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A B S T R A C T

This paper looks at the problem of reducing the energy use of robot movements in a robot station with
stochastic execution times, while keeping the productivity of the station. The problem is formulated as a
stochastic optimization problem, that constrains the makespan of the station to meet a deadline with a high
probability. The energy use of the station is a function of the execution times of the robot operations, and the
goal is to reduce this energy use by finding the optimal execution times and operation order. A theoretical
motivation to why the stochastic variables in the problem, under some conditions, can be approximated as
independent and normally distributed is presented, together with a derivation of the max function of stochastic
variables. This allows the stochastic optimization problem to be approximated with a deterministic version,
that can be solved with a commercial solver. The accuracy of the deterministic approximation is evaluated
on multiple numerical examples, which show that the method successfully reduces the energy use, while the
deadlines of the stations are met with high probabilities.
1. Introduction

In recent years, the pressure on industry by society and governments
to reduce the emission of greenhouse gases has increased. One way to
achieve this is to reduce the energy use of the automation and robotic
systems that exist in many manufacturing industries. For industrial
robots, one of the most common approaches to reduce energy use is
trajectory optimization [1–3]. Many of the methods, and in particular
the ones that are simplest to implement in practice, rely on increasing
the execution time of the trajectories (compared to the most time
efficient ones) [4–7].

In real production systems, the execution times of the robot stations
are often measured closely to ensure that the productivity (the number
of produced products per unit of time) is kept. Increasing the execution
time of the robot trajectories (to save energy) may increase the exe-
cution time of the production system. So, there is a tradeoff between
energy reduction and productivity. This is a problem when dealing with
real production systems, because normally productivity is prioritized
over energy reduction. Therefore, any method, aimed at reducing the
energy use in practice, should ideally guarantee that the productivity is
not affected, or at least consider or quantify the tradeoff. This problem
can be formulated as a scheduling problem of where in the execution of
a robot station it is possible to extend the execution times of the robot
movements without affecting the productivity.

The tradeoff between energy reduction and productivity becomes
especially challenging if, which is the case in most real-life scenarios,
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there are disturbances or stochastic processing times in the system.
This can be, for example, machine breakdowns, arrival of parts and
variations of operations performed by human operators etc. As shown
by [8], there is a tradeoff between energy reduction and robustness to
stochastic disturbances.

Specific problem

Motivated by the discussion above, the aim of this paper is to formu-
late and present a solution to the optimization problem of reducing the
energy use in a multi-robot station. The focus is on robot movements
with stochastic processing times, while keeping the productivity of
the station. More specifically, each operation in the station contains
a segment with uncontrollable stochastic execution time and a robot
movement with controllable deterministic execution time. The energy
use of each operation is a function of its deterministic execution time.
This problem formulation has also been studied in [4,7,8]. Some, but
not all, of the operations require shared resources to execute. This
creates a scheduling problem to find in what order the operations
are allowed to access the shared resources. To guarantee that the
productivity is not affected, the optimization problem contains a so-
called chance constraint [9] for the station to meet a deadline with a
high probability. The decision variables in the optimization problem
are the deterministic execution times and the operation order.
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Literature review

A number of papers have recently been presented on energy re-
duction of industrial robots or production systems. Carabin et al. [2]
present a review of existing solution methods. Vergnano et al. [4]
reduce the energy use of a multi-robot station by using so-called energy
signatures. Wigström et al. [10] develop a method that combines
scheduling and energy optimal trajectory generation of a multi-robot
station. Meike et al. [6] present a practical case study, including
modeling and reduction of the energy use of a production line in an
automotive factory. Gadaleta et al. [7] reduce the energy use of an
industrial robot by using a simulation software to find the optimal
combination of velocity and acceleration reduction. Pastras et al. [11]
present a theoretical investigation on improving the motion profiles of
industrial robots. Zhang et al. [12,13] look at the problems of tracking
noisy trajectories and obstacle avoidance for robotic manipulators.
Glorieux et al. [14] propose a method for energy optimal trajectory
optimization of cyclic robot stations. Gadaleta et al. [15] investigate
the optimal placement of an industrial robot in order to use the least
amount of energy. Chen et al. [16] and Chang et al. [17] look at the
energy use of serial production systems with buffers and stochastic
machine breakdowns. Salido et al. [18] and Sundström et al. [8] in-
vestigate the tradeoff between energy reduction and robustness, while
Faraji Amimiri et al. [19] present a method to reduce the energy use
of a stochastic flow-shop-problem by reducing the machine velocities.
Gürel et al. [20] Look at the problem of scheduling and reducing the
energy use of a single robot in a manufacturing cell.

To summarize the existing literature, there are not many papers that
look specifically at the problem defined earlier, namely the combina-
tion of energy reduction of robot movements, multi-robot scheduling,
stochastic processing times and a chance-constraint for meeting a dead-
line. Therefore, this is a very relevant problem in many practical
applications, which motivates the focus of this paper.

Regarding the challenges in solving the defined optimization prob-
lem, the main complexity comes from the combination of stochastic
scheduling and the chance constraint of the deadline. This added com-
plexity makes the problem hard to solve accurately even for relatively
small problems, such as the multi-robot stations that are investigated
in this paper. One of the main challenges in solving this optimization
problem is to mathematically express the distribution of the makespan
of the station, which is required to express the chance constraint.
Some interesting analyzes and solution methods related to this are
presented by Brucker et al. [21] and Möhring [22]. Ben-Tal et al. [9]
and Nemirovski et al. [23] present different ways to reformulate chance
constrained optimization problems to convex approximations only con-
taining deterministic variables. These reformulated problems can be
solved efficiently by commercial solvers, and are conservative in the
sense that the solutions to the reformulated problems are guaranteed
to be feasible for the original problem as well. This approach has also
been applied to chance constrained scheduling problems [24,25].

Contribution and outline

To the best of the authors knowledge, the specific optimization
problem considered in this paper, which we argue is a relevant problem
in many practical applications, has not been investigated before. The
main contribution of this paper is to model this optimization problem
and to find a solvable deterministic approximation of this problem.
Specifically, this includes (a) a theoretical motivation to why the
stochastic variables in the problem, under some conditions, can be
approximated as independent and normally distributed; (b) a derivation
of the max function of two stochastic variables; (c) a way to formulate
the optimization problem mathematically such that it can be solved
with a commercial solver; and (d) the inclusion of the operation order
2

in the optimization formulation. The second contribution is to show n
Table 1
The most important nomenclature.
: set of all operations, 𝑖 ∈ .
𝑟: set of operations requiring resource 𝑟 to execute, 𝑟 ⊆ .
: set of all resources, 𝑟 ∈ .
𝑖: set of resources required by operation 𝑖 to execute, 𝑖 ⊆ .
𝑟: set of available time slots for resource 𝑟, 𝑘 ∈ 𝑟.
: operation order.
𝑎𝑖𝑟𝑘: binary decision variables 𝑎𝑖𝑟𝑘 ∈ ,

𝑎𝑖𝑟𝑘 = 1 when operation 𝑖 is executed in time slot 𝑘 on resource 𝑟.
: set of ending operations.
𝑖: set of operations preceding operation 𝑖, because of precedence constraints.
𝑖: set of operations preceding operation 𝑖, because of resource constraints.
𝑖: set of all operations preceding operation 𝑖, 𝑖 = 𝑖 ∪ 𝑖.
𝑆𝑖: stochastic starting time for operation 𝑖, with mean 𝜇𝑆𝑖 and variance 𝑣𝑆𝑖 .
𝐬𝑖: starting time vector of operation 𝑖, 𝐬𝑖 = [𝜇𝑆𝑖 𝑣𝑆𝑖 ]

𝑇 .
𝐸𝑖: stochastic execution time of operation 𝑖, with mean 𝜇𝐸𝑖 and variance 𝑣𝐸𝑖 .
𝐞𝑖: execution time vector of operation 𝑖, 𝐞𝑖 = [𝜇𝐸𝑖 𝑣𝐸𝑖 ]

𝑇 .
𝑑𝑖: deterministic execution time of operation 𝑖.
𝑑𝑖: lower bound on 𝑑𝑖.
𝐶𝑖: stochastic completion time on operation 𝑖, with mean 𝜇𝐶𝑖 and variance 𝑣𝐶𝑖 .
𝐜𝑖: completion time vector of operation 𝑖, 𝐜𝑖 = [𝜇𝐶𝑖 𝑣𝐶𝑖 ]

𝑇 .
𝐪𝑟𝑘: completion time vector of time slot 𝑘 on resource 𝑟.
𝑔𝑖: energy function of operation 𝑖, with parameters 𝜓 𝑖

1 , 𝜓
𝑖
2 , 𝜓

𝑖
3 , 𝜓

𝑖
4

𝑡𝑑 : deadline of the station.
𝛽: required probability to meet the deadline.
𝑇 : stochastic makespan of the station.

that the derived optimization model is able to successfully solve a
number of numerical examples that are based on real robot stations.

This is a continuation of the work presented in [26,27]. Compared
to [26] this paper contains the addition of stochastic execution times.
Compared to [27] this paper contains the addition of more thorough
motivations for some of the simplifications that are used, an extended
optimization formulation where the operation order is not fixed but
instead a part of the optimization problem, and a much more extensive
evaluation of the method.

The rest of the paper is organized as follows: the stochastic optimiza-
tion problem is presented in Section 2. A deterministic approximation
of the stochastic optimization problem is then found, first for a fixed
operation order in Section 3, and then extended in Section 4 to the
case when the operation order is part of the optimization problem. The
method is evaluated on three numerical examples in Section 5, and
finally some conclusions are given in Section 6.

2. Problem formulation

In this section the optimization problem of reducing the energy
use of a robot station with stochastic processing times is presented.
The most important nomenclature can be found in Table 1. Regular
lower-case letters are used to denote deterministic variables, regular
upper-case letters are used to denote stochastic variables and upper-
case calligraphy letters are used to denote sets. In the problem there
is a set  of operations 𝑖 ∈  that need to be executed. The execution
ime of each operation is a random variable that is a sum of two parts,
stochastic part denoted by 𝐸𝑖 and a deterministic part denoted by 𝑑𝑖.
ach operation also has a starting time 𝑆𝑖 and a completion time 𝐶𝑖.
hus,

𝐶𝑖 = 𝑆𝑖 + 𝐸𝑖 + 𝑑𝑖. (1)

.1. Precedence and resource constraints

Between the operations there are two different types of constraints.
he first type is named precedence constraint and occurs when there is
fixed order in which some of the operations need to be executed.

n the literature this type of constraint is sometimes described by the
otion of jobs, where a job contains a set of operations that needs to
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be executed in a given order. Let 𝑖 be a set of operations that need to
precede operation 𝑖. For all operations 𝓁 in 𝑖 it must hold that

𝑆𝑖 ≥ 𝐶𝓁 . (2)

he second type of constraint is named resource constraint and is related
to which resources an operation needs to execute. The set of resources
in the station is denoted by , each operation needs at least one
resource 𝑟 to execute and each resource can only execute one operation
at a time. For a resource 𝑟 in  the resource constraint states that for
any two operations 𝑖 and 𝓁 requiring resource 𝑟 to execute it must hold
that

𝑆𝑖 ≥ 𝐶𝓁 𝑜𝑟 𝑆𝓁 ≥ 𝐶𝑖. (3)

𝑟 is the set of operations that require resource 𝑟 to execute. Examples
f resources are robots or so-called shared zones. A shared zone is a
hysical space that only one robot can access at a time.

The order in which the operations use the resources in the station
s named operation order. The operation order is set before the station
s executed, and it is represented by the set  (More on this in
ection 4). Depending on the operation order, each operation may have
n additional set of operations 𝑖() that need to be finished before it
an execute, in addition to 𝑖. So, for a given operation order , the
otal set of operations that precede operations 𝑖 is given by 𝑖() =
𝑖 ∪ 𝑖(). Combining (2) and (3) gives the following constraint for
peration 𝑖,

𝑆𝑖 ≥ max
𝓁∈𝑖()

(𝐶𝓁). (4)

he makespan of the station (also sometimes referred to as cycle time)
s a stochastic variable denoted by 𝑇 and is defined as,

𝑇 = max
𝑖∈

(𝐶𝑖),

here  is the set of ending operations. An ending operation is an
peration that, for at least one operation order, does not have any
perations succeeding it. An illustrative example of a robot station is
hown in Fig. 1.

.2. Distributions

The stochastic variables in the problem formulation 𝑆𝑖, 𝐸𝑖, 𝐶𝑖, have
ean values 𝜇𝑆𝑖 , 𝜇

𝐸
𝑖 , 𝜇

𝐶
𝑖 and variances 𝑣𝑆𝑖 , 𝑣

𝐸
𝑖 , 𝑣

𝐶
𝑖 . For notational con-

enience the vectors 𝐬𝑖 = [𝜇𝑆𝑖 𝑣𝑆𝑖 ], 𝐞𝑖 = [𝜇𝐸𝑖 𝑣𝐸𝑖 ] and 𝐜𝑖 = [𝜇𝐶𝑖 𝑣𝐶𝑖 ]
are sometimes used. 𝑓 is used to denote a general probability density
function (PDF) and 𝐹 is used to denote a general cumulative density
function (CDF). Out of 𝑆𝑖, 𝐸𝑖 and 𝐶𝑖, only 𝐸𝑖 can be described by a
standard distribution. 𝑆𝑖 and 𝐶𝑖 are more results of (1) and (4) than
something that can be modeled explicitly. Note that all 𝐸𝑖 are assumed
to be independent from each other.

To model the stochastic execution time 𝐸𝑖, different types of distri-
butions can be used, depending on what type of variation that is being
modeled. For example, a common choice when modeling machine
breakdowns is to use the exponential distributions. In this paper, 𝐸𝑖
epresents the natural variations occurring in some types of operations,
.g. welding or human operations. Only some information of the actual
istributions is known, e.g. the minimum and maximum values or
he mean and an approximation of the standard deviation. For these
ases the uniform and normal distributions are suitable. A uniform
istribution is denoted by 𝑈 (𝑘1, 𝑘2) and the PDF and CDF are defined

as [28]

𝑓 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1
𝑘2−𝑘1

, if 𝑥 ∈ [𝑘1, 𝑘2]

0, otherwise

𝐹 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

0, if 𝑥 < 𝑘1
𝑥−𝑘1
𝑘2−𝑘1

, if 𝑥 ∈ [𝑘1, 𝑘2]

1, otherwise.
3

⎩

w

Fig. 1. An illustrative example schedule of a robot station, containing a set of
operations and resources. The operations are shown as numbered boxes and the solid
arrows between them are precedence constraints. The station contains four resources:
three robots and one shared zone. The robots are listed to the left. The operations on the
same row as a robot require that robot to execute. Operation 5 and 7 also require the
shared zone to execute. Only two operation orders are possible: Operation 5 precedes
Operation 7 (which is shown) or the other way around. The additional precedence
constraint, that exists because of the operation order, is shown with a dashed arrow.

A Normal Distribution is denoted by 𝑁(𝜇, 𝑣) and the PDF and CDF are
defined as [28]

𝜙(𝑥;𝜇, 𝑣) = 𝑒−
(𝑥−𝜇)2

2𝑣
√

2𝜋𝑣
,

𝛷(𝑥;𝜇, 𝑣) = 1
2

(

1 + erf
(

𝑥 − 𝜇
√

2𝑣

)

)

, (5)

where erf is the error function [29]. For the rest of this paper, if not
tated otherwise, it is assumed that 𝐸𝑖 are, or safely can be approxi-

mated with, a normal distribution.

2.3. Energy use

The energy use of an operation is modeled by a function 𝑔𝑖 that
depends on the deterministic execution time 𝑑𝑖. The energy functions
are found by executing the robot operations with different velocities,
recording the energy use and execution times, and fitting functions to
the recorded data. The energy functions are parameterized as

𝑔𝑖(𝑑𝑖) = 𝜓 𝑖1exp(𝜓
𝑖
2𝑑𝑖) + 𝜓

𝑖
3exp(𝜓

𝑖
4𝑑𝑖), (6)

here 𝜓 𝑖1, 𝜓
𝑖
2, 𝜓

𝑖
3, 𝜓

𝑖
4 are parameters, and 𝜓 𝑖1, 𝜓

𝑖
3 > 0 so that the functions

are convex. To describe the energy use by a parameterized energy
function has been done previously in [4,8], for example. An example of
an energy function is 𝑔(𝑑𝑖) = 15503exp(−1.3561𝑑𝑖)+4598exp(0.004212𝑑𝑖),
nd some examples can be seen in Fig. 2. Every deterministic execution
ime is constrained by a lower bound 𝑑𝑖, which is the shortest possible

duration of the operation; this is also the default value of 𝑑𝑖. So to
larify, the energy use of an operation can be reduced by increasing
he value of 𝑑𝑖.

Note that in general, operations may have other types of energy
unctions than what is shown in Fig. 2. What is shown and what is
onsidered in this paper are fast robot movements, typically to move
etween two locations (more on this in Section 5). Robot movements
here a robot simultaneously performs some task, such as glue dispens-

ng, requires relatively slow movements, which probably means that
ess energy reduction can be made by additional reduction of velocity.
hese types of operations are not considered in this paper.

.4. Optimization problem

The purpose of the optimization problem is to consider the tradeoff
etween productivity and energy reduction. As discussed in the intro-
uction there are many ways for how to formulate such a problem. In
his paper, it is assumed that the energy use of the operations should be
inimized, under the assumption that the robot station has a deadline
hen every operation must be completed, and that this deadline must
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Fig. 2. Some examples of energy functions.

be met with a given high probability. This constraint can be formulated
as

P(𝑇 < 𝑡𝑑 ) ≥ 𝛽

where P is used to denote probability, 𝑡𝑑 is the deadline of the station
and 𝛽 is the required probability by which the deadline must be met.
The whole optimization problem can be formulated as follows:

Optimization Problem 1.

min
,𝑑

∑

𝑖∈
𝑔𝑖(𝑑𝑖)

subject to:

𝐶𝑖 = 𝑆𝑖 + 𝐸𝑖 + 𝑑𝑖 𝑖 ∈  (7)

𝑆𝑖 ≥ max
𝓁∈𝑖()

(𝐶𝓁) 𝑖 ∈  (8)

𝑇 = max
𝑖∈

(𝐶𝑖) (9)

P(𝑇 < 𝑡𝑑 ) ≥ 𝛽 (10)
𝑑𝑖 ≤ 𝑑𝑖 𝑖 ∈ 

where the operation order  and the deterministic execution times 𝑑𝑖
re the optimization variables. □

Note, for a given operation order it is always optimal for every
peration to start as early as possible. So, the inequality in (8) can be
eplaced by an equality. The combined complexity of the scheduling
roblem to find the operation order together with the chance constraint
10) makes Optimization Problem 1 hard to solve in general.

. Deterministic approximation

In this section, a deterministic approximation of Optimization Op-
imization Problem 1 is presented. This is done under the assumption
hat there is a fixed operation order, which will later be extended to
he case with varying operation order in Section 4. The aim is approx-
mate Optimization Problem 1 in a way that it can be expressed only
sing the mean values and variances of the stochastic variables, which
as been found to be accurate enough for the type of robot stations
onsidered in this paper (see Section 5). Three steps will be taken to
each the final approximated optimization problem and also to some
xtent motivate why the approximation is possible. The three steps are:
ssume normal distributions, assume independence, and approximate
he max-function. The first two steps are relatively common and similar
pproaches can be found in [21,22]. The third step is more novel, but
o get a complete derivation of the proposed optimization method, all
hree steps are presented in the coming sections.

.1. Normal distribution

To calculate (7) exactly, the following convolution needs to be
olved,

𝑓𝐶 (𝑥) =
∞
𝑓𝑆 (𝑥 − 𝑦)𝑓𝐸 (𝑦)d𝑦 + 𝑑𝑖, (11)
4

𝑖 ∫−∞ 𝑖 𝑖
where 𝑓𝐶𝑖 , 𝑓𝑆𝑖 and 𝑓𝐸𝑖 are the PDFs of 𝐶𝑖, 𝑆𝑖 and 𝐸𝑖 respectively. Note
that 𝑆𝑖 and 𝐸𝑖 always are independent of each other. To solve (11) is
in general too complicated to be practically feasible. If however 𝐸𝑖 and
𝑆𝑖 are normally distributed, (11) can be simplified [30]. In general,
𝑆𝑖 and 𝐸𝑖 are not normally distributed; even if every 𝐸𝑖 is, 𝑆𝑖 is not
(because of (8)). However, the central limit theorem [31] can be used
to show that for some special cases it can be assumed that 𝐸𝑖 and 𝑆𝑖
are normally distributed. Otherwise, the assumption can be used as a
heuristic. The central limit theorem states that, under some conditions,
the distribution of a sum of independent random variables tends to a
normal distribution.

To illustrate this phenomenon, consider a simple robot station with
a set of resources , each resource executes a sequence of operations
𝑖 ∈ 𝑟 and the operations of each resource have precedence con-
straints between them so that the operation order is fixed. None of
the operations has precedence constraints related to operations of other
resources. The execution times 𝐸𝑖 of the operations are either normally
or uniformly distributed with mean values 𝜇𝐸𝑖 and variances 𝑣𝐸𝑖 . For this
example,  contains the last operation of every resource, so (7)–(9) can
be simplified to:

𝐶𝑟 =
∑

𝑖∈𝑟

𝐸𝑖 + 𝑑𝑖 𝑟 ∈  (12)

𝑇 = max
𝑟∈𝑅

(𝐶𝑟)

Because of the central limit theorem the following identity holds for
every 𝑟 ∈ 𝑅,

∑

𝑖∈𝑟

𝐸𝑖 + 𝑑𝑖
𝑑
= lim

|𝑟|→∞
𝑁 (�̄�, �̄�) (13)

where 𝑑
= is used to denote equality in terms of distribution [28], | ⋅ | is

used to denote cardinality and

�̄� =
∑

𝑖∈𝑟

𝜇𝐸𝑖 + 𝑑𝑖,

�̄� =
∑

𝑖∈𝑟

𝑣𝐸𝑖 .

So, for this example, by substituting (13) in (12), only the mean values
and variances of 𝐸𝑖 are needed to solve the problem, as long as |𝑟| is
large enough. How large |𝑟| needs to be for the approximation to be
accurate varies, but for the distributions considered in this paper the
number is not so big. For example: if all 𝐸𝑖 are uniformly distributed
with similar mean values and variances, the approximation is accurate
enough for |𝑟| = 4. For more complex robot stations the result pre-
sented above does not hold, but for the type of robot stations considered
in this paper it has been found to be accurate enough to be used as a
heuristic.

Finally, by treating 𝑆𝑖 + 𝐸𝑖 as the sum of normally distributed
random variables, (7) can be approximated by

𝐜𝑖 = 𝐬𝑖 + 𝐞𝑖 +
[

𝑑𝑖
0

]

, (14)

where 𝐜𝑖, 𝐬𝑖, 𝐞𝑖 are two-dimensional vectors containing the mean values
and variances of the completion time, starting time, and execution time,
respectively.

3.2. Independence

To express Optimization Problem 1 in a deterministic way, it is
assumed that the stochastic variables involved are independent from
each other. In general, that does not hold, but the optimization problem
can be reformulated such that this independency property is satis-
fied. Similar approaches has already been presented, for example by
Möhring [22]. But for completeness, this reformulation is shown in
detail for the specific type of problem considered in this paper.

Combining the left-hand side of (10) with (9) it can be rewritten as

P(𝑇 < 𝑡𝑑 ) = P
(

⋂

𝐶𝑖 < 𝑡𝑑
)

, (15)

𝑖∈



Robotics and Computer-Integrated Manufacturing 81 (2023) 102511M. Hovgard et al.

s

T
f
f

P

w

w
w
s
t
t
t
o
𝑘

and expanded using the chain rule (which can be derived using Bayes
formula [32]),

P(𝑇 < 𝑡𝑑 ) =
∏

𝑖∈
P
(

𝐶𝑖 < 𝑡𝑑
|

|

|

⋂

𝓁∈𝑖

𝐶𝓁 < 𝑡𝑑
)

, (16)

where P(⋅|⋅) is used to denote conditional probability and 𝑖 = {𝓁 ∈
 ∶ 𝓁 > 𝑖}. Assuming that every 𝐶𝑖 is independent from each other, the
conditioning in (16) can be removed:

∏

𝑖∈
P
(

𝐶𝑖 < 𝑡𝑑
|

|

|

⋂

𝓁∈𝑖

𝐶𝓁 < 𝑡𝑑
) independence
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

∏

𝑖∈
P(𝐶𝑖 < 𝑡𝑑 ).

In general some of the 𝐶𝑖 ∈ {𝐶𝓁 ∶ 𝓁 ∈ } are not independent; how
they depend on each other is discussed below.

Every 𝐶𝑖 ∈ {𝐶𝓁 ∶ 𝓁 ∈ } can be expressed as a max-function on a
set of sums of execution times, so that

𝐶𝑖 = max

⎧

⎪

⎨

⎪

⎩

∑

𝓁∈𝑗

𝐸𝓁 ∶ 𝑗 ∈ 𝑖

⎫

⎪

⎬

⎪

⎭

(17)

where 𝑗 is a ‘‘path’’ from a starting operation to operation 𝑖, 𝑖 is the set
of all such possible paths, and 𝑗 is the set of operations contained in
path 𝑗. For example, in Fig. 1, 𝐶3 = max(𝐸1 +𝐸2 +𝐸3, 𝐸4 +𝐸2 +𝐸3) and
𝐶5 = max(𝐸4 + 𝐸5, 𝐸6 + 𝐸7 + 𝐸5). Examining their dependency, 𝐶3 and
𝐶5 are positively correlated, because they both contain 𝐸4. In general,
looking at (17) and comparing any pair of 𝐶𝑖 ∈ {𝐶𝓁 ∶ 𝓁 ∈ }, it is
clear that they will either be positively correlated if they share one or
more 𝐸𝑖 or independent if they do not; they will never be negatively
correlated. Because of this, the following identity holds

P
(

𝐶𝑖 < 𝑡𝑑
|

|

|

⋂

𝓁∈𝑖

𝐶𝓁 < 𝑡𝑑
)

≥ P(𝐶𝑖 < 𝑡𝑑 ) 𝑖 ∈ ,

and it follows that
∏

𝑖∈
P
(

𝐶𝑖 < 𝑡𝑑
|

|

|

⋂

𝓁∈𝑖

𝐶𝓁 < 𝑡𝑑
)

≥
∏

𝑖∈
P(𝐶𝑖 < 𝑡𝑑 ). (18)

Combining (16) with (18), it is clear that if
∏

𝑖∈
P(𝐶𝑖 < 𝑡𝑑 ) ≥ 𝛽, (19)

is satisfied, (10) will also be satisfied. Hence, using (19) instead of (9)
and (10) when solving Optimization Problem 1 will result in a solution
that is feasible also for the original problem.

Proposition 1. Assuming normal distributions of the stochastic variables
in (9), approximating (9) and (10) in Optimization Problem 1 with

∏

𝑖∈
𝛷(𝑡𝑑 ; 𝐜𝑖) ≥ 𝛽,

results in an optimization problem whose feasible solutions will be feasible
for the original optimization problem as well.

Proof. This proposition is proved by combining (19) and the derivation
of it with the definition of the CDF of a normal distribution (5). □

3.3. Max approximation

The last step is to find an approximation of (8) that can be expressed
with mean values and variances. This will be done first for the case
when |𝑖()| = 2 and then be extended to the case when |𝑖()| > 2.
If |𝑖()| = 1, it means that only one operation precedes operation
𝑖. Then (8) simplifies to 𝐬𝑖 = 𝐜𝓁 , where 𝓁 is the operation preceding
operation 𝑖.

Let 𝑥 and 𝑦 be two independent operations with normally dis-
tributed completion times defined by 𝐶𝑥 ∼ 𝑁(𝜇𝑥, 𝑣𝑥) and 𝐶𝑦 ∼ 𝑁(𝜇𝑦, 𝑣𝑦)
respectively, and with vectors 𝐜𝑥 = [𝜇𝑥 𝑣𝑥]𝑇 and 𝐜𝑦 = [𝜇𝑦 𝑣𝑦]𝑇 . Let 𝑧 be
an operation succeeding 𝑥 and 𝑦. Its starting time is defined as
5

𝑆𝑧 = max(𝐶𝑥, 𝐶𝑦), (20)
with mean 𝜇𝑧 and variance 𝑣𝑧. The PDF 𝑓𝑆𝑧 of 𝑆𝑧 is given by

𝑓𝑆𝑧 (𝑧) = 𝜙(𝑧; 𝐜𝑥)𝛷(𝑧; 𝐜𝑦) + 𝜙(𝑧; 𝐜𝑦)𝛷(𝑧; 𝐜𝑥).

This equation can be derived intuitively. If 𝑍 is to take the value 𝑧,
then either 𝑋 or 𝑌 must take the value 𝑧, the relative likelihood of
which is calculated by 𝜙(𝑧; 𝐜𝑥) or 𝜙(𝑧; 𝐜𝑦). At the same time, the one
that does not take the value 𝑧 must take a value that is smaller than 𝑧,
the probability of which is calculated by 𝛷(𝑧; 𝐜𝑥) or 𝛷(𝑧; 𝐜𝑦).

Expressions for calculating 𝜇𝑧 and 𝑣𝑧 will be derived below. 𝜇𝑧 is
calculated as

𝜇𝑧 = ∫

∞

−∞
𝑓𝑧(𝑧)𝑧d𝑧

= ∫

∞

−∞
𝜙(𝑧; 𝐜𝑥)𝛷(𝑧; 𝐜𝑦)𝑧d𝑧 + ∫

∞

−∞
𝜙(𝑧; 𝐜𝑦)𝛷(𝑧; 𝐜𝑥)𝑧d𝑧. (21)

The expression in (21) contains two copies of the same function (with
different arguments for 𝜇 and 𝑣). Hence, only one of them will be
derived. Define a function �̄�(𝐜𝑥, 𝐜𝑦)

�̄�(𝐜𝑥, 𝐜𝑦) = ∫

∞

−∞
𝜙(𝑧; 𝐜𝑥)Φ(𝑧; 𝐜𝑦)𝑧d𝑧

= ∫

∞

−∞

𝑒−
(𝑧−𝜇𝑥 )2

2𝑣𝑥

(

1 + erf

(

𝑧−𝜇𝑦
√

2𝑣𝑦

))

𝑧

2
√

2𝜋𝑣𝑥
d𝑧, (22)

o that (21) can be written as

𝜇𝑧 = �̄�(𝐜𝑥, 𝐜𝑦) + �̄�(𝐜𝑦, 𝐜𝑥). (23)

The integration in (22) cannot be performed directly. Instead, the
expression has to be transformed to a product of Gaussian functions,
by taking the derivative and integral with respect to 𝜇𝑦 [33]

�̄� = ∫
d

d𝜇𝑦 ∫

∞

−∞

𝑒−
(𝑧−𝜇𝑥 )2

2𝑣𝑥

(

1 + erf

(

𝑧−𝜇𝑦
√

2𝑣𝑦

))

𝑧

2
√

2𝜋𝑣𝑥
d𝑧d𝜇𝑦.

he order of differentiation and integration can be changed, and per-
orming the differentiation results in the following product of Gaussian
unctions, which now can be solved.

�̄� = ∫ ∫

∞

−∞

𝑒
− (𝑧−𝜇𝑥 )2

2𝑣𝑥
−

(𝑧−𝜇𝑦 )2

2𝑣𝑦 𝑧
2𝜋√𝑣𝑥𝑣𝑦

d𝑧d𝜇𝑦.

erforming the integrations result in

�̄� = −1
2
𝜇𝑥erf

⎛

⎜

⎜

⎝

𝜇𝑦 − 𝜇𝑥
√

2
√

𝑣𝑥 + 𝑣𝑦

⎞

⎟

⎟

⎠

+
𝑣𝑥𝑒

−
(𝜇𝑥−𝜇𝑦 )2

2(𝑣𝑥+𝑣𝑦)
√

2𝜋
√

𝑣𝑥 + 𝑣𝑦
+ 𝑘𝜇1.

here 𝑘𝜇1 is the integration constant. Using (23), the whole expression
for 𝜇𝑧 then becomes

𝜇𝑧 =
𝜇𝑥 − 𝜇𝑦

2
erf

⎛

⎜

⎜

⎝

𝜇𝑥 − 𝜇𝑦
√

2
√

𝑣𝑥 + 𝑣𝑦

⎞

⎟

⎟

⎠

+
𝑒
−

(𝜇𝑥−𝜇𝑦 )2

2(𝑣𝑥+𝑣𝑦)√𝑣𝑥 + 𝑣𝑦
√

2𝜋
+ 𝑘𝜇 ,

(24)

here 𝑘𝜇 is the total integration constant. By looking at the edge case
hen 𝜇𝑥 ≫ 𝜇𝑦, 𝑣𝑥, 𝑣𝑦 in (24), we find that 𝜇𝑧 = 𝜇𝑥−𝜇𝑦

2 + 𝑘𝜇 . At the
ame time it is clear from a physical interpretation of the problem that
he mean value of 𝑍 = max(𝑋, 𝑌 ) is equal to the mean value of 𝑋, if
he mean value of 𝑋 is much greater than the mean value of 𝑌 , and
he variances of 𝑋 and 𝑌 are small enough so that P(𝑋 > 𝑌 ) ≈ 1. In
ther words, if 𝜇𝑥 ≫ 𝜇𝑦, 𝑣𝑥, 𝑣𝑦, then (24) should simplify to 𝜇𝑧 = 𝜇𝑥; so
𝜇 = 𝜇𝑥+𝜇𝑦

2 .
The variance of 𝑆𝑧, 𝑣𝑧 is defined as,

𝑣𝑧 = ∫

∞

−∞
𝑓𝑧(𝑧)𝑧2d𝑧 − 𝜇2𝑧

=
∞
𝜙(𝑧; 𝐜𝑥)𝛷(𝑧; 𝐜𝑦)𝑧2d𝑧 +

∞
𝜙(𝑧; 𝐜𝑦)𝛷(𝑧; 𝐜𝑥)𝑧2d𝑧 − 𝜇2,
∫−∞ ∫−∞ 𝑧
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Fig. 3. An example of the inputs and output of a max-function, compared to the
approximate distribution found by using 𝐻 in (26).

where 𝜇𝑧 is the mean calculated according to (24). The two integrations
can be solved in a similar way as for (21), resulting in

𝑣𝑧 =

(

𝜇2𝑥 + 𝑣𝑥 − 𝜇
2
𝑦 − 𝑣𝑦

)

2
erf

⎛

⎜

⎜

⎝

𝜇𝑥 − 𝜇𝑦
√

2
√

𝑣𝑥 + 𝑣𝑦

⎞

⎟

⎟

⎠

+
(𝜇𝑥 + 𝜇𝑦)

√

𝑣𝑥 + 𝑣𝑦𝑒
−

(𝜇𝑥−𝜇𝑦)2

2(𝑣𝑥+𝑣𝑦)
√

2𝜋
+ 𝑘𝑣 − 𝜇2𝑧 ,

(25)

where 𝑘𝑣 is the integration constant. It is found in a similar way as for
𝑘𝜇 . By letting 𝜇𝑥 ≫ 𝜇𝑦, 𝑣𝑥, 𝑣𝑦 in (25), we find that 𝑣𝑧 =

(𝜇2𝑥+𝑣𝑥−𝜇
2
𝑦−𝑣𝑦)

2 +
𝑘𝑣 − 𝜇2𝑥. Based on the physical interpretation of the problem it should

result in 𝑣𝑧 = 𝑣𝑥, which finally gives 𝑘𝑣 =
𝜇2𝑥+𝑣𝑥+𝜇

2
𝑦+𝑣𝑦

2 .
The result from (24) and (25) can be expressed as

𝐬𝑧 = ℎ(𝐜𝑥, 𝐜𝑦)

where ℎ is a function that calculates 𝜇𝑧 using (24) and 𝑣𝑧 using (25),
and 𝐬𝑧 = [𝜇𝑧 𝑣𝑧]𝑇 . This function is well defined as long as 𝑣𝑥 + 𝑣𝑦 ≠ 0
nd is nonconvex.

In the general case, when |𝑖()| > 2, (8) can be expressed
ecursively as 𝑆𝑖 = max(𝐶1,max(𝐶2,max(𝐶3,…))). The ℎ-function can

be used in a similar way, by defining a function 𝐻 as

𝐻({𝐜𝓁 ∶ 𝓁 ∈ 𝑖()}) = ℎ(𝐜1, ℎ(𝐜2, ℎ(𝐜3,…))). (26)

The output of 𝐻 is a two-dimensional vector, which is an approxima-
tion of 𝐬𝑖 = [𝜇𝑆𝑖 𝑣

𝑆
𝑖 ], i.e. the mean and variance of 𝑆𝑖. 𝑆𝑖 is in general not

normally distributed, but approximating it as 𝑁(𝜇𝑆𝑖 , 𝑣
𝑆
𝑖 ), the following

proposition can be formulated.

Proposition 2. Constraint (8) in Optimization Problem 1 can be approx-
imated as

𝐬𝑖 = 𝐻({𝐜𝑙 ∶ 𝑙 ∈ 𝑖()}),

where the set function 𝐻(⋅) is defined in (26). □

In Fig. 3, an example of the input distributions and output distri-
bution of a real max-function is shown, compared to the approximate
normal output distribution whose mean and variance is obtained by
using 𝐻 .

Below follows a short discussion on the potential errors of using
Proposition 2. For ideal conditions, i.e. when {𝐶𝓁 ∶ 𝓁 ∈ 𝑖()} are
independent and normally distributed, Proposition 2 is completely
accurate for |𝑖()| = 1. For |𝑖()| = 2, the calculated values
in 𝐬𝑖 are the real mean and variance of 𝑆𝑖. However, using 𝐬𝑖 to
approximate 𝑆𝑖 as a normal distribution, which is done implicitly by
using Proposition 2, is not always accurate. For |𝑖()| > 2, also the
calculated values in 𝐬𝑖 are approximations.

Additional errors may be introduced for non-ideal conditions, i.e.
when {𝐶 ∶ 𝓁 ∈  ()} are not independent and not normally
6

𝓁 𝑖 c
distributed, which is the case in practice. How big the errors are depend
on a large number of factors, such as the size of |𝑖()|, how the
elements in {𝐶𝓁 ∶ 𝓁 ∈ 𝑖()} depend on each other and how the means
and variances of these elements are distributed. An example where
Proposition 2 will introduce large errors is when {𝐶𝓁 ∶ 𝓁 ∈ 𝑖()}
have similar means but large differences in variances. This case is
illustrated in Fig. 3.

Despite the potential errors, Proposition 2 is still useable for the
applications considered in this paper. If one of the 𝐶𝓁 has a mean and
variance such that the probability of it being larger than the others
is close to one, then (8) will behave as if |𝑖()| = 1, for which
roposition 2 introduces no errors. It turns out that this is the case for
any of the operations (see Section 5). But for which of the operations

8) will behave in this simplified way depends on the optimization
esult. So, it is in general not possible to simplify (8) prior to the
ptimization, and the full formulation in Proposition 2 is still needed.

Using Eq. (14) and Propositions 1 and 2, Optimization Problem 1
an be expressed in an approximate way, using only the means and
ariances of the stochastic variables. For a fixed operation order , the
omplete approximation of Optimization Problem 1 can then formu-
ated as follows:

ptimization Problem 2.

min
𝑑

∑

𝑖∈
𝑔𝑖(𝑑𝑖)

subject to:

𝐜𝑖 = 𝐬𝑖 + 𝐞𝑖 +
[

𝑑𝑖
0

]

𝑖 ∈ 

𝐬𝑖 = 𝐻({𝐜𝓁 ∶ 𝓁 ∈ 𝑖()}) 𝑖 ∈  (27)
∏

𝑖∈
𝛷(𝑡𝑑 ; 𝐜𝑖) ≥ 𝛽 (28)

𝑑𝑖 ≤ 𝑑𝑖 𝑖 ∈ 

where the optimization variables are 𝑑𝑖. □

The complexity of solving Optimization Problem 2 varies depending
on the type of robot station, but in general Optimization Problem 2 is
not easy to solve, because of 𝛷 and 𝐻 that are nonconvex.

4. Operation order

Optimization Problem 2 assumes that the operation order is fixed.
If that is not the case, i.e. there exist resource constraints (3), some
additions are needed. An approach would be to find the operation order
by solving a separate optimization problem that does not include the
energy use or stochastic variations and then use that solution to solve
Optimization Problem 2, and perhaps do this iteratively. In this paper a
simple version of that idea will be used for comparison. It can be stated
as:

Optimization Problem 3. Find the operation order that minimizes
the makespan of the deterministic problem, i.e. where the stochastic
variables of the execution times 𝐸𝑖 are replaced with the mean values
𝜇𝐸𝑖 and the values of the deterministic execution times 𝑑𝑖 are on their
lower bounds 𝑑𝑖. Then use this operation order to solve Optimization
roblem 2. □

However, solving the scheduling problem and the stochastic energy
reduction problem separately may result in the solution being subop-
timal. In this section an approach to include the operation order into
Optimization Problem 2 is presented. First, 𝑖 is the set of resources
required by operation 𝑖 to execute; it can contain more than one
element. Every resource 𝑟 ∈ 𝑖 has a set 𝑟 of time slots 𝑘 ∈ 𝑟
n which the operations can be executed, where 𝑟 = {1, 2,… , |𝑟|}
nd 𝑟 is the set of operations that requires resource 𝑟. Let 𝐪𝑟𝑘 be the

ompletion time of the operation being processed on resource 𝑟 and
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in time slot 𝑘. Let 𝑎𝑖𝑟𝑘 ∈  be a binary decision variable that is 1 if
operation 𝑖 is processed on resource 𝑟 in time slot 𝑘 and 0 otherwise.
The completion time 𝐪𝑟𝑘 can then be expressed as

𝐪𝑟𝑘 =
∑

𝑖∈𝑟

𝑎𝑖𝑟𝑘𝐜𝑖. (29)

Instead of (27), the expression for 𝐬𝑖 now becomes

𝐬𝑖 = 𝐻(𝑖 ∪𝑖) (30)

where
𝑖 = {𝐜𝑙 ∶ 𝑙 ∈ 𝑖} (31)

is the contribution from the precedence constraints, and

𝑖 =
{

∑

𝑘∈𝑟⧵{1}
𝐪𝑟(𝑘−1)𝑎𝑖𝑟𝑘 ∶ 𝑟 ∈ 𝑖

}

(32)

is the contribution from the resource constraints. For a given operation
order, 𝑖 will contain the completion times of the operations that are
directly preceding operation 𝑖 on every resource 𝑟 that is required
by resource 𝑖. (32) is accurate if no operations share more than one
resource. The constraints

∑

𝑘∈𝑟

𝑎𝑖𝑟𝑘 = 1 𝑖 ∈ , 𝑟 ∈ 𝑖 (33)

∑

𝑖∈𝑟

𝑎𝑖𝑟𝑘 = 1 𝑟 ∈ , 𝑘 ∈ 𝑟 (34)

ensure that every operation is only scheduled once and that only one
operation can be executed by a resource at a time. Note that for
some resources there is only one possible operation order, because
of precedence constraints. Resource constraints for these resources do
not need to be included in the optimization problem. For example, in
Fig. 1 only the resource constraint of the shared resource needs to be
included.

Constraint (28) also needs to be modified if the operation order is
no longer fixed. For every operation 𝑖 ∈ , �̃�𝑖 is defined as

�̃�𝑖 =
∏

𝑟∈𝑖

𝑎𝑖𝑟|𝑟|, (35)

so that �̃�𝑖 is 1 only if operation 𝑖 is the last operation on all of its
resources. Eq. (28) can then be modified as

∏

𝑖∈
((1 − �̃�𝑖) + �̃�𝑖𝛷(𝑡𝑑 ; 𝐜𝑖)) ≥ 𝛽. (36)

The expression ((1 − �̃�𝑖) + �̃�𝑖𝛷(𝑡𝑑 ; 𝐜𝑖)) becomes 𝛷(𝑡𝑑 ; 𝐜𝑖) if �̃�𝑖 = 1 and 1 if
�̃�𝑖 = 0. In other words, an operation will only affect the calculations of
the probability to meet the deadline if it does not have any operations
succeeding it.

4.1. Deterministic optimization formulation

Together with the expressions in (26), (31), (32) and (35), the
complete deterministic approximation of Optimization Problem 1 is
given below:

Optimization Problem 4.

min
∑

𝑖∈
𝑔𝑖(𝑑𝑖) (37)

subject to:

𝐜𝑖 = 𝐬𝑖 + 𝐞𝑖 +
[

𝑑𝑖
0

]

𝑖 ∈  (38)

𝐬𝑖 = 𝐻(𝑖 ∪𝑖) 𝑖 ∈  (39)

𝐪𝑟𝑘 =
∑

𝑖∈𝑟

𝑎𝑖𝑟𝑘𝐜𝑖 𝑟 ∈ , 𝑘 ∈ 𝑟 (40)

∑

𝑎𝑖𝑟𝑘 = 1 𝑖 ∈ , 𝑟 ∈ 𝑖 (41)
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𝑘∈𝑟
Table 2
Parameters and solution of the simple example shown in Fig. 1.

Setup Result

𝑖 𝑑𝑖 𝑔𝑖 (𝜓 𝑖
𝑖 , 𝜓

𝑖
2 , 𝜓

𝑖
3 , 𝜓

𝑖
4) 𝐸𝑖 𝑑𝑖 𝑖

4 0 1000, −0.5, 500, 0.4 N(5.5, 0.4) 1.226 {}
5 0 2000, −0.5, 500, −0.2 N(5, 0.4) 1.018 {7}
6 0 1000, −0.5, 500, 0.4 N(5, 0.4) 0 {}
7 0 2000, −0.5, 500, −0.2 N(5, 0.4) 1.226 {}

∑

𝑖∈𝑟

𝑎𝑖𝑟𝑘 = 1 𝑟 ∈ , 𝑘 ∈ 𝑟 (42)

∏

𝑖∈
((1 − �̃�𝑖) + �̃�𝑖𝛷(𝑡𝑑 ; 𝐜𝑖)) ≥ 𝛽 (43)

𝐜𝑖 ≤
[

𝑡𝑑
(

𝑡𝑑∕3
)2

]

𝑖 ∈  (44)

𝑑𝑖 ≤ 𝑑𝑖 𝑖 ∈  (45)

𝑎𝑖𝑟𝑘 ∈ {0, 1} 𝑖 ∈ , 𝑟 ∈ 𝑖, 𝑘 ∈ 𝑟 (46)

where the optimization variables are 𝐬𝑖, 𝐪𝑟𝑘, 𝑎𝑖𝑟𝑘 and 𝑑𝑖. □

Note that only 𝑑𝑖 and 𝑎𝑖𝑟𝑘 are needed to completely describe the
solution, since it is assumed that every operation is starting as early
as possible. Also note that (44) is not strictly necessary to formulate
the problem. It is added to prevent the solver from getting stuck at an
unfeasible solution with zero gradient. This may happen since the error
function erf(𝑥) has a gradient close to zero for 𝑥 ≫ 0. Optimization
Problem 4 is a nonlinear and nonconvex mixed integer programming
problem. It is modeled in CasADi [34] and solved using the branch-
and-bound algorithm of BONMIN [35] together with IPOPT [36]. Since
the problem is nonconvex the solution from BONMIN is not exact but
a heuristic, and the solution depends heavily on the starting point.
Therefore, the result might be improved if the optimization is rerun
a number of times with different random starting points. How many
that is suitable depends on the application, how long timeframe that
is available for the optimization and how good the solution needs to
be. For the numerical examples in Section 5 the best solution of five
optimization runs with different random starting points is used.

5. Numerical examples

In this section Optimization Problems 3 and 4 are applied to some
numerical examples of robot stations.

5.1. Simple example

The first example is a simple one to show the basic principles. It is
the robot station shown in Fig. 1 but without Robot 1 and Operations
1, 2 and 3. The precedence and resource constraints are shown in that
figure, and the rest of the parameters can be found in the left side of
Table 2. Solving this with 𝑡𝑑 = 20 and 𝛾 = 0.99 using Optimization
Problem 4 gives 5802 as the value of the cost function (37) and the rest
f the solution is shown in the right side of Table 2.

Below a theoretical derivation of the optimal solution is shown to
ompare with the solution of Optimization Problem 4. First, there are
wo possible operation orders, Operation 5 preceding Operation 7 or
he other way around, which will be denoted Operation orders 57 or
5 respectively. Studying the energy functions, 𝑔4(𝑑) = 𝑔6(𝑑), and they
ave minima at 𝑑 = 1.018. For Operation order 57 there is enough
oom in the schedule after Operation 6 for it to have 𝑑6 = 1.018
nd achieve the minimum energy use without affecting the starting
ime of Operation 7. The same is true for Operation order 75 but for
peration 4 and 5 instead. This means that the distribution that is

elevant regarding meeting of the deadline (43) is either 𝐸4 + 𝐸5 + 𝐸7
r 𝐸 + 𝐸 + 𝐸 for operation orders 57 or 75 respectively. These
6 7 5
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sums of distributions and sets of energy functions of the corresponding
operations are the same apart from the former having a greater mean
value of the sum of distributions. This means that operation order 75
is the best choice because that leaves more room in the schedule to use
for energy reduction. With this operation order the deadline constraint
(43) becomes

𝛷(20, 𝜇𝐸6 + 𝑑6 + 𝜇𝐸7 + 𝑑7 + 𝜇𝐸5 + 𝑑5, 𝑣𝐸6 + 𝑣𝐸7 + 𝑣𝐸5 ) ≥ 0.99. (47)

Using the values of 𝜇 and 𝑣 from Table 2 to solve (47) (with = instead of
≥) for 𝑑6+𝑑7+𝑑5 gives an upper limit on 𝑑6+𝑑7+𝑑5 that is approximately
equal to 2.452. Comparing the energy functions 𝑔6(𝑑), 𝑔7(𝑑) and 𝑔5(𝑑):
because the gradients of 𝑔5(𝑑) and 𝑔7(𝑑) are negative and more negative
than 𝑔6(𝑑) for any 𝑑 below 2.452 it is clear that 𝑑6 = 0 in the optimal
solution. Furthermore, since 𝑔5(𝑑) = 𝑔7(𝑑) and that their gradients
become less negative for increasing values of 𝑑, the optimal solution
is 𝑑5 = 𝑑7 = 2.452∕2. The value of the cost function at the optimal
solution is therefore 𝑔4(1.018) + 𝑔5(1.226) + 𝑔6(0) + 𝑔7(1.226) = 5802. To
summarize, this theoretical optimal solution is the same as the solution
to Optimization Problem 4 presented earlier.

5.2. Problem setup

This section describes the setup of the main numerical examples.
There are three of them and they are taken from a production line
in Volvo Cars in Gothenburg, Sweden (see Fig. 4). The stations each
consists of four ABB robots of the type IRB 6700. The robots primarily
perform a series of spotwelds on the body of a car. Because the
stations are used in production it was not possible to perform the
energy optimization on the real stations. It was done in the simulation
software Robotstudio from ABB, by using simulation models of the
stations. It has been shown previously that the simulated energy use
in Robotstudio is comparable to the actual measured energy use of a
robot [26]. Time schedules of the simulation models can be seen in
Figs. 5–7.

The operations of the robots can be divided into welding operations,
that represents the actual welding, and movement operations, that
represents the movements between the different welding locations.
The welding operations cannot be affected, their energy use is not
considered in this context and they have stochastic execution times.
Most of the data in the numerical examples are taken from the real
robot stations but detailed data about the distributions of the execution
times of the welding operations were not available. An approximation
of the execution time of a welding operation is 1.4 s and according to
available data it can roughly wary ± 0.15 s of that. So, the distribution of
the welding times are modeled as uniform distributions 𝑈 ∼ (1.25, 1.55).
The variation in execution time of the welding operations have not been
investigated in this paper but one possible contributing factor is how
clean the electrodes on the welding tool are. As the tool is used, dirt is
accumulated on the electrodes which may increase how long it takes
to complete a welding operation.

For the movement operations, their execution times can be con-
trolled, they have no stochastic part and they use energy according to
the type of energy functions described earlier and illustrated in Fig. 2.
The energy functions are found in the way that is described in [26], by
executing the operations with different velocity settings and recording
the energy use; this is done in Robotstudio. Note that it is only the
energy use of the movements that are included, not the energy use
of the controllers or the brakes. In the original settings the robots are
programmed to move with the maximum velocities, so their execution
times are on the lower bounds.

The stations also contain shared zones. Two (groups of) operations
requiring the same shared zone cannot be executed at the same time,
and an operation may require more than one shared zone to be exe-
cuted. In the context of this paper both the robots and the shared zones
can be modeled as resources. Station 3 have additional constraints
8

because it includes some additional operations other than welding. At
Fig. 4. Station 3, a welding station with four robots.

Fig. 5. A schedule of Station 1 with the original operation order and execution times.
The robots are listed to the left and their respective operations are shown to the right.
The light gray boxes are welding operations and the dark gray boxes are movement
operations. Their execution times in the schedule are their mean values and lower
bounds 𝑑𝑖 respectively. The colored borders represent shared zones, one color per
shared zone. The operations with the same color cannot be executed at the same time.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. A schedule of Station 2 with the original operation order and execution times.

Fig. 7. A schedule of Station 3 with the original operation order and execution time.
The arrows show precedence constraints between some of the operations.

one point Robot 2 picks up and places a part on the car body, which
Robot 1 and 3 welds into place. Therefore, there are some precedence
constraints between these robots, as indicated by the arrows in Fig. 7.

The task is then to reduce the energy use of these stations while not
causing a delay in the production line. To create the exact optimization
problem that will be solved for these stations there are some limitations
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and assumptions that depends both on practical limitations on what
would be possible to change in the real stations and what makes for
an interesting optimization problem. For example, it is assumed that
the welding locations have been divided between the robots and that
the paths between them have been set, because changing the paths
introduces an unnecessary risk for collision. It is further assumed that
the operation order is partly set. In the real stations the welding
operations (and the movements between them) are divided in groups
based on where on the car body they are operating. In this paper a
group of operations is defined as follows. All operations in a group
require the same resources and only the first and last operation in
the group have precedence constraints with operations other than the
ones in the same group. Finally, the operations in a group are next to
each other in the original operation order (see Figs. 5–7). Based on this
definition there are 16, 13, 12 groups in Station 1,2 and 3 respectively.
It is assumed that the operation orders within each of these groups
are fixed but not the order in which these groups are executed on the
robots, and in which order they gain access to the shared zones, that is
part of the optimization problem.

Based on the assumptions above, each group of operations can
be modeled as one operation where the distribution 𝐸𝑖, the mean 𝜇𝑖
and the variance 𝑣𝑖 of the new operation simply is the sums of the
distributions, mean values and variances of the individual operations in
the group. The new energy function 𝑔𝑖 of each new operation is found
by solving the following optimization problem for some values of 𝑑𝑘
where 𝑑𝑘 ≥

∑

𝑖∈ 𝑑𝑖

𝑥𝑘 ∶= min
∑

𝑖∈
𝑔𝑖(𝑑𝑖)

subject to:
∑

𝑖∈
𝑑𝑖 ≤ 𝑑𝑘

𝑑𝑖 ≤ 𝑑𝑖 𝑖 ∈ 

he values of 𝑑𝑘 and the corresponding optimal values of the optimiza-
ion problem 𝑥𝑘 are then used as data points and the new 𝑔𝑖 is found by
itting functions to these data points in the same way as the original 𝑔𝑖
ere found. The station models using these merged operations will be

eferred to as the simplified station models, as opposed to the original
tation models shown in Figs. 5–7. They are the same apart from the
umber of operations. The simplified station models are what will be
sed in the optimization problem and the complete setup of them can
e found in Tables 4–6 in Appendix.

.3. Experimental setup

A total of 48 experiments have been conducted, each with a different
ombination of station, deadline and optimization method. The dead-
ines of the experiments were determined in the following way. The
tations were simulated 100 000 times with the initial settings, i.e. 𝑑𝑖 =
𝑑𝑖 and the original operation orders. The deadlines that corresponded
o 99.5% of the simulation runs of the respective stations meeting

them was then found. These deadlines were used in the experiments
together with 7 higher values with 0.5 s difference between them.
Both Optimization Problems 3 and 4 were used. Each experiment was
conducted in the following way. The station was optimized using one
of the optimization methods with 𝛽 = 0.99. The resulting operation
rder and deterministic execution times were set, and the station was
imulated using the Monte Carlo method 100 000 times. A simulation
onsists of drawing samples of the distributions and setting the starting
imes (and completion times) of the operations as low as possible while
beying the precedence constraints and operation order. The resulting
ata of the experiments are the energy use, which is the sum of the
nergy functions evaluated at the optimized deterministic execution
imes, and the probability to meet deadline, which is the fraction of
9

he simulations where the deadline were met. e
5.4. Results

The results of the experiments can be seen in Fig. 8. Examples of
solutions to Optimization Problem 4 can be found in Tables 4–6 in the
Appendix and they are also shown graphically in Figs. 9, 10, 11 (after

translating the results to the original station model).
The energy use of the unoptimized stations, when 𝑑𝑖 = 𝑑𝑖, are

177 kJ, 197 kJ and 159 kJ for Stations 1, 2 and 3 respectively. Comparing
this with the optimized energy use shown in Figs. 8(a), 8(c) and 8(e)
there are some interesting things to note. Firstly, the result shows
that significant energy reduction can be made, even with the lowest
deadlines. This energy reduction is roughly 9, 11 and 18 percent for
the three stations respectively. The reason why the reduction is so big is
because of a combination of the steep gradients of the energy functions
around 𝑑𝑖 (see Fig. 2) together with the ‘‘free time’’ (sometimes known
s slack) in the schedule, which allows extensions of the execution
imes of the operations without causing an extension of the makespan
f the station. Secondly, Station 3 has a bigger reduction than the
ther two. A contributing factor to this is that it has more slack
han Station 1 and that its slack is more evenly divided between the
obots than for Station 2. The fact that the gradients of the energy
unctions are steepest around 𝑑𝑖 and also that the energy functions of

the robots are relatively similar means that the total energy reduction
is bigger if the slack is evenly divided between the robots. Thirdly,
the energy use of each station is further reduced with around 2–3
percent per additional second that the deadline is extended (compared
to the unoptimized energy use). However, this effect is declining as the
deadline is increasing.

Comparing the two optimization methods: the simpler version some-
times finds the same solution as Optimization Problem 4 but not
always. When there is a difference it is because of different operation
orders. Specifically looking at Station 3 (see Fig. 7), the bad solutions
are when the green operation group of Robot 3 are executed directly
before the first green operation group of Robot 2, instead of being
executed in the beginning. This prevents the slack in the schedule to
be utilized fully, which illustrates a possible problem with separating
the scheduling and energy reduction part of the optimization problem.

Figs. 8(b), 8(d) and 8(f) show the simulated probability to meet
deadline for the optimized stations. The result shows that the proba-
bility to meet deadline is very close to, and most of the time above,
the constraint of 0.99. This is a good result considering the heavy
approximations used when deriving the optimization method and the
fact that the distributions of the execution times of the operations are
not normal (as modeled) but uniform. This is partly because there
are enough operations and the uniform distribution is close enough
to the normal distribution for the central limit theorem to hold. It is
also partly because many of the max-functions (that exist because of
precedence and resource constraints), are not ‘‘active’’. For example,
looking at Fig. 5 and the first operation of Robot 1 using the blue
zone (that temporarily will be denoted Operation 𝑥). Its starting time
is the max-function of the completion times of the operations directly
preceding it of Robot 1 (Operation 𝑦) and the last operation of Robot 4
using the blue zone (Operation 𝑧). Since the latter finishes significantly
later than the former (and their variances are not unreasonably large),
then 𝑆𝑥 ≈ 𝐶𝑦. So, for Operation 𝑥 (and other similar operations) the
pproximation of the max function does not introduce any errors.

Looking at the examples of solutions shown in Figs. 9–11, it can be
oted that the operations executed by robots that have large amounts
f slack show the most energy reduction. It can also be noted that the
xecution time extensions are unevenly divided even between opera-
ions of one robot. It is the operation that have the largest execution
ime to begin with that shows the most execution time extensions. This
s because they correspond to longer robot movements that use more
nergy and that therefore have the most energy reduction potential.
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Fig. 8. The simulated energy use and probability to meet deadline for each of the three stations. The data show a comparison between the stations before optimization and the
stations after optimization using Optimization Problems 3 and 4.
Fig. 9. A schedule of Station 1 with the optimized operation order and execution times
for the lowest of the deadlines, c.f. Fig. 5. The darkest gray areas show the extensions
of execution times of the movement operations compared to the lower bound 𝑑.
10
Fig. 10. A schedule of Station 2 with the optimized operation order and execution
times for the lowest of the deadlines, c.f. Fig. 6.
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Fig. 11. A schedule of Station 3 with the optimized operation order and execution
times for the lowest of the deadlines, c.f. Fig. 7.

6. Discussion and conclusion

In this paper, the stochastic optimization problem of reducing the
energy use of a robot station subject to stochastic processing times
has been investigated. A deterministic approximation of the stochastic
optimization problem has been presented, and it has been verified
on three numerical examples. The result showed that the proposed
method was able to find solutions to all the problem instances and that
the solutions resulted in reduced energy use and a high probably to
meet deadline. The method is a heuristic and it cannot be guaranteed
that it works within satisfying accuracy for a general robot station.
However, the result shows that under some conditions, which we
believe holds for many types of robot stations in practice, the proposed
simplifications makes the problem possible to solve within reasonable
accuracy. Because of the complexity of the problem, it was not possible
to compare the obtained solutions with the true optimum of the initial
optimization problem. However, since the proposed method was able
to approximate the distributions of the makespans reasonably well (see
Fig. 8 and the fact that the probability of the optimized stations were
close to the constraint) the obtained solutions can be expected to be
close to the true optima.
11
Future work includes improving the optimization model and method
to not require so heavy approximations, making it faster to compute,
finding a way to compare the obtained solutions to the true optima and
testing the method on other types of robot stations.
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Appendix

Detailed setups and results for the three stations.



Robotics and Computer-Integrated Manufacturing 81 (2023) 102511M. Hovgard et al.
Table 4
Detailed setup and result of the simplified model of Station 1 for 𝑡𝑑 = 49.992.
Setup Result

𝑖 𝑖 𝑖 𝑑𝑖 𝑔𝑖 (𝜓 𝑖
𝑖 , 𝜓

𝑖
2 , 𝜓

𝑖
3 , 𝜓

𝑖
4) 𝐸𝑖 𝑑𝑖 𝑖

0 {} {R1, z3} 7.512 30 960 000.0, −1.228, 11 510.0, 0.0007215 ∑4
𝑖=1 𝑈 (1.25, 1.55) 7.512 {3, 14}

1 {} {R1} 3.072 22 850 000.0, −3.11, 6373.0, −0.05055 ∑2
𝑖=1 𝑈 (1.25, 1.55) 3.14 {4}

2 {} {R1, z1} 4.296 172 400.0, −0.9024, 7882.0, −0.0123 ∑3
𝑖=1 𝑈 (1.25, 1.55) 4.296 {0, 8}

3 {} {R1} 5.28 19 970 000.0, −1.727, 4700.0, 0.002706 ∑8
𝑖=1 𝑈 (1.25, 1.55) 5.28 {1}

4 {} {R1, z7} 1.632 237 700.0, −3.764, 1728.0, 0.02348 ∑1
𝑖=1 𝑈 (1.25, 1.55) 1.632 {}

5 {} {R1} 2.04 24 280.0, −1.223, 3306.0, 0.003842 2.04 {2}
6 {} {R2, z4} 5.4 44 140.0, −0.4559, 9285.0, 0.003057 ∑2

𝑖=1 𝑈 (1.25, 1.55) 5.4 {15, 8}
7 {} {R2} 11.76 210 500.0, −0.3037, 18 400.0, −0.003754 ∑9

𝑖=1 𝑈 (1.25, 1.55) 11.83 {}
8 {} {R2, z1} 5.976 78 070.0, −0.5097, 8511.0, 0.003581 ∑3

𝑖=1 𝑈 (1.25, 1.55) 6.015 {7}
9 {} {R2} 3.36 18 290.0, −0.6, 3266.0, 0.006462 ∑2

𝑖=1 𝑈 (1.25, 1.55) 3.36 {6}
10 {} {R3} 9.024 419 600.0, −0.454, 10 550.0, −0.002905 ∑12

𝑖=1 𝑈 (1.25, 1.55) 12.16 {11}
11 {} {R3, z5} 7.92 161 200.0, −0.449, 12 280.0, −0.0004844 ∑7

𝑖=1 𝑈 (1.25, 1.55) 10.07 {}
12 {} {R4, z5} 9.792 201 000.0, −0.3422, 14 500.0, −0.0003558 ∑8

𝑖=1 𝑈 (1.25, 1.55) 12.56 {11, 14}
13 {} {R4, z3} 1.896 66 870 000.0, −6.898, 1731.0, −0.04803 ∑1

𝑖=1 𝑈 (1.25, 1.55) 1.907 {15}
14 {} {R4, z3, z7} 1.416 482 200.0, −4.491, 1312.0, −0.004648 ∑1

𝑖=1 𝑈 (1.25, 1.55) 1.718 {13, 4}
15 {} {R4, z3, z4} 8.736 108 200.0, −0.3622, 11 070.0, −0.0005268 ∑6

𝑖=1 𝑈 (1.25, 1.55) 10.23 {}
Table 5
Detailed setup and result of the simplified model of Station 2 for 𝑡𝑑 = 50.677.
Setup Result

𝑖 𝑖 𝑖 𝑑𝑖 𝑔𝑖 (𝜓 𝑖
𝑖 , 𝜓

𝑖
2 , 𝜓

𝑖
3 , 𝜓

𝑖
4) 𝐸𝑖 𝑑𝑖 𝑖

0 {} {R1, z9} 1.536 3524.0, −0.5987, 3876.0, 0.01876 1.536 {}
1 {} {R1} 16.63 1 825 000.0, −0.3135, 27 030.0, −0.001908 ∑14

𝑖=1 𝑈 (1.25, 1.55) 17.56 {3}
2 {} {R1, z9} 4.584 566 600.0, −1.262, 6015.0, 0.0001171 ∑3

𝑖=1 𝑈 (1.25, 1.55) 4.584 {0}
3 {} {R1} 2.04 7924.0, −0.7211, 2605.0, 0.006942 2.04 {2}
4 {} {R2} 21.19 236 700.0, −0.1223, 34 430.0, 0.0001344 ∑17

𝑖=1 𝑈 (1.25, 1.55) 25.68 {}
5 {} {R3, z2} 2.064 54 740.0, −1.58, 2741.0, −0.004668 ∑1

𝑖=1 𝑈 (1.25, 1.55) 3.917 {}
6 {} {R3, z2, z3} 5.016 3 505 000.0, −1.321, 7745.0, −0.01598 ∑4

𝑖=1 𝑈 (1.25, 1.55) 6.265 {9, 5}
7 {} {R3, z3, z9} 4.392 518 700.0, −1.166, 7473.0, −0.02741 ∑5

𝑖=1 𝑈 (1.25, 1.55) 5.398 {2, 6}
8 {} {R3} 4.032 10 910.0, −0.1617, 6485.0, 0.01252 ∑1

𝑖=1 𝑈 (1.25, 1.55) 16.97 {7}
9 {} {R4, z3} 4.032 116 300.0, −0.8353, 7719.0, −0.002558 ∑1

𝑖=1 𝑈 (1.25, 1.55) 4.032 {}
10 {} {R4} 6.624 2 615 000.0, −0.9252, 10 290.0, −0.004638 ∑6

𝑖=1 𝑈 (1.25, 1.55) 6.624 {9}
11 {} {R4, z2} 3.96 15 820 000.0, −2.358, 7921.0, −0.04329 ∑4

𝑖=1 𝑈 (1.25, 1.55) 3.96 {10, 6}
12 {} {R4, z2, z3} 8.496 902 300.0, −0.5832, 10 700.0, −0.001559 ∑8

𝑖=1 𝑈 (1.25, 1.55) 8.496 {7, 11}
Table 6
Detailed setup and result of the simplified model of Station 3 for 𝑡𝑑 = 52.959.
Setup Result

𝑖 𝑖 𝑖 𝑑𝑖 𝑔𝑖 (𝜓 𝑖
𝑖 , 𝜓

𝑖
2 , 𝜓

𝑖
3 , 𝜓

𝑖
4) 𝐸𝑖 𝑑𝑖 𝑖

0 {} {R1} 12.98 943 000.0, −0.3696, 19 670.0, −0.002883 ∑14
𝑖=1 𝑈 (1.25, 1.55) 17.46 {}

1 {} {R1, z1} 4.152 61 890.0, −0.6411, 4291.0, −0.005965 ∑2
𝑖=1 𝑈 (1.25, 1.55) 4.588 {4, 0}

2 {5} {R1, z1} 0.192 0, 1368.0, 0, 1368.0 ∑2
𝑖=1 𝑈 (1.25, 1.55) 0.192 {1, 5}

3 {2} {R1, z1} 3.12 62 410.0, −1.037, 8479.0, −0.004496 4.135 {2}
4 {} {R2, z1} 16.18 590 900.0, −0.2631, 20 920.0, 0.00101 ∑15

𝑖=1 𝑈 (1.25, 1.55) 16.18 {}
5 {4} {R2, z2} 4.68 175 400.0, −0.9639, 5813.0, −0.004209 ∑2

𝑖=1 𝑈 (1.25, 1.55) 4.68 {7, 4}
6 {2, 9} {R2, z2} 2.904 31 820.0, −0.8284, 7156.0, 0.005265 ∑1

𝑖=1 𝑈 (1.25, 1.55) 2.904 {2, 5, 9}
7 {} {R3, z2} 4.152 1 179 000.0, −1.415, 4465.0, −0.01134 ∑10

𝑖=1 𝑈 (1.25, 1.55) 6.571 {}
8 {} {R3} 8.496 474 100.0, −0.4971, 14 270.0, −0.003665 ∑7

𝑖=1 𝑈 (1.25, 1.55) 14.8 {7}
9 {5} {R3} 0.576 157 300.0, −9.409, 114.1, 0.6499 ∑1

𝑖=1 𝑈 (1.25, 1.55) 0.9223 {8, 5}
10 {9} {R3} 0.84 191 300.0, −5.723, 2268.0, −0.08994 3.096 {9}
11 {} {R4} 19.18 1 331 000.0, −0.2699, 25 800.0, −0.001129 ∑19

𝑖=1 𝑈 (1.25, 1.55) 25.19 {}
References

[1] M. Ratiu, M. Adriana Prichici, Industrial robot trajectory optimization- a review,
MATEC Web Conf. 126 (2017) 02005, http://dx.doi.org/10.1051/matecconf/
201712602005.
12
[2] G. Carabin, E. Wehrle, R. Vidoni, A review on energy-saving optimization
methods for robotic and automatic systems, Robotics 6 (4) (2017) 39, http:
//dx.doi.org/10.3390/robotics6040039.

[3] Y. Zhao, Y. Wang, M.C. Zhou, J. Wu, Energy-optimal collision-free motion
planning for multiaxis motion systems: an alternating quadratic programming
approach, IEEE Trans. Autom. Sci. Eng. 16 (1) (2019) 327–338, http://dx.doi.
org/10.1109/TASE.2018.2864773.

[4] A. Vergnano, C. Thorstensson, B. Lennartson, P. Falkman, M. Pellicciari, F.

http://dx.doi.org/10.1051/matecconf/201712602005
http://dx.doi.org/10.1051/matecconf/201712602005
http://dx.doi.org/10.1051/matecconf/201712602005
http://dx.doi.org/10.3390/robotics6040039
http://dx.doi.org/10.3390/robotics6040039
http://dx.doi.org/10.3390/robotics6040039
http://dx.doi.org/10.1109/TASE.2018.2864773
http://dx.doi.org/10.1109/TASE.2018.2864773
http://dx.doi.org/10.1109/TASE.2018.2864773


Robotics and Computer-Integrated Manufacturing 81 (2023) 102511M. Hovgard et al.
Leali, S. Biller, Modeling and optimization of energy consumption in cooperative
multi-robot systems, IEEE Trans. Autom. Sci. Eng. 9 (2) (2012) 423–428, http:
//dx.doi.org/10.1109/TASE.2011.2182509.

[5] M. Pellicciari, G. Berselli, F. Leali, A. Vergnano, A method for reducing the
energy consumption of pick-and-place industrial robots, Mechatronics 23 (3)
(2013) 326–334, http://dx.doi.org/10.1016/j.mechatronics.2013.01.013.

[6] D. Meike, M. Pellicciari, G. Berselli, Energy efficient use of multirobot production
lines in the automotive industry: detailed system modeling and optimization,
IEEE Trans. Autom. Sci. Eng. 11 (3) (2014) 798–809, http://dx.doi.org/10.1109/
TASE.2013.2285813.

[7] M. Gadaleta, M. Pellicciari, G. Berselli, Optimization of the energy consumption
of industrial robots for automatic code generation, Robot. Comput.-Integr. Manuf.
57 (2019) 452–464, http://dx.doi.org/10.1016/j.rcim.2018.12.020.

[8] N. Sundström, O. Wigström, B. Lennartson, Conflict between energy, stability,
and robustness in production schedules, IEEE Trans. Autom. Sci. Eng. 14 (2)
(2017) 658–668, http://dx.doi.org/10.1109/TASE.2016.2643621.

[9] A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, Princeton
University Press, 2009.

[10] O. Wigstrom, B. Lennartson, A. Vergnano, C. Breitholtz, High-level scheduling of
energy optimal trajectories, IEEE Trans. Autom. Sci. Eng. 10 (1) (2013) 57–64,
http://dx.doi.org/10.1109/TASE.2012.2198816.

[11] G. Pastras, A. Fysikopoulos, G. Chryssolouris, A theoretical investigation on the
potential energy savings by optimization of the robotic motion profiles, Robot.
Comput.-Integr. Manuf. 58 (2019) 55–68, http://dx.doi.org/10.1016/j.rcim.2019.
02.001.

[12] Z. Zhang, S. Chen, X. Zhu, Z. Yan, Two hybrid end-effector posture-maintaining
and obstacle-limits avoidance schemes for redundant robot manipulators, IEEE
Trans. Ind. Inform. 16 (2) (2020) 754–763, http://dx.doi.org/10.1109/TII.2019.
2922694.

[13] Z. Zhang, S. Chen, J. Liang, Discrete-time circadian rhythms neural network for
perturbed redundant robot manipulators tracking problem with periodic noises,
IEEE Trans. Ind. Inform. 18 (1) (2022) 242–251, http://dx.doi.org/10.1109/TII.
2021.3065715.

[14] E. Glorieux, S. Riazi, B. Lennartson, Productivity/energy optimisation of trajec-
tories and coordination for cyclic multi-robot systems, Robot. Comput.-Integr.
Manuf. 49 (2018) 152–161, http://dx.doi.org/10.1016/j.rcim.2017.06.012.

[15] M. Gadaleta, G. Berselli, M. Pellicciari, Energy-optimal layout design of robotic
work cells: potential assessment on an industrial case study, Robot. Comput.-
Integr. Manuf. 47 (2017) 102–111, http://dx.doi.org/10.1016/j.rcim.2016.10.
002.

[16] G. Chen, L. Zhang, J. Arinez, S. Biller, Energy-efficient production systems
through schedule-based operations, IEEE Trans. Autom. Sci. Eng. 10 (1) (2013)
27–37, http://dx.doi.org/10.1109/TASE.2012.2202226.

[17] Q. Chang, G. Xiao, S. Biller, L. Li, Energy saving opportunity analysis of
automotive serial production systems (march 2012), IEEE Trans. Autom. Sci.
Eng. 10 (2) (2013) 334–342, http://dx.doi.org/10.1109/TASE.2012.2210874.

[18] M.A. Salido, J. Escamilla, F. Barber, A. Giret, D. Tang, M. Dai, Energy efficiency,
robustness, and makespan optimality in job-shop scheduling problems, Artif.
Intell. Eng. Des. Anal. Manuf. 30 (3) (2016) 300–312, http://dx.doi.org/10.1017/
S0890060415000335.

[19] M. Faraji Amiri, J. Behnamian, Multi-objective green flowshop scheduling
problem under uncertainty: estimation of distribution algorithm, J. Clean. Prod.
251 (2020) 119734, http://dx.doi.org/10.1016/j.jclepro.2019.119734.
13
[20] S. Gürel, H. Gultekin, V.E. Akhlaghi, Energy conscious scheduling of a material
handling robot in a manufacturing cell, Robot. Comput.-Integr. Manuf. 58 (2019)
97–108, http://dx.doi.org/10.1016/j.rcim.2019.02.002.

[21] P. Brucker, A. Drexl, R. Möhring, K. Neumann, E. Pesch, Resource-constrained
project scheduling: notation, classification, models, and methods, European J.
Oper. Res. 112 (1999) 3–41.

[22] R.H. Möhring, Scheduling under uncertainty: bounding the makespan distribu-
tion, in: H. Alt (Ed.), Computational Discrete Mathematics: Advanced Lectures,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 79–97, http://dx.doi.
org/10.1007/3-540-45506-X_7.

[23] A. Nemirovski, A. Shapiro, Convex approximations of chance constrained pro-
grams, SIAM J. Optim. 17 (4) (2007) 969–996, http://dx.doi.org/10.1137/
050622328.

[24] X. Lin, S.L. Janak, C.A. Floudas, A new robust optimization approach for
scheduling under uncertainty: I. bounded uncertainty, Comput. Chem. Eng.
28 (6–7) (2004) 1069–1085, http://dx.doi.org/10.1016/j.compchemeng.2003.09.
020.

[25] S.L. Janak, X. Lin, C.A. Floudas, A new robust optimization approach for
scheduling under uncertainty. II. Uncertainty with known probability distribu-
tion, Comput. Chem. Eng. 31 (3) (2007) 171–195, http://dx.doi.org/10.1016/j.
compchemeng.2006.05.035.

[26] M. Hovgard, B. Lennartson, K. Bengtsson, Applied energy optimization of multi-
robot systems through motion parameter tuning, CIRP J. Manuf. Sci. Technol.
35 (2021) 422–430, http://dx.doi.org/10.1016/J.CIRPJ.2021.07.012.

[27] M. Hovgard, B. Lennartson, K. Bengtsson, Energy-optimal timing of robot stations
subject to gaussian disturbances, in: 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2019, pp. 1441–1444,
http://dx.doi.org/10.1109/ETFA.2019.8869250.

[28] X. Cai, X. Wu, X. Zhou, Optimal Stochastic Scheduling, Springer, Boston, MA,
2014, http://dx.doi.org/10.1007/978-1-4899-7405-1.

[29] M. Abramowitz, S. Irene, Handbook of Mathematical Functions, US Department
of Commerce, 1972.

[30] E.W. Weisstein, Normal sum distribution, in: From MathWorld–A Wolfram Web
Resource, URL https://mathworld.wolfram.com/NormalSumDistribution.html.

[31] E.W. Weisstein, Central limit theorem, in: From MathWorld–A Wolfram Web
Resource, URL https://mathworld.wolfram.com/CentralLimitTheorem.html.

[32] M. Grigoriu, Stochastic Calculus, Birkhäuser, Boston, MA, 2002, http://dx.doi.
org/10.1007/978-0-8176-8228-6.

[33] D. Constantin, Gaussian integral of an error function, 2012, URL http://blitiri.
blogspot.com/2012/11/gaussian-integral-of-error-function.html.

[34] J.A.E. Andersson, J. Gillis, G. Horn, J.B. Rawlings, M. Diehl, CasADi – A software
framework for nonlinear optimization and optimal control, Math. Program.
Comput. 11 (1) (2019) 1–36, http://dx.doi.org/10.1007/s12532-018-0139-4.

[35] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J.
Lee, A. Lodi, F. Margot, N. Sawaya, A. Wächter, An algorithmic framework for
convex mixed integer nonlinear programs, Discrete Optim. 5 (2) (2008) 186–204,
http://dx.doi.org/10.1016/j.disopt.2006.10.011.

[36] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming, Math. Program. 106
(2006) 25–57, http://dx.doi.org/10.1007/s10107-004-0559-y.

http://dx.doi.org/10.1109/TASE.2011.2182509
http://dx.doi.org/10.1109/TASE.2011.2182509
http://dx.doi.org/10.1109/TASE.2011.2182509
http://dx.doi.org/10.1016/j.mechatronics.2013.01.013
http://dx.doi.org/10.1109/TASE.2013.2285813
http://dx.doi.org/10.1109/TASE.2013.2285813
http://dx.doi.org/10.1109/TASE.2013.2285813
http://dx.doi.org/10.1016/j.rcim.2018.12.020
http://dx.doi.org/10.1109/TASE.2016.2643621
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb9
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb9
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb9
http://dx.doi.org/10.1109/TASE.2012.2198816
http://dx.doi.org/10.1016/j.rcim.2019.02.001
http://dx.doi.org/10.1016/j.rcim.2019.02.001
http://dx.doi.org/10.1016/j.rcim.2019.02.001
http://dx.doi.org/10.1109/TII.2019.2922694
http://dx.doi.org/10.1109/TII.2019.2922694
http://dx.doi.org/10.1109/TII.2019.2922694
http://dx.doi.org/10.1109/TII.2021.3065715
http://dx.doi.org/10.1109/TII.2021.3065715
http://dx.doi.org/10.1109/TII.2021.3065715
http://dx.doi.org/10.1016/j.rcim.2017.06.012
http://dx.doi.org/10.1016/j.rcim.2016.10.002
http://dx.doi.org/10.1016/j.rcim.2016.10.002
http://dx.doi.org/10.1016/j.rcim.2016.10.002
http://dx.doi.org/10.1109/TASE.2012.2202226
http://dx.doi.org/10.1109/TASE.2012.2210874
http://dx.doi.org/10.1017/S0890060415000335
http://dx.doi.org/10.1017/S0890060415000335
http://dx.doi.org/10.1017/S0890060415000335
http://dx.doi.org/10.1016/j.jclepro.2019.119734
http://dx.doi.org/10.1016/j.rcim.2019.02.002
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb21
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb21
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb21
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb21
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb21
http://dx.doi.org/10.1007/3-540-45506-X_7
http://dx.doi.org/10.1007/3-540-45506-X_7
http://dx.doi.org/10.1007/3-540-45506-X_7
http://dx.doi.org/10.1137/050622328
http://dx.doi.org/10.1137/050622328
http://dx.doi.org/10.1137/050622328
http://dx.doi.org/10.1016/j.compchemeng.2003.09.020
http://dx.doi.org/10.1016/j.compchemeng.2003.09.020
http://dx.doi.org/10.1016/j.compchemeng.2003.09.020
http://dx.doi.org/10.1016/j.compchemeng.2006.05.035
http://dx.doi.org/10.1016/j.compchemeng.2006.05.035
http://dx.doi.org/10.1016/j.compchemeng.2006.05.035
http://dx.doi.org/10.1016/J.CIRPJ.2021.07.012
http://dx.doi.org/10.1109/ETFA.2019.8869250
http://dx.doi.org/10.1007/978-1-4899-7405-1
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb29
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb29
http://refhub.elsevier.com/S0736-5845(22)00193-4/sb29
https://mathworld.wolfram.com/NormalSumDistribution.html
https://mathworld.wolfram.com/CentralLimitTheorem.html
http://dx.doi.org/10.1007/978-0-8176-8228-6
http://dx.doi.org/10.1007/978-0-8176-8228-6
http://dx.doi.org/10.1007/978-0-8176-8228-6
http://blitiri.blogspot.com/2012/11/gaussian-integral-of-error-function.html
http://blitiri.blogspot.com/2012/11/gaussian-integral-of-error-function.html
http://blitiri.blogspot.com/2012/11/gaussian-integral-of-error-function.html
http://dx.doi.org/10.1007/s12532-018-0139-4
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1007/s10107-004-0559-y

	Energy reduction of stochastic time-constrained robot stations
	Introduction
	Specific problem
	Literature review
	Contribution and outline

	Problem formulation
	Precedence and resource constraints
	Distributions
	Energy use
	Optimization problem

	Deterministic approximation
	Normal distribution
	Independence
	Max approximation

	Operation order
	Deterministic optimization formulation

	Numerical examples
	Simple example
	Problem Setup
	Experimental setup
	Results

	Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix
	References


