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A B S T R A C T   

To substantiate and extend emergent research on maintenance in digitalized manufacturing, we examine 
adoption patterns and performance implications of the four dimensions of Smart Maintenance: data-driven de
cision-making, human capital resource, internal integration, and external integration. Using data collected from 
145 Swedish manufacturing plants, we apply a configurational approach to study how emergent patterns of 
Smart Maintenance are shaped and formed, as well as how the patterns are related to the operating environment 
and the performance of the manufacturing plant. Cluster analysis was used to develop an empirical taxonomy of 
Smart Maintenance, revealing four emergent patterns that reflect the strength and balance of the underlying 
dimensions. Canonical discriminant analysis indicated that the Smart Maintenance patterns are related to 
operating environments with a higher level of digitalization. The results from ANOVA and NCA showed the 
importance of a coordinated and joint Smart Maintenance implementation to the maintenance performance and 
productivity of the manufacturing plant. This study contributes to the literature on industrial maintenance by 
expanding and strengthening the theoretical and empirical foundation of Smart Maintenance, and it provides 
managerial advice for making strategic decisions about Smart Maintenance implementation.   

1. Introduction 

Maintenance is an operations process that is vital to the performance 
of manufacturing plants of any size and shape. Recently, maintenance 
has received increased attention as a consequence of industrial digita
lization (Silvestri et al., 2020), where novel digital technologies are 
progressively introduced to the production process (what to maintain) 
as well as the maintenance process (how to maintain). This new oper
ating environment changes the nature of maintenance as a support 
process, and the diffusion of novel digital technologies has far-reaching 
implications for decision-making, strategy, learning, and governance of 
the maintenance function (Bokrantz et al., 2020b). 

Contemporary research streams on maintenance in digitalized 
manufacturing are both focused on technology development (tools, 
methods, and techniques to solve maintenance problems) (Florian et al., 
2021; Liang et al., 2020; Silvestri et al., 2020; Zonta et al., 2020) and 
theory development (how and why maintenance works the way it does) 
(Bokrantz et al., 2020b; Tortorella et al., 2021; Öhman et al., 2021). An 
emerging proposition that unites these streams is that in operating en
vironments infused by digital technologies, modernizing the mainte
nance operations through some combination of technology, people, and 
organization will have positive implications on performance (Roda and 

Macchi, 2021). 
However, to advance maintenance theory and practice in this di

rection, it is crucial to investigate if such a proposition holds against 
empirical data. At present, empirical evidence regarding the value of 
modernizing maintenance operations in digitalized manufacturing is 
largely confined to exploratory studies (Roda and Macchi, 2021; Sil
vestri et al., 2020; Tortorella et al., 2022). Therefore, in this study, we 
build on the theoretical foundation of maintenance in digitalized 
manufacturing to empirically examine the adoption patterns and per
formance implications of Smart Maintenance; a concept that consists of 
the four dimensions data-driven decision-making, human capital 
resource, internal integration, and external integration (Bokrantz et al., 
2020c). Specifically, we apply a configurational approach to study how 
emergent patterns of the Smart Maintenance dimensions are shaped and 
formed, how the prevalence of these patterns is influenced by the 
operating environment, as well as how the patterns of Smart Mainte
nance are related to the performance of the manufacturing plant. 

Through our empirical analysis, we make three contributions to the 
literature. Firstly, we show that an emergent taxonomy of Smart Main
tenance can be developed, reflecting the strength and balance of the four 
underlying dimensions. Secondly, we show that more advanced Smart 
Maintenance patterns may be more prevalent in operating environments 
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characterized by a higher level of digitalization. Thirdly, we show that 
manufacturing plants with strong and balanced Smart Maintenance 
patterns have higher maintenance performance and productivity, as 
well as that high levels of the four dimensions of Smart Maintenance are 
individually necessary for a high level of maintenance performance. 
These insights expand and strengthen the theoretical and empirical 
foundation of Smart Maintenance as well as provide managerial advice 
for making strategic decisions about Smart Maintenance 
implementation. 

2. Theoretical framework and hypotheses 

We begin by establishing the theoretical framework of the study. We 
first present the definition and dimensions of Smart Maintenance, fol
lowed by deriving our hypotheses about adoption patterns and perfor
mance implications. The resulting theoretical model and empirical scope 
of the study are thereafter summarized and visualized in Fig. 1. 

2.1. Definition and dimensions of Smart Maintenance 

The concept of Smart Maintenance reflects an emergent research 
stream that originates from the empirical analysis of industrial firms 
whilst at the same time resting on the historical evolution of the main
tenance discipline. Through a bibliometric analysis of almost 800 arti
cles, Roda and Macchi (2021) uncovered the evolutionary path of 
maintenance concepts from 1985 to 2020. They observed rapid growth 
of the Smart Maintenance concept in recent years (since 2014) and 
underlined its significant role in maintenance theory and practice. While 
there exist multiple definitions of Smart Maintenance as well as defini
tions for the same or similar concepts (Huang et al., 2019), Roda and 
Macchi (2021) emphasize that the current benchmark and the most 
suitable foundation for cumulative knowledge creation is the definition 
by Bokrantz et al. (2020c). Here, Smart Maintenance is defined as “an 
organizational design for managing maintenance in environments with 
pervasive digital technologies” (p. 11) and encompasses four underlying 
dimensions: data-driven decision-making, human capital resource, in
ternal integration, and external integration. The formal concept struc
ture along with definitions and descriptions of the four dimensions’ 
conceptual contents are extensively outlined in Bokrantz et al. (2020c) 
and Bokrantz et al. (2020a). In short, data-driven decision-making is 
“the degree to which decisions are based on data”; human capital 
resource is a “unit capacity based on individual knowledge, skills, 
abilities, and other characteristics that are accessible for unit-relevant 
performance”; internal integration is the “degree to which the mainte
nance function is a part of a unified, intra-organizational whole”; and 
external integration is the “degree to which the maintenance function is 
a part of a unified, inter-organizational whole” (Bokrantz et al., 2020c) 
(p. 11). 

In this study, we adhere to this conceptualization for three reasons. 
Firstly, it meets established criteria for good conceptual definitions 
(Podsakoff et al., 2016), which allows for obtaining valid empirical 
scores that can be used for our research goal of examining adoption 
patterns and performance implications. Secondly, it originates from 
practice and the experience of working professionals, which allows for 
conducting research that captures the engagement of practitioners (Von 
Krogh et al., 2012). Thirdly, it has gained rapid acceptance in academia 
(Roda and Macchi, 2021; Tortorella et al., 2021), and the clear specifi
cation of the meaning and structure of the concept allows for accumu
lating a body of evidence through empirical research. 

2.2. Configurations of Smart Maintenance 

Theory on organizational configurations is instrumental in helping 
managers in making strategic decisions about Smart Maintenance 
implementation. We adopt the configurational perspective that views 
organizational designs as sets of commonly occurring constellations of 

interrelated elements that are believed to exhaust a fraction of a given 
population of organizations (Miller, 2018). This particular configura
tional perspective focuses on capturing patterns among organizational 
elements (Hinings, 2018) and rests on three foundational theses: (1) that 
it is important to distinguish between different types of organizations, 
(2) that the elements of an organization will group thematically, and (3) 
that a reasonably small set of configurations may encompass many or
ganizations (Miller and Mintzberg, 1983). The goal of such configura
tional research is to develop parsimonious and robust configurations 
that are useful for classification (Hinings, 2018). Specifically, the aims 
are to provide descriptions of organizations that resemble each other 
along important dimensions; explanations for organizational success or 
failure; and predictions of which sets of organizations will be successful 
under given circumstances (Short et al., 2008). The two most common 
types of configurations are typologies (conceptually driven classification 
schemes) and taxonomies (empirically generated classification schemes) 
(Miller, 2018). This type of configurational research has been critical for 
theory development within Operations and Supply Chain Management 
(OSCM) (Flynn et al., 2010; Huo et al., 2017, 2019; Zhao et al., 2004) as 
well as other adjacent disciplines such Strategy, Economics, and Human 
Resource Management (Miller, 2018). 

Bokrantz et al. (2020c) specified the Smart Maintenance concept as 
an organizational configuration: “a tight composition of four interre
lated and mutually supportive elements” (p. 11). This implies the need 
for a holistic perspective where the ideal Smart Maintenance strategy 
consists of coordinated and joint implementation of all four dimensions. 
However, in practice, manufacturing plants are likely to place different 
emphases on the individual dimensions of Smart Maintenance due to e. 
g., environmental contingencies, strategic directions, resource con
straints, or employment modes. A configural lens suggests that differ
ences in the emphasis that manufacturing plants place on the individual 
dimensions of Smart Maintenance will result in a thematic grouping. 
This grouping will empirically generate a small set of configurations that 
help to distinguish between different types of maintenance organiza
tions, according to their patterns of the four dimensions of Smart 
Maintenance. 

When the relationships between the configural elements are impor
tant, it is most useful to empirically develop an emergent taxonomy that 
is based on clear differences between groups (Miller, 2018). Within 
OSCM, one common approach to developing taxonomies that oper
ationalize the difference in the degree of emphasis of sets of dimensions 
is to describe the patterns in terms of strength and balance (Flynn et al., 
2010). Whereas strength reflects the extent to which the different di
mensions are achieved, balance reflects the extent to which equal 
attention is paid to all dimensions (Huo et al., 2019). For example, while 
some maintenance organizations may have a skilled workforce that is 
well integrated internally and externally, they may lack analytics 
capability. Others may have achieved a complementarity between 
humans and data but are weaker in their organizational integration. The 
emergence of an empirical taxonomy from the four dimensions of Smart 
Maintenance can provide novel and parsimonious insights into the 
complexities of Smart Maintenance adoption as well as serve as a tool for 
classifying plants into strategic groups. Therefore, we hypothesize that: 

H1. A taxonomy of Smart Maintenance emerges among manufacturing 
plants, and plants can be classified into groups based on their levels of 
the four underlying dimensions. 

2.3. Environmental contingencies 

Configurations are often related to the characteristics of the envi
ronment (Brynjolfsson and Milgrom, 2013). That is, different configu
rations should be more or less common in certain contexts. Several 
empirical studies have examined the relationships between the oper
ating context and the adoption of maintenance practices. For example, 
Swanson (2003) studied the effect of production system complexity on 
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the adoption of advanced maintenance practices (e.g., technological 
variety and mass output orientation); Aboelmaged (2014) assessed how 
a set of technological, organizational, and environmental factors affect 
adoption readiness of E-maintenance; Jonsson (2000) examined how 
contextual factors (e.g., production process, number of employees, 
breakdown consequences) influence an empirical taxonomy of mainte
nance prevention and integration; and Tortorella et al. (2022) explored 
the influence of firms’ technological intensity on the joint adoption of 
Total Productive Maintenance and Industry 4.0 technologies. In this 
study, we focus on three contingencies that reflect the operating context 
of the manufacturing plant: mass output orientation, automation, and 
digitalization. While there exists a myriad of plausible contingencies, we 
chose these three because they are theoretically relevant for Smart 
Maintenance and empirically established in the maintenance literature 
as well as OSCM more broadly. 

Firstly, mass output orientation is widely known to impact the 
overall structure of support processes within manufacturing plants, 
including maintenance (Jonsson, 2000; Swanson, 2003). Specifically, 
plants with continuous flow processes are characterized by high-volume 
production and capital-intensive equipment that strongly emphasizes 
efficiency. Downtime consequences are immediately visible, costly, and 
impose environmental and safety risks, which makes high equipment 
utilization and rapid responses from maintenance more critical. In 
contrast, plants with discrete-part processes are characterized by inter
mittent stages with buffers that can more easily absorb variations in 
downtime, which makes the consequences of equipment failures less 
obvious (Salonen and Tabikh, 2016). Job shops have even more built-in 
redundancy and flexibility with large variations in working hours and 
machine idle times, which allows breakdowns to be sufficiently 
managed without advanced maintenance practices (Jonsson, 2000). 
Thus, plants with higher output orientation should favor the adoption of 
Smart Maintenance. This would be reflected in a positive relationship 
between the degree of output orientation and more advanced Smart 
Maintenance patterns. 

Secondly, a related but distinct characteristic is the level of auto
mation. Plants with a higher level of automation rely more on produc
tion equipment with built-in instrumentation and sensors. This data is 
often digitized, voluminous, and can be directly transmitted to other 
processing equipment (Brynjolfsson et al., 2021). In addition, highly 
automated machinery often requires unique skills to maintain, thus 
increasing the dependency on the maintenance function’s ability to 
execute rapid and effective maintenance actions. More advanced 
manufacturing technologies have indeed been empirically linked to 
more advanced maintenance practices (Swanson, 2003). It is also widely 
held in the maintenance literature that more advanced maintenance 
practices are needed to effectively manage the significantly higher levels 
of automation associated with smart factories (Bokrantz et al., 2017; Roy 
et al., 2016; Silvestri et al., 2020). Thus, plants with higher levels of 
automation should favor the adoption of Smart Maintenance. This 
would be reflected in a positive relationship between the level of auto
mation and more advanced Smart Maintenance patterns. 

Thirdly, adopting data-driven management practices within a 
manufacturing context requires tangible investments in Information and 
Communication Technology (ICT) to collect, store, and analyze equip
ment data (e.g., computing hardware and software) (Brynjolfsson et al., 
2021). Thus, plants with higher intensity of digital technologies have 
been posited to possess an advantage in adopting modernized mainte
nance practices, and recent empirical explorations have indeed pointed 
in this direction (Tortorella et al., 2022). Earlier studies have also shown 
that plants with well-designed technological infrastructure are better 
prepared to adopt E-maintenance (Aboelmaged, 2014). Further, as given 

by its definition, the core contextual prediction regarding Smart Main
tenance is that it would be natural for manufacturing plants to adopt 
Smart Maintenance if they operate in an environment with pervasive 
digital technologies (Bokrantz et al., 2020c). Thus, plants with existing 
digital infrastructure would have an advantage in adopting Smart 
Maintenance. This would be reflected in a positive relationship between 
the level of digitalization and more advanced Smart Maintenance 
patterns. 

Overall, we expect that certain operating contexts would favor the 
adoption of different Smart Maintenance patterns. Further, if certain 
contingencies differ across the patterns, they may be useful in predicting 
group membership. Therefore, we hypothesize that: 

H2a. Mass output orientation is positively related to more advanced 
Smart Maintenance patterns. 

H2b. Automation is positively related to more advanced Smart Main
tenance patterns. 

H2c. Digitalization is positively related to more advanced Smart 
Maintenance patterns. 

2.4. Performance implications 

Configuration theory suggests that emergent patterns will differ in 
their relationship with performance (Flynn et al., 2010), specifically that 
configurations with more ‘ideal’ patterns are likely to have higher per
formance (Huo et al., 2019). This view is also consistent with the 
extensive body of literature on complementarities (Brynjolfsson and 
Milgrom, 2013), which suggests that organizations that possess mutu
ally reinforcing combinations of tangible and intangible assets will 
outperform those who do not (Brynjolfsson et al., 2021). Consequently, 
Bokrantz et al. (2020b) theorize that an ideal Smart Maintenance 
implementation should focus on a careful, coordinated, and joint 
implementation of all four dimensions (p. 13). A configuration approach 
is indeed useful for helping managers in making decisions about Smart 
Maintenance implementation because it provides information about 
when and to what extent the four dimensions should be pursued. 

To provide a fuller understanding of the performance implications of 
Smart Maintenance, we combine two distinct yet complementary 
configurational approaches. The first configurational approach focuses 
on the overall configurations, i.e., how the different Smart Maintenance 
patterns differ in their levels of performance. This approach is useful for 
understanding what the ideal pattern is and how the patterns as a whole 
are related to performance (Huo et al., 2019), and it has been widely 
used in OSCM research (Flynn et al., 2010; Huo et al., 2017). Following 
on from H1, this approach posits that manufacturing plants with strong 
and balanced Smart Maintenance patterns should have higher levels of 
performance. The second approach focuses on the four dimensions of 
Smart Maintenance as single necessary conditions for performance (Dul, 
2016). That is, if any of the four dimensions are absent (or below a 
certain level), performance will not occur, and this cannot be compen
sated by other determinants. Still, if the four dimensions are present (or 
above a certain level), performance is not guaranteed, because also other 
determinants play a role. This approach is useful for understanding how 
manufacturing plants can prevent guaranteed failure and avoid wasting 
time, money, and other resources that could benefit the necessary con
dition(s) (Dul, 2020). Together, the two approaches are complementary 
because all single necessary conditions must be part of all overall con
figurations, and if any necessary condition is not satisfied first, perfor
mance will not improve by changing the value of any other determinant 
(Vis and Dul, 2018). 
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A configural notion of Smart Maintenance is broadly supported in the 
maintenance literature, which highlights that advanced maintenance 
practices that effectively leverage a combination of data-centric tech
nologies, human capabilities, and organizational integration, are 
important to the performance of industrial assets along the lifecycle 
(Roda and Macchi, 2021; Silvestri et al., 2020). Specifically for 
manufacturing plants, the four dimensions of Smart Maintenance are 
proposed to be important for improving maintenance performance (e.g., 
reduced repair lead time, increased time between failures, and higher 
conformance quality of maintenance work) as well as improving pro
ductivity (e.g., smooth production flows from reduced downtime) 
(Bokrantz et al., 2020b). Thus, by combining two configurational ap
proaches to understand the relationship between Smart Maintenance 
and performance, we hypothesize that: 

H3a. Manufacturing plants with strong and balanced Smart Mainte
nance patterns have higher levels of maintenance performance. 

H3b. High levels of the four dimensions of Smart Maintenance are 
necessary for a high level of maintenance performance. 

H4a. Manufacturing plants with strong and balanced Smart Mainte
nance patterns have higher levels of productivity. 

H4b. High levels of the four dimensions of Smart Maintenance are 
necessary for a high level of productivity. 

In summary, our hypotheses specify relationships between configu
rations of Smart Maintenance (H1), environmental contingencies (H2), 
and key performance outcomes (H3 and H4). Thus, our theoretical 
framework substantiates how adoption patterns of Smart Maintenance 
are related to the performance of the manufacturing plant. Consistent 
with the conceptualization of Smart Maintenance (Bokrantz et al., 
2020c), the theoretical domain where the hypotheses are expected to 
hold is broad and includes all manufacturing plants with a maintenance 
function. Fig. 1 visualizes the theoretical model and empirical scope of 
the study. 

3. Research design and methods 

3.1. Sampling and data collection 

A survey instrument was used to collect data from manufacturing 
plants in Sweden. The focal unit was the manufacturing plant. The 
sampling frame consisted of a list of 1243 plants with more than 50 
employees from the 12 largest sectors within the Swedish manufacturing 
industry, obtained from Statistics Sweden (food; wood; paper; coke and 
refined petroleum; chemicals; pharmaceutical; rubber and plastic; basic 
metals; fabricated metal; electric equipment; machinery and equipment; 
motor vehicles, trailers, and semi-trailers). These plants were selected 
because they represent a broad selection of the most important sectors, 
covering approximately 80% of the number of employees and value- 
added within the Swedish manufacturing industry. All plants received 
two physical cover letters. Both letters highlighted the objectives of the 
research, were respectively addressed to the maintenance manager and 
production manager at the plant, and included a request to participate in 
the study by filling out a questionnaire. Phone calls were deployed to 
stimulate participation. A total of 160 plants agreed to participate in the 
study. In the end, 145 plants filled out the questionnaire, broadly rep
resenting all sectors in the sampling frame. Thus, the overall response 
rate was 12% whilst the effective response rate was 91% (145 out of 160 
identified plants). Early and late responses (i.e., first and last 25% of 
obtained responses) were compared on the number of employees, in
dustrial sector, sales, and five randomly chosen construct variables 
(Armstrong and Overton, 1977). T-tests with large p-values (>0.05) 
suggested that non-response bias may not be a major concern. 

The questionnaire was filled out by key informants who are knowl
edgeable about the variables, so as to reduce respondent bias. Key in
formants are the maintenance manager or engineer, or the production 
manager or engineer. In small companies, a single informant answered 
all questions (Kull et al., 2018). In larger companies, we attempted to 
have the maintenance questions answered by the maintenance manager 
or engineer, and the production questions by the production manager or 
engineer (Flynn et al., 2018). To ensure that the key informants were 
able to provide valid data, we stated in the cover letter that the 

Fig. 1. Theoretical model and empirical scope of the study.  
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respondent to the questionnaire should have an overall understanding of 
maintenance and production management as well as an in-depth un
derstanding of the plant’s operations. We also clarified that the best 
persons to answer the question are the maintenance manager and pro
duction manager, followed by stating that if you are not the best person 
to answer the questions, please ask the most knowledgeable person in 
your plant to answer them. Further, demographic data showed that the 
average work experience was 11 and 8 years for the maintenance and 
production informants, respectively. This provided confidence that the 
respondents were capable of answering the questions in the survey. 
Further, we deployed a wide range of procedural remedies to reduce the 
risk of common method bias (Flynn et al., 2018). Specifically, we 
designed the survey so that independent and dependent variable re
sponses were provided to some extent by different informants; provided 
explicit verbal and written instructions prior to administration; sepa
rated the predictor and criterion variables using buffer items and 
different response formats; and promised each plant an individual report 
as a reward for participation (MacKenzie and Podsakoff, 2012). Missing 
data were minimal: 3.44% and 1.65% construct-level missingness 
(Newman, 2014) for the single or maintenance informants and the 
production informants, respectively. 

3.2. Measurement 

This study focuses on six focal variables: data-driven decision-mak
ing (DDD), human capital resource (HCR), internal integration (INI), 
external integration (EXI), maintenance performance (MAIN), and pro
ductivity (PROD) (see Appendix A). Measures for DDD, HCR, INI, and 
EXI were drawn from Bokrantz et al. (2020a) and used 5-point Likert 
scales (1 = Not at all, 5 = Completely). Measures for MAIN and PROD 
were developed for this study. A pool of indicators was first drawn from 
literature as well as interviews with maintenance and production man
agers, reflecting sources of variability in quality, quantity, and timing of 
the corresponding performance dimensions (Holweg et al., 2018). For 
example, technical availability and mean time between failures reflect 
maintenance performance, and throughput time and throughput rate 
reflect productivity. Content validity was assessed by having pairs of 
academic and industrial raters assigning each indicator to its corre
sponding dimension. One round with adjustments followed by three 
rounds of replication provided acceptable results. The final scales con
sisted of 8 quasi-perceptional indicators per construct and used 7-point 
Likert scales that assessed performance compared to other plants in their 
industry (1 = Poor, low end of the industry, 7 = Superior in our 
industry). 

Variable scores were estimated using Confirmatory Factor Analysis 
(CFA) using the WLSMV estimator in Mplus 7 (Muthén et al., 1997). Five 
indicators were dropped because of weak loadings (<0.5) (see Appendix 
A). Model fit indices were χ2 (1875) = 2450.587, RMSEA = 0.046 
[0.041–0.051], CFI = 0.92, WRMR = 1.20. The measurement model can 
therefore be considered acceptable (Hu and Bentler, 1999; MacKenzie 
et al., 2011; Yu, 2002). Convergent validity was supported by estimates 
of AVE ranging between 0.47 and 0.67 for all constructs. Although three 
constructs fall just below the 0.50 cut-off, all indicators had large 
loadings (>0.5) and small p-values (p < 0.001). Reliability was sup
ported by bootstrapped estimates of construct reliability (>0.7, 1000 
iterations) (MacKenzie et al., 2011). Discriminant validity was sup
ported by AVE being greater than the squared correlations between 
constructs, as well as Δχ2 tests between constrained and unconstrained 
models for all pairs of constructs (Shaffer et al., 2016). 

This study also included three complementary variables (see Ap
pendix A): mass output orientation (MASS), automation (AUTO), and 
digitalization (DIGI). Measures for MASS were adopted from Swanson 
(2003) and consisted of the extent of use of four types of production 
processes. Measures for AUTO were adopted from the Productivity Po
tential Assessment Method (Almström and Kinnander, 2011) and con
sisted of the extent of use of four types of automation. Measures for DIGI 

consisted of the extent of use of six types of ICT capital based on the 
definition by the Organization for Economic Co-operation and Devel
opment (OECD) (Peña-López, 2002). All variables used 5-point Likert 
scales (1 = Not at all, 5 = Very high extent). MASS and AUTO were 
scored as weighted averages (the lowest type received a weight of one 
and the highest type received a weight of four, the weighted ratings were 
then divided by the sum of the weights to produce an index). DIGI was 
scored as an average. 

3.3. Data analysis 

To achieve theory-method fit (i.e., that the nature of the theory fits 
the method for generating meaningful results), we adopted the stan
dardized methodological procedures by Hair et al. (2014) to develop the 
empirical taxonomy (H1), consisting of a two-step cluster analysis 
approach coupled with ANOVA and canonical discriminant analysis. 
This approach has been extensively applied within OSCM (Bokhorst 
et al., 2022; Flynn et al., 2010; Huo et al., 2017, 2019). Cluster analysis 
was used to classify plants into Smart Maintenance patterns. Hierar
chical clustering was used first to determine the appropriate number of 
clusters, and non-hierarchical clustering was thereafter used to produce 
the final cluster solution (Hair et al., 2014). To profile the clusters, 
ANOVA was used to confirm the distinctiveness of the cluster variable 
differences (Flynn et al., 2010), and discriminant analysis was used to 
identify the underlying functions of strength and balance that differen
tiated the clusters as well as to assess the taxonomy’s predictive ability 
(Huo et al., 2017, 2019). To test the influence of environmental con
tingencies (H2), discriminant analysis was used to assess if the contin
gency variables could distinguish whether a plant will belong to a 
particular Smart Maintenance pattern (Hair et al., 2014). 

To test the relationships between Smart Maintenance and perfor
mance (H3–H4), we used a multi-method approach based on ANOVA 
and Necessary Condition Analysis (NCA) that is analytically similar to 
Bokhorst et al. (2022). Specifically, whereas H3a and H4a focus on the 
overall Smart Maintenance patterns, H3b and H4b focus on the four 
Smart Maintenance dimensions as single necessary conditions. Since the 
two types of hypotheses are complementary yet fundamentally different, 
different methods are needed. Specifically, we used ANOVA to test 
whether the Smart Maintenance patterns differ (on average) in their 
level performance, complemented with the Scheffe post hoc analysis to 
identify differences between specific patterns (Flynn et al., 2010). We 
used NCA (Dul, 2016) to test the necessity of the individual Smart 
Maintenance dimensions for performance. NCA is specifically capable of 
testing necessary conditions “in degree”, i.e., that a certain level of the 
condition is needed for a certain level of the outcome. For the NCA, the 
CR-FDH ceiling line for continuous data is most suitable as we used 
standardized factor scores. We also computed the results with the 
CE-DFH ceiling line to compare the results between the two methods as a 
robustness check. The necessary condition hypotheses were evaluated 
using the effect size and the p-value. The substantive significance of the 
effect size was assessed by using the benchmarks suggested by Dul 
(2016) (p. 30): “0 < d < 0.1 as a small effect, 0.1 = d < 0.3 as a medium 
effect, 0.3 = d < 0.5 as a large effect, and d ≥ 0.5 as a very large effect”. 
In addition, d = 0.1 was used as the minimum level for considering the 
effect size as meaningful in theory and practice. To reduce the risk of 
false positives, we used NCA’s statistical test to evaluate the evidence of 
the observed effect being due to random chance of unrelated variables. 
We performed 10.000 permutations and used 0.05 as the p-value 
threshold (Dul et al., 2020). To enhance the interpretation of NCA, we 
used the NCA bottleneck table, which is a tabular representation of the 
ceiling lines of the necessary conditions and shows which levels of the 
necessary conditions are needed for a certain level of performance. 
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4. Results 

4.1. Emergent taxonomy 

H1 postulates that a taxonomy of Smart Maintenance emerges based 
on the levels of the four underlying dimensions: DDD, HCR, INI, and EXI. 
Hierarchical clustering was used first to determine the appropriate 
number of clusters, specifically in the form of an agglomerative 
approach using Euclidean distance and the complete-linkage method. To 
decide on the number of clusters, we analyzed the percentage change in 
the agglomeration coefficient together with scree plots, ensured that no 
clusters contained less than 10% of the observations, and confirmed that 
there were clear differences between the cluster variables. One outlier 
observation was deleted due to appearing in cluster solutions as a single- 
member and having high average dissimilarity between other observa
tions. A classification using four clusters represented the best solution. 
We then applied non-hierarchical clustering using the K-means algo
rithm to produce the final four-cluster solution. The cluster variable 
differences were tested with ANOVA and Scheffe post hoc analysis 
(Table 1). Table 1 indicates that there were clear differences in all four 
dimensions between the clusters, and each cluster was assigned a label 
based on its patterns of cluster centroids (Fig. 2). The four clusters are 
labeled ‘High Uniform’, ‘Medium Human Leaning’, ‘Medium Human 
Lagging’, and ‘Low Uniform’. 

The High Uniform (cluster 2) comprised 30 manufacturing plants 

(21% of the sample) and had high levels of all dimensions across the 
board. The cluster reflected a pattern with high strength and balance, 
where the efforts to pursue data-driven practices (DDD) and organiza
tional integration (INI, EXI) are distinctively higher than all the other 
clusters. While the level of HCR is not statistically higher than plants in 
Medium Human Leaning, it seems that the High Uniform cluster pursues 
a joint and coordinated implementation of all four dimensions. Plants in 
this cluster thus represent the leaders in Smart Maintenance adoption. 

The Medium Human Leaning (cluster 3) and Medium Human Lag
ging (cluster 1) included 32 (22%) and 39 (27%) plants, respectively. 
These two clusters had similar, medium levels of INI and EXI, but they 
had opposite trends with respect to DDD and HCR. The clusters had 
small differences in the levels of DDD and large differences in the levels 
of HCR. Thus, the strongest differentiator between these two clusters 

Table 1 
Cluster centroids.   

DDD HCR INI EXI n 

Medium - Human Lagging (cluster 1) 0.26 (2,3,4) − 0.48 (2,3) 0.06 (2,4) 0.13 (2,4) 39 
High Uniform (cluster 2) 0.73 (1,3,4) 0.64 (1,4) 0.62 (1,3,4) 0.47 (1,3,4) 30 
Medium - Human Leaning (cluster 3) − 0.28 (1,2) 0.67 (1,4) 0.29 (2,4) 0.01 (2,4) 32 
Low Uniform (cluster 4) − 0.55 (1,2) − 0.47 (2,3) − 0.70 (1,2,3) − 0.46 (1,2,3) 43 
F 67.192a 93.189a 74.834a 27.845a  

Numbers in parentheses indicate the cluster(s) from which that cluster different with a p-value <0.05, yielded from Scheffe post hoc analysis. 
a p < 0.001. 

Fig. 2. Taxonomy of Smart Maintenance.  

Table 2 
Discriminant analysis.  

Function Eigenvalue % of Variance Cumulative % Canonical 
Correlation 

1 4.594 78.2 78.2 0.906a 

2 1.210 20.6 98.8 0.740a 

3 0.070 1.20 100 0.256a   

a p < 0.001. 
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was the level of HCR, hence the label Human Leaning/Lagging. In 
essence, the Leaning cluster emphasizes the role of humans (HCR) and 
aims to leverage this capability within and across organizational borders 
(INI, EXI), whereas the Lagging cluster puts comparably more effort into 
developing technological decision-support (DDD). Since the two clusters 
vary in strength and balance, they are also characterized by plants that 
have put some effort into Smart Maintenance implementation but are 
still in the process of adjusting and improving the coordinated adoption 
of all four dimensions. 

The Low Uniform comprised 43 plants (30%) and had low levels of 
all dimensions across the board. The cluster reflected a pattern with low 
strength but high balance and is thus characterized by plants that do not 
specifically emphasize any of the principles of Smart Maintenance. The 
levels suggest that these plants have underdeveloped technological in
frastructures (DDD), low human resource focus (HCR), and maintenance 
functions that operate in organizational silos (INI, EXI). In essence, these 
plants lag behind in Smart Maintenance adoption. 

To provide additional insights into the differentiation of the patterns, 
canonical discriminant analysis identified the functions that defined the 
clusters (Table 2). Table 3 reveals that the first two discriminant func
tions had eigenvalues larger than 1 and jointly explained 98.8% of the 
variance. The third function was discarded due to having a small 
eigenvalue (0.07) and low explained variance (1.2%). Function 1 was 
important in differentiating between High Uniform and Low uniform, 
whilst Function 2 was important in differentiating between Medium 
Human Lagging and Medium Human Leaning. Function 1 thus repre
sents strength and Function 2 represents balance, which is illustrated in 
Fig. 3. Since Function 1 explained substantially more variance (78.2%) 

compared to Function 2 (20.6%), strength represents the strongest dif
ferentiator between the patterns. 

Finally, a total of 97.2% of the cross-validated plants were correctly 
classified, indicating that the Smart Maintenance taxonomy has high 
predictive validity and is not prone to misclassification. Taken together, 
this evidence suggests that manufacturing plants can be clustered into 
groups with different levels of Smart Maintenance strength and balance, 
based on the four dimensions of DDD, HCR, INI, and EXI. This provides 
support for H1. 

4.2. Environmental contingencies 

H2 postulates that three different environmental contingencies are 
related to the Smart Maintenance patterns. Discriminant analysis with 
all three variables (MASS, AUTO, and DIGI) showed that the cluster 
mean differences had a smaller p-value for DIGI (p = 0.018) compared to 
MASS (p = 0.891) and AUTO (p = 0.054). AUTO and MASS also did not 
have a substantively meaningful portion of explained variance or ca
nonical correlation. Thus, there was no evidence that supported H2a or 
H2b. A discriminant analysis using only DIGI yielded a function with 
substantively meaningful canonical correlation (r = 0.268, p = 0.016). 
However, the eigenvalue was just below 1 and the function could only 
correctly classify 46.5% of the plants. Thus, the level of digitalization did 
not have strong validity for predicting cluster membership. Still, the 
positive loadings for High Uniform (0.398) and Medium Human Leaning 
(0.138) and the negative loadings for Medium Human Lagging (− 0.04) 
and Low Uniform (− 0.353) indicate that more advanced Smart Main
tenance patterns are related to environments characterized by a higher 
level of digitalization. This is illustrated in Fig. 4. The evidence thereby 
provides partial support for H2c. 

4.3. Performance implications 

H3 and H4 postulate that Smart Maintenance is related to the 
maintenance performance and the productivity of the manufacturing 
plant. The ANOVA results (Table 4) show that there were differences in 

Table 3 
Standardized canonical discriminant function coefficients.   

Function 1 Function 2 

DDD 0.560 0.613 
HCR 0.506 − 0.772 
INI 0.569 0.030 
EXI 0.399 0.284  

Fig. 3. Cluster centroids.  
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maintenance performance between the patterns, supporting H3a. The 
Scheffe post hoc analysis yielded additional insights into the differences 
between specific patterns. We observed a tendency towards two main 
groups: high performers and low performers. The high performers were 
High Uniform and Medium Human Leaning. They had the best main
tenance performance (0.720 and 0.431, respectively) and there was no 
clear difference between them. The low performers were Low Uniform 
and Medium Human Lagging. They had the worst maintenance perfor
mance (− 0.344 and − 0.489, respectively) and there was no clear dif
ference between them. The two high performers were different from the 
two low performers. The results in Table 4 also show that there were 
differences in productivity between the Smart Maintenance patterns, 
supporting H4a. Similar to the results for maintenance performance, the 

high performers, i.e., High Uniform and Medium Human Leaning, had 
the best productivity (0.255 and 0.193, respectively). The low per
formers, i.e., Low Uniform and Medium Human Lagging, had the worst 
productivity (− 0.181 and − 0.158, respectively). However, the Scheffe 
post hoc analysis showed that there were no clear differences between 
any specific patterns. In sum, the evidence suggests that manufacturing 
plants with stronger and more balanced Smart Maintenance patterns 
have higher maintenance performance and productivity. 

The NCA results are shown in Table 5. Medium effect sizes (0.19 = d 
< 0.30) and small p-values (well below 0.05) are observed for the re
lationships between four Smart Maintenance dimensions (DDD, HCR, 
INI, EXI) and maintenance performance (MAIN). The largest effect size 
is observed for HCR-MAIN (d = 0.30). The effect sizes are substantively 
meaningful and the statistical tests indicate a low probability of the 
evidence of the observed effect being due to random chance of unrelated 
variables. The presence of necessary conditions is illustrated by fairly 
large empty spaces in the upper-left corner of the NCA XY-plots (see 
Appendix B). Thus, the evidence provides support for H3b. In contrast, 
small effect sizes (0.08 = d < 0.18) and large p-values (0.295 = p <
0.509) are observed for three of the relationships between Smart 
Maintenance dimensions (DDD, HCR, INI) and productivity (PROD). 
That is, the effect sizes are equal to or less the minimum level to be 
considered meaningful (d = 0.1), and the statistical tests imply that the 
evidence for the effects may be due to unrelated random variables. Thus, 
H4b is not supported. Still, one of the relationships (EXI – PROD) shows 
a medium effect size and small p-value, warranting further attention for 
its potential to be considered a necessity. In sum, the evidence suggests 
that the four dimensions of Smart Maintenance are single necessary 
conditions for maintenance performance, but not for productivity. 

Table 6 shows the NCA bottleneck table for the supported necessary 
conditions in H3a. Because the results for CE-FDH and CR-FDH are 
similar (Table 5), we only show the bottleneck table for the CR-FDH 

Fig. 4. Cluster centroids at the corresponding level of digitalization.  

Table 4 
Analysis of variance.   

Medium Human Lagging (cluster 1) High Uniform (cluster 2) Medium Human Leaning (cluster 3) Low Uniform (cluster 4) F 

Maintenance performance − 0.344 (2,3) 0.72 (4) 0.431 (4) − 0.489 (2,3) 11.648a 

Productivity − 0.181 () 0.255 () 0.193 () − 0.158 () 14.227a 

Numbers in parentheses indicate the cluster(s) from which that cluster is different with a p-value <0.05, yielded from Scheffe post hoc analysis. 
a p < 0.001. 

Table 5 
NCA parameters.  

Model Ceiling line Effect size P-value 

DDD - MAIN CE-FDH 0.22 <0.001 
CR-FDH 0.23 <0.001 

HCR - MAIN CE-FDH 0.30 <0.001 
CR-FDH 0.29 <0.001 

INI - MAIN CE-FDH 0.21 0.001 
CR-FDH 0.19 0.010 

EXI - MAIN CE-FDH 0.21 0.003 
CR-FDH 0.19 0.007 

DDD - PROD CE-FDH 0.10 0.314 
CR-FDH 0.10 0.295 

HCR - PROD CE-FDH 0.10 0.399 
CR-FDH 0.09 0.509 

INI - PROD CE-FDH 0.09 0.437 
CR-FDH 0.08 0.493 

EXI - PROD CE-FDH 0.18 0.004 
CR-FDH 0.16 0.012  
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ceiling line. The bottleneck table is displayed to the left as the per
centage range between min (x,y) and max (x,y), and to the right as 
percentiles (percentage and between brackets the number of plants that 
were not able to reach the desired level of maintenance performance). 
The left side of Table 6 (percentage range) shows that for low levels of 
maintenance performance (up to 30% MAIN), none of the conditions are 
necessary (“NN”). This indicates that manufacturing plants do not need 
to put any of the Smart Maintenance dimensions in place, as long as they 
satisfy with being low performers. If plants have a desire to become at 
least medium performers (above 50% MAIN), then at least low levels of 
the four dimensions are needed (17.9% DDD; 21.2% HCR; 8.7% INI; 
10.2% EXI). Finally, plants that aim to become high performers (80% 
MAIN or higher) need medium to high levels of the four dimensions 
(47.3–66.9% DDD; 60.4–86.6% HCR; 41.9–64.1% INI; 41.4–62.1% EXI). 
The right side of Table 6 (percentiles) shows that almost no plants are 
blocked from becoming medium performers (up to 50% MAIN) due to 
their current levels of the four dimensions (between 1.4 and 5.5% for the 
four dimensions, respectively). However, between 14 and 53% of the 
plants in the sample (27% DDD; 53% HCR; 23% INI; 14% EXI) are 
blocked from becoming high performers (80% MAIN or higher). The 
bottleneck table thereby illustrates how the four dimensions of Smart 
Maintenance are individually necessary for a high level of maintenance 
performance. 

5. Discussion 

By applying a configurational approach, we developed an emergent 
taxonomy of Smart Maintenance and empirically showed that more 
advanced Smart Maintenance patterns may be more prevalent in oper
ating environments characterized by a high level of digitalization. We 
also uncovered that manufacturing plants with strong and balanced 
Smart Maintenance patterns have higher maintenance performance and 
productivity, as well as that high levels of the four dimensions of Smart 
Maintenance are individually necessary for a high level of maintenance 
performance. Our findings have a range of theoretical and managerial 
implications. 

5.1. Theoretical implications 

Research on Smart Maintenance is still in its infancy, and unified 
scholarly development has been constrained by the use of different no
tions of Smart Maintenance and similar/overlapping concepts (Huang 
et al., 2019; Roda and Macchi, 2021). This issue of concept proliferation 
has caused confusion among maintenance scholars and acted as a barrier 
to consistent operationalizations and reproducibility of theory-testing 
research. In this study, we remedy this issue by building on the previ
ous conceptualization (Bokrantz et al., 2020c) and operationalization 
(Bokrantz et al., 2020a) of Smart Maintenance and obtaining 
large-sample confirmatory evidence of construct validity (Appendix A). 
By empirically testing the relationships between items and constructs for 

the four dimensions of Smart Maintenance (DDD, HCR, INI, EXI), we 
firmly establish a foundation for accumulated knowledge creation. 
Specifically, the evidence of construct validity facilitates empirical 
replications and extensions, enables comparability across studies, and 
serves as a base for interpreting a variety of literature that focuses on 
maintenance practices within Industry 4.0 more broadly (Sandu et al., 
2022; Silvestri et al., 2020; Tortorella et al., 2022). 

Owing to the consistent conceptualization and operationalization of 
Smart Maintenance, this study is the first to empirically investigate 
adoption patterns and performance implications. By jointly studying the 
four dimensions of Smart Maintenance, environmental contingencies, 
and maintenance performance and productivity, the study adds richness 
to the Smart Maintenance literature. Specifically, the emergent patterns 
show that manufacturing plants can be classified based on their different 
levels of Smart Maintenance dimensions. The empirical taxonomy thus 
reveals insights into the underlying structure of Smart Maintenance and 
illustrates how managers place different emphases on the four di
mensions. The taxonomy thereby substantiates the Smart Maintenance 
concept and provides a parsimonious classification that is useful for 
research and pedagogy. Further, finding that more advanced Smart 
Maintenance patterns may be more prevalent in digitalized operating 
environments provides evidence for the core predictions made during its 
original conceptualization (Bokrantz et al., 2020c). By combining two 
configurational approaches and using multiple methods for testing the 
relationships between Smart Maintenance and performance, we uncover 
that the emergent patterns of Smart Maintenance differ in their levels of 
maintenance performance and productivity. We also show that the four 
Smart Maintenance dimensions are single necessary conditions for 
maintenance performance, implying that they must be put and kept in 
place to enable a high level of maintenance performance. These findings 
substantially confirm the significant role of Smart Maintenance in 
maintenance theory and practice (Bokrantz et al., 2020b; Roda and 
Macchi, 2021). As a whole, this study advances research on Smart 
Maintenance from theory building to theory testing, which expands and 
strengthens its theoretical and empirical foundation. 

5.2. Managerial implications 

The findings provide substantial managerial advice for making 
strategic decisions about Smart Maintenance implementation. The 
combined evidence from ANOVA (Table 4) and NCA (Tables 5–6) 
broadly suggests that managers should pursue better performance by 
implementing Smart Maintenance as a whole. That is, managers who 
formulate and execute strategies for Smart Maintenance should focus on 
coordinated and joint implementation of all four dimensions. Further, 
our multimethod approach yields granular managerial guidelines that 
can be used to formulate evidence-based blueprints for successful Smart 
Maintenance implementation. To this end, we propose managerial 
guidelines at two levels: (1) generic guidelines for Smart Maintenance as 
a whole and (2) specific guidelines for each strategic group within the 

Table 6 
NCA bottleneck table.  

CR-FDH (percentage range) CR-FDH (percentiles) 

MAIN DDD HCR INI EXI MAIN DDD HCR INI EXI 

0 NN NN NN NN 0 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 
10 NN NN NN NN 10 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 
20 NN NN NN NN 20 0.7 (1) 0.0 (0) 0.0 (0) 0.0 (0) 
30 NN NN NN NN 30 2.1 (3) 2.1 (3) 0.0 (0) 0.0 (0) 
40 8.1 8.1 NN NN 40 2.8 (4) 2.8 (4) 0.7 (1) 1.4 (2) 
50 17.9 21.2 8.7 10.2 50 5.5 (8) 4.8 (7) 2.8 (4) 1.4 (2) 
60 27.7 34.3 19.7 20.6 60 11.0 (16) 10.3 (15) 4.1 (6) 2.1 (3) 
70 37.5 47.3 30.8 31.0 70 13.8 (20) 18.6 (27) 6.2 (9) 3.4 (5) 
80 47.3 60.4 41.9 41.4 80 18.6 (27) 36.6 (53) 15.9 (23) 9.7 (14) 
90 57.1 73.5 53.0 51.7 90 38.6 (56) 53.8 (78) 29.7 (43) 25.5 (37) 
100 66.9 86.6 64.1 62.1 100 77.9 (113) 93.8 (136) 77.9 (113) 89.7 (130)  
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taxonomy. 
Managers seeking generic guidelines for Smart Maintenance imple

mentation are advised to pursue the following two-step recommenda
tions. Firstly, maintenance managers need to satisfy the necessary 
conditions. That is, manufacturing plants with a desire to become high 
maintenance performance must first ensure that all four dimensions of 
Smart Maintenance are put and kept in place at the required minimum 
level. Each plant should make different strategic choices based on its 
current levels of Smart Maintenance and desired level of performance. 
We therefore advise maintenance managers to conduct a current state 
assessment by thoroughly evaluating their existing levels on all of the 
four dimensions, combined with formulating the desired target level of 
maintenance performance. Since most manufacturers face limitations in 
time, money, and other resources, maintenance managers need to focus 
their attention on investing in the current bottleneck dimension (if any) 
for achieving the desired maintenance performance level. Secondly, 
when, and only when, all four dimensions have been put and kept in 
place at the required minimum level, managers should focus their 
attention on further progressing toward stronger and more balanced 
Smart Maintenance patterns. Both strength and balance are important to 
maintenance performance and productivity, implying that managers 
should strive for the long-term goal of achieving a strong and balanced 
(i.e., ‘ideal’) pattern of Smart Maintenance. 

Managers seeking specific guidelines for their manufacturing plant, 
based on the corresponding group membership in the taxonomy, are 
advised to pursue the following recommendations. The Low Uniform 
cluster comprised plants that lag behind in Smart Maintenance adop
tion. We recommend that these plants first ensure a solid base of 
maintenance fundamentals (e.g., preventive maintenance planning and 
skills in mechanical and electrical maintenance). To advance their 
maintenance operations, it is important for managers to reflect on the 
role and importance of maintenance for their plant, and if deemed 
appropriate and desired, start exploring the potential of adopting the 
principles of Smart Maintenance. The Medium Human Lagging cluster 
included plants where the human resources represent the most impor
tant short-term improvement potential. Therefore, we recommend that 
these plants conduct a mapping of current and future roles in mainte
nance, identify competence gaps, and invest in the education and 
training of the workforce. To reinforce the adoption of Smart Mainte
nance, we also recommend augmenting workers with new digital tech
nologies. Plants in the Medium Human Leaning cluster have humans as 
their strongest capability. To further stimulate a transition towards more 
advanced Smart Maintenance patterns, we recommend identifying shifts 
from traditional to future competence profiles, investing in digital 
technologies that augment workers, and creating new organizational 
processes that leverage new technologies. Finally, the High Uniform 
cluster represented the leaders in Smart Maintenance adoption. We 
recommend that these plants continue their improvement journey to 
further strengthen their position as industry role models; not only to 
advance themselves but also to help others that lag behind. For example, 
it is advised to keep exploring and developing more advanced solutions 
for data analytics (e.g., machine learning for predictive maintenance) 
and focusing on creating novel synergies between all four dimensions of 
Smart Maintenance. 

These managerial implications complement and extend previous 
research. Prior empirical studies have focused on two topics: (1) un
derstanding why managers choose to implement modernized mainte
nance practices using the Diffusions of Innovation theory (Lundgren, 
2021; Tortorella et al., 2021); and (2) how maintenance managers can be 
supported in their strategy development endeavors by developing 
practice-oriented methodologies (Lundgren et al., 2021; Polenghi et al., 
2021) and maturity models (Macchi and Fumagalli, 2013; Nemeth et al., 
2019; Poór et al., 2019) that facilitate the formulation of goals, prior
ities, and improvement activities. We complement this literature by 
providing novel empirical insights about when and to what extent the 
four dimensions of Smart Maintenance should be pursued to achieve a 

desired level of performance. We also extend these research streams by 
providing a validated measurement instrument (Appendix A) that 
practitioners can use as a self-assessment tool to understand, evaluate, 
and benchmark Smart Maintenance in their organization. 

5.3. Limitations and further research 

While our study makes significant contributions to the maintenance 
literature and has important implications for practice, it also has limi
tations. Firstly, we used a cross-sectional, partly single-respondent sur
vey design that has limitations concerning common method bias and 
respondent bias (Flynn et al., 2018). Thus, future research would benefit 
from further advancing the research design and careful collection of 
good data (i.e., sampling and measurement), especially studies aiming at 
replications and extensions. Secondly, we used cluster analysis to 
identify the Smart Maintenance configurations, which is suitable for 
large-sample research that aims to investigate thematic patterns (Hair 
et al., 2014; Hinings, 2018; Short et al., 2008). This approach has two 
main limitations: (1) the robustness of the empirically derived cluster 
solutions needs to be cross-validated across more samples, and (2) the 
causal relationships within specific configurations remain unknown 
(Miller, 2018). Future research could overcome these limitations by 
pursuing replication studies and examining more in-depth nuances 
across configurations through complementary qualitative data and 
neo-configural methods such as Qualitative Comparative Analysis 
(QCA) (Ragin, 2008). Thirdly, the scope of our study was limited to 
testing whether the emergent patterns were more prevalent in certain 
operating environments, and we were surprised that propositions with 
clear theoretical backing lacked empirical support. Thus, we call for 
more research that further investigates the influence of environmental 
contingencies, which would entail not only further assessing the prev
alence of Smart Maintenance in certain environments but also exam
ining the returns on Smart Maintenance in those environments. 
Fourthly, while our recommendations for successful Smart Maintenance 
implementation provide clear guidance to practicing managers, they are 
still limited to Smart Maintenance as a whole and the four emergent 
patterns. Therefore, future research could focus on upscaling the 
managerial implications by developing individualized recommenda
tions for specific manufacturing plants. One such avenue would be to use 
the insights from this study as a foundation for developing a maturity 
model that is theoretically grounded, methodologically rigorous, and 
empirically validated (Becker et al., 2010). Specifically, the emergent 
patterns in this study can be interpreted as representing progression 
toward maturity through stages of configurations of multiple, complex 
conditions. In other words, there is no single, linear way of developing 
Smart Maintenance, rather there exist multiple, equally effective path
ways to move between the four configurations (Fig. 2). To empirically 
develop a maturity model capable of deriving individualized pathways 
for manufacturing plants, researchers could make use of recent de
velopments in social science research methods such as a combination of 
NCA and QCA (Lasrado et al., 2016). 

6. Conclusions 

This study extends and strengthens research on industrial mainte
nance management by applying a configurational approach to examine 
adoption patterns and performance implications of Smart Maintenance 
(i.e., data-driven decision-making, human capital resource, internal 
integration, and external integration). Firstly, we substantiate the 
concept of Smart Maintenance by developing an empirical taxonomy 
consisting of four emergent patterns that reflect the strength and balance 
of the underlying dimensions (i.e., Low Uniform, Medium Human Lag
ging, Medium Human Leaning, and High Uniform). Secondly, we show 
that the Smart Maintenance patterns are related to the operating envi
ronment of the manufacturing plants, where more advanced patterns 
may be more prevalent in plants with higher levels of digitalization. This 
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firmly positions the Smart Maintenance concept within the overall 
landscape of industrial digitalization. Thirdly, we move from theory 
building to theory testing by empirically demonstrating that 
manufacturing plants with stronger and more balanced Smart Mainte
nance have higher maintenance performance and productivity, as well 
as that high levels of four dimensions of Smart Maintenance are indi
vidually necessary for a high level of maintenance performance. In sum, 
this study provides both richness and comprehensiveness to the main
tenance literature by enhancing our understanding of Smart Mainte
nance, and it offers practical advice to managers when developing 
strategies for Smart Maintenance implementation. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

Above all, we direct our gratitude towards the working professionals 
who devoted their time and interest to this study. They contributed to 
both the research design and the collection of data. We also thank 
Mukund Subramaniyan for his support during the quantitative data 
analysis. This work was supported by VINNOVA, Swedish Agency for 
Innovation Systems [grant number2017–01652]. This work has been 
performed within the Sustainable Production Initiative and the Pro
duction Area of Advance at Chalmers. The support is greatly 
appreciated.  

Appendix A. Measurement items and factor analysis  

Factor model and items for the six focal variables in the study (DDD, HCR, INI, EXI, MAIN, PROD).  

Construct and items Loading S.E 

Data-driven decision-making (DDD) 
Our maintenance decisions are data-driven 0.67 0.04 
We direct our maintenance actions based on collected equipment data 0.81 0.03 
Our maintenance plans are based on credible data analysis 0.87 0.03 
We combine several different data sources in order to make maintenance decisions 0.80 0.04 
Our maintenance decisions are based on quality-assured data 0.86 0.03 
Our decisions about maintenance actions are based on data from the plant 0.76 0.04 
We make improvement decisions based on data analysis 0.79 0.03 
Our maintenance plans are determined using all available equipment data 0.85 0.03 
We use data analysis to make maintenance decisions 0.92 0.02 
We make maintenance decisions based on quality-assured equipment data 0.85 0.04 
Human capital resource (HCR) 
Our maintenance employees are well-trained to carry out their work tasks 0.73 0.04 
Our maintenance employees have sufficient education to carry out their work tasks 0.79 0.04 
Our maintenance employees quickly learn how to carry out new work tasks * * 
Our maintenance employees easily exchange knowledge with each other 0.51 0.06 
Our maintenance employees have insufficient competence** 0.85 0.03 
Our maintenance employees are considered the best in our industry sector 0.84 0.04 
Our maintenance employees have the right competence to carry out their work tasks 0.84 0.04 
Our maintenance employees lack the competence to carry out their work tasks** 0.75 0.04 
Our maintenance employees have sufficient experience to carry out their work tasks 0.59 0.05 
Our maintenance employees are experts within their respective roles 0.67 0.05 
Our maintenance employees continuously develop their skills 0.57 0.05 
Our maintenance employees are skilled at solving problems together 0.63 0.06 
Our maintenance employees are skilled at carrying out their work tasks 0.73 0.05 
We have a lack of maintenance competence in our plant** 0.58 0.06 
Internal integration (INI) 
Maintenance collaborate well with Production in our plant 0.67 0.05 
Our maintenance actions are coordinated with other functions in our plant 0.67 0.05 
Maintenance participate in new acquisition projects in our plant * * 
Communication between Maintenance and other functions works well in our plant 0.75 0.06 
Maintenance regularly share data with other functions in our plant 0.72 0.06 
Maintenance is isolated from other functions in our plant** 0.55 0.07 
Maintenance and Production achieve common goals together in our plant 0.65 0.05 
Maintenance and other functions understand each others’ work tasks in our plant 0.73 0.04 
Maintenance are well synchronized with Production in our plant 0.85 0.03 
Knowledge is shared between Maintenance and other functions in our plant 0.75 0.04 
Maintenance easily exchange information with other functions in our plant 0.68 0.05 
Maintenance make joint decisions together with other functions in our plant 0.78 0.04 
The maintenance system (CMMS) is integrated with other systems in our plant * * 
Maintenance solves problems together with other functions in our plant 0.64 0.05 
There are no barriers between Maintenance and other functions in our plant 0.62 0.05 
External integration (EXI) 
We are well-integrated with our suppliers regarding maintenance 0.64 0.05 
We share maintenance data within external networks of companies 0.80 0.06 
We collaborate with other plants regarding maintenance 0.72 0.06 
We easily exchange information with our suppliers regarding maintenance 0.63 0.05 
We synchronize our maintenance actions with our suppliers 0.69 0.04 
We collaborate with our suppliers to improve their quality regarding maintenance 0.65 0.06 
We collaborate closely with our suppliers regarding maintenance 0.82 0.03 

(continued on next page) 
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(continued ) 

Construct and items Loading S.E 

We collaborate within networks of other companies regarding maintenance 0.54 0.07 
Our suppliers are actively involved in our maintenance improvement projects 0.70 0.05 
We share equipment data with our suppliers regarding maintenance 0.64 0.05 
We solve maintenance problems together with our suppliers 0.77 0.04 
Our maintenance systems are not integrated with those of our suppliers** * * 
We have strategic partnerships with our suppliers with regard to maintenance * * 
Maintenance performance (MAIN) 
Technical availability 0.80 0.03 
Mean Time Between Failures (MTBF) 0.90 0.03 
Mean Time To Repair (MTTR) 0.75 0.04 
Mean Time Waiting (MTW) 0.63 0.05 
Unplanned downtime 0.77 0.04 
Number of unplanned maintenance actions 0.62 0.04 
Conformance quality of maintenance work 0.84 0.04 
Maintenance work causing downtime 0.50 0.05 
Productivity (PROD) 
Throughput time 0.83 0.04 
Throughput rate 0.75 0.04 
Time from customer order to delivery 0.61 0.06 
On time delivery performance 0.61 0.06 
Set-up time 0.64 0.06 
Production yield 0.74 0.05 
Deviation from actual production plan 0.72 0.05 
Scrap and rework 0.57 0.06 

* Dropped item. 
** Reverse item. 

Measures for the three complementary variables in the study (MASS, AUTO, and DIGI).  

Mass output orientation (MASS), from Swanson (2003).  

Type Definition 

Job shop Machines of the same type placed together 
Cellular Production cells with batch process 
Line Line-oriented manufacturing process 
Process Continuous manufacturing process   

Automation (AUTO), from Almström and Kinnander (2011).  

Type Definition 

Manual production Manual work, e.g., assembly or machining. 
Semi-automatic production Automatic equipment with more manual work, e.g., manual set-up or finishing. 
Fully automated production Automatic equipment with manual material handling. Some manual work during set-up. 
Process production Completely automatic equipment, only manual monitoring and quality control.   

Digitalization (DIGI), from Peña-López (2002).  

Type Definition 

Hardware, internal Computation and storage hardware such as computers, servers, programmable controllers, sensors, PLC, etc. 
Hardware, external Computation and storage hardware as a service, e.g., cloud service. 
Software, purchased from suppliers Information systems and tools such as ERP, MES, CMMS, SCADA, IoT platforms, etc. 
Software, developed in-house In-house information systems, including also extension and development of external systems. 
Fixed communication equipment Infrastructure and equipment for digital communication such as routers, switches, networks, firewalls, etc. 
Mobile communication equipment Infrastructure and equipment for wireless communication such as access points for WiFi, radio-based stations for 4G, etc.  
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Appendix B. NCA plots 

NCA XY-plots (CR-FDH and CE-FDH ceiling lines) for the supported necessary conditions in Table 5. 
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