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Abstract—The Shannon capacity for the line-of-sight (LOS)
multiple-input multiple-output (MIMO) channel between two
perfectly aligned uniform circular arrays (UCAs) is derived from
the first principles in a tutorial fashion. It is well known that
harmonically related complex exponentials (also known in the
literature as orbital angular momentum (OAM) modes) are eigen-
modes for the spatially continuous channel. We show that the
corresponding eigenvalues can be expressed as Bessel functions
of the first kind. We also show that the spatially discrete channel
between two UCAs with the same finite number of Hertzian
dipole antennas on both sides has eigenmodes that are spatially
sampled continuous OAM modes, and discrete eigenvalues that
are aliased versions of the continuous eigenvalues. Through
numerical solution of Maxwell’s equations, we verify that the
discrete eigenvalues for UCAs with realistic dipole antennas are
the same as with the Hertzian dipoles for the studied geometries
(1 km hop distance, UCA radius 1 and 2 m, carrier frequency
70 GHz) as long as antenna spacing is not very dense.

Index Terms—Degrees of freedom, LOS MIMO, UCA, OAM,
Eigenmodes.

I. INTRODUCTION

Line-of-sight (LOS) multiple-input multiple-output (MIMO)
communication is a key enabler for beyond 100 Gbps and
towards 1 Tbps wireless communications. In particular, it is
instrumental for spectral efficient wireless transport communi-
cation that supports carrier-grade requirements on data rates,
availability, and latency in 5G and beyond networks. The key
to the analysis and design of LOS MIMO systems is, of course,
a good understanding of how the transmitting and receiving
antenna geometries, transmission length, and carrier frequency
affect the Shannon channel capacity.

The aim of this paper is to shed some new light on this old
problem. In particular, we aim to provide rigorous and easy-
to-use expressions for the channel capacity for LOS MIMO
with uniform circular arrays (UCAs) [1], [2]. To this aim,
we start by analyzing the case where two perfectly aligned
continuous circular antennas (CAs) are used for transmitting
and receiving. From the first principles (Maxwell’s equations),
we derive analytical expressions for the eigenmodes and the
corresponding eigenvalues for the resulting spatial channel.
The channel eigenmodes are shown to be the orbital angular
momentum (OAM) modes [3], [4], and the eigenvalues are
expressions of the Bessel functions of the first kind. The eigen-
values determine the Shannon channel capacity, regardless if
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the OAM modes or some other modes are chosen to realize
spatial multiplexing. An estimate for the number of significant
eigenvalues is given, which is asymptotically accurate for large
radii (large relative to the transmission distance).

We then specialize the transmitting and receiving antenna
arrangements to be UCAs with the same number of Hertzian
dipole antennas on each side. This corresponds essentially
to spatial sampling of the current distribution and electrical
field on the continuous CAs. We derive analytical expressions
for the eigenmodes and eigenvalues for the resultant (spa-
tially) discrete MIMO channel. It turns out that the discrete
eigenmodes are simply sampled versions of the continuous
eigenmodes. The discrete eigenvalues, on the other hand,
depend on the continuous eigenvalues through aliasing and are
given by infinite sums of the latter. Nevertheless, since only
a finite number of continuous eigenvalues are significant, the
sums can be truncated without much loss of precision. Clearly,
the resulting spatially discrete Shannon capacity cannot exceed
the spatially continuous Shannon capacity.

Finally, we replace the ideal Hertzian dipoles with half-
wave strip dipole antennas and numerically solve the resulting
electromagnetic (EM) problem with a method of moments
(MoM) technique. This takes into account mutual coupling
and embedded radiation patterns of the array elements. It is
numerically shown that the full-wave EM simulation gives
the same result as the theoretical analysis for sparsely spaced
UCAs with 1 and 2 m radius and 1 km hop distance, operating
at 70 GHz. For this UCA setup (with fixed radii and different
numbers of antenna elements), we also compare the channel
capacity with a setup using uniform linear arrays (ULAs)
with optimally designed inter-element spacing. Using a down-
scaled extreme setting, we show that in the case of have-
wavelength spacing, which corresponds to severe spatial over-
sampling, the derived eigenvalues deviate from the simulated
ones due to a strong element mutual coupling.

LOS MIMO using OAM has been the subject of numerous
papers, see, e.g., [3]–[5] and the references therein. Recent
practical realizations of OAM-based MIMO communication
is reported in [6]–[8]. The expressions derived in this paper
can be used to fact-check claims found in the literature and
to guide the practical implementation of such systems. We
study a monochromatic problem in this paper, but it should



be noted that modes are frequency-dependent [9], which is
important for practical implementation.

The main contribution of the paper includes a first-principle
tutorial derivation of the Shannon channel capacity for per-
fectly aligned UCAs with Hertzian dipole antennas. In partic-
ular, we derive

• Expressions for the spatially continuous eigenvalues in
the form of Bessel functions of the first kind;

• Expressions for the spatially discrete eigenvalues as
aliased continuous eigenvalues.

Moreover, we verify using full-wave EM simulation with real-
istic dipole antennas that the derived expressions are accurate
if the antennas are not densely placed on the UCAs.

II. CHANNEL WITH CONTINUOUS CIRCULAR ANTENNAS

A. LOS channel formulation

We study the wireless channel between two perfectly
aligned continuous CAs, At and Ar, separated by D me-
ters, under free-space propagation conditions. Their radii are
denoted by Rt and Rr, respectively. As shown in Fig. 1,
the origin of the coordinate system is at the center of At.
We assume that the antennas support continuous electrical
currents, i.e., the elementary source is the Hertzian dipole. We
also limit the discussion to time-harmonic current sources with
the exp(jωt) convention and denote the current at the point
s ∈ At by J (s). Under these conditions, the electric field
radiated by At can be obtained directly by solving Maxwell’s
equations. The separation of the two antennas is assumed to
be large enough (i.e., D ≫ λ, where λ is the wavelength)
to ensure Ar to be located in the far field of any elementary
source. Note that we do not assume Ar to be in the far field of
At. Then at a generic position p ∈ Ar, the electric field can
be expressed immediately via the Green’s function method:

E(p) =
∫
At

GF(p, s)J (s) ds. (1)

In this expression, GF(p, s), the far-field dyadic Green’s
function, is given as follows [10, Appendix I] [11]:

GF(p, s) =
−jωµ
4πr

e−j 2π
λ r
(
I− r̂r̂T

)
, (2)

where j =
√
−1, µ the permeability of the free space, r =

∥r∥ = ∥p−s∥ is the distance from s to p, r̂ = r/r is the unit
vector of the propagation direction, (·)T stands for transpose,
and I is a 3×3 identity matrix. The measurement of the electric
field using Ar is assumed to be ideal.

As illustrated in Fig. 1, s and p can be specified using two
angles, θt, θr ∈ [−π, π], respectively. In the selected coordi-
nate system, their coordinate vectors are then given by s(θt) =
[Rt cos θt Rt sin θt 0]

T and p(θr) = [Rr cos θr Rr sin θr D]T.
Accordingly, r and r̂ = [r̂x r̂y r̂z]

T are functions of (θt, θr):

r =
√
D2 +R2

t +R2
r − 2RtRr cos(θr − θt),

r̂ = r−1
[
Rr cos θr −Rt cos θt Rr sin θr −Rt sin θt D

]T
.
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Fig. 1. LOS channel between two perfectly aligned circular arrays.

Although an arbitrarily polarized EM field can be generated
following the assumptions above, for ease of discussion, we
fix the orientation of the Hertzian dipoles in the x direction.
In particular, the current at s(θt) is assumed to be given by
J (θt) = x(θt)êx. Also, the electric field component in the
x direction is measured1, which can be considered as a one-
dimensional spatial signal of θr, denoted by y(θr):

y(θr) =

∫ π

−π

x(θt)gx,x(θr, θt)dθt (3)

where

gx,x(θr, θt) =
−jωµRt

4πr
(1− r̂2x)e

−j 2π
λ r, (4)

and note that the dependence of r and r̂x on (θt, θr) is omitted
for clarity.

When D ≫ Rt and D ≫ Rr,

r ≈
√
D2 +R2

t +R2
r −

RtRr√
D2 +R2

t +R2
r

cos(θr − θt)

≈ D +

√
R2

t +R2
r

2D
− RtRr

D
cos(θr − θt), (5)

and r̂ ≈ (0, 0, 1). Adopting (5) for the complex exponential
term of gx,x(θr, θt) in (4), and r̂x ≈ 0 and r ≈ D for the
amplitude, the measured signal y(θr) can be approximated as

y(θr) ≈ G

∫ π

−π

x(θt)h(θr − θt)dθt, (6)

where

h(θ) ≜ ejβ cos θ, (7)

with β ≜ 2πRtRr

λD ,

G ≜ −jωµRt

4πD exp
(
− j 2πλ

(
D +

√
R2

t+R2
r

2D

))
.

(8)

The linear mapping (6) is an analytical description of the LOS
channel between the two continuous antennas under the large
separation condition, and G · h(θr) is its impulse response.

1The electric field components in the y and z directions are given by
expressions same as (3), but having (1 − r̂2x) in gx,x(θr, θt) replaced by
(0− r̂xr̂y) and (0− r̂xr̂z), respectively. Therefore, as D becomes large, r̂y
and r̂z tend to 0, and y and z components become negligible.



B. Eigenmodes analysis

We reformulate (6) as

yp(θr) = G

∫ ∞

−∞
xp(θt)Π

( θt
2π

)
h(θr − θt)dθt (9)

where Π(u) = 1 for |u| ≤ 1/2 and Π(u) = 0 otherwise, and
h(θ), xp(θt), and yp(θr) are periodic functions with period
2π. In particular, x(θt) and y(θr) are simply given by x(θt) =
xp(θt)Π

(
θt
2π

)
and y(θr) = yp(θr)Π

(
θr
2π

)
.

Due to the periodicity of h(θ), it can be represented by a
Fourier series that is valid for all θ:

h(θ) =

∞∑
l=−∞

Cl(β)e
jlθ. (10)

Since h(θ) can also be written as h(θ) = ejβ sin(θ+π
2 ), we

obtain

Cl(β) ≜
1

2π

∫ π

−π

ejβ sin(θ+π
2 )e−jlθdθ = jlJl(β) (11)

where

Jl(β) ≜
1

2π

∫ π

−π

ej(β sin θ−lθ)dθ (12)

is the Bessel function of the first kind of the lth order. Simi-
larly, xp(θt) can also be given by a Fourier series expansion
xp(θt) =

∑∞
m=−∞ ane

jmθt .
It can be easily verified that{

ψl(θ) ≜ ejlθ, l = 0,±1,±2, . . .
}

(13)

are the eigenfunctions of the linear mapping (9), and{
γl(β) ≜ 2πjlGJl(β), l = 0,±1,±2, . . .

}
(14)

are the corresponding eigenvalues. To prove this, one can
substitute xp(θt) = ejl0θt into (9), where l0 can be any integer,
and this will leads to

yp(θr) = G

∫ ∞

−∞
ejl0θtΠ

( θt
2π

)[ ∞∑
l=−∞

Cle
jl(θr−θt)

]
dθt

= G

∞∑
l=−∞

[
Cle

jlθr

∫ ∞

−∞
Π
( θt
2π

)
ej(l0−l)θtdθt

]

= G

∞∑
l=−∞

[
Cle

jnθr · 2π sinc(l0 − l)
]

= 2πGCl0e
jl0θr , (15)

where the sinc function is defined as sinc(x) ≜ sin(πx)
πx .

This, by definition, proves that {ψl(θ)} and {γl(β)} are the
eigenfunctions and eigenvalues of the linear mapping (9).

Remark 1. The above eigenfunction analysis shows that the
OAM modes, i.e., the harmonic waves of θ, with the funda-
mental frequency given by 1

2π , are the eigenmodes of the LOS
channel between two continuous CAs. We refer [12] for a
detailed definition of eigenmodes. Moreover, it is known that
the far-field radiation of a UCA with a very large number of

antennas can be approximately expressed as a superposition
of OAM modes, and the weights are expressions of the Bessel
functions of the first kind [4, Eq. (8)].

C. Channel capacity and discussion

Given the total transmit power P , signal bandwidth B, and
additive white Gaussian channel noise with power spectral
density N0/2, the Shannon channel capacity for the LOS
channel (6) between two continuous CAs is

CCA = B

∞∑
l=−∞

log

(
1 +

P ∗
l |γl(β)|2

N0B

)
[bit/s] (16)

where {P ∗
l } are obtained by waterfilling power allocation

under the total power restriction [13, Chapter 7.1.1].
For a given β only a finite number of eigenvalues will

be significant, as Jl(β) → 0 as |l| → ∞. That is, we can
symmetrically truncate the sum in (16) to K0 = 2Lmax + 1
terms without essential loss of precision. We refer to K0 as
the effective number of degrees of freedom.

An estimate of K0 can be obtained by viewing h(θ)
as a phase-modulated signal with sinusoidal modulation (of
frequency fm = 1

2π ). Then β is the phase modulation index
of h(θ), and Carson’s rule gives us a rule-of-thumb estimation
of its effective bandwidth [14, Eq. (5-61)]:

BT = 2(β + 1)fm, (17)

in which 98% of the total power is contained. Sampling h(θ)
at the spacing of 1/BT in its valid range [−π, π] yields
approximately 2πBT = 2(β + 1) samples. Since this value
is not necessarily an integer, we suggest to adopt

K̂0 = 2 ⌈β + 1⌉+ 1 (18)

as an estimate of the effective number of DoF. Note that the
estimation can be expected to be good for large β.

Finally, a known result: When β is a very small value, which
happens when the separation of the two arrays are very large
relative to the radii, Jl(β) ≈ 0 for all non-zero l, and only the
l = 0 mode can be admitted (J0(β) ≈ 1).

III. CHANNEL WITH UNIFORM CIRCULAR ARRAYS

Based on the analysis in the previous section, we extend
the study to the spatially discrete MIMO channel between two
UCAs with the same number of antennas on each side.

A. Discrete channel formulation

We discretize the problem by first assuming a finite number,
N , x-oriented Hertzian dipoles with x[n] current moment that
are uniformly placed on the transmitting array, at θt = 2π

N n,
n = 0, 1, . . . , N − 1. As a result, x(θt) can be expressed as

x(θt) =

N−1∑
n=0

x[n]δ
(
θt −

2π

N
n
)
, (19)



where δ(·) is the Dirac delta function. Following (6), the
generated electric field in the x direction on the continuous
receiving CA is given by

y(θr) = G

N−1∑
n=0

x[n]

∫ π

−π

h(θr − θt)δ
(
θt −

2π

N
n
)
dθt

= G

N−1∑
n=0

x[n]h
(
θr −

2π

N
n
)
. (20)

Measuring y(θr) using N x-oriented Hertzian dipoles at θr =
2π
N m, m = 0, 1, . . . , N − 1, we obtain

y[m] ≜ y
(2π
N
m
)
= G

N−1∑
n=0

x[n]h[m− n], (21)

where h[m−n] ≜ h
(
2π
N (m−n)

)
. Equivalently, a pair of UCAs

are formed, and this discrete linear equation (21) describes the
LOS channel between them.

We remark that by forming two length-N column vectors
x = [x[0] · · · x[N − 1]]T and y = [y[0] · · · y[N − 1]]T, (21)
can be expressed in the familiar matrix form:

y = G ·Hx. (22)

where H has elements [H]m,n = h[m − n] for m,n =
0, 1, . . . , N−1. It is easy to verify that H is a circulant matrix.

B. Eigenmode analysis

Adopting the Fourier series expansion (10) for h(θ), we
obtain for n = 0, 1, . . . , N − 1,

h[n] = h
(2π
N
n
)
=

∞∑
l=−∞

Cl(β)e
jl 2πN n. (23)

Owing to the periodicity of h(θ), we have h[n] = h[n
mod N ] for an arbitrary integer n. In addition, ejl

2π
N n ≡

ej(l+kN) 2π
N n for any integer k. As a result, h[n] can be further

written as

h[n] =
1

N

N−1∑
l=0

HN [l]ej
2π
N ln (24)

where

HN [l] ≜ N

∞∑
k=−∞

Cl+kN (β) = N

∞∑
k=−∞

jl+kNJl+kN (β).

(25)

Note that the dependence of HN [l] on β is omitted for brevity.
From (24), we see that the sequences {h[n], n = 0, 1, . . . , N−
1} and {HN [l], l = 0, 1, . . . , N − 1} form a Discrete Fourier
Transform (DFT) pair.

We now proceed to show that the sampled version of
the eigenmodes of the continuous channel are in fact the
eigenmodes of the discrete channel. Substituting (24) and

x[n] = ej
2π
N l0n, l0 ∈ {0, 1, . . . , N − 1}, into (21) yields

y[m] = G

N−1∑
n=0

ej
2π
N l0n

(
1

N

N−1∑
l=0

HN [l]ej
2π
N l(m−n)

)

= G

N−1∑
l=0

HN [l]

(
1

N

N−1∑
n=0

ej
2π
N [l(m−n)+l0n]

)
= GHN [l0]e

j 2π
N l0m. (26)

Hence, the discrete eigenfunctions (eigenvectors) and corre-
sponding eigenvalues for the discrete linear mapping (21) are

ψl ≜
[
ej

2π
N l·0 ej

2π
N l·1 . . . ej

2π
N l·(N−1)

]T
(27)

γsl (β) = G ·HN [l] = NG

∞∑
k=−∞

jl+kNJl+kN (β), (28)

for l = 0, 1, . . . , N − 1. Note that {|γsl (β)|} are the unsorted
singular values of this channel.

Remark 2. Forming the N eigenvectors into a matrix:

ΨN =
[
ψ0 ψ1 . . . ψN−1

]
, (29)

following (26), we can immediately obtain that

HΨN = ΨN · diag
(
HN [0], HN [1], . . . ,HN [N − 1]

)
(30)

where the operator diag(·) forms the sequence in the bracket
into a diagonal matrix. Note that ΨN (or 1√

N
ΨN ) is exactly

the N×N DFT matrix. The relation (30) suggests the adoption
of ΨN as the precoding matrix and 1

NΨH
N as the combining

matrix, for the interference-free transmission of N parallel
data streams over this particular discrete LOS MIMO channel.

A singular value decomposition (SVD) of H can be directly
obtained based on (30) [5]. Based on the fact that a circulant
matrix can be diagonalized by the DFT matrix, the eigenvalues
of H have been derived in [5] but in a less interpretable
expression. In addition, it has been shown in [1] that for N →
∞, the singular values (magnitudes of the eigenvalues in this
case) of H are proportional to |Jl(β)| [1, Theorem 1]. Our
analysis reveals the relation between eigenvalues and Bessel
functions for the general situation, i.e., for any N .

C. Channel capacity and discussion

Under the same transmit power, bandwidth, and channel
noise assumptions as in the continuous case, the Shannon
channel capacity for this discrete MIMO channel (21) is

CUCA = B

N−1∑
l=0

log

(
1 +

P ∗
l |γsl (β)|2

N0B

)
[bit/s], (31)

where {P ∗
l } are again found by waterfilling power allocation.

As Section III-A shows, the formulation of the discrete
channel between two UCAs corresponds to spatial sampling of
the current distribution on the transmitting circular array and
the electric field on the receiving array. Moreover, as discussed
in Section II-C, the effective bandwidth of the spatial channel
is essentially limited. As a result, given an odd integer N that



satisfies N ≥ K0, where K0 is the effective number of DoF
of the continuous channel, we will have the following:

γsl (β) ≈

{
NGjlJl(β), l = 0, 1, . . . , N−1

2

NGjl−NJl−N (β), l = N+1
2 , . . . , N − 1.

(32)

Otherwise, an under-sampling situation is faced, and the
discrete eigenvalues become proportional to infinite sums of
the continuous eigenvalues due to aliasing.

We also note that no extra spatial DoF can be achieved
by adding more antennas than needed, and the total number
of spatial DoF available in the channel is determined by the
geometry—radii and the distance of the arrays—though the
β parameter. Although more Hertzian dipoles will always
increase the eigenvalues’ magnitude (see the N multiplier in
(28)), deterioration will be caused by practical effects, mutual
coupling in particular, when the spacing between the actual
physical antennas becomes dense.

IV. NUMERICAL STUDY

For numerical evaluation, we consider two identical and per-
fectly aligned UCAs, separated by 1 kilometer apart (D = 1
km), operating at 70 GHz. We consider two options for the
radius: R = 1 or 2 meters (Rt = Rr = R), which corresponds
to β = β1 ≈ 1.466 and β = β2 ≈ 5.864 following (8). This
setting may represent the geometry of a wireless transport link.

Fig. 2 presents the curves of Jn(β) for nonnegative integer
orders up to 13. From their intersections with the two vertical
lines: β = β1 and β = β2, one can immediately obtain the
number of significant eigenvalues of the continuous channel
and their relative magnitudes. Following the discussions in
Section II-C, we expect the values of |Jn(β)| to be small for
those n > ⌈β + 1⌉ (⌈β1 + 1⌉ = 3, ⌈β2 + 1⌉ = 7). The
intersections show that they are reasonable estimates.

In Fig. 3, we compare 1
N |HN [l]|, which indicates the

relative size of the singular values, for the two radii and
N = 4, 5, . . . , 10. The results, presented in dB in decreasing
order2, are obtained via two approaches. In the first approach,
{HN [l]} are obtained by performing DFT is performed to
{h[n]}, where h[n] = exp(−jβ cos( 2πN n)); in the second
approach, the results are obtained by

1

N

∣∣HN [l]
∣∣ = ∣∣∣∑Kmax

k=−Kmax

j−(l+kN)Jl+kN (β)
∣∣∣, (33)

where Kmax is set to be the smallest integer satisfying
KmaxN ≥ 1000 for any N . Good agreement between the
two approaches can be seen. Following (18), the estimated
effective number of DoF is K̂0 = 7 and 15 for the two
radii. As a result, in Fig. 3 (a), a large part of the curves
collide for large N , while in Fig. 3 (b), the curves deviate
from each other due to the N and l dependent, constructive
or destructive, superposition following (33). We can also see
that when using 4 and 7 antennas for the two radii, relatively
uniformly distributed singular values are resultant.

2In Fig. 3 and Fig. 4, results are presented in decreasing magnitude order.
We emphasize that the indices shown on the x-axis of all inclusion plots do
NOT correspond to the indices of the discrete eigenmodes.
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Fig. 3. Comparison of 1
N
|HN [l]| [dB] in decreasing order for different N .

The ‘cross’ markers represents the results given by DFT; the ‘circle’ markers
represents the results obtained by (33).

We examine the derived eigenvalue expressions by per-
forming full-wave EM simulations with half-wave strip dipole
antennas (orientated in the x-direction) under the same geo-
metric setting with N = 10 and a down-scaled setting that
represents an extreme situation: R is fixed to be 0.02 m,
D is set to be 0.4 m and 0.1 m such that β1 and β2 are
again resultant, and N = 58 is chosen such that the antenna
spacing is approximately λ/2 (at 70 GHz). The in-house
developed MoM code, employing the Galerkin method to solve
the corresponding mixed potential integral equation with Rao-
Wilton-Glisson (RWG) basis [15], was used at this stage. This
simulation takes into account antenna mutual coupling and
embedded element pattern of the dipole arrays, and produces
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Fig. 4. Singular values [dB] obtained by different approaches. The results
are normalized using the largest singular value in each setting/approach.

the full antenna system S-matrix, from which singular values
are found by SVD of the channel matrix (a block of the S-
matrix). We also compute the singular values of the ideal
channel matrix formed according to (4), i.e., using the exact r
and r̂x to obtain the entries. These simulated singular values,
as well as 1

N |HN [l]| given by (33), are compared in Fig. 4.

As the results show, for the default setting with very
sparse antenna placement, the singular values obtained via
different approaches agree very well. For the down-scaled
setting, however, the mutual coupling effects cause a few dB
loss in the singular values obtained by the EM simulation,
as compared with those of the ideal channel. Physically the
effects can be attributed to the increased reflected power in
the transmitting array that occurs when generating higher-
order OAM modes (similar to the scan loss phenomenon in
conventional array antennas). Furthermore, when D = 0.1
m, gaps between the calculated singular values of the ideal
channel and those given by (33) can also be seen. This is
because the approximations for r and r̂ adopted for the channel
formulation (6) and (7) causes non-negligible errors, since R
and D become comparable in this case.

Finally, the channel capacity performances for the default
UCA settings (with fixed radii and a varying N ), are compared
with those for a setting where a pair of identical ULAs are
adopted (with the same the hop distance). The spacing of the
ULA, denoted by δULA, is optimally designed following [16]:

δ2ULA

λD
=

1

N
, (34)
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Fig. 5. Comparison of the channel capacity.

resulting an increasing array length with N , given by

LULA(N) =
N − 1√
N

√
λD. (35)

With the optimal design, N identical singular values of the
LOS channel (since D ≫ LULA) can be expected.

The channel capacity curves are plotted against the received
SNR per antenna in Fig. 5, and the curve legend can be found
in subfigure (c). From Fig. 5 (a) and Fig. 5 (b), it can be
seen that, in general, for a given received SNR, the channel
capacity for the fixed-radius UCA case does not necessarily



TABLE I
CHANNEL CAPACITY [BIT/COMPLEX CHANNEL USE] FOR DIFFERENT

SETUPS AT 35 DB RECEIVED SNR PER ANTENNA.

N 4 7 11 15

CUCA
R = 1, C◦ = 6.28 [m] 46.4 70.8 82.4 90.2
R = 2, C◦ = 12.57 [m] 36.2 80.9 122.9 168.0

CULA 46.5 81.4 127.9 174.4

LULA [m] 3.11 4.69 6.24 7.48

grow with N . Fundamentally guided by the singular value
distributions following (28), when R = 1 m, essentially no
more DoF is achieved when N ≥ 8, but only a small power
gain by each increased antenna; while for R = 2 m, many
crossings between the capacity curves can be observed in
Fig. 5 (b). On the other hand, owing to the optimally designed
antenna spacing and the increasing aperture, each additional
pair of antennas in the ULAs brings an extra spatial DoF and
multiplexing gain to the MIMO channel.

When serving as a wireless backhaul link with 1 GHz
bandwidth, the high SNR range (e.g., 30 to 40 dB) is of
practical interest, considering the actual path loss, typical gains
for small commercial E-band (70/80 GHz) antennas, noise
figure, margin for fading, etc. In Table I, the channel capacity
results achieved at 35 dB received SNR per antenna under
several selected settings are presented. For the UCA setup
with R = 1 m and N = 4, or with R = 2 m and N = 7,
good singular value distributions are achieved, as shown by
Fig. 3. As expected, the channel capacity results are close to
those with ULAs with the same number of antennas. When
N = 11, the length, LULA, of the optimally designed ULA
is approximately equal to the circumference, C◦, of the UCA
with radius 1 m, but the capacity it brings is much higher
than that of the latter (by about 40 [bit/complex channel
use]). In fact, the capacity of the ULA (N = 11) is also
larger than the capacity of the bigger UCA with 2 m radius
(by about 5 [bit/complex channel use]). For UCAs with 2 m
radius (C◦ = 12.57 m) and N = 15, which is the estimated
effective number of DoF in this case, the capacity performance
is slightly below the smaller ULA (LULA = 7.48 m) thanks
to the closely approaching spatial multiplexing gain for high
SNR range.

V. CONCLUSION

For perfectly aligned CAs with transmit radius Rt, re-
ceive radius Rr, transmission distance D, and monochromatic
transmission at wavelength λ, the channel eigenmodes and
eigenvalues are shown to be given by (13) and (14) when
D ≫ max{Rt, Rr}. The lth eigenvalue is AJl(β), where
A is constant, Jl(·) is the Bessel function of the first kind
and order l, and β = 2πRtRd/(λD). The effective number
of eigenmodes (i.e., the number of modes with non-negligble
eigenvalues) can estimated as K̂0 = 2⌈β + 1⌉+ 1.

By interpreting UCAs as spatially sampled CAs, we derived
formulas for computing the UCA channel eigenmodes and
eigenvalues from the CA channel counterparts, see (27) and
(28). This allows us to specify analytical expressions for the

eigenvalues for the N ×N UCA LOS MIMO channel, which
offers considerably more insight than the method of numeri-
cally computing the channel matrix SVD. Moreover, K̂0 gives
an estimate of the channel matrix rank and thereby the smallest
number of antennas required for harvesting (essentially) all
available spatial streams. The analytical results agree with full-
wave electromagnetic simulations (which take into account
antenna mutual coupling and embedded element pattern) for
the considered geometries: Rt = Rr = 1, 2 m, D = 1 km,
carrier frequency 70 GHz, which are reasonable for wireless
transport links. Finally, it can be shown that, for medium
to large SNR and same number of antennas, a ULA with
optimum antenna spacing (34) has significantly higher channel
capacity compared to the UCA whose circumference is equal
to the ULA length.
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