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a b s t r a c t

In software design, guaranteeing the correctness of run-time system behavior while achieving an
acceptable balance among multiple quality attributes remains a challenging problem. Moreover,
providing guarantees about the satisfaction of those requirements when systems are subject to
uncertain environments is even more challenging. While recent developments in architectural analysis
techniques can assist architects in exploring the satisfaction of quantitative guarantees across the
design space, existing approaches are still limited because they do not explicitly link design decisions
to satisfaction of quality requirements. Furthermore, the amount of information they yield can be
overwhelming to a human designer, making it difficult to see the forest for the trees. In this
paper we present ExTrA (Explaining Tradeoffs of software Architecture design spaces), an approach
to analyzing architectural design spaces that addresses these limitations and provides a basis for
explaining design tradeoffs. Our approach employs dimensionality reduction techniques employed
in machine learning pipelines like Principal Component Analysis (PCA) and Decision Tree Learning
(DTL) to enable architects to understand how design decisions contribute to the satisfaction of extra-
functional properties across the design space. Our results show feasibility of the approach in two case
studies and evidence that combining complementary techniques like PCA and DTL is a viable approach
to facilitate comprehension of tradeoffs in poorly-understood design spaces.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Designing modern software-intensive systems requires ex-
loring architectural design spaces that are often poorly under-
tood due to the increasing complexity and range of choices
hat architects have to make (and their potential interactions).
o add to the problem, it is often challenging to achieve good
esigns because of high levels of uncertainty. This uncertainty
eans it is often difficult to guarantee the correctness of run-

ime system behavior while striking an acceptable balance among
ultiple nonfunctional properties when design decisions involve
electing and composing loosely coupled, pre-existing compo-
ents or services that have different attributes (e.g., performance,
eliability, cost). These uncertainties can be induced by e.g., faults,
hanges in resource availability and network conditions, as well
s attacks (Garlan, 2010).
There are multiple approaches that help to automate the

earch for good architecture designs and that rely on a variety
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c-nd/4.0/).
of techniques such as stochastic search and Pareto analysis (Aleti
et al., 2009; Bondarev et al., 2007; Martens et al., 2010), as well
as quantitative verification (Calinescu et al., 2018; Cámara et al.,
2019) that enable architects to explore how the satisfaction of
quality of service requirements varies as the value of design
parameters and environment variables change. Despite being
informative, these approaches do not always make clear why
and how architectures were selected because: (i) they do not
explicitly link design decisions and environmental factors to the
satisfaction of requirements, (ii) they yield vast amounts of data
that are not easy to interpret by a human designer, and (iii) re-
sults include both useful information and noise that obscures
understanding the relationship among variables.

Architects need tools and techniques to help them understand
the tradeoffs of complex design spaces and guide them to good
designs, enabling them to answer questions such as: Why are
these tradeoffs being made, and not others? What are the most
important parameters and qualities that are driving the key de-
sign decisions? How sensitive is the satisfaction of constraints or
the achievement of optimality to a particular set of decisions?
Which choices are correlated with others, either positively or
negatively?
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Providing such tool support demands investigating questions
uch as:
(RQ1) How can we link architectural design decisions and

uantifiable requirements satisfaction in a way that highlights the
ost important dependencies among them?
(RQ2) How can we quantify the impact of architectural design

ecisions on the different qualities across the architectural design
pace?
(RQ3) How much can we reduce the complexity of the infor-

ation presented to the architect while preserving most of the
elevant design tradeoff information?

This paper explores these questions by introducing an ap-
roach to enable the explainability of architectural design spaces
hat addresses the limitations described above. Our approach
mploys: (i) a dimensionality reduction technique called principal
omponent analysis (PCA) (Jolliffe, 1986) to help identify the most
elevant design variables that contribute to QoS variation across
he design space, and (ii) Decision Tree Learning (DTL) (Breiman
t al., 2017) to help identify how specific design decisions impact
ystem qualities.
Concretely, our approach consists of: (i) extracting design fea-

ures and quality metrics of a population of architectural configu-
ation samples generated via synthesis and quantitative verifica-
ion (Cámara et al., 2019), (ii) applying PCA to determine the main
ariables that influence the qualities of configurations, as well as
o establish a link between design variables (e.g., component se-
ection, topological arrangement, configuration parameter values)
nd the qualities of the resulting configuration, and (iii) applying
TL to identify the thresholds in design variable values that
ontribute to meaningful variations in QoS variables.
In Cámara et al. (2021) we introduce a preliminary version

f this work on explainability that enables the linking of archi-
ectural design decisions and requirements satisfaction employ-
ng PCA, and evaluate our results on a Tele Assistance System
TAS) (Weyns and Calinescu, 2015) and a network architecture
cenario (Kwiatkowska et al., 2009). In this paper, we extend our
pproach to also make use of Decision Tree Learning (DTL) to
rovide insights about the impact for architectural decisions on
ifferent system qualities. Moreover, we also expand our demon-
tration of the approach to two variants of TAS and three variants
f the network architecture that enable us to better illustrate how
hanges in design variants can impact system qualities.
Our results show that the approach is feasible in two case

tudies and provide evidence that combining complementary
echniques like PCA and DTL is a viable approach to facilitate
omprehension of tradeoffs in poorly-understood design spaces.
The remainder of this paper is organized as follows: Section 2

resents a motivating example (TAS). Section 3 presents our
pproach to trade-off space explanation via dimensionality reduc-
ion using PCA and DTL. Section 4 demonstrates our approach,
hereas Section 5 discusses related work. Section 6 concludes the
aper and indicates directions for future work.

. Motivating scenario: Tele-Assistance System (TAS)

TAS (Weyns and Calinescu, 2015) is a service-based system
ith the goal of tracking a patient’s vital parameters to adapt
rug type or dose when needed, and taking actions in case of
mergency. TAS combines three service types in a workflow
Fig. 1, left). When TAS receives a request that includes the vital
arameters of a patient, its Medical Service analyzes the data
nd replies with instructions to: (i) change the patient’s drug
ype, (ii) change the drug dose, or (iii) trigger an alarm for first
esponders in case of emergency. When changing the drug type or
ose, TAS notifies a local pharmacy using a Drug Service, whereas
irst responders are notified via an Alarm Service.
2

The functionality of each service type in TAS is provided by
ultiple third parties with different levels of performance (re-
ponse time), reliability (failure rate), and cost (Fig. 1a). Find-
ng an adequate design for the system entails understanding
he tradeoff space by selecting the set of system configurations
hat satisfy: (i) structural constraints, e.g., the Drug Service must
not be connected to an Alarm Service, (ii) behavioral correctness
properties (e.g., the system will eventually provide a response
— either by dispatching an ambulance or notifying the phar-
macy), and (iii) quality requirements, which can be formulated
as a combination of quantitative constraints and optimizations
(Fig. 1b).

Fig. 2 shows the analysis results of TAS obtained by applying
our prior work that combines structural synthesis and quan-
titative verification to analyze quantitative formal guarantees
across the architectural design space (Cámara, 2020; Cámara
et al., 2019). The results were generated by automatically synthe-
sizing a probabilistic model of the behavior of each configuration
in the system, and then applying probabilistic model checking
to quantify the value of the different QoS variables. The plot on
the left shows the minimized cost of configurations for differ-
ent levels of constraints on response time and reliability. This
plot conveys the intuition that higher response times and lower
reliability correspond to lower costs, whereas peaks in cost are
reached with the lowest failure rates and response times.

The plot on the right is a map that shows which configurations
best satisfy design criteria. It shows that 24 configurations (out
of the 90 possible configurations) satisfy the criteria in some
subregion of the state space. If we consider that designers are
interested e.g., in systems with response times ≤26 ms and
reliability ≥99%, we can employ the same analysis technique
to determine which configurations best satisfy these constraints
(delimited by the red area in the figure).

Although these plots are informative and can help architects
to understand what specific configurations might work well in
a given situation, it is not possible to understand what design
decisions influence these tradeoffs. Answering to what extent im-
provements on qualities are a function of the choice of a specific
service implementation, the topological arrangement of the com-
position, or the value of configuration parameters (e.g., maximum
number of retries, or timeout duration when services fail) is not
possible with existing approaches.

When assessing architectural configurations, it is often hard to
tell how specific design decisions result in quality requirements
being satisfied to smaller or larger degrees. For instance, there
are thresholds in quality measures (e.g., response time) that have
to be satisfied. Achieving such quality levels requires making
design decisions, choosing among multiple alternatives that entail
different costs and trade-offs. This research aims to elicit these
thresholds and explain them to architects in order to improve the
comprehensibility of the architectural design space.

One of the main challenges in facilitating the understanding
of the tradeoff space relates to the high dimensionality of the
data and how to convey important factors to a human designer:
there are too many characteristics of configurations (and relations
among them) to track, and some of them contribute more than
others to the variation of quality attributes. For instance, even
in the relatively simple system illustrated earlier, it is unclear
if selecting specific services contributes more to system quality
variation than workflow configuration parameters like timeout
length. In the next section, we describe how to address this
challenge.
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Fig. 1. TAS workflow, service provider properties, and quality requirements.
Fig. 2. TAS Analysis results.
. Approach

The inputs to our approach for explaining design tradeoffs
Fig. 3) are a set of legal configurations (i.e., those that satisfy the
onstraints of a given architectural style), captured as attribute-
nnotated graphs, and a set of quantitative metrics that can
apture aspects related to e.g., the energy consumption, timeli-
ess, or safety of configurations. The outputs of the process are:
i) a plot that captures a description of the relations between de-
ign and QoS variables (e.g., response time is negatively correlated
ith reliability, selection of component X contributes to lower
esponse times and higher cost), as well as their contributions to
ifferences among architectural configurations, and (ii) a set of
ecision trees that capture how the selection of values for design
ariables influences the outcome of the design in terms of the
uality concerns considered (e.g., for values of the timeout length
arameter below X, the values of response time are constrained
o the range [Y,Z]). The approach consists of five stages:

1. Configuration Data Extraction collects relevant information
about the characteristics of architecture configurations.
Data extracted includes both topological information (e.g.,

centrality and cardinality measures of nodes corresponding

3

to different component types and bindings) and informa-
tion related to properties of components, connectors, and
other parameters.

2. Data Aggregation and Normalization. In this step, the config-
uration data produced in (1) and the configuration metrics
provided as input to the process are aggregated into a sin-
gle dataframe (Stage 2a). Table data is further normalized
(Stage 2b) into a correlations table so that all variables
will have the same weight in the subsequent principal
component analysis (Stage 3).

3. Principal Component Analysis (PCA) is employed to discover
how architectural configurations differ, and which vari-
ables contribute the most to that difference. Moreover, PCA
enables us to discriminate whether variables are positively
or negatively correlated, or if instead they are independent
from each other. This enables architects to relate response
variation (QoS, quantitative guarantees) to design variables.

4. Target Variable Selection is performed by the architect based
on the information obtained from PCA that identifies the
most important variables and dependencies in the design
space. In this stage, the architect selects the set of relevant
variables associated with decisions for which she wants to

quantify the impact on different quality concerns.
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5. Decision Tree Learning (DTL) receives as input both the
aggregated dataframe produced in stage 2 and the set of
relevant variables identified in stage 4, and produces a
set of decision trees that link concrete threshold values of
design variables with impacts on qualities that architects
can use to inform their decisions. Often, PCA and DTL are
used independently and for different purposes. However, in
the context of ExTrA, we use the results from PCA analysis
to inform the creation of decision trees. This is because the
contributions to variability and relations identified by PCA
can influence which target variables are selected by the
architect (Stage 4) and used as inputs to the creating the
decision trees.

In the remainder of this section, we first introduce some
reliminaries, and follow with a detailed description of the five
tages of our approach.

.1. Preliminaries

Design spaces are often constrained by the need to design sys-
ems within certain patterns or constraints. Architectural styles
Shaw and Garlan, 1996) characterize the design space of families
f software systems in terms of patterns of structural organiza-
ion, defining a vocabulary of component and connector types, as
ell as a set of constraints on how they can be combined. Styles

help designers constrain design space exploration to within a set
of legal structures to which the system must conform. However,
while the structure of a system may be constrained by some style,
there is still considerable design flexibility left for exploring the
tradeoffs on many of the qualities that a system must achieve.

Definition 1 (Architectural Style). Formally, we characterize an
architectural style as a tuple (Σ, CS), where:

• Σ = (CompT , ConnT , Π, Λ) is an architectural signature,
such that:

– CompT and ConnT are disjoint sets of component and
connector types. For conciseness, we define ArchT ≡

CompT ∪ ConnT .
– Π : ArchT → 2D is a function that assigns sets of sym-

bols typed by datatypes in a fixed set D to architectural
types κ ∈ ArchT . Π (κ) captures properties associated
with type κ . To refer to a property p ∈ Π (κ), we simply

write κ.p.

4

– Λ : ArchT → 2P
∪ 2R is a function that assigns a set

of symbols typed by a fixed set P to components κ ∈

CompT . This function also assigns a set of symbols in a
fixed set R to connectors κ ∈ ConnT . Λ(κ) represents
the ports of a component (conversely, the roles if κ is
a connector), which define logical points of interaction
with κ ’s environment. To denote a port/role q ∈ Λ(κ),
we write κ :: q.

• CS is a set of structural constraints expressed in a constraint
language based on first-order predicate logic in the style
of Acme (Garlan et al., 2000) or OCL (Warmer and Kleppe,
2003) constraints (e.g., ∀ w:TASWorkflowT •∃

a:AlarmServiceT • connected(w,a) – ‘‘every TAS workflow
must be connected to at least one alarm service’’).

In the remainder of this section, we assume a fixed universe
AΣ of architectural elements, i.e., a finite set of components and
connectors for Σ typed by ArchT . The type of an architectural
element c ∈ AΣ is denoted by type(c). We assume that elements
of AΣ are indexed and designate the ith element by Ai

Σ .
A configuration is a graph that captures the topology of a legal

structure of the system in a style A (we designate A’s set of legal
configurations by G∗

A).

Definition 2 (Configuration). A configuration in a style (Σ, CS),
given a fixed universe of architectural elements AΣ , is a graph

= (N , E) satisfying the constraints CS , where: N is a set of
odes, such that N ⊆ AΣ , and E is a set of pairs typed by P × R
hat represent attachments between ports and roles.

To determine if two architectural elements are attached on
ny of their port/roles, we define the function att : AΣ ×AΣ → B
s att(n, n′) = ⊤ if ∃p ∈ P, r ∈ R • n :: p ∧ n′

:: r ∧ (p, r) ∈ E ,
nd att(n, n′) = ⊥ otherwise. We say that two components are
ound if there is a connector attached to any of their ports on both
nds. This is captured by function bnd : CompT × CompT → B,
nd(n, n′) = ⊤ if ∃ n′′

∈ N , s.t. att(n, n′′) ∧ att(n′′, n′), and
nd(n, n′) = ⊥ otherwise.

.2. Configuration data extraction

The first stage of our approach extracts the set of relevant
ttributes that correspond to different design decisions made to
orm any legal configuration (i.e., that conforms to the archi-
ectural style), which are provided as input to the process. Our
pproach is agnostic to the mechanisms employed to generate
he set of configurations that conform to an architectural style:
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his process is out of scope of this paper, but existing prior work
as addressed this problem in a variety of ways (see Cámara et al.
2019) for one example).

The attributes extracted from a configuration G = (N , E) form
tuple of design variable values DG(C, T , P) ∈ DG, where:

• C ∈ Rn
>0 is a vector that contains data items correspond-

ing to constituent architectural elements of the configu-
ration (e.g., the presence and number of specific compo-
nents and connectors). Concretely, this vector is formed by
concatenating the result of the following functions:

1. Architectural element presence extraction fep : G∗
A →

{0, 1}|AΣ |, returns a vector ⟨p1, . . . , p|AΣ |⟩ that en-
codes the presence of specific architectural elements
(i.e., component and connector instances) in a config-
uration, where pi = 1, i ∈ {1..|AΣ |} if Ai

Σ ∈ N , and
pi = 0, otherwise.

2. Architectural type cardinality extraction ftc : G∗
A →

N|ArchT |, returns a vector ⟨xtc(κ1), . . . , xtc(κ|ArchT |)⟩ en-
coding the number of component and connectors of
each type present in a configuration. For κ ∈ ArchT ,
we define function xtc : ArchT → N as xtc(κ) =

|{n ∈ N | type(n) = κ}|.

• T ∈ Rn
>0 is a vector of data items that correspond to the

topology of the configuration like the presence of certain
attachments among architectural elements, and other topo-
logical measures like centrality indices, which characterize
important nodes in the configuration topology (Bonacich,
1987; Borgatti, 2005). Concretely, this vector is formed by
concatenating the results of the following functions:

1. Binding presence extraction fbp : G∗
A → {0, 1}|AΣ |·|AΣ |

returns a vector ⟨p1,1, . . . , p|AΣ |,1, . . . , p|AΣ |,|A|Σ
⟩

that encodes the presence of bindings between spe-
cific components, with pi,j = 1, i, j ∈ {1..|AΣ |} if
bnd(Ai

Σ ,Aj
Σ ), and pi,j = 0 otherwise.

2. Binding type cardinality extraction fbtc : G∗
A →

N|CompT |·|CompT |, returns a vector ⟨xbtc(κ1, κ1), . . . ,

xbtc(κ|CompT |,1), . . . , xbtc(κ|CompT |,|CompT |)⟩ encoding the
number of bindings between specific pairs of compo-
nent types. For the pair of component types (κ, κ ′),
we define function xbtc : CompT × CompT → N as
xbtc(κ, κ ′) = |{(n, n′) ∈ N × N | type(n) = κ ∧

type(n′) = κ ′
∧ bnd(n, n′)}|.

• P ∈ Rn is a vector containing data items corresponding to
the values of relevant configuration parameters. We assume
that these can be directly obtained from the values of prop-
erties associated with the different architectural elements of
the configuration (e.g., the configuration parameter for the
number of maximum service retries in TAS is stored in prop-
erty TASWorkflow0.max_timeouts, where TASWorkflow0 is
an instance of TASWorkflowT).

3.3. Data aggregation and normalization

The second input to our approach is a set of vectors RG of the
form RG = ⟨r1, . . . , rn⟩, ri ∈ R, i ∈ {1..n} containing response
variables that correspond to the values of the quantified metrics
for the different quality dimensions in a configuration G. Our
technique is agnostic to the mechanisms employed to quantify
the quality metrics of a configuration. However, in the particular
instantiation of the approach used in this paper, we obtain these
values by checking a variety of probabilistic temporal logic prop-
erties encoded in an extension of PCTL using HaiQ (Cámara, 2020),
5

a tool that performs probabilistic model checking on collections
of structural design variants that uses Alloy (Jackson, 2002) and
PRISM (Kwiatkowska et al., 2011) in its backend.

The purpose of data aggregation and normalization is to gen-
erate a correlations table that can be provided as input to PCA:

• Data aggregation. Given a design variable value tuple
DG(C, T , P) ∈ DG, and a response variable vector RG =

⟨r1, . . . , rn⟩ ∈ RG for the same configuration G, we define
the configuration sample for G as RG ⌢ DG , where ⌢
denotes concatenation. The (non-normalized) correlations
table is formed by the samples that correspond to all input
configurations.

• Data normalization. The correlations table contains variables
that span varying degrees of magnitude and range. To avoid
bias in PCA towards variables that may have a higher mag-
nitude, we scale the data employing unity-based normaliza-
tion, meaning that for any data item in the correlations table
xi,j for sample i and variable j, the new value of the data item
is defined as x′

i,j = (xi,j − xmin
j )/(xmax

j − xmin
j ), where xmin

j , xmax
j

are the minimum/maximum values of j across all samples.

Example 1. Fig. 4 shows a TAS configuration and an excerpt
of its encoding in the correlations table. The first and second top-
most tables show the presence of architectural elements and type
cardinalities (fep and ftc , respectively). In this case, we can observe
that the cardinality of all architectural types is 1, except for
HttpConnT type, of which there are four instances. The table at the
bottom describes the presence of bindings between components
(fbp).

.4. Principal component analysis

Data resulting from analyzing architectural spaces usually con-
ain a large amount of information, which is often too complex to
e easily interpreted. Principal Component Analysis (PCA) (Jolliffe,
986) is a statistical projection method commonly used in ML and
atural science that can facilitate understanding that information.
o begin with, PCA can help to find out in what respect some ar-
hitectural configurations differ from others, and which variables
ontribute to this difference. In some cases, variables contribute
n the same way (i.e., are correlated) or independently. Moreover,
CA also enables quantifying the amount of useful information in
data set, as opposed to noise or meaningless variations.
If we consider the data in the correlations table geometrically,

e can say that two samples (i.e., architectural configurations)
re similar if they have close values for most variables (i.e., they
re in the same region of the multidimensional space) and dif-
erent, otherwise. Considering this, the purpose of PCA is finding
he directions in space in which the distance between points is
he largest. That is equivalent to finding the linear combinations
f the variables that contribute most to making the samples
i.e., configurations) different from each other. These directions
r linear combinations are called principal components.
Principal components (PC) are computed in an iterative man-

er, in such a way that the first PC is the one that carries the most
nformation (most explained variance), whereas the second PC
ill carry the maximum share of the information not taken into
ccount by the previous PC, and so on. All PCs are orthogonal to
ach other and each one carries more information than the next
ne. In fact, this is one of the characteristics of PCA that makes it
ppealing as an underlying mechanism to enable the explainabil-
ty of architectural design tradeoff spaces: the interpretation of
Cs can be prioritized, since the first PCs are known to carry the
ost information. Indeed, it is often the case that only the first

wo PCs contain genuine information, whereas the rest describe
oise (Jolliffe, 1986).
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Fig. 4. Sample TAS configuration (left), along with an excerpt of its encoding (right).
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The main results of PCA consist of three complementary sets
f attributes: (i) variances, which tell us how much information

is taken into account by the successive PCs, (ii) loadings, which
escribe relationships between variables, and (iii) scores, which
escribe properties of the samples. In this paper, we focus on vari-
nces and loadings, which will tell us what are the main variables
i.e., either design or response variables) that contribute the most
and in what way) to the differences among configurations.

xample 2. The PCA loadings plot of the samples analyzed
or TAS is shown in Fig. 5. The plot contains two ellipses that
ndicate how much variance is taken into account. The outer
llipse is the unit-circle and indicates 100% of the explained
ariance, whereas the inner ellipse indicates 50% of the explained
ariance. Variables that are found between the edges of the two
llipses, and particularly those positioned near the edge of the
uter ellipse, are those that are more important in differentiating
he configurations. This plot shows that the first two PCs carry
large amount of information, explaining 76% of the variance
f data, with PC1 explaining the most (71%) and PC2 explaining
uch less variance (5%).
QoS metrics like reliability, cost, and response time are all im-

ortant to differentiate configurations with response time being
he most relevant (close to 1 in PC1, which accounts for more
han 70% of the overall variability). Reliability and cost (upper-
eft quadrant) are also important for PC1, placed below −0.5 in
C1, but comparatively have less influence than response time in
verall variation.
In addition to teasing out the most important variables, the

lot displays the relationships between variables. In the plot, the
ngle between the vectors that go from the origin of coordinates
o a variable point is an approximation of the correlation between
he variables. A small angle indicates that the variables are pos-
tively correlated, an angle of 90 degrees indicates the variables
re not correlated, and an angle close to 180 degrees indicates
he variables are negatively correlated. In our example, we can
bserve that reliability and cost are positively correlated, whereas
esponse time is negatively correlated with both of them. These
bservations are consistent with the results in Fig. 2, which show
hat low response times and high reliability correspond to higher
osts.
So far, we have been discussing QoS variables, but the loading

lot also enables architects to observe the influence of design
ariables on variability. Here, we can see in the upper-right
uadrant of the ellipse that some of the most influential variables
6

or PC1 correspond to the presence of alarm service instance AS3
n a configuration, as well as to its binding to the workflow (
ASWorkflow0). We observe that all the design variables related
o AS3 are positively correlated with reliability and cost, and
egatively correlated with response time. This indicates that the
election of AS3 has a remarkable influence on the qualities of
he resulting configurations and is consistent with the fact that
he alternative alarm service implementations have considerably
igher failure rates and response times than AS3, as well as lower

cost per invocation (see Fig. 1a). Also, the alarm service is invoked
more times in the workflow than any other service. Consequently
other services like MS5, which are also influential and have the
same QoS correlations as AS3, have a comparatively moderate
impact (its associated design variables are within the inner edge
of the ellipse) because they are invoked only once in the work-
flow. In the bottom-right quadrant, we have the symmetric case,
with variables associated with the presence of AS2, which in con-
trast with AS3, are positively correlated with response time, and
negatively correlated with cost and reliability (most importantly
along the PC1 horizontal axis. This is also consistent with the data
in the table of Fig. 1, which shows that AS3 has the highest failure
rate and lowest cost. Regarding configuration parameters, we
can see that, as expected, timeout length for service invocations
is positively correlated with response time with respect to PC1
and negatively correlated to reliability and cost. In contrast, and
although less influential, the maximum number of retries for
service invocations is positively correlated with reliability and
cost. This observation is consistent with the fact that more service
invocation retries lead to increased reliability and cost.

3.5. Decision tree learning

Decision tree learning is a supervised learning technique used
in statistics, data mining, and machine learning that allows the
prediction of a target variable’s value based on other variables’
values (Breiman et al., 2017). It is a supervised technique that can
be used to grow classification trees (to predict categorical values)
and regression trees (to predict numerical values). We decided to
apply decision tree learning as part of ExTrA, as it is particularly
useful in contexts that involve complex datasets with high di-
mensionality and heterogeneous data types (Breiman et al., 2017).
Decision trees are generated based on recursive binary partition-
ing, a method relying on repeatedly computing partitions of the
data that minimize the residual sum of squares (for regression
trees) or the Gini index (for classification trees) (Breiman et al.,
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Fig. 5. Correlation loading PCA plot for TAS.
Fig. 6. Decision tree plot for the Tele-Assistance System V1, predicting reliability.
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017). As a subsequent step, in order to minimize overfitting, the
ree is pruned by computing the subtree that minimizes the mean
quared prediction error.
Decision tree learning requires selecting a target variable

hose value should be predicted or classified. We leverage the
nsights from analyzing PCA plots to inform the target variable
election. Variables that are of relevance to explain the variance in
he data are good candidates as target variables. In our approach,
e are mainly interested in the impact of architectural design
ecisions on quality attributes. For instance, by looking at Fig. 2,
t can be seen that there are several levels of reliability with
everal thresholds indicating a ‘‘stepwise transition’’ between
hem. Decision trees can be used to explain what these steps
ntail (e.g., with respect to the selection of input parameters or
rchitectural design decisions). Analyzing such decision trees can
n turn help architects to better understand tradeoffs and make
ecisions more deliberately.
Fig. 6 shows a decision tree plot for TAS, predicting the level

f reliability depending on other numerical variables. The tree’s
oot indicates the most relevant condition (i.e., MAX_TIMEOUTS <
). If the condition is fulfilled, the left branch of the tree should
e considered. If MAX_TIMEOUTS is larger or equal to 2, the right
ranch is considered.
In the example, it can be seen that for low maximum numbers

f timeouts, a rather low degree of reliability is achieved. The

xistence of component AS3 is relevant as well: if it is included

7

n a configuration, reliability is higher than if it is not. Apart from
hat, the inclusion of AS1 and AS2 are important as well. If AS1
xists, reliability is higher and if AS2 exists, reliability is slightly
ower. It should be noted that although MAX_TIMEOUTS is not
a relevant variable to explain the variance of configurations in
the dataset, it is a relevant variable as a predictor for reliability.
Insights like this can help with the fine-grained analysis of the
dataset and specific quality attributes.

4. Demonstration

The objective of our demonstration is to: (i) assess the fea-
sibility of linking design decisions to requirement satisfaction
(RQ1), (ii) quantify the impact of architectural design decisions
on the different qualities across the architectural design space,
and (iii) assess the tradeoff between the information reduction
and the amount of variance explained (RQ2).

In this section, we first describe our experimental setup. We
then briefly introduce a scenario that we have incorporated into
our demonstration in addition to TAS. Finally, we discuss results,
relating them to our research questions.

4.1. Experimental setup

We generated the set of architectural configurations for the

different scenarios included in our study and their QoS metrics
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Table 1
Dataset dimensions for our experiments.
Case study # Variables #samples

QoS fep ftc fbp fbtc Parameters Total

Tele-Assistance System V1 3 10 10 27 27 2 79 3750
Tele-Assistance System V2 3 10 10 27 27 2 79 3750
Network Architecture V1 5 9 4 46 11 3 78 60000
Network Architecture V2 5 9 4 70 15 3 106 60000
Network Architecture V3 5 9 4 40 7 3 68 60000
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using an extended version of HaiQ that implements the data
extraction, aggregation, and normalization procedures described
in Sections 3.2–3.3 and the set of models for TAS and the network
virus example described in Cámara (2020).

Table 1 describes the number of variables and samples in-
luded in the datasets generated for all the variants of the case
tudies.
Data analysis (i.e., Principal Component Analysis and Decision

ree Learning) was performed using R.1 For PCA, we used the
rcomp2 package and for decision tree learning, rpart was used.

Besides following the normalization steps described below, we
centered the variables in PCA, shifting all variables to be zero
centered. Centering the data subtracts the mean of each column
from the values in that column. Given that we are interested in
understanding the variance in a dataset, centering the variables is
beneficial as it ensures that the first principal component explains
the direction of maximum variance. For decision tree learning
with rpart,3 we used the default parameters.

4.2. Scenario: Tele-assistance system

In Example 2 we described the correlation loadings plot for
the Tele-Assistance System, illustrating the main variables that
influence configuration variability, as well as their correlations. To
further demonstrate the consistency of our approach in providing
links between architectural design decisions and the quality of
configurations, in this section, we also consider a variant of TAS
(V2) that has been altered by modifying the reliabilities and
response times of AS3, which become worse (failure rate = 0.4,
response time = 7, and cost = 6.8), and of MS5, which improve
(failure rate = 0.05, response time = 10, cost = 11.9).

Results: Principal Component Analysis
Fig. 7 shows the correlation loading PCA plot for TAS V2. In

the figure, we can observe that multiple variables are in different
positions, compared to the original version of TAS (cf. Fig. 5).
If we start by observing QoS variables, we can notice that the
only exception is response time, which remains exactly in the
same position as in TAS V1. In contrast, we can observe how
both cost and reliability have lost influence in terms of explaining
variability, moving closer to the origin of the horizontal PC1 axis.
This indicates that while response time is still a major contributor
to configuration QoS variation, the other two variables contain
less variability, probably because one of the main factors that
influenced obtaining configurations with high reliability and cost
was the inclusion of AS3, which in TAS V2 is degraded to have
a higher failure rate. Hence, since no alarm service is particularly
reliable in TAS V2, there is a reduction in the variability along
that dimension. Indeed, moving on to design variables, we can
observe that the variables associated with the inclusion of AS3

1 Our R scripts and datasets are publicly available at: github.com/cmu-able/
xTrA-material
2 https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/
rcomp
3 https://www.rdocumentation.org/packages/rpart/versions/4.1.16/topics/

part
8

in a configuration have moved from the top-left to the top-right
quadrant of the plot. This indicates that the inclusion of AS3 is
uch less relevant now in terms of explaining variability, being
uch closer to the origin of the horizontal PC1 axis. Beyond

hat, we can also observe that its correlations have also changed.
n particular, these variables are now negatively correlated with
ost, and even more with reliability, and positively correlated
ith response time. These results are consistent with the fact that
oth the reliability and the response time of AS3 have now been
egraded.
Interestingly, we can also observe that the variables associated

ith the inclusion of AS2 have moved from the bottom-right to
he bottom-left quadrant of the plot. Although the influence on
ariability explanation remains relatively low, the correlations of
hese variables have now been inverted, being positively corre-
ated with cost and reliability along the PC1 axis, and negatively
ith response time. This is consistent with the fact that relative
o the quality attributes of the other components, the failure rate
f AS2 is now on the high end of the spectrum.
Other variables in the plot have also been displaced with

espect to TAS V1, but their changes are not that significant, given
hat their movement along the horizontal PC1 axis is relatively
mall, and movements along the PC2 vertical axis are not that
epresentative, even if they are noticeable, due to the small
mount of explained variance of PC2, relative to PC1 (approxi-
ately 7% for PC2 vs. 69% for PC1).

Results: Decision Tree Learning
Fig. 8 shows a decision tree plot for TAS V2, predicting the

evel of reliability depending on other numerical variables. The
ree’s root indicates the most relevant condition (i.e.,
AX_TIMEOUTS < 2). It can be seen that for a low maximum
umbers of timeouts, a rather low degree of reliability is achieved.
he inclusion of component AS3 is relevant as well: if it is
ncluded, reliability is lower than if it not included. Apart from
hat, the inclusion of AS1 is of importance as well. If AS1 is
ncluded, reliability is higher. The insight that AS3 leads to lower
eliability is in line with our observations from the PCA plot: given
hat the reliability of AS3 has been degraded in V2, including this
omponent leads to an overall lower reliability level.

.3. Scenario: Network architecture

Architecting network-based systems that are resilient to un-
ontrollable environment conditions, such as network delays, or
ndesirable events such at virus infections, entails structuring the
ystem in a way that maximizes the chances of continued service
rovision in spite of the adverse conditions that it is subject
o. The scenario introduced by Kwiatkowska et al. (Kwiatkowska
t al., 2009) models the progression of a virus infecting a network
ormed by a grid of N×N nodes. The virus remains at a node that
s infected and repeatedly tries to infect any uninfected neighbors
y first attacking the neighbor’s firewall and, if successful, trying
o infect the node. In the network there are ‘low’ and ‘high’ nodes
ivided by ‘barrier’ nodes that scan the traffic between them and
ave better chances of detecting any potential virus infection
ttempts than low and high nodes. Ideally, the architecture of the

http://github.com/cmu-able/exTrA-material
http://github.com/cmu-able/exTrA-material
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp
https://www.rdocumentation.org/packages/rpart/versions/4.1.16/topics/rpart
https://www.rdocumentation.org/packages/rpart/versions/4.1.16/topics/rpart
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Fig. 7. Correlation loading PCA plot for TAS V2. Dashed arrows represent variable displacements with respect to TAS V1.
Fig. 8. Decision tree plot for the Tele-Assistance System V2, predicting reliability.
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etwork should: (i) minimize the probability of successful infec-
ion of high nodes in the network within some time bound, and
ii) maximize the number of node infection or attack attempts
hat the virus carries out to spread itself through the high nodes.
nitially, only one corner ‘low’ node is infected.

We carried out the analysis of three variants of this system:

1. A variant in which only the communication between low
nodes and high nodes has to go through barrier nodes (as
originally described in Kwiatkowska et al. (2009).

2. An unconstrained variant in which there is no enforcement
of communication between high nodes and low nodes
through barrier nodes.

3. A restrictive variant that enforces communication between
all nodes through a barrier node.

Results: Principal Component Analysis
(Fig. 9) displays the first two PCs of each variant, which explain

pproximately 99% of the data variation (≥ 98% for PC1 and ≤

% for PC2). This shows a clear dominance of PC1, which explains
ost of the data variation, with a marginal contribution of PC2.
Moreover, in all cases, we can observe that both QoS metrics

or the virus infection success (for the different time bounds of
0, 100, and 150 time units), and the maximum number of virus

ttacks are very important to differentiate configurations. v

9

Variant 1. We can observe that both QoS metrics for the
irus infection success probability and maximum number of virus
ttacks are at opposite ends of the horizontal axis and are neg-
tively correlated. This indicates that higher probability of infec-
ion success requires in principle fewer virus infection attempts.
lthough this can be counter-intuitive, it can be explained by
he fact that the values for the virus attack success probability
ariable are obtained from a time-bounded probabilistic analysis
f the network model, meaning that scenarios in which the virus
uccessfully infects high nodes after {50, 100, 150} time units
are not captured in the samples. In contrast, the values for the
maximum number of attacks are not time-bounded.

Concerning design variables, we can observe that the most
influential are the probability of individual infection when the
virus is attacking a node ( infect), followed by the number of
bindings between high nodes ([C]binding:highNode-highNode).
In both cases, these variables are positively correlated with the
probability of having all high nodes infected within some time
bound: this makes sense, given that higher values of infect
ean more effective infection attempts, and a higher number of
indings between high nodes represent more opportunities for
he virus to spread in fewer ‘hops’ between high nodes, once the
arrier nodes have been breached.
Variant 2. We can observe that infect is still the most influ-

ntial variable to explain data variation. In addition to that, the

ariable has moved even closer to the variables for the overall
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Fig. 9. Correlation loading PCA plots for the network architecture: (top) communication scanned between through high nodes and barrier nodes, (middle) no
communication scan enforced among nodes, (bottom) communication scan between all nodes enforced.
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probability of infection, meaning that the correlation is stronger
now. This is consistent with the fact that in this variant, com-
munication through barrier nodes is not enforced, so it makes
sense that a higher probability of node infection under attack has
more influence over the overall probability of high node infection.
If we take a look at the inner ellipse of the PCA plot, we can
observe that the number of bindings between high nodes is no
longer an influential variable, given that the lack of enforcement
of communications through barrier nodes dilutes its influence on
the spread of the virus.

If we focus on the bottom and top-center parts of the plot,
e can observe that in this case the influence on variability

n terms of bindings is slightly more slanted towards bindings
etween barrier and high nodes. However, this influence can
lso be considered as marginal, given that these variables are
10
influential only in the context of PC2, which explains less than 1%
of the variation. If we consider all the observations together, they
are consistent with the fact that topology does not have much
influence on the resilience of the network when communications
through more secure nodes is never enforced.

Variant 3. In this variant, it can be observed that the prob-
bility of infection is still the most influential variable, but is
ot as strongly correlated with the overall probability of high
ode infection as in variant 2. We can observe that the vari-
bles associated with the bindings between barrier nodes (e.g.,
[C]binding:barrierNode-barrierNode) also have a moderate influ-
ence on variability, although in this case they are negatively
correlated with the probability of infection of high nodes. This
makes sense from the perspective that more bindings among
barrier nodes represent more opportunities to scan the traffic
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Fig. 10. Decision tree for the first variant of the network architecture system (predicting the expected maximum number of attacks).
before it arrives at high nodes. Given that in this variant all
communication between low and high nodes has to go through a
barrier node, the fact that, on average, more ‘hops’ through bar-
rier nodes are required represents more opportunities to thwart
or at least delay node infections, compared to topologies that
include fewer bindings among barrier nodes.

Results: Decision Tree Learning
Fig. 10 shows a decision tree plot for the first variant of the

network architecture system, predicting the expected maximum
number of attacks needed for a highly infected system. The tree’s
root indicates that the most relevant condition is the infection
rate (infect). For a high rate of infection, the expected maximum
number of attacks is low. The number of connections between
high nodes is relevant as well: if it is high, fewer attacks are
needed. Also the probability of node detection is important: if it
is low, the expected number of attacks is lower than if it is high.
These insights confirm our observations from analyzing the PCA
plot. The infect variable and the number of bindings between high
nodes are negatively correlated with the max attacks variable.
takeholders analyzing PCA plots can use these observations to
enerate decision trees and analyze the concrete thresholds of
ariable values leading to different outcomes (in this case, in
erms of max attacks).

4.4. Discussion

We have shown the applicability of our approach by demon-
strating it in two cases. In practice, however, it is not trivial
to construct design spaces and collect quantitative data on re-
quirements satisfaction. The creation of the dataframes would
require ways to generate architectural configurations, as well as
a simulator, a digital twin, or real-world data, to collect realistic
quality attribute measurements. Taking these requirements into
account, we believe that these ideas are applicable (with adap-
tations) to systematic management of variability techniques that
are currently used in industry, such as product line architectures.

(RQ1) Feasibility — Linking architectural design decisions with
requirement satisfaction. PCA analysis results performed on the
various TAS and network architecture scenarios have shown that
our approach is able to extract information that links QoS vari-
ables and design variables, providing a basis for explaining what
design variables are the best candidates to describe important
QoS variation. When studying the relation among QoS variables,
results obtained across the various scenarios considered in our
demonstration are consistent with observations obtained from
existing analysis techniques (Cámara, 2020; Cámara et al., 2019).
For the relation between design variables and QoS variables,
results are also consistent with observations obtained from care-
ful examination of models and simulations of the systems we
have studied. Moreover, our results have been obtained from
11
two different types of architecture (a centralized service-based
system and a decentralized network architecture). In the central-
ized system, component variability has a more prominent role in
explaining QoS variation, whereas in the decentralized system,
configuration topology explains most of the QoS variation. The
ability of the approach to yield insightful results in both cases
indicates its potential applicability to a broad range of scenarios.

(RQ2) Feasibility — Quantifying impact of architectural design
decisions on qualities. The application of decision tree learning
has enabled us to extract informative information with respect
to how qualities are affected by design decisions. Concretely, the
generated decision trees indicate thresholds in variable values
that lead to differences in the fulfillment of QoS variables. For the
Tele-Assistance System, for instance, the generated trees show
the importance of a threshold of 2 for the maximum number of
timeouts, whereas for the network architecture system, the in-
fection success rate and the number of connections between high
nodes are identified as relevant. These results cannot be obtained
by simply studying PCA plots and hence have the potential to
facilitate the work of an architect by making the relations be-
tween variables explicit. As a consequence of studying these trees,
parameters and design decisions can be chosen more deliberately.
Moreover, our observations confirm the insights we obtained by
studying PCA plots and existing analysis techniques.

We found that both PCA and decision tree learning were
applicable to all versions of the systems and datasets that we used
in this paper. Other techniques used to understand large datasets
in machine learning are Multiple Correspondence Analysis (MCA)
and clustering algorithms. We investigated these approaches as
well. MCA is most beneficial to explain variance in datasets with
categorical variables and did not yield interesting results for the
datasets used in this paper. In contrast to other system properties,
architectural configurations and quality attributes can be easily
captured in quantitative variables, which is why PCA was a more
appropriate technique in these cases. Clustering appears to be a
promising area to explain the natures of different categories of
configurations. However, in our example systems, the identified
clusters were difficult to understand and mainly reflected the
tradeoffs we identified based on PCA (e.g., resulting in two re-
sulting clusters, with one cluster being cost-effective but having
low reliability and high response times, and the other cluster
having opposite characteristics). There may be circumstances in
which these additional techniques could provide useful insight,
but in this paper we have not elaborated on them because of their
limited usefulness for the systems studied.

(RQ3) Information Reduction-Explained Variance Tradeoff.
Table 2 summarizes the information reduction and explained

variance for the two scenarios described in the paper. In the
table, information reduction is calculated as the percentage of

the original variables in the dataset that remain as relevant in
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Table 2
Information reduction and explained variance summary.
Case study #dataset #relevant Information Explained Residual

vars. PCA vars. reduction variance variance

Tele-Assistance System V1 79 42 46.84 % 76.32 % 23.68 %
Tele-Assistance System V2 79 20 74.68% 73.11% 26.89%

Network Architecture V1 78 12 84.62% 99.02% 0.98%
Network Architecture V2 106 26 75.47% 98.09% 1.91%
Network Architecture V3 68 16 76.47% 95.32% 4.68%

Average 82 23.2 71.62% 88.37% 11.63%
the PC1–PC2 correlation loadings plot (i.e., positioned within
the 50%–100% explained variance ellipses), whereas the total
explained variance for PC1–PC2 is one of the outputs provided
by PCA. Total residual variance corresponds to the remainder of
PCs, i.e., variance that is left unexplained by PC1 and PC2.

We can observe that in all scenarios, there is a remarkable
eduction in the information that has to be examined by an
rchitect to analyze the tradeoff space, which is in the range 46%–
4% of the overall number of variables available in the dataset. At
he same time, the total residual variance ranges between 0.98
nd 26.89%. Although non-negligible, these are moderate levels
f residual variance, especially if we consider them in the context
f the drastic dimensionality reduction in the set of explanatory
ariables.

. Related work

Evaluation of software architectures under uncertainty is a
ubject that has been broadly explored (Sobhy et al., 2021). Due
o space constraints, we focus on the subset of works akin to our
roposal, which can be categorized into:
Architecture-based quantitative analysis and optimization ap-

roaches, which focus on analyzing and optimizing quantita-
ive aspects of architectures using mechanisms that include e.g.,
tochastic search and Pareto analysis (Aleti et al., 2009; Bondarev
t al., 2007; Martens et al., 2010). Other recent approaches to
rchitectural design synthesis and quantitative verification (Ca-
inescu et al., 2017; Cámara, 2020; Cámara et al., 2019) generate
nd analyze alternative system designs, enabling exploration of
uantitative guarantees across the design space. These techniques
(Cámara, 2020; Cámara et al., 2019) being our prior work) do not
ddress explainability, but produce (large) datasets that can be
sed as input to the approach described in this paper.
Learning-based architecture evaluation adopts ML techniques to

nhance the evaluation with observations of system properties
ver time (Calinescu et al., 2011; Cámara et al., 2020; Esfahani
t al., 2013; Sobhy et al., 2020). These works employ Bayesian
earning (Calinescu et al., 2011) to update model parameters,
odel Tree Learning (MTL) to tune system adaptation logic (Esfa-
ani et al., 2013), and reinforcement learning (Sobhy et al., 2020;
ámara et al., 2020) to analyze architectural decisions made at
un-time.

While all the approaches described above provide some form
f architectural tradeoff analysis (sometimes employing ML tech-
iques), none of them makes any claims about explicitly linking
esign variables with requirements satisfaction or facilitating the
xplainability of the design tradeoff space. Indeed, a recent com-
rehensive literature review on architectural evaluation under
ncertainty (Sobhy et al., 2021) reveals no approaches covering
he research gap addressed by our technique.

. Conclusions and future work

In this paper, we have presented what is, to the best of
ur knowledge, the first approach that explicitly relates QoS
12
and architectural design variables using dimensionality reduction
techniques employed in ML and other sciences, enabling archi-
tects to interpret the main tradeoffs of an architectural design
space based on a graphical summary of the relations among the
main variables that explain differences between configurations,
as well as on decision trees that illustrate the impact of concrete
design decisions on system qualities. Our results illustrate the
feasibility of the approach both in terms of identifying the main
sources of variability and design/QoS variable correlations (RQ1),
as well as of quantifying the impact of design decisions on QoS
dimensions (RQ2). Moreover, the results across all five scenarios
included in our study indicate that a remarkable reduction in the
amount of information required to explain the main tradeoffs of
an architectural design space is attainable while the reduction in
explained variance remains moderate (RQ3).

Although our approach works well in the case studies pre-
sented, PCA works optimally primarily in situations where vari-
able correlations are linear, or an approximation thereof. Fu-
ture work will involve exploring alternatives to PCA that en-
able the analysis of systems with strong non-linear correlations.
Moreover, our approach is currently limited to component-and-
connector static architectures with binary connectors. Our future
work will also explore extensions to the catalogue of metrics
and extraction functions required to enable richer analysis of
various styles of architectural representation, including dynamic
architectures, as well as the development of tools to help users
easily interpret these analysis results.
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