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Abstract
The importance of studying biological molecules in living organisms can hardly be
overstated as they regulate crucial processes in living matter of all kinds. Their
ubiquitous nature makes them relevant for disease diagnosis, drug development, and
for our fundamental understanding of the complex systems of biology. However, due
to their small size, they scatter too little light on their own to be directly visible
and available for study. Thus, it is necessary to develop characterization methods
which enable their elucidation even in the regime of very faint signals. Optical
systems, utilizing the relatively low intrusiveness of visible light, constitute one
such approach of characterization. However, the optical systems currently capable
of analyzing single molecules in the nano-sized regime today either require the
species of interest to be tagged with visible labels like fluorescence or chemically
restrained on a surface to be analyzed. Ergo, there exist effectively no methods of
characterizing very small biomolecules under naturally relevant conditions through
unobtrusive probing. Nanofluidic Scattering Microscopy is a method introduced in
this thesis which bridges this gap by enabling the real-time label-free size-and-weight
determination of freely diffusing molecules directly in small nano-sized channels.
However, the molecule signals are so faint, and the background noise so complex
with high spatial and temporal variation, that standard methods of data analysis
are incapable of elucidating the molecules’ properties of relevance in any but the
least challenging conditions. To remedy the weak signal, and realize the method’s
full potential, this thesis’ focus is the development of a versatile deep-learning based
computer-vision platform to overcome the bottleneck of data analysis. We find
that said platform has considerably increased speed, accuracy, precision and limit
of detection compared to standard methods, constituting even a lower detection
limit than any other method of label-free optical characterization currently available.
In this regime, hitherto elusive species of biomolecules become accessible for study,
potentially opening up entirely new avenues of biological research. These results,
along with many others in the context of deep learning for optical microscopy in
biological applications, suggest that deep learning is likely to be pivotal in solving
the complex image analysis problems of the present and enabling new regimes of
study within microscopy-based research in the near future.

Keywords: Deep Learning, Artificial Intelligence, Computer Vision, Optical Mi-
croscopy, Nanofluidic Scattering Microscopy, Molecule Characterisation, Biological
Imaging
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Chapter 1

Introduction

Through the paradigm of deep learning (DL), recent progress in computer vision (CV)
has been truly astounding; quickly evolving from struggling to recognize animals in
relatively simple images to leading a revolution in autonomous vehicles [1], image-
based medical diagnosis [2], material science [3], astronomy [4], weather prediction
[5], waste disposal [6] and many other fields in the span of just a few years. The keys
underpinning the success lie in the fruitful marriage of a few seemingly disparate
technological advancements; the development of computationally tractable self-
learning neural network-based algorithms [7], the ever-growing availability and quality
of digital acquisition devices enabling high-throughput experimentation, and the
explosive growth of the financially lucrative personal computer market leading to ever-
faster parallellizable computing devices. The combination of large amounts of high-
quality images, effectively 2-dimensional vector spaces containing locally dependent
features, with convolution-based DL architectures known under the umbrella term of
convolutional neural networks (CNNs), has been particularly potent. Self-learning
CNN-based algorithms learning general short-range dependencies between locally
correlated data-points (i.e. pixels in images), has been the workhorse of most recent
progress [8]. This generality means that algorithms developed in the context of
e.g. animal classification or facial recognition can often directly be applied to other
image-based CV tasks with relatively minor tweaks, as a result of the generic self-
learning nature of DL-based algorithms. This generality has effectively formed a
chain reaction within quantitative image-based analytical research, in which lessons
learnt in one application of DL-based CV can often directly be applied to every other
application.

One field where this potential is becoming increasingly clear is optical microscopy,
in which data analysis is often a limiting step because of images which are both
highly complex and have low signal-to-noise-ratio (SNR). Promising proof-of-principle
results on super-resolving fluorescence microscopy [9], DL-enhanced holography [10]
and virtual chemical staining [11] to name a few examples, suggests that DL is
beginning to lead a revolution also in optical microscopy as it has in aforementioned
fields.
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In life sciences, optical microscopy has proven instrumental for fast and accurate
characterization of biomolecule properties in- and outside of complex biofluids.
Historically, in the regime of small biomolecules (∼100s of kDa), sensitive imaging
techniques such as fluorescence microscopy and interferometric scattering microscopy
(iSCAT) fill this characterization role, though they suffer from problems arising from
fluorescent labelling [12] and necessity of surface binding, respectively. To remedy this,
we have in paper I introduced Nanofluidic Scattering Microscopy (NSM), which relies
on the sub-wavelength interference of light scattered from a nanofluidic channel and a
nano-object, such as a biomolecule, inside it. However, the combination of generally
low SNR resulting in typically ”blinking” trajectories, changing imaging conditions,
and noise which is complex in both the spatial and temporal dimensions, makes
it very difficult to reliably calculate the biomolecules’ properties through standard
heuristic-based methods alone. However, to borrow the words of Dr. Hassabis of
Google’s DeepMind, “AI is perfect at taking weak, messy signals and making sense
of them.” [13]

This forms the essential background against which the works within this thesis are
justified; we show that by employing DL-based CV algorithms to analyze biomolecule
trajectories measured from within our in-house NSM system, we not only manage to
analyze complex bio-fluids in the form of extracellular vesicles, but also surpass state-
of-the-art results on nano-scale biomolecule weight-and-size screening and trajectory
tracking. We show that a custom CNN-based architecture trained on simulated
biomolecule trajectories atop simulated noise surpasses the performance of standard
algorithms in terms of tracking and determining the molecular weight (MW) and
hydrodynamic radius (Rs) of biomolecules in the low-kDa regime. Furthermore, said
model can accurately track and measure MW and Rs of biomolecules even below the
10-kDa regime, constituting approximately an order of magnitude improvement in
limit of detection (LoD) over current state-of-the-art. In this regime, hitherto elusive
species of biomolecules become accessible for label-free study using NSM, including
cytokines (≈ 5 − 25 kDa) important for cancer research and the protein hormone
insulin (≈ 5.6 kDa), potentially opening up entirely new avenues of biological research
[14].

In this thesis, I delve deeper into the complexities of DL-based CV which has enabled
all this progress in a short time, and argue how we might employ it to our in-house
microscopy method NSM to analyze single biomolecule trajectories and potentially
break through the state-of-the-art in microscopy in certain respects.

Looking further ahead, the ability to optically monitor particles in the sub-10 kDa
regime is a tantalizing prospect, as it may enable a quick and cost-efficient analysis
of subtle binding events, such as protein-DNA bindings [15] or nanovesicle corona
formations [16]. Beyond the fields of life science and biotechnology, it may potentially
also enable the analysis of currently invisible contaminator particles in air [17] and
catalytic reactions of single particles [18], suggesting significant research potential
beyond the immediate consequences such a decrease in LoD may bring for the field
of biology.



Chapter 2

Background

This chapter is dedicated to introducing the key concepts required for understanding
the results produced in this thesis. It is not meant as an exhaustive review (see
e.g. [19]); rather, its main purpose is to provide an intuitive understanding behind
the most important tools of optical microscopy and deep learning which lie at the
heart of this work. Specifically, the first section of this chapter introduces the
basics of optical microscopy for molecular imaging, the method of nano-channel-
based optical microscopy introduced in Paper I, important features of a select few
biological molecules studied in this thesis, as well as touching upon the growing need
for advanced data science within biotechnology and life science applications. The
second section of this chapter introduces deep learning, specifically in the context
of computer vision in general and for biological applications in particular. Finally,
the chapter ends with a short perspective on the future trajectory of deep learning,
and the prospective consequences which may follow in terms of what new types of
advanced analysis might soon become possible, as well as a short summary of review
Paper III.

2.1 Optical Microscopy for Molecular Imaging
In general, an optical microscope is a system which leads light in the visible spectra
range through a sequence of lenses to magnify images of small objects. Though
these systems have existed for a long time, arguably invented in the 1500s in their
simplest implementation [20], it took many hundred years for the technology to
become powerful enough to enable imaging of systems on a molecular scale. This
may be understood as follows; the shortest physical distance between two points in
an image, also known as the spatial resolution, is the single most important feature
in optical microscopy [21]. The principal limitations impinging the potential of the
spatial resolution of optical microscopy are imposed by an irreducible phenomenon;
the physics of diffraction. Effectively, even in the absence of any imperfections in
lens quality or optical component misalignment, the resolution of a microscope is
ultimately proportional to the wavelength of scattered or transmitted light being
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4 2.1. Optical Microscopy for Molecular Imaging

measured, and inversely proportional to the so-called numerical aperture (NA) of its
objective. This happens since light from an emitting light source in a sample generates
a fundamentally limited diffraction pattern known as a point spread function (PSF)
when passing to the image plane through an object. By our definition above, the
minimal distance between two points in a sample which can be resolved thereby
becomes limited by the distance at which two overlapping PSFs can be resolved.
This limitation may be transcended for instance through super-resolution imaging
techniques, i.e. techniques which transcend the diffraction limit, of which DL-based
CV methods already shows great potential as outlined in Paper III and section 2.2.5.

Indeed, optical characterization methods have proven instrumental for fast and
accurate measurement of biomolecule properties in- and outside of complex biofluids
[22]. Historically, for studies which require single-biomolecule resolution, powerful
microscopy techniques such as fluorescence microscopy and iSCAT fill this role [23].
However, fluorescence microscopy requires the molecules to be labelled by a clearly
visible fluorophore or nanoparticle, arguably altering their properties and behaviours
[12], and iSCAT requires binding them to a surface prior to measurement, thereby
losing valuable information regarding their movement behaviour and leaving a large
portion of them undetected. To remedy this, we have in Paper I introduced NSM,
which relies on the sub-wavelength interference of light scattered from a nanofluidic
channel and a nano-object, such as a biomolecule, inside it. Thus, we enable
label-free mass and size screening of freely diffusing single-biomolecule trajectories,
effectively constituting a leapfrogging step in the field of optical molecular imaging
and characterization. The related field of optical microscopy in the context of
molecular imaging is irrefutably immensely rich in history and complexity, and the
full breadth of its nuances is not recounted in this chapter. Rather, it is given in its
proper context for the purposes of the work accomplished in this thesis; in the form
of our in-house developed NSM technique.

2.1.1 Nanofluidic Scattering Microscopy
NSM works by a laser irradiating visible light onto a nano-sized channel embedded in
a silicon dioxide matrix within a nanofluidic chip containing single biomolecules freely
diffusing in solution, as shown in figure 2.1a. In this setup, as shown in figure 2.1b-c,
the biomolecule and nanochannel scatter light coherently into the collection optics,
resulting in an improved optical contrast of the imaged biomolecules by several orders
of magnitude. The total scattering intensity recorded from a region of a nanochannel
of length L = 3π

2k
can be approximated as (see section 1 in Supplementary Information

of Paper I)

It ≈ Ic + Im −
√

2IcIm. (2.1)

Here, It is the total scattered intensity from the nanochannel, Ic scattered intensity
from the channel and Im scattered intensity from the biomolecule (see [24] for further
details). A video is then recorded of the total scattered intensity with a camera
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Figure 2.1: a, Artist’s rendition of the experimental configuration where visible
light irradiates a nanochannel with a biomolecule inside, and where the light
scattered from the system is collected in dark-field configuration. b, Schematic
of light scattered by a single biomolecule. c, Schematic of light scattered by
a nanochannel and the corresponding dark-field image. d, Schematic of light
scattered by a nanochannel with a single biomolecule inside, and the corresponding
differential dark-field image obtained by subtracting an image of the empty
nanochannel from the image of the nanochannel with the biomolecule inside.
Figure reproduced with permission from [24].

with high enough frame-rate to also be able to measure the biomolecules’ diffusivity
along the nanochannel. By subtracting an image of the empty nanochannel from an
image with a biomolecule inside, as depicted in figure 2.1d, we acquire the dark-field
differential image containing only the inference term

√
2IcIm in equation 2.1 (Im is

vanishingly small since scattering from sub- wavelength objects scales as volume
squared and the nano-channel’s volume is much larger than the molecular volume).
This inference term can be several orders of magnitude larger than the scattering
intensity produced by the biomolecule alone (Im) outside the nanochannel, which
in essence constitutes the key feature of NSM and enables the direct imaging of
diffusing biomolecules and other nano-objects inside a nanochannel. From videos
of a sequence of differential images acquired in this way, so-called kymographs, the
molecular weight (MW ) and hydrodynamic radius (Rs) of each individual molecule
can be measured.

Determining the MW of a biomolecule from its trajectory is made possible since
the integrated optical contrast (iOC) of said trajectory is linearly dependent on the
polarizability αm of the biomolecule [25], where iOC is defined as

iOC =
∫ L

x=0

It(x) − Ic(x)
Ic(x) dx (2.2)

for a channel of length L. This polarizability αm is in turn proportional to a × MW ,
where a ≈ 0.46 Å3/Da [26]. It is also inversely proportional to the cross-sectional area
A of the nanochannel and proportional to n̄ =

(
1.5n2

H2O + 0.5n2
SiO2

)
/

(
n2

H2O − n2
SiO2

)
[24]. These two factors are constant and easily measured before an experiment,
meaning that the MW of individual biomolecules measured in our system can be
determined as
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MW = iOC
A

n̄a
. (2.3)

Determining the Rs of a biomolecule from its trajectory is made possible since its
diffusivity is correlated with its size. In particular, by approximating the biomolecule
as a solid neutrally charged sphere, its Rs can be estimated using the Stokes-Einstein
equation with a correction term K for hindrance effects arising from the diffusion of
small objects in restricted volumes [27]. Rs is estimated as

Rs = K
kBT

6πηD
, (2.4)

where kB is Boltzmann’s constant, T is temperature, and η is the viscosity of the
liquid in the nanochannel. By looking at a differential image of the nanochannel over
time, even exceedingly minuscule biomolecules can be detected and analyzed, and by
utilizing the fact that a biomolecule’s optical contrast and diffusivity is correlated
with its weight and size through its polarizability and the Stokes-Einstein equation
respectively, the largest limiting factor for our analysis of smaller biomolecules
quickly becomes the analysis of faint signals in overwhelming noise. To overcome
these challenges, we employ DL-based approaches as described in sections 2.2 and
3.1 for the data analysis.

2.1.2 Nanofluidic Chip

Figure 2.2: Schematic of the nanofluidic chip. Two inlets connect to corresponding
outlets through a series of nanochannels with different cross-sectional dimensions.
A laser irradiates the nanochannel, wherein the imaged molecule always remains
in focus, as a camera measures the light scattered from said nanochannel whilst
biomolecules either freely diffuse or are pushed through with an induced flow.
Figure reproduced with permission from [24].

The bases of NSM are the nano-fabricated chips containing the nano-channels within
which the biomolecules are analyzed. A schematic of the nanofluidic chips used for
our experiments is shown in figure 2.2, which consists of a series of nanochannels
with specific cross-sectional dimensions chosen to accomodate certain ranges of
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particle size. The channels are connected to macroscopic in- and outlets through two
microchannels, which is pressurized to 2 bar to facilitate sample transport into the
channels. During measurement, this flow is usually turned off to let the molecules
freely diffuse inside the channels. In this thesis, three channels were used: channel I
with cross-sectional area AI = 100 × 27 nm2 to study mainly proteins, channel II
with AII = 110 × 72 nm2 to study mainly DNA sequences, and channel III with
AIII = 200 × 225 nm2 to study larger molecules such as extracellular vesicles (EVs)
which are further explored in the next section.

2.1.3 Biological Molecules and Nanoparticles
Biological molecules are ubiquitously present in all living organisms, existing at
multiple different size scales and regulating essentially all biological functions in both
animal and plant bodies. Among the most important molecules are the proteins; a
type of molecule comprised of amino acids, which influence cell structure, enzyme
activity, molecule transport among many other functions [28]. In Paper I, we see
evidence both of monomeric proteins, which consist of single molecules made up
of one peptide chain, and polymeric proteins which are composed of either two
peptide chains (dimeric proteins) or three peptide chains (trimeric proteins) [29].
Polymeric proteins consist of multiple copies (polymers) of a single protein molecule
[29]. Studying these proteins and their polymeric aggregates are crucial for safe
drug development and furthering our understanding of biological systems in general
[28]. In Paper 1, we characterise the dimeric protein thyroglobulin, an important
biomarker for thyroid cancer treatment [30], ferritin important for iron regulation
[31], Bovine Serum Albumin (BSA) which regulates many biological processes and
is an important biomarker for several pediatric diseases [32], as well as Alcohol
Dehydrogenase (ADH) which serves to break down alcohols that otherwise are toxic
[33].

DNA strands, similarly, are considered polymeric since they contain multiple strands
of a molecule bound together with hydrogen bonds between complementary nu-
cleotides [29]. The study of DNA and the corresponding genes they encode is the
source of several separate fields of biological study, playing a key role in everything
from molecular [29] to evolutionary biology [34], as well as genomic DNA analysis
[35] and genomic sequencing [36].

Extracellular Vesicles (EVs) are small lipid vesicles that are secreted from cells
into the extracellular environment and can be found in all body fluids, including
blood, saliva, urine and breast milk [37]. They play an important role in cell-to-cell
communication and have been implicated in a variety of diseases such as Alzheimer’s
and Parkinson’s and certain types of cancer [37]. EVs contain proteins, lipids and
genetic material that can be used to identify the cell of origin. This makes them
valuable tools for studying cellular function and disease pathology, i.e. by analyzing
the RNA content of EVs it is possible to determine which genes are being expressed
by a particular cell type. This information can then be used to develop new therapies
for aforementioned diseases and cancers. Therefore, EVs have potential as diagnostic
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tools, i.e. if one could detect specific types of EVs in a patient’s body fluid, then this
would indicate that they’re in a particular disease state, which would potentially
allow doctors to diagnose several diseases earlier and begin treatment sooner than
is currently possible [37]. Thus, EVs effectively act as mediators of physiological
intercellular communication and have key functions in the pathobiology of many
diseases [38]. However, their specific properties (surface markers, molecular cargo,
weight, size, etc.) are difficult to measure precisely with existing metholodogies,
such as dynamic light scattering [39] or nanoparticle tracking analysis [40], thereby
necessitating new methods for their precise characterization. In Paper I, we show
that NSM is one such promising method for characterization of EVs, exosomes and
lipid nanoparticles in general.

2.1.4 Growing Need for Advanced Data Science in Life Sci-
ence

The scale of modern life science has grown equally impressive and imposing in recent
decades, as constantly improving automatized digital acquisition devices along with
researchers’ rapidly increasing knowledge of the molecular and genetic underpinnings
of diseases is making the field inordinately complex. This presents a major challenge
for traditional bioinformatics methods that rely on hand-crafted algorithms optimized
for a specific dataset size or type. Advanced data science techniques are needed
to handle this flood of genomic information effectively and extract insights from
it. The availability of experimental data is often abundant, which transforms the
challenge of analysis to ”digging out some key piece of information from that morass
of data”, to borrow the words of Sir Roger Penrose [41]. To keep pace with this rapid
evolution, advanced data science methods grow evermore central and crucial to the
modern scientist’s toolbox. In particular, there is a growing need for automatized
algorithms which can quickly and robustly make sense of large and diverse datasets,
as well as faint signals hidden in noise which is difficult or even infeasible to mitigate
experimentally.

Fortunately, recent years have seen the advent of powerful data-science-focused
languages such as R and Python, as well as AI platforms such as Tensorflow [42]
and PyTorch [43] which are advancing at unprecedented speeds thanks to their
open-source nature. As these tools continuously grow to be more democratized and
easily available, they will effectively enable all scientists to perform sophisticasted
statistical analyses and (deep) machine learning on their large and complex datasets.
In addition, they provide a variety of libraries that can be used for specific applications,
such as gene expression analysis [44] or drug discovery [45].

In addition to handling large datasets efficiently, advanced data science methods
can help identify patterns in complex biological systems [46]. For example, network
inference algorithms can be used to identify modules within protein networks or
transcriptional regulatory networks [47], or as famously featured in “Method of the
year” in both Science and Nature; to predict the 3-dimensional structure of proteins
using limited information [48]. Such patterns may reveal new insights into how
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diseases develop and could lead to the development of new drugs or treatments.

The study of small proteins is a field ready to emerge; its abscence a symptom of
lacking available methods of their characterization rather than any lack of scientific
interest [14]. Studies have shown that sub-10 kDa molecules are ubiquitously present
in many biological materials, particularly in membranes of cells, and may even
regulate diverse processes, such as spore formation, cell division, enzymatic activities
and signal transduction [14]. Further, there remain many questions regarding the
fundamental nature of small protein interaction which are yet to be answered [14].

2.2 Deep Learning in Computer Vision

Neural networks are effectively piecewise linear function approximators, capable in
principle of approximating any function through finding hyperplane partitions of the
input data during training [49]. The depth of a neural network affects how complex
these partitions might grow, in essence improving the representational ability of the
whole architecture [49]. Effectively, subsequent layers of neural networks (assuming
equal or growing layer size) increase the dimensionality of the latent representation of
the input data to the extent where finding some hyperplanar partition to approximate
the output values is always possible [49]. This simple yet powerful idea forms the
basis of all neural network-based computation, and the associated field of modern
deep learning revolves around finding ways of steering these networks to learn more
physically relevant, generalizable and interpretable functions during their training
process [50]. The simplest example of this steering is the CNN, the backbone of
modern computer vision, which connects neurons together in specific ways which
bias them toward learning locally relevant correlations (important for, e.g., images).

Such black-box based DL analysis has seen a healthy amount of skepticism in
recent years, owing equally to its inherent lack of interpretability and unreliable
generalizability beyond its training set due mainly to underspecification [51]. However,
many industry veterans argue that this skepticism often reaches unfounded levels in
many practical applications; many problems common to deep learning in the past
are better understood and can be mitigated through rigorous implementation [52].
There are even accounts of non-mission-critical DL-based algorithms reaching high
accuracy never being employed in industry [52], mainly due to a mystical distrust
of self-learnt algorithms. Thus, it is often difficult to see whether the error lies in
the foundations of DL, or in the faltering diffidence of the end-users who should be
benefitting the most. To this dilemma, the efficacy of its remedy lies in its simplicity;
the mathematical foundations of DL must be deeper explored and its limitations
unequivocally presented. This section is based on presenting these mathematical
foundations of (convolutional) neural networks in its proper context; as that of
the cornerstone of modern computer vision and the catalyst for the deep learning
revolution as a whole.
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2.2.1 The Artificial Neuron

Conceptually, deep learning is inspired by the structure and function of the brain.
Specifically, the artificial neural network at the heart of all deep learning is explicitly
inspired by our own biological neural networks; the conglomeration of neurons,
synapses, chemical and electrical signals which make up our brains. In its simplest
interpretation, the biological neuron can be approximated as a computational unit
which fires a signal of a certain strength if its input signal exceeds a certain threshold.
Specifically, the biological neuron ”fires” (activates) with strength w × x if its input
signal overcomes threshold b [53]. Every artificial neural network consists of these
individual computational units, known as artificial neurons, with a certain weight w
and bias b, and activation function a such that each neuron computes the simple
linear function

z = a(wx + b) (2.5)

given an electrical signal of strength x which overcomes a treshold (bias) b, for a given
weight w and activation function a [53]. The values of the weights w and biases b
are determined during training of the network on some dataset, whilst the activation
function is fixed and chosen by the engineer dependent on the nature of the dataset
in question [53]. This simple function is the basis of all deep learning-based systems,
regardless of their ultimate manifestations’ complexity or advanced functionality.

This computational model of artificial neural networks was introduced in 1943 by
McCulloch and Pitts [54], and the following decades of developing theory and practice
of neural networks is a complex sequence of cycles of growing hype, investment,
disappointment and stagnation. This story of the highly nonlinear development
of deep learning has been told many times [55]–[57] and will not be reiterated in
this thesis. Rather, we note the most relevant contribution to the field of deep
learning in the context of computer vision, and arguably, the most significant
contribution in modern deep learning overall; the work of LeCun et. al. [7] in
introducing convolutional neural networks trained with learnable parameters. This
would later form the basis for AlexNet [58], which would go on to convincingly win
the long-standing image classification challenge ImageNet and spark the deep learning
revolution which is still gaining speed to this day. Following this success, several
specially-designed CNN architectures have been introduced for different purposes:
most notably for the purposes of this thesis are those developed for biomedical
image analysis (see section 3.1.2) [59], object detection [60] (see section 3.1.3) and
skip-connection-based networks for enabling deeper networks, i.e. networks with
more consecutively connected layers, than previously possible (see section 3.1.4)
[61]. To understand the significance of these algorithms in the context of computer
vision in broad and microscopy in particular, we need to delve into their precise
mathematical formulation.
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2.2.2 Convolutional Neural Networks
As alluded to in the introduction of this chapter, the power of deep learning comes
from representation (feature) learning. The reason convolutional neural networks,
and allegorically all deep learning in the fields in which it is leading a revolution,
dominate computer vision is because it learns to represent inherent features of
datasets better than handcrafted algorithms. The inductive locality prior, weight
sharing and stochastic gradient descent through backpropagation [7] condense this
computational power into a tractable and ultimately parallelizable form which enables
training neural networks in feasible timeframes with practically relevant data [62].

In their basic manifestation, convolutional neural networks consist of a combination
of three types of layers; fully connected neural layers, convolutionally connected
neural layers, and pooling layers, the details of which are recounted in the sections
below.

Fully Connected Neural Layers

The fully connected neural network layer consists of any number of neurons computing
the linear transformation in equation 2.5, where every neuron in the layer is connected
to every other neuron in the previous layer (see figure 2.3).

As shown in figure 2.3, the neurons’ activation consists of a weighted sum of the
inputs to the neuron plus a bias, where the values of the weights and bias are
learnt during training. This value, known as the logit, is then passed through an
activation function (e.g. a sigmoid) before being passed further to the next layer
of neurons (or output if it was the last layer). A sequence of such fully connected
layers constitutes the simplest version of a deep neural network, and in turn the
basis for the simplest realization of deep learning. Even this simple network should
not be underestimated, since mathematical theorems [63] prove that such a fully
connected network with only a single sufficiently sized layer can approximate any
finite-dimensional function to arbitrary accuracy. However, the lack of any inductive
bias within the network architecture makes learning a very data-intensive process,
and any trained model is highly prone to both overfitting and underspecification (i.e.
manifested as unrobust generalizability). One simple way of introducing inductive
bias into our models is by, for instance, including memory of past inputs in the
neuron activations (recurrent neural layers) or only considering information from
inputs which are spatially localized close together (convolutional layers).

Convolutional Layers

Convolutional layers are a special case of the fully connected layer; we remove
connections between neurons such that only the inputs which are close together count
toward the activation sum. This has shown to be a particularly powerful approach
for images, in which information about the position and classification of objects is
usually highly correlated within spatially proximal pixels. In practice, this is easiest
accomplished through a convolution as shown in figure 2.4.
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Figure 2.3: Schematic of a fully connected neural network, in which each point xi
in the input tensor is connected through a weight wji to every neuron nj in the
next layer, as shown in the schematic on the bottom. A sequence of such layers is
denoted as a deep (and fully connected) neural network.
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Figure 2.4: Demonstration of the operation of convolution, wherein a segment
of size [ks1, ks2] of the input image is convolved with a filter of equal size. The
operation consists of a dot product between the pixels of the input and filter,
whereafter the filter shifts by stride s and repeats the process until the entire
image has been convolved. In a neural convolutional layer, the numeric values of
the weights of this filter are learnt during training. Figure from [64], reproduced
under the Creative Commons license.

The weighting of each pixel in the convolutional layer is learnt during training,
effectively applying the neuron’s computation in equation 2.5 in a convolution rather
than a linear fully connected fashion. When creating the layer, the engineer defines
the kernel size, stride (of the sliding window), and number of filters. Filters work
essentially as parallel channels all applying convolutions to the same input but with
separately learnt weights, effectively developing separate “feature maps” which may
represent different relevant features of the input. Thus, using convolutional layers, a
full CNN uses various kernels to convolve the whole input into intermediately sampled
feature maps, which are in turn convolved in an equivalent manner. Ultimately, this
realization of neural networks enables fully rich feature representations of images
whilst prospectively fully preserving locality and richly detailed information. Further,
it has been shown that early layers of a CNN tend to learn basic features relevant for
image analysis, i.e. shapes, edges and simple structures, whereas later layers learn
more abstract features such as vehicle outlines and facial details [65].

Pooling Layers

The purpose of pooling layers is to reduce the dimensionality of data between
subsequent convolutional layers, reducing the impact of, as coined by Prof. Bellman,
the curse of dimensionality [66]. In short, as the dimensionality of data increases, the
total volume of the information space increases so quickly that any available dataset
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becomes sparse, worsening still the problems of underspecification [51]. Hence, the
downsampling of dimensionality which pooling layers provide results not only in less
computational overhead but also has been shown to improve generalization, latent
space featurization and faster training convergence [67].
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Figure 2.5: Schematic of the pooling convolution, demonstrated here for average
pooling on top and max pooling on bottom for a 2x2 convolution passing over
the input with a stride of 2. In average pooling, the output of each convolution is
the average value within the corresponding pooling window. In max pooling, the
output is instead the maximal value within said pooling window.

In figure 2.5, an example of max- and average pooling layers is shown. Note that
though these are the most common pooling layers, and used in most standard
implementations of CNNs, there are several others [68]. For instance, stochastic
pooling for network regularization [69] and spatial pyramid pooling to remedy certain
architectures’ strict sizing requirements [70].

Convolutional Architecture

Most convolutional neural networks in use today use some combination and configura-
tion of the convolutional, pooling and fully connected layers within their architecture.
To reiterate in concrete terms, each CNN architecture uses these layers to accom-
plish three features: localized receptive fields (convolutional layers), weight sharing,
and spatial subsampling. Localized receptive fields and weight sharing enable the
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introduction of inductive bias into our models in the form of translational invari-
ance, which promotes the learning of general features relevant for (translationally
invariant) imaging data. Each subsequent convolutional layer in a deep convolutional
architecture receives inputs from a set of neighbouring units from the previous
layer. In practice, this configuration has been shown [8] [65] to effectively allow the
correlations learnt in each subsequent layer to grow in complexity; i.e. early layers
learn basic abstractions, edges and shapes whereas later layers learn higher-order
representational features. Elementary features are often equally important regardless
of where they appear in the image; hence local receptive fields with tied weights are
appropriate [71].

In a traditional convolutional architecture, each convolutional layer is followed by
a pooling layer to reduce the problems related to the curse of dimensionality [66].
Following several sequences of convolutional and pooling layers, the final layer of
highest-level reasoning occurring within the network is usually achieved via fully
connected layers. The neurons in fully connected layers are connected to every
other neuron in its two neighbouring layers, hence their name, and their output is
simply computed as an activation function of a matrix multiplication with a bias
offset as also described earlier in this section. This generic architecture effectively
enables the definition of a function approximation whose input is a data type with
locally relevant correlations (i.e. an image) and whose output is a vector of numbers.
By connecting this vector of numbers to a regression (i.e. mean absolute error) or
classification (i.e. cross-entropy) [58] loss when compared with labelled data, and then
backpropagating the numeric value of loss through the network’s weights and biases
in the opposite direction of the gradient, we arrive at a trainable convolution-based
network architecture for generic image-to-vector translation. Note that this output
does not necessarily have to be the final output of a full model architecture - it could
rather be considered a latent feature vector for further processing through another
network type or standard methods [72]. Note that it is also possible to control
the nature of the output data type by modifying the output layer of the network
architecture - i.e. a convolutional layer instead enables learning an image-to-image
translation function approximation. Herein lies one of the greatest strengths of
neural network architectures in general: changing the architecture to accommodate
different data types, i.e. sequences, graphs, images or tabular data, is relatively
straightforward with modern powerful deep learning frameworks like Keras [73] and
PyTorch [43].

2.2.3 Quantitative Deep Learning for Optical Microscopy
Perception-based tasks in which data are collected under conditions which are
consistent across training and inference, are where the greatest strengths of deep
learning truly manifest [71]. The difficulties of deep learning; its black-box nature,
its oft-brittle performance [74] and fickle unpredictability inferring on datasets
orthogonal to its training set due to underspecification [51] and high sensitivity to
poorly labelled data [75], are mostly avoided in these applications.
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In practice, DL-based algorithms often outperform handcrafted algorithms [10],
[76], as the heuristics necessary for complex image analysis are often limited by
technical expertise, technological limitations (e.g. processing speed for real-time
applications) and ultimately limits of human ingenuity and imagination. Through
powerful representation learning, deep learning-based AI systems can learn features
more representative and relevant than other approaches [50].

Intuitively, this may be understood as a result of the complexity inherent in nature
being difficult to capture in simplified heuristics or theoretical models alone, whereas
data-driven DL approaches can learn directly from minimally processed measurements
of physical systems only with limited inductive bias. Thus, DL systems trained in a
supervised fashion can be interpreted in practice as an opportunity to draw direct
statistical correlations between datasets without the potentially limiting intervention
of researcher bias, an oft-cited reason for why promising yet unfashionable theories
struggle to gain ground in physics [41]. In this section, I describe a few uses of CNNs
in practice, and particularly how they have proven useful for quantitative analysis
within optical microscopy.

Semantic Image Segmentation

The purpose of (semantic) image segmentation is to convert the pixel-wise information
in an image to the class of the object in the pixel with a given probability. In classic
image segmentation, this often reduces to outputting the probability in each pixel
containing any of a pre-defined set of classes, as exemplified in figure 2.6a.

For purposes of optical microscopy, the benefits of this application quickly becomes
clear; given a complex image of several cellular components and different types of
biological molecules, we can output a probability in each pixel of that pixel containing
a molecule or component of a certain class, as exemplified in figure 2.7. Thus, the
complexity of the image is drastically reduced, enabling biologists to analyze the
data in a far faster and more intuitive manner. This is especially relevant in the field
of biomedical image diagnosis [78], which is a pioneering field of applied DL, and an
example of a human-in-the-loop AI system where human experts and AI work in
symbiosis to accelerate experts’ work. In particular, this approach forms the backbone
of cross-modality transformations in optical microscopy, wherein one aims to employ
DL-based algorithms to virtually transform images taken with one modality into
another [11]. For instance, the virtual staining [11] of cellular components allows one
to bypass the manual chemical staining of patient samples, prospectively saving time
when diagnosing patients under the effects of anesthesia. This is further enabled by
the property of semantic segmentation architectures being able to predict not only
the likelihood of existence of objects of interest in an image, but also the likelihood
of said images belonging to a certain class along with other properties of interest.

Arguably, the most effective and influential CNN architecture in this field is the
U-net [59], whose technical details are elaborated further upon in section 3.1.2.
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Figure 2.6: a,b Examples from Common Objects in Context (COCO) image
dataset [77]. a shows the result of semantic segmentation, wherein each image is
“segmented” using DL such that every pixel of each separate object class is coloured
in with a separate colour. b shows the result of object detection, wherein each
separate object is localized with a so called “bounding box” with a corresponding
probability, and classified with a separate corresponding probability.

Figure 2.7: A) Examples of HeLa cell microscopy images. B) Equivalent segmented
images, where different types or structures of cells may be identified and coloured in
different colours, through a U-net architecture. Figure reproduced with permission
from [59].
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Object Detection

Object detection is a massively popular application within machine learning, whose
popularity and influence only seems grow every year through a wide variety of
advances within computer vision. For instance, great strides have been made in facial
detection [79], pedestrian detection [80] and autonomous driving [81] in the past few
years alone. One of the most popular object detection algorithms leading these recent
developments is that of You Only Look Once (YOLO), due to its impressive speed
and higher generalizability than many other competing algorithms [82]. These traits
are a consequence of the method’s namesake, where a single feed-forward pass of an
image through the CNN backbone is enough to predict (singular) bounding boxes
and class probabilities for each object in said image [82], as is further elaborated
upon in section 3.1.3.

The purpose of object detection is to classify, localize and separate individual objects
within an image. In object detection applications, the exact classification of each
pixel is not important. Rather, each image consists of an unknown number n of
objects o1, o2, ...on pertaining to class co from a pre-defined set of classes. A classic
object detection algorithm trained in a supervised manner, can never output that
an object belongs to a class outside its pre-defined list. Its function is exemplified
in figure 2.6b, where the benefit of object detection becomes clear; a segmentation
model could not identify that the two elephants in the bottom left figure are separate
objects. Rather, it would fill in each pixel with a high probability of ’elephant’,
and contain no quantitative information on the number or position of the separate
elephants. Object detection is useful in localizing objects within optical microscopy
when pixel-wise segmentation information is unavailable or infeasible to extract [84],
as exemplified in figure 2.8.

Quantitative Property Estimation

It should be noted that whilst object detection and semantic segmentation are
objectives which have come to dominate computer vision applications, convolutional
neural networks can in principle learn to output any property of interest, as long as
the property can be properly mathematically defined and the relevant information
and correlations exist in the dataset. In general, these property calculating networks
work using the same fully convolutional CNN backbone structure as for semantic
segmentation and object detection, with the significant difference only manifesting
in the data type which the neck and head layers of the neural network output. In
particular, the last layer of the neural network, the head, is typically a dense layer
with continuous outputs connected to a regression-based loss.

One of the most effective and influential CNN architectures for this application
is the ResNet [61], whose deep skip connections between non-subsequent layers
enabled deeper network architectures than previously possible, and whose subtle
yet innovative change to calculate residuals rather than direct output value enabled
numerically accurate calculations. This architecture inspired that of the biomolecule
characterization network described in section 3.1.4 below.
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Figure 2.8: A) Raw unprocessed image, consisting of nano-particle cells. B) The
boundaries automatically detected by an object detection network, where each
cell is identified with a so-called ”bounding box”. C) Centers of the detected cells,
where the colour of each detection corresponds to the prediction accuracy of the
corresponding box. Figure reproduced with permission from [83].
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The most important takeaway from this section is that despite the differing applica-
tions, the underlying structure of the CNN remains the same. Connections between
layers vary - between upsampling and downsampling layers in the U-net and between
residually connected layers in the ResNet, but the backbone of convolutional and
pooling layers in sequence is consistent.

2.2.4 Beyond Supervised Learning
So far, the contents of this thesis have been constrained to discussing the particular
paradigm of machine learning known as supervised learning, wherein a neural network
is used to approximate a function between input x and output y. However, this is
likely not where the most significant future strides in deep learning will manifest.
Though it is a powerful paradigm, it is significantly limited in the sense that it cannot
automatically learn relationships between objects unless specifically pre-defined by
their engineer. In particular, they cannot recognize new types of objects not pre-
specified within the model definition, or for instance the relationship between words
in different languages as is highly relevant for modern natural language processing
[85]. Indeed, many of the current issues associated with DL are in practice rather a
consequence of supervised learning [86]. Other paradigms of AI, such as unsupervised,
self-supervised, generative and reinforcement learning, show much greater robustness
beyond their training set and greater potential with smaller datasets (i.e. single-shot
[87] or few-shot learning [88]). Therefore, to serve as a backdrop against the future
outlook for further development of the work conducted within this thesis, and to
introduce the reader to some of the most promising avenues of current AI research,
this section is dedicated to describing paradigms beyond the standard of supervised
learning.

Most straightforward to describe is unsupervised learning, wherein AI algorithms
which do not require any labelled data (i.e. output y) are of definition. Rather,
they automatically discover patterns and correlations only in input data x on their
own during training. Classes of algorithms which are encompassed by this umbrella
are e.g. clustering algorithms such as K-means clustering [89], which automatically
cluster input data in a predefined number of clusters through appropriate parameters
chosen by the network during training, and auto-encoders which are often used
as anomaly detection models [90]. Most famously, some of the statistical analysis
underlying the discovery of gravitational waves [91] were based on this approach: in
short, an auto-encoder is trained to perfectly recreate the noise present in the LIGO
interferometer device used to measure gravitational wave signals. The portion of
LIGO device output which cannot be perfectly recreated by a such trained model is
therefore either some entirely new source of noise (which thus can be corrected for
with a new model) or quantitatively accurate gravitational wave signal down to a
very low SNR [92].

Another promising paradigm is that of self-supervised learning, wherein we exploit
the inherent symmetries in certain datasets to effectively teach a neural network-
based algorithm to learn certain useful transformations within unlabeled datasets.
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For instance, the most influential use of self-supervised learning today is in that
of training massive so-called attention-based transformer models, effectively neural
networks particularly tuned to learn relationships between input tokens, on natural
language processing. In short, one scrapes a large dataset (e.g. the entirety of
Wikipedia), randomly removes singular words with some defined frequency, and trains
the transformer model on filling in the missing words. Such models, when trained
on billions of data-points and containing billions of parameters, have been shown to
be able to output human-like text in form of essays, blog posts and even scientific
articles [93], [94]. Another example is the Low-shot deep Symmetric Tracking And
Regression (LodeSTAR) [87] algorithm, which essentially learns to detect particles in
microscopy images by training on a single crop of a single image of a single particle.
It achieves this by applying several (randomly modified) affine transformations to
said single image, and training a convolutional neural network to always recognize to
identify the same particle despite all possible affine transformations and corruption
schemes. Thus, the CNN learns robust features which allow it to always track
the profile of the particle type in different imaging conditions and self-consistent
transformations. Further, the natural continuation of the supervised object detection
algorithms presented in this thesis is self-supervised vision transformers such as
DINO [95], which can learn to identify and separate objects into an arbitrary number
of unseen and undefined classes, thus providing a solution to one of the biggest issues
with supervised object detection algorithms.

Reinforcement learning (RL) is another paradigm which has seen significant medial
attention in recent years, most notably for its use in developing AI-based agents
which can learn to play games to superhuman levels, notably beating grand-master
Lee Sedol in Go [96] and eventually going on to beat grandmasters in inordinately
complex video games such as Starcraft II [97] and Dota 2 [98]. Its use in real-world
problems has of yet been underwhelming, owing to the difficult “sim2real” [99] gap
associated with bringing algorithms trained on purely simulated data to work in
the real world, as well as the difficulties associated with training RL-agents in the
real world [100]. However, significant strides have also been made in this regard,
including an agent which develops new floorplan designs for computer chips at orders
of magnitude higher speeds than human engineers [101] and a fully autonomous
robot which plans, executes and analyzes experiments on its own [102].

Finally, and of particularly important note for the field of optical microscopy and
biomedical imaging, generative learning is a paradigm which enables AI to generate
new datasets given some original training data set. This may at first stand in great
contrast to the aforementioned paradigms where the goal is to find correlations
within and between datasets and optimize for a loss(reward) function, but note that
the function to optimize may well be defined as that of how to generate unique
data indiscriminate from some original dataset. Said generative learning algorithms
are able to create quantitatively accurate representations for complex objects and
patterns in data, which can then be used for tasks such as image synthesis [103], text
generation [104], and cell microscopy image generation [105] in combination with
e.g. supervised, unsupervised or self-supervised learning. This essentially solves the
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issue of requiring exceptionally large datasets to train certain models, if only one
can train a generative model to generate effectively infinite synthetic data.

Generative models are typically trained in a Generative Adversarial Network (GAN)
environment [106]; a system composed of two neural networks competing against
each other in a zero-sum game. The first network, called the generator, tries to
generate fake data that is indistinguishable from real data. The second network,
called the discriminator, tries to distinguish between real and fake data through a
binary value. The generator gets better at creating realistic data as it learns from
feedback given by the discriminator.

2.2.5 Cross-modality Transforms in Biological Microscopy
enabled by Deep Learning

As reviewed in Paper III of this thesis, one promising emerging topic in artificial intel-
ligence in the context of microscopy for biological (and non-biological) applications is
that of cross-modality transformations enabled by deep learning. In short, this entails
the process of training a neural network architecture to transform images taken
with one microscope modality to instead contain information as if it were taken by
another modality. One example of this is histological staining, wherein we circumvent
the time-consuming process of manually chemically staining tissues by transforming
e.g. brightfield images of tissues to their chemically stained counterparts through
generative learning (see figure 2.9).

Similarly, another virtual staining cross-modality transform is that of using generative
learning to fluorescently stain cellular and sub-cellular structures. In pharmaceutical
drug screening and digital cytology, quantitative analysis of cell structures is essential:
changes in the morphological properties of cell structures are effective readouts into the
physiological state of a cell culture and its response under drug exposure [107], [108].
However, chemically staining samples with fluorescent dyes to make them available
for study entails invasive and sometimes toxic procedures, potentially affecting cell
health and behavior [109]. Additionally, phototoxicity and photobleaching, occurring
during the acquisition of fluorescence images, limit the time scales available for live
cell imaging [110].

To remedy these challenges, recent works have proposed the use of DL, and par-
ticularly generative learning, as an alternative to mitigate the inherent problems
associated with conventional chemical staining [111]. In these works, chemical-
staining and fluorescence microscopy are replaced with a virtual staining network
(generally a variation of the U-Net architecture, see section 3.1.2) that generates
virtual fluorescence-stained images from unlabelled samples. The input to the stain-
ing network must encode insightful contrast of the various cell structures, providing
the network with sufficient information to learn the transformation to the desired
high-contrast, high-specificity fluorescently stained samples. Virtual staining of cells
and cell structures has been achieved from various imaging modalities, including
phase-contrast imaging [112]–[114], quantitative phase imaging [115], and holographic
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Figure 2.9: Illustration of the process of (conventional) histological staining in
orange and DL-based virtual staining in gray. As outlined in Paper III, one can
overcome many of the limitations of chemically staining histological tissues by
training a generative model to virtually stain (e.g. brightfield) microscopy images
of tissues, given a dataset of unstained and correspondingly chemically stained
tissues.

microscopy [116]. Moreover, some work [11], [110], [117] suggests that bright-field
images contain the information necessary to reproduce different stainings, despite the
detail of these images being largely limited by diffraction. Another way of overcoming
said diffraction limit is by so-called super resolution techniques, which are another
example of cross-modality transforms recently enabled by DL, as exemplified in figure
2.10.

Many microscope techniques have been developed to overcome the diffraction limit,
including single-molecule localization microscopy (SMLM) methods such as stochas-
tic optical reconstruction microscopy (STORM) [120], photo-activated localization
microscopy (PALM) [121] and fluorescence photoactivation localization microscopy
[122]. Yet other methods of transcending the standard resolutions of microscopes
exist, as mentioned, in the complex numerical estimations of point spread (transfer)
functions (PSF) which seek to estimate the diffraction behaviour, in illumination
pattern engineering methods which decrease the PSF size [123], as well as specialized
flurophores [124]. These approaches come with their own limitations in terms of the
complex and multivariate dependency on imaging conditions which make solving the
diffraction integrals of the PSF very difficult for practically relevant systems [125],
and increased costs associated with aforementioned flurophores [12].

In recent years, another promising paradigm of super resolution has emerged as a
consequence of the astounding growth and success of DL-based computer vision
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Figure 2.10: A) Illustration of the PSF resultant of imaging objects below the
diffraction limit of an optical system. B) Low-resolution image of simulated
emitters, scale bar is 0.5 µm, and a CNN’s prediction of ground truth emitter
locations. Image reproduced with permission from [118]. C,D) ANNA-PALM
consists of two stages: firstly, acquisition of training images using standard
localization microscopy (PALM) followed by neural network (ANN) training, and
secondly reconstruction of super-resolution views and low-resolution error maps
from new sparse PALM and/or widefield images at inference time. C) Training
images are obtained by acquiring one or a few long sequences of diffraction limited
single-molecule images, as in standard PALM experiments. Thereafter, standard
localization microscopy algorithms are used to generate super-resolution images.
A switch (light blue) can be set to distinguish different types of structures, for
example, nuclear pore complexes (NPC), mitochondria (Mito) or microtubules
(MT). A GAN generator is trained by using the sparse PALM images Pk as inputs
and the corresponding dense PALM image PK as target output with the three error
functions in the gray bordered boxes (see [119] for details). D) At inference time,
a short sequence of low-resolution single-molecule images are acquired. Standard
localization algorithms generate a sparse (undersampled) PALM image (P’k).
This sparse image P’k, the upscaled widefield image L’ and switch setting are fed
as inputs to the trained generator, which outputs a super-resolved ANNA-PALM
image (A’k). Images C,D reproduced with permission from [119]
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algorithms. Allegorically to the cross-modality transforms above, the DL approach to
super-resolution revolves around training neural networks to transform one imaging
modality (regular-resolution images) to another (super-resolved images). Some of
these approaches are through generative learning, i.e. effectively learning the complex
interpolation function between regular- and super-resolved images, or through direct
supervised learning e.g. by estimating the positions of underlying diffraction-limited
emitters. The details on how these networks are trained in practice vary widely
between applications, as elaborated upon further in Paper III. Of course, one would be
remiss in this context not to mention that another way of effectively transcending the
diffraction limit and studying individual molecules is to use powerful scattering-based
microscopy methods like iSCAT or NSM.





Chapter 3

Methods

This chapter is dedicated to introducing and describing the implementation of the
deep learning-based characterization methods used in Paper I and II. Specifically,
the first section of this chapter first gives an overview of the entire DL-based analysis
pipeline as it is implemented in Paper I, and thereafter delves deeper into the technical
details of each separate method within. The second section describes some of the
methods of training the networks which were crucial to reaching their final level of
performance. Finally, the chapter ends with a description of how the biomolecule
trajectories used as training data were simulated.

3.1 Deep Learning for Biomolecule Characteriza-
tion

To track and analyze single biomolecules within nanochannels, which are the core of
the NSM method, we implemented a DL analysis pipeline which takes advantage of
all the paradigms of CNN-based CV described in 2.2. Image segmentation is used to
identify the pixels in an image (kymograph) which contain the scattered light from
the biomolecules within the channel. In fact, using a specialized network architecture
developed for biomedical image segmentation known as a U-net [59], each output
pixel corresponds to the probability of said pixel containing scattered light from a
particle. Further, object detection is used to identify the separate trajectories and
segment the kymographs into sections consisting only of single trajectories. Finally,
a fully convolutional neural network is used to calculate the properties of interest -
in principle any biomolecule property whose quantitative values can be derived from
its trajectory - for each individual trajectory in turn. This pipeline is illustrated in
figure 3.1. It is comprised of five parts:

3.1.1 Pre-processing into Kymographs
The raw image data (figure 3.1A) was pre-processed to transform it into kymographs
(figure 3.1B), by the following process. First, the intensity of the raw CMOS camera
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Figure 3.1: Machine learning (ML) analysis workflow. (A) Raw image data
simulated for a single biomolecule with optical contrast iOC = 0.5 nm and
diffusivity D = 10 µm2/s. (B) Preprocessed kymograph with removed background.
(C) Segmented image where the particle positions are detected using a U-net. (D)
Single biomolecule trajectory identification using the YOLOv3 neural network.
(E) Property calculation (iOC and D) using a custom fully connected neural
network (FCNN). (F) Unit conversion from iOC to molecular weight MW and
from D to hydrodynamic radius Rs plotted in a 2D histogram for illustrational
purposes, for a simulated example molecule. Figure reproduced from [24].

image data was normalized according to

Ī (x, t) = I(x, t) − ⟨I(x, t)⟩
⟨I(x, t)⟩ (3.1)

where I (x, t) is the intensity at position x and time-frame t, and ⟨I (x, t)⟩ represents
the time average of said intensity. Second, a low-pass-filtered version of Ī (x, t) was
calculated by using two normalized sliding windows of sizes 200 × 1 and 1 × 200,
and subtracted from Ī (x, t). Finally, to obtain the kymographs used to calculate
iOC, the resulting image was down-sampled by a factor of 4 in the length dimension
through mean pooling. Instead, to obtain the kymographs used to calculate D, the
image was normalized by its standard deviation before being down-sampled by a
factor of 4 in the length dimension through mean pooling.

3.1.2 Image Segmentation
The purpose of image segmentation, as described in 2.2.3, is to transform the value
of each pixel within an image to another property which is more conducive to the
purposes of one’s analysis. For the purposes of particle tracking, we want to transform
our kymographs, consisting of the (differential) intensity of scattered light in each
pixel, to “segmented” images which contain the probability in each pixel containing
scattered light from a particle. This transformation is accomplished through imple-
mentation of a particular CNN architecture, whose function is described in section
2.2.2 and architecture summarized in figure 3.2, trained in a GAN environment as
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Figure 3.2: The U-net[59] consists of a series of contraction convolutional layers,
a bottleneck, and a series of expansion convolutional layers, as well as a series of
skip connections between corresponding contraction and expansion convolutional
layers to ensure that information learnt during contraction is not lost at the
bottleneck. Each 2x Conv box represents a convolutional block corresponding
to 2 convolutional layers in sequence, and each Conv T box represents a single
convolutional transpose layer as exemplified in the legend. Here, f is the number
of filters in each block, ks is the kernel size, a is the activation function, and
dr is the dilation rate. The network is visualized with Netron [126]. (B) Block
diagram of the GAN training environment, where kymographs are fed both to
a U-net generator network, which predicts a corresponding segmentation, and a
Convnet (convolutional network) discriminator network, which takes both original
kymographs and true segmentations as input to determine whether the predicted
segmentation is correct. A basic Convnet consisting of 5 convolutional layers of
size 4x4 and stride 1 connected to a single dense layer is used as discriminator
network. Figure reproduced with permission from [24].
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described in section 2.2.4. Specifically, the GAN consists of two networks: a generator
U-net which generates segmented images from input kymographs (pre-processed
as described above), and a discriminator ConvNet which outputs a binary value
whether the generated segmented image corresponds to the true trajectories or not.
By modifying the architecture of this ConvNet, different behaviours of the U-net can
be achieved. For instance, a relatively strong architecture which considers multiple
scales of the input image, including filters which convolve the entire size of the input
kymographs, is useful to force the U-net to always draw fully connected trajectories
(broken trajectories are always unphysical, unless they are broken at the borders).
Conversely, a relatively weak architecture, whose filters consider only local features
of the image, can be used to force the U-net to only output trajectories in regions of
the image where the local SNR is high. Generally speaking, the former approach
effectively results in “ghost trajectories” in kymographs with heavy noise, as the
generator U-net will always draw fully connected trajectories even in regions where
the signal is low enough that it should be impossible. In these localized regions, the
network tends to “guess” the likely trajectory path. The latter approach usually
results in broken trajectories, since the generator will prefer to draw trajectories only
where the signal is sufficiently high. The ConvNet used in this thesis was comprised
of 5 convolutional layers of filter size 4, effectively corresponding to a compromise
between the two aforementioned approaches.

The U-net was trained on ∼300,000 simulated kymographs (generated as described in
section 3.2 and pre-processed as described in section 3.1.1) for which the corresponding
ground-truth single biomolecule trajectory is known (using the ADAM optimizer [127])
with particle trajectories in the ranges 10−5 ≤ iOC ≤ 3·10−3 µm, 1 ≤ D ≤ 100 µm2/s.
The input during training are simulated images (kymographs) of size 128 × 2048 with
a random number of trajectories and output segmented images of equivalent size.
The model is also train-validated every 120 epochs (∼= 30, 000 simulated kymographs)
against 150 simulated kymographs (of size 128 × 512, 128 × 1024, 128 × 2048) with
experimentally measured channel noise, using an 80-20 train-validation split.

3.1.3 Object Detection to Identify Trajectories
The next stage of analysis is object detection, to accomplish which we implement the
YOLOv3 [60] (figure 3.3) algorithm in PyTorch [129]. The purpose of this stage of
analysis is to identify and separate individual biomolecule trajectories in a segmented
kymograph output from the U-net described in section 3.1.3, which only contains
information of the probability in each pixel that it contains the scattered light from
a biomolecule. If a kymograph cannot be separated in this manner (for instance as a
result of two biomolecule trajectories strongly overlapping each other), the YOLO
algorithm instead counts the number of inseparable single biomolecule trajectories in
the given kymograph, outputs this value, and disregards the inseparable trajectories
as the errors in scattering resultant of particle interactions is not taken into account
in any calculations. Concretely, the YOLOv3 algorithm fits a minimally-dimensioned
rectangular bounding box around each separate single biomolecule trajectory, and if
the minimal bounding boxes of two single molecule trajectories overlap more than
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Figure 3.3: The YOLO algorithm is built upon a DarkNet-53 backbone [128],
which consists of a neural network architecture comprised of 53 convolutional
layers. This backbone feeds into three necks, which consist of a sequence of 5
convolutional layers, which in turn feed into corresponding heads, which output
bounding boxes at three different scales through yolo detection layers [60]. Each
neck is up-sampled and fed into its neighbouring neck, to make sure the last
yolo detection layer benefits from information collected at every previous stage.
Here, Conv represents a single convolutional layer, f is the number of filters in
each block, ks is the kernel size, and a is the activation function. The network is
visualized with Netron [126]. Figure reproduced with permission from [24].
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the set threshold bt = 60% (roughly corresponding to the point where they are
more entwined than not), their bounding boxes are merged to a minimal rectangular
bounding box around both of them that is labelled as containing two biomolecules.
This process runs recursively until all boxes are either combined or separated.

The YOLO algorithm is usually built upon a pretrained backbone, such as a ResNET
[130], GoogleNET [131] or in the case of this implementation, a DarkNET [132]. In
particular, we use the implementation known as DarkNet-53, its namesake arising as
a result of its architecture consisting of 53 convolutional layers. This backbone is then
attached to its neck, whose purpose is to form features from the base convolutional
neural network backbone. The YOLOv3 algorithm uses something akin to a Feature
Pyramid Network (FPN) as neck, adding a few convolutional layers in sequence
which connect into an eponymous yolo (detection) layer, which outputs a tensor
containing bounding boxes, the probability of an object being inside each bounding
box and the probability of the object being of a certain class. The feature map from
the second prior layer (i.e. two layers back from the detection layer) is upsampled and
subsequently merged with a much earlier layer in the network through concatenation,
allowing the network to learn semantic information from the upsampled feature
map and still retain information of finer details from the early feature map. At this
step, a few more convolutional layers are added and another yolo layer makes new
predictions, but at a different scale (proportional to the upsampling factor). Through
yet another concatenation with an early feature map and upsampling, this process
is repeated a third and final time into the third and last yolo layer, which benefits
from computations from the backbone DarkNet network and all previous yolo layer
computations. Thus, the YOLO algorithm makes detections at three different scales,
where each scale of detections make use of information from prior layers detecting at
larger scales, effectively resulting in quick and highly accurate detections of generic
objects in images.

The YOLOv3 algorithm was trained on simulated kymographs, generated in the same
way as for the U-net (described in section 3.2), but where the input is a perfectly
segmented kymograph and the outputs are minimally sized bounding boxes around
each separate trajectory. Trajectories are considered separate in the training data
if they are more than T/16 frames apart, where T is the total amount of frames in
the kymograph. Images are continuously generated during training, such that each
subsequent image is entirely unique and the risk of overtraining is eliminated. The
algorithm was trained using approximately 2 million such unique segmented images,
where each image was generated with a diffusion in the range 1 ≤ D ≤ 100 µm2/s
(the optical contrast is not relevant here because we employ perfectly segmented
simulated images) with the standard YOLO error function [128] using the ADAM
optimizer [127] with a learning rate of 0.001. The input during training are simulated
images (segmented kymographs) of size 128 × 8192, down-sampled to 128 × 128
to improve performance, and the output is a list of YOLO-labels containing class,
position, probability of occurrence and probability of class of each trajectory in the
input image.
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3.1.4 Characterizing Trajectories

CE-loss

Figure 3.4: The custom FCNN architecture is comprised of Conv blocks, which
are singular convolutional layers, and a sequence of Conv* blocks, which in turn
consist of a sequence of convolutional layers followed by a max pooling layer and
a skip connection, as exemplified in the legend. This sequence culminates into a
custom property layer that calculates iOC and D by the methods described in
the text below. Here, f is the number of filters in each block, ks is the kernel
size, and a is the activation function. The network is visualized with Netron[126].
Figure reproduced with permission from [24].

Finally, to calculate intensity iOC and diffusivity D for each single biomolecule
trajectory, we use a custom neural network architecture, which consists of a FCNN
connected with residual blocks. The architecture itself is a sequence of convolutional
layers followed by a max pooling layer, including short skip connections to preserve
information and mitigate the problems of vanishing gradient as outlined in section
2.2.2. The full body of the architecture consists of seven of these connected blocks,
culminating in a computational head module, as exemplified in figure 3.4. The body
blocks are the neural networks which bear the brunt of the computation, whereas
the head controls the nature of the data output by the network. In concrete terms,
the head of the neural network returns three outputs: (1) The raw output Omatrix

from the last convolutional layer of the neural network. (2) A mask, which is a
down-sampled representation of the original kymograph normalized by its pixel
sum and passed through a sigmoid activation function. This effectively gives us a
weighted matrix, where each matrix element is the probability that the corresponding
down-sampled region in the kymograph contains a biomolecule trajectory. (3) The
calculated property for each kymograph, obtained by multiplying Omatrix by the mask
to produce a value of the property for each pixel in the down-sampled kymograph
weighted by the probability of said pixel containing a trajectory, and finally summing
over the entire down-sampled image to obtain a single mean value of the property
for the entire kymograph. Note here that when calculating D or iOC, the network
architecture is identical - the only difference is which property is included in the
labelled data and therefore included in the loss which the network’s parameters are
trained to minimize.

The FCNN networks were trained using the ADAM optimizer [127] with a learning
rate of 0.0001 on approximately 300, 000 simulated kymographs in the same range as
the U-net and train-validated equivalently to the U-net. The input during training of
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the FCNNs are simulated images (kymographs) of size 128x2048 with a single particle
trajectory, and the output is a single value of either iOC or D of said trajectory, as
well as the mask which as mentioned is a learnt downsampled representation of the
original kymograph.

3.1.5 Training Methods
Now that we have a better idea of the underlying algorithms used in this thesis,
it is natural to delve deeper into the specific training methods which are vital to
reaching the high accuracy and precision and low LoD of the models used in paper
I & II. In particular, I describe transfer learning; the process of transferring learnt
knowledge from one network to another, ensemble modelling; the process of including
the predictions of several neural networks in a given task, and curriculum learning;
the process of successively increasing the difficulty of the task during training to be
learnt to facilitate learning in very challenging conditions.

Transfer Learning

Transfer learning is a technique pioneered in the fields of AI and DL that involves
transferring knowledge gained while solving one task to another (similar but not
identical) task. The underlying idea is that some of the knowledge and skills learned
while solving the first problem can be applied directly to the second problem, resulting
in improved performance and shorter training time. It has been shown that a neural
network trained on a particular type of dataset is much better at quickly recognizing
new instances of similar data, when compared to a completely untrained network
[133]. For instance, though a neural network may need thousands of examples of
cars to start to accurately recognize cars, such a network can learn much quicker
to recognize other vehicles when introduced into its training set compared to an
untrained network [134]. This is a consequence of, as mentioned previously, neural
networks learning increasingly complex abstractions in deeper layers of the network.
Thus, a majority of the learning a network has to do to solve any given task is simply
to find a good representation of the data, and transfer learning can thus be achieved
by ”freezing” the training of the first layers of a neural network and only training
the last few layers on the new data.

There are several benefits of this approach, most evidently that it can help reduce
training time and data requirements for new tasks. Another benefit is that it can
improve generalization performance, meaning that models trained using transfer
learning are more likely to achieve good results on unseen data than those trained
from scratch specifically for the new task at hand. Additionally, because transfer
learning typically relies on pre-trained models which have been already tuned for
good performance on a wide range of tasks, it can help avoid overfitting problems
which can plague neural networks when they are retrained from scratch for a specific
purpose.

Despite its many advantages, there are also some potential drawbacks to consider
with transfer learning strategies. One issue may be poor adaptation if there are
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significant differences between how tasks were originally learned and how they need
to be applied later on, and special care should be taken when applying pre-trained
models so as to not inadvertently introduce bias into results due to inaccuracies or
irregularities in how the old network was transfer-learned into the new.

Ensemble Modeling

Ensemble modelling is a generic term meaning incorporating several models’ predic-
tions to improve accuracy, precision and overall generalizability of a final (ensemble)
model. This technique has been used in traditional statistical methods for many years
[135], but is equally appropriate in (deep) machine learning owing to the typically
fast inference time of individual models. In general, models in an ensemble can
be trained on different datasets or different permutations of the same datasets, be
defined as identical architectures or variations of the same underlying architectures,
or even be entirely based on completely separate architectures or algorithms. In
principle, an ensemble model can even be any combination of the above alternatives.

There are several advantages of this approach [73], dependent fully on its specific im-
plementation, but in general it’s usually used to improve accuracy and generalizability
by mitigating the consequences of exploding state spaces [136] and underspecification
[51] and bias. In short, models trained on different permutations (or sometimes even
the same) of the same dataset tend to learn different biases in different directions,
such that their individual biases all cancel out with a large enough ensemble of
models. Another related benefit is that of stability, wherein the variability of an
ensemble model across different datasets or with changed parameters is decreased
compared to using a single model. Additionally, ensemble modelling has been shown
to be able to identify patters than may not be visible to any individual module
[137]. In essence, combing information from several different models may reveal
otherwise hidden patterns, making them especially useful for complex problems
where traditional methods struggle to find accurate solutions.

Curriculum Learning

Another technique of significant impact to this project is curriculum learning [138],
wherein we take full advantage of the benefits of transfer learning. Human beings
often do not learn anything when approached with an insurmountable challenge, learn
only the minimally required information when approached with a trivial problem,
and learn optimally only when approached with a problem perfectly tuned to be
slightly challenging given their particular skillset [139]. Neural networks, interestingly,
have been shown to learn in analogous ways [65]. To take advantage of this, we
may implement active learning [140] or curriculum learning schemes, wherein we
vary which portions of the datasets are fed into the neural network during training
to tune the challenges of learning, for instance by automatically feeding in more
examples of data-points in regimes where the network retains low accuracy. As
described in section 3.1.5, neural networks need to train on a large amount of data
only to learn optimal representations of the dataset in its initial layers, but once
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these representations are learnt, transfer-learning it on new data is usually only a
question of tuning the specifics of the last few layers’ learnt abstractions. To take
advantage of this, we might employ a curriculum learning scheme wherein we train
the networks with the easiest examples or the ones we have the most data-points
of first, and successively increase the difficulty of the dataset as the network’s loss
decreases.

To train the intensity- and diffusivity-calculating FCNN models, a curriculum learn-
ing scheme with intermittent checkpoints to be used for later ensemble modelling
prediction was employed. Specifically, the intensity-calculating model was initially
trained only on a narrow range of high iOC trajectories, representing the highest
SNR and in principle easiest case for the model to begin learning correlations, and
then slowly curriculum-learned down to the lowest range of relevant iOC values. In
each narrow range of iOC values, checkpoint models which are more accurate in that
particular narrow range of values are saved separately. Upon model inference, an
initial prediction is made with a model trained on the entire range of iOC values
with the scheme described above, and then a second model trained on the narrower
range of values makes a second prediction on the same trajectory to achieve higher
accuracy. The process is equivalent for diffusivity, with the difference being that the
range of D values being trained on increases rather than decreases during curriculum
learning.

We note here that this ensemble modelling technique adds yet another barrier against
false signal detection, since if the epistemic uncertainty inherent in the data is
high, which may be the case for very short trajectories or regions of unusually high
noise, the two predictions will differ significantly and hence the prediction should be
discarded. Of course, as is common in ensemble modelling [141], one can implement
an even larger and finer-grained ensemble for even higher prediction accuracy and
accurate uncertainty estimation.

3.2 Simulations of Biomolecule Trajectories
As mentioned previously, all models are trained using supervised learning, i.e. by
training each network to approximate a function correlating input x to label (output)
y. To accomplish this, not only do we need to show the networks examples of
kymographs containing particle trajectories, but also provide it with reliable ground
truth regarding the position and properties of each individual trajectory. This can
be done through manual labelling, but we will quickly run into issues regarding the
limited datasets which can be procured by manual labour and problems related to
human-induced biases. It is also true that such a trained network can never transcend
the abilities of the human which provides the ground truth labels. Thus, we turn
instead to the possibilities regarding generation of synthetic data, understanding
the prospects of which necessitates a deep review of the underlying physical nature
within the NSM system.

Firstly, let us remind ourselves that NSM works by imaging nanofluidic channels
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within an optically transparent matrix by dark-field light-scattering microscopy as
shown in figure 2.1. The channels exceed the field of the view lengthwise, and extend
between tens to hundreds of nanometres in cross-sectional dimensions depending
on the species to be investigated. As a result of this arrangement, the imaged
biomolecules are localized within the microscope focal plane during the entire mea-
surement and the optical contrast of the imaged biomolecules is enhanced by several
orders of magnitude.

For small biomolecules, such as the proteins and DNA strands imaged in Paper I,
their scattering in our system is effectively that of a diffraction-limited spot. To
simulate their generated optical response in our system, we simulate trajectories
with four main varying properties; integrated optical contrast iOC, diffusivity D,
gaussian width s and velocity v. At time zero, a position x0 is randomly chosen
along the nanochannel, and the position xi of the molecule at frame i is generated
as Brownian motion with xi = xi−1 + v∆t + N (0, 1)

√
2D∆t, where a random value

N (0, 1) is drawn from a normal distribution with mean 0 and standard deviation
1. The optical response of the biomolecule was then simulated along this path as a
gaussian of width s, positions x0...xk for length of trajectory k and magnitude iOC.

The generated response was then combined with simulated background noise (figure
3.5B) as I = I0 ·Ir, where I0 is the response of the empty channel and Ir the response
of the biomolecule, and kymographs were created according to the procedure described
in section 3.1.1. This simulated noise is generated as following. We begin by assuming
that the noise in the system is dominated by two sources; shot noise from the channel
and imperfections & dirt in the channel, and the vibration of the channels. The
shot noise is generated as an inevitable consequence of quantum-level fluctuations
in the number of photons interacting with the sensors of the camera over short
periods of time. Shot noise, as a sequence of independently occurring events of
photon interaction with a constant mean rate, can be modelled through a Poisson
distribution, which in turn can be modelled by a Gaussian distribution in the limit
of large N. The second source of noise is the vibrations of the channel, modelled as
a harmonic vibration in the centroid of the Gaussian distribution. Thus, for each
frame t, the background is first initialized as

b0 = e(−(x−(x0+xλ))2/λ2) · (1 + N (0, 1) ∗ b) · (1 + AN (0, 1)) (3.2)

where x denotes the position along the channel, x0, λ, A are numerical parameters
randomly drawn from a normal and uniform distribution, respectively, ∗ denotes the
convolution operation, and where

xλ = (2N (0, 1) + sin((π − 0.05)t)) · dx,

b = e(−(x)2/C2) + xλ∑(e(−(x)2/C2) + xλ) ,

where dx, C are numerical parameters randomly drawn from uniform distributions.
Here, in equation 3.2, the first factor is the aforementioned (partially sinusoidally
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Figure 3.5: A: Examples of the simulated response of biomolecules defined by
different combinations of optical contrast iOC and diffusivity D. B: Examples of
simulated kymographs, acquired by combining the responses in A with simulated
noise.
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variant and partially randomly sampled) Gaussian. The second factor corresponds to
noise resultant of a perfect channel (1) plus noise resultant of dirt and imperfections
in the channel (N (0, 1) ∗ b), which can be modelled by Gaussian noise with a large
correlation length. We achieve this by a convolution with a generic (randomly
sampled) point spread function (PSF) of the microscope and the (randomly sampled)
position and size of said dirt. The third factor corresponds to the aforementioned
shot noise, and is effectively a randomly sampled scalar.

Finally, the total background noise bf is calculated as

bf = b0 · (1 + bAN (0, 1)) + 0.4bAN (0, 1) (3.3)

where a new normal variable is drawn for each position x along the channel, and
bA is a numerical parameter drawn from a uniform distribution correlated with the
total quantitative noise level in the system.

The value of the numerical parameters are chosen such that they roughly correspond
to the quantitative levels of noise seen in experimentally measured noise, within
a numerical span large enough such that any quantitative variations of the noise
is still appropriately accounted for. In principle, so long as the true values of the
experimentally measured noise are encapsulated within the range of the simulated
noise, we can expect the neural network to properly interpolate and correct for any
such variation of noise. However, note that this approach is sensitive to sources of
noise which are not included in the simulations. Specifically, if a qualitatively different
source of noise excluded in the simulations is present in a measurement at inference
time (i.e. spurious vibrations as a result of human movement, or device malfunction),
it will be ambiguous to the neural network whether this portion of the data should be
considered signal or noise. This problem can, to an extent, be mitigated by transfer-
learning the trained network on a few examples of simulated trajectories within
experimentally measured noise before each new set of measurements, effectively
constituting a re-calibration step of the network. Alternatively, it is always possible
to include new sources of noise into the simulations. However, note that this increases
the state-space of possibilities which the network needs to learn and thereby increases
the overall training time and increases the requirements for representational ability
within the choice of network architecture.

Regardless, this method demonstrates a powerful benefit of using deep learning
systems: we do not have to perfectly describe or understand the noise in order to
correct for it. In general, so long as the noise is consistent (i.e., no significantly
different qualitatively new sources of noise are expected to exist at inference time),
and we know the generic representation of the dominating sources of noise, we
can expect deep learning systems to properly interpolate learnt correlations to
experimentally relevant data.
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Summary of Paper I and II

In this chapter, I present the results of the DL pipeline introduced in figure 3.1. First,
I present the results of the pipeline on a synthetically generated dataset consisting
of simulated biomolecule trajectories in experimentally measured noise, to serve
as benchmark for the data analysis as a whole. Secondly, I present results on a
biomolecule library, consisting of a selection of a proteins and biomolecules relevant
for biological study. Thirdly, I present results of measuring a complex biofluid
consisting of cell-secreted EVs, whereby I demonstrate the method’s versatility and
overall biological relevance.

4.1 Simulated Biomolecules in Measured Noise

To estimate the accuracy and precision of the algorithm, we test it on a combination
of simulated biomolecules of iOC = [0.1, 0.2, 0.5, 1, 2] nm and D = [10, 20, 50] µm2/s
on top of experimentally measured noise. The trajectories of biomolecules were found
using the segmentation & object detection algorithm described in sections 3.1.2 and
3.1.3, from which iOC and D were calculated using the FCNN described in 3.1.4.
Such determined values of iOC and D of all detected trajectories are shown as a
scatter plot in figure 4.1. The mean values of iOC and D in figure 4.1 correspond
to the mean calculated value of iOC and D for each separate simulated trajectory.
Thus, for a perfect algorithm, we would expect the circular points (mean calculated
value) to perfectly overlap the crosses (ground truth), with error bars of minimal
length (see [24] for theoretical limits in precision). The values are compared with
that found by a standard heuristic-based algorithm (SA) in figure 4.1B. Clearly,
the values identified by the pipeline correspond to the ground truth very well even
within experimentally measured conditions, and particularly outperform the standard
analysis at the lowest iOC, thereby corroborating the used data analysis pipeline as
a whole.

41
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SA

ML

Figure 4.1: Analysis of the artificially generated data set comprised of experimen-
tally recorded background signal and simulated response of biomolecules defined by
a combination of values for iOC = [0.1, 0.2, 0.5, 1, 2] nm, and D = [10, 20, 50]µm2/s.
DL: Scatter plot of mean value of iOC and D. Error bars correspond to the reso-
lution in iOC and D defined as the standard deviation of the calculated values for
iOC and D for each separate D, iOC permutation. SA: Same as for DL, but for
the standard analysis algorithm as described in [24].
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4.2 Summary of Paper I

4.2.1 A Biomolecule Library
In figure 4.2, the results of applying the ML pipeline to a collection of proteins and
DNAs with well-known molecular weights and hydrodynamic radii are presented,
and the overall correspondence fits very well. In figures 4.2A and 4.2B, we have used
two different nano-channels for the measurements, whose cross sections affect the
conversion between iOC/D and MW/Rs as described in section 2.1.3. Here, each
data point corresponds to the iOC and D determined for a single trajectory from a
single biomolecule within the nanochannel, with its transparency value correlated
to the length of each respective biomolecule trajectory. Further, in figures 4.2C
and 4.2D, we show one-dimensional histograms of the MW (converted from iOC)
of all trajectories, where the number of counts within each peak corresponds to
the sum of the lengths of all detected trajectories corresponding to the MW at the
respective peak. Thus, the number of counts in each separate (gaussian) histogram
distribution correspond to the relative concentration of that species within the studied
sample. The guiding line in black is the expected curve for globular protein, whose
hydrodynamic radius approximately scales as Rs

∼= b · MW
1
3 , where b = 0.88nm/Da

[142].

For elongated molecules, such as DNA, their diffusivity is expected to be considerably
lower compared to globular molecules at the same corresponding MW [144]. This
is indeed consistent with what is found by the DL analysis. Note also the presence
of molecular populations with higher MW and Rs than expected from its main
monomer peak, specifically for thyroglobulin and BSA, wherein the indications of a
second peak at double the MW and c.a. a factor 1.3 greater Rs suggest that these
are protein dimers (as elaborated upon in section 2.1.3) [145].

The peaks corresponding to molecular monomers are shown by ellipses in figure
4.2A, B, where centers of said ellipses correspond to the mean value of iOC (iOC)
and D (D) and their diameters to the resolution in iOC and D defined as the
full-width-half-maximum (FWHM) of the peaks in figure 4.2C,D. Further, in figures
4.2E and 4.2F, we compare the performance of ML analysis to that of the SA [146]
for MW and Rs approximation, respectively. Here, we find that the ML leads to
better accuracy and precision for all included protein monomers and DNA strands.
The black lines show the theoretical prediction of iOC/MW and D/Rs conversion,
in channel I as a dotted line and channel II as a striped line, and it is clear that the
theoretical predictions are reproduced very well in the experimental results.

It should be noted that there are significant molecular populations revealed by the
AI results which correspond to higher MW and Rs than expected from protein
monomers. In particular, results for thyroglobulin, ferritin and BSA show a second
population with approximately 2× higher MW and ≈ 1.3× higher Rs than expected,
which likely corresponds to a dimer population [147] [145] as mentioned. Further, for
ferritin, we find multiple subpopulations characterized by molecules with different
numbers of coordinated iron [148].



44 4.2. Summary of Paper I

Figure 4.2: DL analysis results. (A, B) Scatter plots of iOC translated into MW
using equation 2.3 for in the main text, and D translated into Rs using equation
2.4 for individual biomolecules of different types, measured in (A) Channel I
and (B) Channel II using ML. Each dot is extracted from a single biomolecule
trajectory. Color intensity scales linearly with frame number of the trajectory
(N). The highest intensity corresponds to N = 2130 frames. The grey line
corresponds to an empirical relation between MW and D for globular protein
[143] (C, D) iOC histograms of the biomolecules in (A, B) translated into MW
using equation 2.3. Number of counts is normalized by the total number of
frames in which biomolecules of each type were identified. (E,F) Dependency of
iOC of protein monomers on nominal MW compared with the theoretical model
(equation 2.3), and protein monomer D dependency on nominal Rs compared
with the confinement-corrected Stokes–Einstein equation (equation 2.4). E and F
also show the agreement between the independent results of SA and ML; data are
presented as mean values and error bars correspond to the resolution in iOC and D,
respectively. Here, the solutions containing ADH, ferritin and thyroglobulin had
a concentration of 28 nM of the protein solution in PBS, and the DNA fragments
and BSA had a concentration of 28 nM in 0.05× TBE. Figure reproduced with
permission from [24].
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Moreover, note that the values determined by ML are in agreement with the SA,
further corroborating that the data analysis procedure is valid. As the ML has higher
speed, accuracy and precision (especially for smaller molecules), we use it exclusively
for all further analysis.

4.2.2 Extracellular Vesicles

Figure 4.3: Analysis of BNPs in conditioned cell culture medium containing serum.
(A) Kymograph of multiple lipoprotein particles (marked by red arrows) and one
larger EV (marked by the blue arrow) moving through the nanochannel. (inset)
Schematics of an EV and a lipoprotein (depicted to scale). (B,C) Scatter plots
of iOC and D translated into Rs. (D,E) Histograms of Rs, analyzed using ML.
Data in (B,D) corresponds to the conditioned SH-SY5Y human cell medium and
(C,E) the control where the medium had not been in contact with the cells. All
data were acquired in Channel V that had been passivated by an SLB prior to
the measurement. Figure reproduced with permission from [24].
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In order to demonstrate the technique’s biological relevance, we chose to investigate
a complex biological sample containing a mixture of serum proteins and secreted EVs
(see section 2.1.3). In practice, this requires only a few minor adjustments compared
to the procedure used to measure the biomolecules shown in figure 4.2. First of all,
to accomodate for the significantly increased size of EVs, we use the larger channel
III described in section 2.1.2. Secondly, we coated the walls of the layers with a
supported lipid bilayer (SLB) [149] to prevent nonspecific binding of EVs to the
nanochannel. Thirdly, we applied a slow flow by introducing a 0.25 Pa pressure
drop along the channel to increase overall measurement throughput. Finally, the
data analysis was modified only in two ways; firstly, new iOC- and D-calculating
FCNN models (with identical architecture, described in section 3.1.4) are trained in
higher ranges of iOC and with velocity-induced flow. Secondly, since the stability of
the microscope and power of the laser had degraded prior to these measurements,
vibrations and shot noise were overall higher than for the measurements of the
previous subsection. To solve this, the denoising U-net described in section 3.1.2
was trained on quantitatively higher levels of noise. These last two points show the
robustness of the data analysis procedure; accounting for these new effects with
the current AI pipeline is simply a matter of simulating said effects and re-training
new models. Indeed, accounting for higher noise is in effect simply transfer-learning
existing models on said higher noise, thereby still retaining all trained knowledge
inside the models. Due to the principles of transfer learning as described in section
3.1.5, re-training an existing model on new simulations requires significantly less
data and thus computational power compared to a model trained fully from scratch.

Using this slightly modified procedure, with everything else in the analysis pipeline
consistent, we collected a significant number of trajectories of these biological nanopar-
ticles (BNPs) and derive their iOC and D as described previously (see section 3.1.4).
This analysis revealed two distinct populations of nanoparticles, one in the regime of
smaller iOC (Rs) and one in the regime of higher iOC (Rs). Through investigating
a control experiment consisting only of the cell culture medium within which the
EVs were produced, we found only the first population corresponding to smaller
iOC (Rs) reproduced. Thus, it is likely that the second population does indeed
correspond to EVs secreted by the cells. The identified values of Rs ≈ 10 − 13 nm
correspond to low-density lipoproteins [150] and Rs ≈ 20 − 70 nm correspond to EVs
[151]. Note here, though, that the translation of iOC into MW is considerably more
complex for EVs than for single molecules due to the varying cargo within the BNPs
adding spatial dimensions to the BNPs’ refractive indices and changing the effective
refractive index of the BNP as a whole. The particles’ larger sizes also introduce
uncertainty resultant of interactions with the walls of the nano-channel as discussed
in Supplementary Information 4 of Paper I.

4.3 Limits Beyond State-of-the-art
This last section of the thesis regards the aspects of biomolecule detection and
characterization of which the introduced AI pipeline exceeds the established state-
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of-the-art. In particular, we investigate how the accuracy and precision varies as
function of trajectory length for different molecular species below state-of-the-art
for limit of detection, and draw conclusions on which hitherto elusive species may
become available for study using this AI approach.

1

1

10

10

A B

C D

Figure 4.4: Limits of Machine Learning Analysis. (A) Kymographs in column
1 showing simulated optical response of a 1000, 100 and 10 kDa molecule, re-
spectively, column 2 the FCNN’s predicted probability map of their trajectories,
and column 3 their ground truth trajectories. (B) Log-scale scatter plot showing
mean predicted MW µsim versus true MW in blue dots for select masses in the
range 1 − 60 kDa, with corresponding standard deviation σsim in red bars and
ideal prediction shown as a blue line. (C,D) Accuracy (Precision) of prediction as
function of trajectory length for select masses in the range 2 − 50 kDa. All masses
assume channel cross-sectional area equivalent to channel I.

The three images within the first column of figure 4.4A show the kymographs of the
simulated optical response of a simulated 1000, 100, and 10 kDa particle over time,
generated as described in section 3.2 and processed as described in section 3.1.1. Note
that whilst the trajectory of the heaviest biomolecule is clearly visible even to the
eye, the optical response of the lightest molecule is almost indistinguishable from the
background. The three images in the third column of figure 4.4A show the ground
truth trajectories of the same particles. Here, each trajectory is a sequence in time of
the x-position of the particle along the nano-channel, where its position is modelled
as a gaussian centered around x with maximal value 1 and gaussian width correlated
with the size of the particle (further details in section 3.2). The three images in
the middle column of figure 4.4A show the neural network’s predicted probability
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map of the particle, i.e. the probability of each region of the kymograph containing
a particle trajectory. As described in section 3.1.4, not pictured here is a separate
parallel map output by the network, corresponding to the calculated iOC within
each rectangular region of the probability map assuming that it contains a single
particle trajectory. The true value of iOC of the single trajectory contained within
the kymograph is acquired by multiplying the two aforementioned maps together and
summing them, effectively employing a sum of iOC along the trajectory weighted
by its probability of existence. This scheme effectively enables the quantification of
trajectory properties without inherently necessitating pixel-wise particle tracking, in
turn enabling robust analysis of trajectories below even the standard deviation of
noise (i.e. where the probability of each pixel containing a trajectory is always less
than one).

In figure 4.4B, we plot the resulting predicted MW as a function of true MW in
logarithmic scale, for a set of MW between 1 and 60 (roughly corresponding to the
limit of current state-of-the-art), with corresponding standard deviation as error
bars. Each point corresponds to the prediction of 25 samples, where each sample is
a set MW and trajectory length (11200 frames) within a randomly generated noise
profile which quantitatively and qualitatively matches the power spectrum of the
experimentally measured noise at the time of measuring the results in figure 4.2 (see
section 3.2 for details).

In figure 4.4C, we show the accuracy and precision of predicting MW as a function
of trajectory length, for a selected set of MW between 2 and 50 kDa. Both accuracy
and precision are estimated from 25 samples per point, same as for figure 4.4B.
Accuracy is defined here as (one minus) the average error normalized by the correct
MW , i.e. 1 − |µpred − µreal|/µreal and precision as the maximum of 0, and the mean
predicted MW minus the standard deviation of the prediction normalized by the
mean predicted MW, i.e. max(0, (µpred − σpred)/µpred). The network is evaluated
at 6 linearly separated discrete trajectory lengths between N = 10 and N = 11200
frames, and an interpolating logarithmic and inverse quadratic function is then fitted
for accuracy and precision, respectively. Note that accuracy is generally very high
for particles above 10 kDa in MW, and it only begins to drop off below this regime.
Here, the accuracy drops significantly for short trajectories; there simply isn’t a high
likelihood that the trajectory’s signal overcomes the noise in any significant number
of frames. However, the accuracy is still very high (∼ 80%) for long trajectories of
small molecules, thus principally enabling their accurate quantification if only one
can measure them for longer periods of time. Note also the peculiar nature of a
seemingly improving accuracy for the smallest molecules (< 5 kDa) and shortest
trajectories. This is simply a consequence of the signal being almost fully obscured by
the noise in these regimes, and the algorithm therefore tending to output values close
to 0 in these cases, leading to a technical (but uninteresting) increase in accuracy for
molecules with MW closer to 0. The precision of predictions shows similarly precise
results for MW ≥ 10 kDa, and quickly decreasing precision for smaller molecules.

By these simulated results, it is clear that the state-of-the-art of molecule detection
and characterization may be surpassed significantly, including a LoD below 10 kDa
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assuming average trajectory lengths of ≈ 1500 frames for DNA molecules and 900
frames for proteins of this size range (see [24] for details) and below even 5 kDa
assuming long trajectory lengths. Such long trajectory lengths may be achievable
through statistical bootstrapping [152], simply by chance given long measurements,
or potentially by electrostatic entrapment of molecules [153].





Chapter 5

Conclusions & Outlook

5.1 Conclusions
NSM has recently been introduced as a technique that enables the label-free real-time
characterization of freely diffusing single biomolecules down to the tens-of-kDa regime
inside nano-sized channels. In principle, there is no fundamental limit to the lower
limit of detection of this system in the nano-scale; it is only technically limited by
e.g. the recorded scattering intensity (i.e. maximum available laser power and frame-
rate of the camera), cross-sectional dimensions of the nanofabricated channels (i.e.
strength of interference between light scattered from the channel and the biomolecule
confined therein), and the sophistication of the statistical analysis used to resolve
properties of biomolecules from the scattering profile of the resulting kymographs.
The focus of this thesis has been to optimize the statistical analysis; leveraging the
astounding progress of DL-based CV algorithms to push the possibilities of statistical
analysis beyond conventional limits and enable biomolecule screening below the 10
kDa regime.

The two main conclusions of the thesis are; firstly, that it is possible to accurately
characterize biomolecules from statistical variations in a sequence of consistent
measurements without explicitly needing to recreate the biomolecule’s frame-by-
frame trajectory. Secondly, we have found that in studying a system where simulating
its properties is considerably simpler than calculating them directly, deep learning
can be an ideal general solution. Thus, characterizing a biomolecule below the
10 kDa-regime in the NSM system with conventional heuristic-based methods is
fundamentally more difficult than characterizing a biomolecule in the 1000 kDa-
regime. However, once the performance of a deep learning system has been validated
on simulated molecules in the 1000 kDa-regime, simulating and training on molecules
below the 10 kDa-regime is straightforward and can be enabled by well-established
training schemes such as ensemble modelling and curriculum learning.

In terms of the long-term future outlook of NSM and the role of deep learning
therein, the possibilities for innovative and impactful research in a broad range of
fields is both promising and abundant, as outlined in section 5.3. This transforms
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the challenge of determining the short-term future outlook of this thesis from one of
finding interesting further applications, to instead narrowing the focus on the most
immediately promising prospects of study.

5.2 Short-term Future Outlook
The focus of said near-term future projects can be split in two; firstly, applying the
deep learning methods developed in this thesis to analyze single molecule trajectories
to a high degree of accuracy, precision and detection limit, and secondly to develop
new deep learning methods to enable analysis beyond the single trajectory regime.
All the examples brought up in the sections below are already being worked on or
are in early planning stages, through collaboration with a broad range of research
groups and institutions.

5.2.1 Single Molecule Analysis
All projects within this sub-section share one thing in common; they can in principle
be solved by the deep learning tools introduced in this thesis as-is, including the
high precision, accuracy and detection limits said tools entail. The only required
modification is to train the models in the corresponding parameter range of noise
and generated optical response that each inividual project requires.

Insulin

Following the theoretical limits of detection and quantification defined in Paper II
and outlined in section 4 of this thesis, accurate characterization of single molecule
trajectories below the 10 kDa regime is possible in channel I as defined in section 2.1.2.
Since the iOC of molecules scales linearly with decreasing nano-channel cross section,
smaller channels than channel I may also be constructed to improve the accuracy of
said characterization. Thus, we should expect to be able to accurately characterize
even the protein-hormone insulin with MW ≈ 6 kDa, particularly important for
diabetes research. This would consitute a world-first in the label-free characterization
of freely diffusing molecules in this size range in general, and for insulin in particular.

λ-DNA

Over the past two decades, nanofluidic structures have become a potent platform for
in-depth investigation of DNA on the kilo-bp length scale [154]. The combination
of excluded volume and DNA stiffness causes DNA to be stretched to almost its
full length when contained in nano-sized channels [154]. NSM is therefore an ideal
complementary method to study these long DNA structures, and preliminary results
on comparing fluorescently stained λ-DNA to unstained λ-DNA show that the
staining process indeed affects the length and optical contrast of said molecules.
Therefore, to study their properties without significantly altering them, label-free
methods such as NSM are crucial. In this project, all deep learning models were
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used as described in this thesis, with the only difference being that the models
were instead trained on the generated simulated response of λ − DNA in our nano-
sized channels. Further measurements will corroborate these results, and lead to
the natural continuation of the project in studying DNA-protein binding events as
outlined in section 5.2.2.

Stress Granules

Eukaryotic cells respond to stress by forming stress granules, which are effectively
transient membraneless organelles [155]. They have a core-shell substructure, are
made up of messenger ribonucleoprotein complexes, and are crucial for controlling
the rate of protein translation and signaling under stress [155]. This has significant
implications for cancer and neurological illnesses [155]. The molecular structure of
stress granules and their biochemical function in plant growth and fitness are the
subjects of active research, yet no methods have so far been able to measure each
granule individually in a satisfactory manner [155]. Stress granules, as high-density
protein and RNA aggregates formed by organisms under stress, may be analyzed in
an effectively equivalent fashion to EVs in Paper I through single molecule trajectory
analysis in large channels.

Extracellular Vesicles

In Paper I, we introduce NSM as a powerful characterization technique for EVs, and we
expect it to remain a key method for label-free EV analysis in the future. In the short
term, we will use NSM not only to characterize EVs, but also their secreted contents
by use of nanovesicle traps built directly into the nano-sized channels. Further, as
noted in Paper I, precise conversion of iOC into MW is more complicated for BNPs
such as EVs than for single molecules due to a large variety of molecular constituents
with different optical properties whose representation and spatial distribution might
be different for each BNP. Therefore, we did not further explore the content of the
EVs via the measured iOC. Further theoretical work suggests that correcting for
such effects is possible through modelling the electromagnetic properties of EVs,
which would enable more informative BNP characterization in general.

5.2.2 Beyond Single Molecule Analysis
Going beyond the analysis of isolated trajectories requires the development of new
deep learning models. Unpublished results on simulated data show that node-
regression-based graph neural networks (GNNs) are ideal for high-density samples
which require high-fidelity output temporally and spatially through the channel [156].
In principle, GNNs retain the inherent benefit of a CNN approach in being able
to consider an entire trajectory simultaneously in its prediction of its properties,
without the disadvantage of having to consider an entire kymograph (or portion of a
kymograph). Thus, each frame of a trajectory can be given a separate prediction of its
properties, whilst still considering the entire connected trajectory in the prediction.
This approach is ideal in cases where we expect molecule trajectories to change
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over time, as is the case for enzyme-molecule interactions, DNA-protein binding
events and investigate conformational changes in trajectories over time, among other
applications.

Protein-Protein Interactions

When performing their tasks in vivo, proteins hardly ever behave as separate species
[157]. In fact, it is estimated that over 80% of proteins have been found to function
in complexes rather than alone [157]. Studying how protein-protein interactions
impact their function is crucial for determining how proteins work in their natural
environment, i.e. in the inside of cells. Furhter, to understand the cell’s biochemistry,
it would be incredibly helpful to characterize the interactions between the proteins
in said cell [157]. There are numerous approaches to determine the outcome of an
interaction between two or more proteins that has a clear functional goal.

Cell-to-cell contacts, metabolic regulation, and control of developmental processes
are only a few of the biological activities that are handled by said protein-protein
interactions [158]. These interactions can be categorized in a number of ways based
on their differing structural and functional traits [158]. For instance, they can
be homo- or heterooligomeric depending on their interaction surface, obligate or
non-obligate depending on their stability, and transient or permanent depending on
their persistence [158]. Any combination of these three distinct pairs may be used
to characterize a certain protein-protein interaction. For instance, while temporary
contacts likely create signaling pathways, long-term interactions are more likely
to result in a stable protein complex. NSM is a promising method to study such
interactions, and the aforementioned GNN approach is an ideal analysis tool for such
an application. Another project along the same focus is to study enzyme-molecular
interactions, i.e. how an enzyme (catalyst) affects the properties of a biomolecule
when bound to it, as is the case with CRISPR/Cas-9 binding events.

λ-DNA - CRISPR/Cas-9 Protein Binding Events

Proteins are lengthy chains of amino acids connected by peptide bonds and, as
established in section 2.1.3, are versatile and serve a number of purposes as building
blocks of the cell. Transporter proteins, receptor proteins, structural proteins, and
enzymes are a few of the various protein subgroups [159]. The latter work by
speeding up chemical reactions and highly selectively controlling a wide range of
functions within living cells [159]. They are also crucial to the replication, repair, and
alteration of DNA [159]. The Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) associated protein-9 nuclease (Cas9) is one example of an enzyme
involved in DNA modification [160]. Cas9, effectivelly a gene-editing tool, can
catalyze extremely sequence-specific double stranded breaks by cleaving links in the
DNA backbone [160]. The enzyme has many scientific uses, such as gene targeting,
control, and involvement in the adaptive immune system of bacteria and archaea
[160]. The Cas9 enzyme uses an RNA molecule, known as Guide RNA (gRNA),
with a 20 bp motif corresponding to the site of interest to identify the precise DNA
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sequence at which it will cause a double-stranded break with very high precision.
Direct detection and characterization of these binding events, as principally enabled
by NSM, is a highly relevant and sought-after feature in the fields of gene editing and
genomic mapping [159]. To study how active each binding site is over time, GNNs
are again an ideal solution.

Temperature Influence on Oligomeric State of Protease

Protein quality control is a crucial biological task primarily carried out by a wide
variety of distinct proteases [161]. One of these, the DegP protease, is essential to the
Escherichia coli protein quality control system because it eliminates unfolded proteins
or stops them from aggregating [161]. Upon temperature activation, this protease is
expected to go through extensive oligomeric state modifications, including massive
structural transitions from its hexameric resting form via a trimeric intermediate state
toward the higher oligomeric states [161]. However, despite being thoroughly studied
and having a number of high-resolution crystal structures of DegP in its many states,
there are still many unanswered concerns regarding how its structural transitions are
actually accomplished [161]. Prior studies using NMR diffusion and Cryo-EM have
been unable to elucidate these questions [161], but temperature-controlled NSM is in
contrast quite promising. To study the structural transitions over time (with varying
temperature), the aforementioned GNNs are ideal.

5.3 Long-term Future Outlook
In terms of DL advancement, recent progress in geometric DL for particle tracking
and characterization in terms of GNNs represents promising complementary methods
for use in high-fidelity high-density studies [162], where the CV pipeline introduced
in this thesis will struggle. It has recently been independently shown [156] that
reconstructing the trajectories of diffusive particles is not a necessary requisite to
accurately calculate the properties of the underlying stochastic process which gave rise
to the trajectory. Machine-learned models, like the ones trained in this thesis, have
the potential to exploit this hidden information to push the boundaries of particle
characterization methods in the regime of low SNR where heuristic-based methods
often struggle significantly. Since the models are trained entirely on simulated data,
their performance is also technically limited by available computational power and
are thereby expected to improve in tandem with the breakneck rates at which newer
generations of parallelizable (GPU) and tensor-processing-optimized (TPU) chips
operate and are developed. Therefore, we expect that beyond enabling the analysis
of biomolecules in the single-digit kDa regime, these DL tools will become ever-more
crucial in the complex and versatile analysis that NSM and other modern methods
of optical characterization enable.

In its current form, NSM already enables highly accurate label-free and tether-
free characterization of individual biomolecules and biological nanoparticles in a
wide range of biofluids. Advances in terms of instrumentation and DL tools is
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expected to push the performance even further, and particularly we expect that high-
throughput and resolution in single-digit kDa regime will find numerous bioanalytical
applications requiring analysis of highly heterogenous samples, such as exosome
characterization and direct detection of small-molecule binding events [163]. Further,
long-term monitoring of individual biomolecules diffusing in solution represents a yet
unexplored opportunity for studies of conformational changes, aggregation processes
and interactions between individual biomolecules. In addition, due to minimized
dilution of the sample by the nanofluidic platform, NSM is highly efficient for
transporting ultra-low volumes, such as intracellular content or secreted metabolites
of a single cell, thereby paving the way to real-time label-free single-cell studies.
Looking further forward, we expect as mentioned that NSM will find applications
outside the field of bioanalysis, such as characterization of inorganic nanoparticles,
particle counting, and single particle catalysis [18].
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