the partition function of the in-

ternal bosonic VOA V1, N is the number currents in V1, and

J(τ) = q−1 + 0 + 196884q + · · · , (A.11)

is the modular invariant J-function with vanishing constant term. Thus, in
this case, the B-field tadpole is equal to (see [55] for the case of V1 = V �)

w0 =
1
24

(χ̄R
+ − χ̄R

−)(ZV1(τ)E2(τ))q0

=
1
24

(χ̄R
+ − χ̄R

−)[(q−1 + N + · · · )(1 − 24q + · · · )]q0

=
1
24

(χ̄R
+ − χ̄R

−)(N − 24). (A.12)

We summarize the result for the heterotic theories of interest to us in Table 3
in the main text. Again, the tadpole is always an integer, so that it can be
canceled by a number of spacetime-filling string with suitable orientation.

Let us verify that the gravitational anomaly cancels in this case as well.
Let χR

+ and χR
− be the number of weight 1/2 states in the R+ and R− sector

of the SVOA V̄2, so that n̄R̃ = χR
+ − χR

−. Then, the chiral massless fermions
are:

• χR
+ gravitinos with spin +3/2 and χR

− with spin −3/2;
• χR

+ dilatinos and NχR
− gauginos of spin −1/2, and χR

− + NχR
+ of spin

+1/2.
Furthermore, in heterotic string, every unit of B-field tadpole contributes p1/2
to the gravitational anomaly. The total anomaly, therefore, is

(χR
+ − χR

−)
24
48

p1 + N(χR
− − χR

+)
p1

48
+

(N − 24)(χR
+ − χR

−)
24

p1

2
= 0.

(A.13)

When one inserts the spacetime-filling strings to cancel the B-field tadpole, the
additional degrees of freedom must be such that the gravitational anomaly still
vanishes. Each spacetime-filling string contributes cR−cL

24 p1 to the gravitational
anomaly.23 One has to take the static gauge for the string, so that cL and cR

23The normalization and sign can be deduced by comparison with the case of a single chiral
Majorana–Weyl fermion or a chiral real scalar.
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are the left- and right-moving central charges of the internal CFT. Depending
on the orientation of the string, we might have either (cL, cR) = (24, 12) if
the supersymmetric sector is right-moving, or (cL, cR) = (12, 24) in the other
case. Matching the anomaly contribution of the B-field and of the spacetime-
filling strings, one gets that the number of spacetime-filling strings must be

|w0| = |(N−24)(χR
+−χR

−)|
24 , with the supersymmetric sector being left-moving for

w0 > 0 and right-moving if w0 < 0.
As in the type II case, when the theory is compactified on a circle of

radius R, there might be a vacuum momentum 2πm0
R . In this case, only the

chiral gauginos contribute, and for periodic boundary conditions we obtain

m0 =
N(χR

+ − χR
−)

24
. (A.14)

See Table 3 for the relevant values of the tadpole w0 and momentum m0 in
the heterotic models we are interested in.

B Semirelative Cohomology

When combining left- and right-moving sectors of a closed string theory, the
condition that the corresponding states are annihilated by b0 and b̄0 is in
general too strong. One need only require that the state is annihilated by the
combination b0− b̄0. We can follow the treatment of [72] to discuss the relevant
distinctions. We denote the total left- and right-moving BRST operator by
Q = Ql + Qr. The three varieties of cohomology, all graded by ghost number
N ,24 relevant to this discussion are

1. Absolute cohomology H = ⊕NHN of Q-closed states |Ψ〉 modulo states
of the form Q|Λ〉.

2. Relative cohomology HR = ⊕NHN
R of Q-closed states |Ψ〉 that satisfy

b0|Ψ〉 = b̄0|Ψ〉 = 0, modulo states of the form Q|Λ〉 which satisfy b0|Λ〉 =
b̄0|Λ〉 = 0.

3. Semirelative cohomology HS = ⊕NHN
S of Q-closed states |Ψ〉 that satisfy

(b0 − b̄0)|Ψ〉 = 0, modulo states of the form Q|Λ〉 which satisfy (b0 −
b̄0)|Λ〉 = 0.

At each total ghost number N , the relative and absolute cohomologies
factorize between left- and right-movers: HN = ⊕n+n̄=NHn

l ⊗ H̄ n̄
r , but the

semirelative cohomology does not. The cohomologies fit into the exact se-
quences

· · ·HN
R

i′
�� HN

S

b+0 �� HN−1
R

{Q,c+
0 }
�� HN+1

R
i′

�� HN+1
S · · · (B.1)

24We suppress the additional grading by picture number and momenta.
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· · ·HN
S

i′′
�� HN

b−
0 �� HN−1

S

{Q,c−
0 }
�� HN+1

S
i′′

�� HN+1 · · · (B.2)

where b±
0 = b0 ± b̄0, and similarly c±

0 = 1
2 (c0 ± c̄0). The maps i′, i′′ are the

maps that forget the relevant conditions involving the b-ghosts, and the other
maps are given by multiplication by the indicated operators.

For the k �= 0 states, [52] proved that for a chiral critical superstring
at picture number −1 in the NS sector (to which we may always specialize
canonically at nonzero momentum), the cohomology vanishes for all ghost
numbers not equal to 1, so for a full (chiral and anti-chiral) superstring the
only nonvanishing relative cohomology group is at ghost number 2. Then, the
exact sequence collapses to isomorphisms between the following relative and
semirelative cohomologies:

0 → H2
R → H2

S → 0

0 → H3
S → H2

R → 0.

The first map is the forgetful inclusion and the second map produces a state in
H3

S from one in H2
R by acting with c+

0 , which effectively inverts b+
0 at nonzero

momentum. Similar arguments apply for the theory in the Ramond sector at
the canonical picture numbers −1/2,−3/2. Hence, for the states of nonzero
momentum, we therefore lose nothing by considering the relative cohomol-
ogy, which is reassuring since the cohomology at nonzero momentum correctly
reproduces the physical states one expect from a light-cone gauge calculation.

B.1 Zero-momentum States

To complete our understanding of the physical string states, we would like to
understand what kind of zero-momentum states we can obtain (at any ghost
number), and whether this has any interesting impact on the semirelative
cohomology. For this analysis and all subsequent analyses, we will only consider
the canonical pictures where all positive modes of worldsheet fields annihilate
the vacuum:−1 in NS and −1/2,−3/2 in R, though a priori one could consider
more general pictures.

We can start more simply in a chiral superstring model and identify the
k = 0 states there. We focus on the SVOA V f�

+ ; the generalizations to the
other self-dual c = 12 SVOAs is trivial. These states would contribute to
the relative cohomology factors. V f�

+ has 24 weight 1/2 states in the R+ sector
which we denote by ui+, i = 1, . . . , 24, and 0 such states in the NS, R− sectors.
Consequently, there are 2 states of ghost number 1

ψμ
−1/2e

−φc1|0〉, μ = ±, (B.3)

1 state of ghost number 2,

γ−1/2e
−φc1|0〉, (B.4)

and 1 state of ghost number 0,

β−1/2e
−φc1|0〉, (B.5)



Vol. 23 (2022) BPS Algebras in 2D String Theory 3743

which can each be combined with their anti-holomorphic counterparts to get
states in relative cohomology.

There are also zero-momentum states in the Ramond sector (chirally,
from the R+ sector), in this case at all ghost numbers. Again, we start with
the states that appear in relative cohomology by writing down the chiral states
of interest (which may then be combined with anti-chiral states). At picture
number −1/2, there are 24 states of ghost number 1:

ui+
−1/2e

−φ/2c1|0,+〉, (B.6)

acting on the ground state of zero momentum and positive spacetime chirality
(which in this 2d model is tied to the fermion number). Additionally, we get
24 states at each positive ghost number ≥ 2:

(γ0)nui+
−1/2e

−φ/2c1|0,+〉, n ≥ 1. (B.7)

Correspondingly, there are states at picture number −3/2 for all ghost numbers
1 − m with m ≥ 0:

(β0)mui+
−1/2e

−3φ/2c1|0,−〉, m ≥ 1. (B.8)

In the relative cohomology then, we get new NS-NS states of total ghost
numbers 0, 1, 2, 3, 4 and new R-R states at picture number −1/2 at all
ghost numbers 2 and higher, etc. Note that in the literature, the extra R
sector conditions kerβ0 = 0 =ker β̄0 (the analogue of the relative cohomology
conditions in the NS sector) and G0 = Ḡ0 = 0 are usually imposed although
the former conditions, like their NS sector counterpart, may be too strong in
general.

B.2 Semirelative Cohomology at Zero Momentum

With the chiral zero-momentum states in hand, let us ask if we can understand
the semirelative cohomology using the exact sequences. We start with the NS-
NS sector at the canonical picture number, since it turns out that the picture-
changing operator no longer has an inverse at zero-momentum and therefore
we must treat that sector with more care.

The zeroth semirelative cohomology is isomorphic to the zeroth relative
cohomology since the long exact sequence truncates due to the vanishing of
negatively moded cohomology groups: 0 → H0

R → H0
S → 0. These are just

one-dimensional groups generated by the vacuum (which is constructed by
acting on the SL(2, C)×SL(2, C)-invariant vacuum |0〉25 with various ghosts):
β−1/2β̄−1/2e

−φe−φ̄c1c̄1|0〉.

25In the non-chiral setting, we use the shorthand |0〉 for |0, 0〉 when we think no confusion
can arise.
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Given the nonvanishing relative cohomology representatives we can con-
struct at zero-momentum, the long exact sequence splits into the following
exact sequences (plus the zeroth cohomology sequence above):

0 �� H5
S

b
+
0 �� H4

R
�� 0

0 �� H1
R

i �� H1
S

b
+
0 �� H0

R

{
Q,c

+
0

}

�� H2
R

i �� H2
S

b
+
0 �� H1

R

{
Q,c

+
0

}

�� H3
R

i ��

H3
S

b
+
0 �� H2

R

{
Q,c

+
0

}

�� H4
R

i �� H4
S

b
+
0 �� H3

R
�� 0.

(B.9)

From this, we can calculate the rest of the semirelative cohomology
groups. For convenience, let us define the shorthand |Ω, Ω̄〉 := e−φe−φ̄c1c̄1|0〉
such that β−1/2β̄−1/2|Ω, Ω̄〉 generates the zeroth (semi)relative cohomology
groups at picture number −1, and denote |Ω〉 := e−φc1|0〉 (similarly for |Ω̄〉)
the chiral counterparts at ghost numbers (1,0) (respectively, (0,1)).

Then, at ghost number 1 there are 4 states: ψμ
−1/2β̄−1/2|Ω, Ω̄〉,

ψ̄μ
−1/2β−1/2|Ω, Ω̄〉. These are identical in both relative and semirelative co-

homology.
At ghost number 2, we have the representatives
{

ψμ
−1/2ψ̄

ν
−1/2|Ω, Ω̄〉, γ−1/2β̄−1/2|Ω, Ω̄〉, γ̄−1/2β−1/2|Ω, Ω̄〉

}
∈ H2

R{
ψμ

−1/2ψ̄
ν
−1/2|Ω, Ω̄〉, (γ−1/2β̄−1/2 − γ̄−1/2β−1/2)|Ω, Ω̄〉

}
∈ H2

S

The second state in H2
S is called the ghost dilaton [4] and is non-trivial only in

the semirelative, but not the relative, cohomology. As mentioned in the main
text, this state is excluded to construct the BKM algebra on BPS states.

It is also simple to write down representatives for the remaining relative
cohomology classes at ghost numbers 3 and 4:

{
γ̄−1/2ψ

μ
−1/2|Ω, Ω̄〉, γ−1/2ψ̄

μ
−1/2|Ω, Ω̄〉

}
∈ H3

R{
γ−1/2γ̄−1/2|Ω, Ω̄〉} ∈ H4

R.

From these, we use the exact sequence to obtain the remaining semirelative
cohomology classes at ghost numbers 3, 4, and 5:

{
c+
0 ψμ

−1/2ψ̄
ν
−1/2|Ω, Ω̄〉, c+

0 (γ−1/2β̄−1/2 − γ̄−1/2β−1/2)|Ω, Ω̄〉
}

∈ H3
S{

c+
0 γ̄−1/2ψ

μ
−1/2|Ω, Ω̄〉, c+

0 γ−1/2ψ̄
μ
−1/2|Ω, Ω̄〉

}
∈ H4

S{
c+
0 γ−1/2γ̄−1/2|Ω, Ω̄〉} ∈ H5

S .

We focus on the ghost number 2 cohomology (or ghost number 1 for chiral
superstrings) in the main text, but record these additional zero-momentum
states for completeness.
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To deal properly with the Ramond sector, we can largely follow the anal-
ysis of [5]. Now, for states of nonzero momentum, chiral relative cohomolo-
gies and closed string semirelative cohomologies at all picture numbers are
isomorphic to one another (with a canonical isomorphism given by an in-
vertible picture-changing operator) but this is not strictly true for the closed
string semirelative cohomology at zero momentum. This is essentially because
b−
0 does not commute with the picture-changing operators; it does turn out

that zero-momentum RR states are inequivalent at different picture numbers
(though nonzero-momentum physical states are equivalent in all pictures for
all sectors). For the NS-R sectors, we have the options of being at picture
numbers (−1,−1/2), (−1,−3/2) which do turn out to be equivalent to one
another. The computations presented in [5] essentially apply to this case as
well.

For example, if we take the R+ sector on the holomorphic side in the −1/2
picture and the NS sector on the anti-holomorphic side in the −1 picture the
cohomology (given by listing representatives) is26

H0
S =

{
β̄−1/2| − 1

2
, Ω̄〉i

}

H1
S =

{
ψ̄μ

−1/2| − 1
2
, Ω̄〉i, β̄−1/2γ0| − 1

2
, Ω̄〉i

}

H2
S =

{(
γ̄−1/2 − γ2

0 β̄−1/2

) | − 1
2
, Ω̄〉i, ψ̄μ

−1/2γ0| − 1
2
, Ω̄〉i

}

H3
S =

{
γ0

(
γ̄−1/2 − γ2

0 β̄−1/2

) | − 1
2
, Ω̄〉i

}
,

where we have defined the state | − 1
2 〉i := ui+

−1/2e
−φ/2c1|0,+〉. Isomorphic

(but more complicated-looking) expressions can be obtained for the (−3/2,−1)
picture.

In the R-R sector, there are subtle differences among the various picture
numbers, which in turn is related to distinctions between finite and infinite
cohomologies arising from the possibility of allowing arbitrary number of su-
perghost zero modes. In particular, in the mixed picture numbers, (γ0β̄0)n,
respectively (γ̄0β0)n, do not annihilate the vacuum for arbitrary nonnegative
n. In the diagonal (−1/2,−1/2) and (−3/2,−3/2) pictures, we do not have
the possibility of such combinations. In [5], it is proven that the diagonal −3/2
picture cohomology is in fact isomorphic to the finite (−3/2,−1/2) cohomol-
ogy, while the diagonal −1/2 picture cohomology is isomorphic to the infinite
(−3/2,−1/2) cohomology. For simplicity, in the main text, we focus on the
analogue of the relative cohomology condition in the R sector, namely kerβ0 =
ker β̄0 = 0, as we do not believe these subtleties impact the construction of
the BKM algebra.

A more refined analysis can be undertaken using the results of [5]. When
V2 = V f�, for example, one finds a nonvanishing contribution in the (−3/2,−3/2)

26Our ghost number convention differs slightly from [5].
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picture, where there is a non-trivial H2
S generated by the state given by c+

0

acting on the vacuum. This can be excluded from considerations of the BKM
algebra action in the manner of the ghost dilaton.

C Zero-momentum R-R Sector

In this section, we describe in detail the massless R-R spectrum of type IIA
superstring theory compactified on V f� ⊗ V̄ f�. These results are needed in the
calculation of the spacetime indices Z and Z̃ in Sect. 5.

Both the holomorphic and anti-holomorphic SVOAs have 24 Ramond
ground states, whose corresponding chiral and anti-chiral physical states we
denote by υi

α and ῡj
β where i, j = 1, . . . , 24 and α, β ∈ {+,−} are Dirac spinor

indices in two-dimensional spacetime. There are two inequivalent choices for
the internal fermion number in each of these SVOAs, leading to two inequiva-
lent GSO projections (up to parity). In particular, for V f�

+ ⊗ V̄ f�
− , the spinors

υi
α and ῡj

β have all the same spacetime spin α = β = +. For V f�
− ⊗ V̄ f�

− , the
24 holomorphic υi

α have spin α = − and the 24 anti-homolorphic ῡj
β have spin

β = +.
In the R-R sector, one has 242 = 576 ground states υi

αῡj
β where i, j =

1, . . . , 24. Since these are actually Majorana–Weyl spinors, only one of these
Dirac components is nonzero, for example ῡj

+ and either υi
+ or υi

−. Now, we
impose the physical state condition. For k �= 0, BRST closedness implies that,
for all i, j = 1, . . . , 24, υi

α and ῡj
β should satisfy the massless Dirac equations

(
k0

l + k1
l 0

0 −k0
l + k1

l

)(
υi

+

υi
−

)
= 0, (C.1)

(
k0

r + k1
r 0

0 −k0
r + k1

r

)(
ῡj

+

ῡj
−

)
= 0. (C.2)

Since only one of the two components υi
+ and υi

− is nonzero, the first
equation either eliminates that component or it is trivially satisfied, depending
on whether k0

l = k1
l or k0

l = −k1
l . An analogous argument holds for the anti-

holomorphic ῡi
β .

In the uncompactified theory, one has kμ
l = kμ

r , so that physical states
exist only if the υi

α and υj
β have the same nonzero component, say α = β = +;

this corresponds to type IIA on V f�
+ ⊗ V̄ f�

− . In this case, the Dirac equations
are satisfied if and only if k0 = −k1. From the spacetime point of view, this
means that there are chiral massless propagating degrees of freedom of spin 1.
We recall that, since the states corresponding to R-R fields obey physical state
conditions that are of first order in momenta, they are naturally interpreted
as quanta of field strengths rather than potentials. In the case of type IIA on
V f�

+ ⊗ V̄ f�
− , this means that the fields corresponding to υi

+ῡj
+ are the derivative

∂+φij of 576 massless chiral scalar fields φij , i, j = 1, . . . , 24.
On the other hand, for type IIA on V f�

− ⊗ V̄ f�
− , where υi

α and υj
β have

nonzero components of opposite spin (α = −, β = +), there cannot be any
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physical propagating degrees of freedom from the massless R-R fields. In this
case, the corresponding spacetime fields would be the field strengths of massless
vector fields Cij

μ , which must be the gauge bosons of an abelian gauge sym-
metry. The fact that there are no physical states is consistent with the fact
that massless gauge bosons in two dimensions carry no propagating degrees of
freedom.

At zero momentum, all 576 states υi
αῡj

β are physical. For V f�
+ ⊗V̄ f�

− , these
are just the zero modes of the scalars φij . For V f�

− ⊗ V̄ f�
− , these zero modes are

the fluxes of the field strengths in the two-dimensional spacetime.
If the spatial direction is compactified on a circle S1, for V f�

+ ⊗ V̄ f�
− the

physical states carry zero winding (k1
l = k1

r) but possibly nonzero momentum
along S1; for the V f�

− ⊗ V̄ f�
− , the physical states carry zero momentum (k1

l =
−k1

r) but possibly nonzero winding along the circle.

D Theta Lifts of vector-valued Modular Forms

The theta lift of a vector-valued modular form F (τ) is of the form [6]

ΘF :=
∫

SL(2,Z)\H

(
ΘΛ(τ), F (τ)

)
dμ, (D.1)

where τ = τ1 + iτ2 ∈ H, Λ is an even lattice of signature (2, d), F is a weight
k = 1 − d/2 vector-valued modular form and Θ is a weight −k Siegel–Narain
theta series for Λ. In particular, if Λ∨ denotes the dual lattice of Λ, then we
can write F as follows:

F (τ) =
∑

γ∈Λ∨/Λ

Fγ(τ)eγ , (D.2)

where the components Fγ are modular forms for a congruence subgroup Γ ⊆
SL(2, Z), and F transforms in the metaplectic representation ρΛ of ˜SL(2, Z)
on the group ring C[Λ∨/Λ]. In practice, this means that the components Fγ

are in one-to-one correspondence with the cosets Λ∨/Λ and under the action
of the modular group we have

Fγ(τ + 1) = eπiγ2
Fγ(τ)

Fγ(−1/τ) =
i(2−d)/2

√|Λ/Λ∨|
∑

δ∈Λ/Λ∨
e−2πi(γ,δ)Fδ(τ). (D.3)

The Siegel theta series is similarly written as

ΘΛ =
∑

γ∈Λ∨/Λ

θΛ+γeγ , (D.4)

where θΛ+γ is a shifted theta series. In addition, the integrand involves the
scalar product ( , ) defined by

(eγ , eγ′) = δγ+γ′,0, γ ∈ Λ∨/Λ. (D.5)
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Furthermore, we define complex conjugation to act by eγ = e−γ on the el-
ements of C[Λ∨/Λ]. With these definitions, the integrand

(
ΘΛ(τ), F (τ)

)
is

SL(2, Z)-invariant, and it makes sense to integrate it on the upper half-plane
H modulo SL(2, Z)-transformations. The theta lift produces an automorphic
form on the Grassmannian G(2, d) of positive definite 2-planes in R

2,d, for a
discrete group O(Λ, F ) (a subgroup of the group O(Λ) of automorphisms of
the lattice Λ).
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