
Towards an efficient cost function equation for
DDR SDRAM interference analysis on

heterogeneous MPSoCs
Alfonso Mascareñas González

ISAE-SUPAERO, Université de Toulouse
Toulouse, France

alfonso.mascarenas-gonzalez@isae-supaero.fr

Jean-Baptiste Chaudron
ISAE-SUPAERO, Université de Toulouse

Toulouse, France
jean-baptiste.chaudron@isae-supaero.fr

Frédéric Boniol
ONERA, Université de Toulouse

Toulouse, France
frederic.boniol@onera.fr

Youcef Bouchebaba
ONERA, Université de Toulouse

Toulouse, France
youcef.bouchebaba@onera.fr

Jean-Loup Bussenot
ONERA, Université de Toulouse

Toulouse, France
jean-loup.bussenot@onera.fr

Abstract—Real-time applications must finish their execution
within an imposed deadline to function correctly. DDR memory
interference on multicore platforms can make tasks overpass
their respective deadline, leading to critical errors. Bandwidth
regulators and SDRAM bank partitioning are examples of
techniques used to mitigate or avoid this interference type.
Another possibility is to optimally place tasks and memory
on the platform, i.e., task/memory mapping optimization. The
algorithms used for finding optimal mapping solutions work
using a cost function that indicates the fitness of the found
solution. In this work, we propose a DDR SDRAM cost function
that estimates the worst-case execution time for a giving map,
and hence, implementable in an optimization algorithm. Our
cost function considers the DDR memory device operation, the
SoC manufacturer memory controller, the heterogeneity of the
platform and the characteristics of the tasks to map. The cost
function is evaluated by measuring directly the interference from
the heterogeneous MPSoCs Keystone II and Sitara AM5728 by
Texas Instruments.

Index Terms—Heterogeneous multicore platforms, Cost func-
tion, Memory interference, DDR SDRAM

I. INTRODUCTION

In the real-time domain, memory interference on mul-
ticore platforms has been a topic of interest as they can
be responsible for tasks deadline misses. Depending on the
memory interference source, different techniques have been
proposed for mitigating their impact and improving execution
predictability, e.g., cache partitioning and cache locking for
shared caches, bank partitioning and bandwidth regulators for
SDRAMs. Another way is through task and memory mapping,
i.e., the optimal allocation of tasks on cores and the memory on
SDRAM banks. The algorithm in charge of finding the best
allocation combination needs a cost function for evaluating
the fitness of the maps. Therefore, the aim of this work is to

present a DDR SDRAM cost function equation which can be
used by optimization algorithms for retrieving an estimation
of the real Worst-Case Execution Time (WCET) of a task map.
This cost function must be time efficient and correctly model
the behavior of the SDRAM interference cost. For such a
purpose, we consider the DDR SDRAM device operations and
timings, the Memory Controller (MC) Reordering (RO) effects,
the heterogeneity of the platform and the task properties. To
achieve time efficiency, the previous is described by a set of
equations instead of inequations, as the latter would imply the
implementation of solvers that is time consuming. The cost
function evaluation is measurement-based. The heterogeneous
MPSoCs Keystone II and Sitara AM5728 by Texas Instruments
(TI) are used. The implementation of both platforms, the DDR
memory interference cost function equation evaluation, and
the implementation of the cost function in a task/memory
mapping tool, can be found in this repository1. The remaining
sections of this work are structured in the following way.
Section II describes state-of-the-art procedures to analyze and
upper-bound SDRAMs interference. Section III introduces the
theoretical basis for the comprehension of the equations de-
velopment for the cost function. Section IV lists the important
aspects to consider for the experimental setup. Section V
explains the development of the cost function equation. Section
VI compares the theoretical and the measured values on the
MPSoCs. Finally, Section VII summarizes the entire work.

II. RELATED WORK

DDR SDRAMs bounding can be done through many dif-
ferent approaches: (1) request-driven analysis, (2) job-driven
analysis, (3) hybrid analysis and (4) holistic analysis. Request-
driven focuses on the interference that an individual memory

1https://github.com/ISAE-PRISE/sinteo

request receives. Afterwards, all the task requests are multi-
plied by this value. Job-driven is based on the number of inter-
fering memory requests from other cores of the platform. The
hybrid analysis computes the memory interference bounding
by mixing the request-driven and the job-driven analysis. The
holistic analysis focuses on the system rather than its parts.
Work [3] bases its analysis on request-driven. They are able
to evaluate their work in 144 different platform instance (e.g.,
enabling/disabling write batching, out-of-order execution, pri-
orities) thanks to the use of MacSim and DRAMSim2. In the
same category we can find [12], which assumes that the task
under analysis can only manage one request at a time, i.e.,
considers in-order execution processors. In their simulations,
they take into account the row hit ratio, as well as the loads
and stores ratio. This is also considered in our work as we
believe it is important for reducing the pessimism and, at
the same time, feasible to do through platform measurements.
Works [9], [13] provide request-driven and job-driven analysis.
In fact, both works propose to consider the minimum of the
results of the two bounds results to obtain the tightest upper
bound. [9] carries out their work evaluation on a homogeneous
multicore platform of four cores (Intel Core i7-2600 @ 3.4
GHz). They work with 2 ranks of 8 banks each, which is
uncommon among the real platforms related work. Conversely,
[13] uses Gem5 to simulate a quad core ARM Cortex A15
processor. It considers the effect of write batching based on the
watermark policy (mentioned but not implemented in [9]). As
for this, our work also considers the effect of batching but with
a different policy based on separated read and write thresholds.
The hybrid approach can be found in [4]. This work shows
through MacSim and DRAMSim2 that with this approach
the DDR3 memory interference bound can be further tighten.
Another key characteristic of this work is the differentiation
of the request types, e.g., read and write, row hits and row
conflicts, similar to the idea in [12]. As in their previous work
[3], they support a lot of MC/platform configurations which
makes it very flexible. Work [2] targets holistic analysis to
bound the memory contention. They make use of a three-phase
execution model, distinguishing between the copy-in phase,
execution phase and the copy-out phase. We remark the use
of inequations and solvers to obtain the bounding like done
in works [2], [4]. Unfortunately, the use of inequations is not
adequate for task/memory mapping optimization because of
their complexity and the time it takes to solve these.

III. DDR SDRAM BACKGROUND

DDR3 SDRAM devices must comply with the JEDEC
standard JESD79-3E [8] which defines the functionalities,
electrical characteristics, packaging, etc. The main important
components making up a DDR3 memory device are the ranks,
the banks and the command, address and data busses. A rank is
a collection of banks. A bank is a storage logic unit defined by
columns and rows. The command bus is used for transmitting
the commands to the banks. The address bus is used for
selecting the memory location to access. The data bus is used
for transferring the data.

A. DDR3 SDRAM Device Addressing

A convenient way to think about DDR SDRAM addressing
is to see this memory as a set of banks. These banks, which
are able to process commands in parallel, are made of a 2D
array of memory locations defined by its column (X axis) and
its row (Y axis). Attached to the banks there is a row buffer
where the last accessed row is stored. Its purpose is to speed
up data manipulation to that row. When accessing a different
row than the one in the buffer, a row switch is produced. This
entails a penalty as the row in the buffer has to be put back to
its original position in memory and the new row to manipulate
has to be brought to the buffer. Figure 1 shows an example
of the bank-row-column organization. To intentionally use a
given column, row or bank, we have to know how the physical
address is decoded by the controller (see Table 2-5 in [5] or
Chapter 15.3.4.12 in [7] for Keystone II and Sitara AM5728
respectively). For instance, the physical address 0x80283000
on Keystone II generates an output like: row 0x8028 (bits 31-
16), bank 0x1 (bits 15-13), column 0x1000 (bits 12-0).

Fig. 1: SRAM organization: Columns, Rows and Banks.

B. Device Operations

Operation-wise, the memory is mainly based on a series
of states, commands and timings. The current memory state
and its possible transitions are determined by the commands.
From the whole set of commands, special attention should be
payed to Read (RD) and Write (WR). These two are burst
oriented, meaning that the operation is applied to the given
memory address and continue as a burst whose Burst Length
(BL) is 8 columns. Note that DDRs are Double Data Rate
and, therefore, the burst transmission time length is halved
(i.e., BL

2). For a RD or a WR to be executed, the target row
of a particular bank (see Section III-A) must be brought to the
bank row buffer by executing an Active (ACT) command. If
a different row of the same bank has to be accessed, then the
actual information located in the row buffer must be first saved
by executing a Precharge (PRE) command. Subsequently, an
ACT of the new row is performed. There are specific transition
timings associated to the commands execution (see Table I).

Data transfers are not done immediately. There is a delay
between the command execution and the moment data is
available on the data bus. This latency depends on the issued
command. We can differentiate the CAS Latency (CL) and
the CAS Write Latency (WL) for the RD and WR operations
respectively. The elapsed time can be seen in Figures 2 and 3.
Note how the MC issues the commands optimally by packing
them, well-exploiting the DDR memory data bus.

TABLE I: Keystone II and Sitara AM5728 SDRAM values

SDRAM Feature Keystone II
MC@800MHz

Sitara AM5728
MC@533MHz

Number of Ranks 1 rank 1 rank
Number of Banks 8 banks 8 banks
Page Size 10 columns 10 columns
SDRAM Width 64 bits 64 bits
Burst Length (BL) 8 columns 8 columns
CAS to CAS delay (tCCD) 4 cycles 4 cycles
CAS Latency (CL) 11 cycles 7 cycles
CAS Write Latency (WL) 8 cycles 6 cycles
Write Recovery Time (tWR) 12 cycles 8 cycles
Write to Read (tWTR) 5 cycles 4 cycles
Precharge (tRP) 11 cycles 7 cycles
Read to Precharge (tRTP) 6 cycles 4 cycles
Active (tRCD) 11 cycles 7 cycles
Active to Precharge (tRAS) 28 cycles 19 cycles
Inter-bank Active to Active (tRRD) 6 cycles 7 cycles
Four Active Window (ttFAW) 24 cycles 28 cycles
Intra-bank Active to Active (tRC) 39 cycles 27 cycles

Addr

NOPNOPRDNOPNOPNOPRD NOPNOPNOPNOPNOPNOPNOP

B2
Col7

B2
Col4

D2 D3 D4 D5 D6 D7

CLK

CMD

RD Bank 2

Data

tCCD

CL BL/2

NOP

RD Bank 2

CL BL/2
D0 D1 D2 D3 D4 D5 D6 D7D0 D1

Fig. 2: Two consecutive read commands

Addr

NOPNOPWRNOPNOPNOPWR NOPNOPNOPNOPNOPNOPNOPNOP

B2
Col7

B2
Col4

D2 D3 D4 D5 D6 D7

CLK

CMD

WR Bank 2

Data

tCCD

WL BL/2

WR Bank 2

WL BL/2
D0 D1 D2 D3 D4 D5 D6 D7D0 D1

Fig. 3: Two consecutive write commands

Another important delay to consider is the data bus
turnaround time caused by WR to RD or RD to WR state
transitions. Figure 4 depicts the timing transitions for the WR
to RD case when using two different banks. Figures 5 and
6 show the transitions from a RD to a WR command in the
same and different banks.

Addr

NOPNOPNOPNOPNOPNOPWR RDNOPNOPNOPNOPNOPNOPNOP

B2
Col4

B2
Col4

D1 D2 D3 D4 D5 D6 D7D0

CLK

CMD

WR Bank 2

Data

WL + BL/2 + tWTR

WL BL/2 tWTR

RD Bank 2

CL

CL + BL/2

Fig. 4: Intra-bank write to read commands turnaround

Lastly, it must be mentioned that the transitions WR/RD
to PRE and PRE to RD/WR due to a row switch produce
a delay on the command bus. Figures 7 and 8 show the
previous transitions respectively. The dashed lines in both
figures represent a time skip.

Apart from the previous execution and transitions timings,
there are time constraints to respect in order to achieve a well-

2clk

Addr

NOPNOPNOPNOPNOPNOPRD WRNOPNOPNOPNOPNOPNOP

B2
Col4

B2
Col4

D1 D2 D3 D4 D5 D6 D7D0

CLK

CMD

RD Bank 2

Data

CL + BL/2 + 2

CL BL/2

WR Bank 2

NOP

WL

WL + BL/2

Fig. 5: Intra-bank read to write commands turnaround

2clk

NOPNOPNOPNOPRD WR NOPNOPNOPNOPNOPNOPNOP NOP

B2
Col4

B3
Col8

D1 D2 D3 D4 D5 D6 D7D0

CLK

CMD

RD Bank 2

Data

CL + BL/2 + 2 - WL

CL BL/2

WR Bank 3

NOP

BL/2

WL + BL/2

WL

D1 D2 D3D0

Addr

Fig. 6: Inter-bank read to write commands turnaround

Addr

NOPNOPNOPNOPNOPNOPNOPNOPWR PRENOPNOPNOPNOP

B2
Col4 B2

D1 D2 D3 D4 D5 D6 D7D0

CLK

CMD

WR Bank 2

Data

WL + BL/2 + tWR

WL BL/2 tWR

PRE Bank 2

NOP

CL

tRP

Fig. 7: Write to Precharge recovery time

Addr

NOPNOPNOPNOPNOPPRE RD NOPNOP NOPNOPNOPNOP

B2 B2
Col9

D1 D2 D3D0

CLK

CMD

PRE Bank 2

Data

tRCD

CL

RD Bank 2

NOP

BL/2

ACT

ACT Bank 2

B2

tRP CL + BL/2

Fig. 8: Precharge to Read commands transition time

functioning of the memory. To avoid timing violations, it is
paramount to consider the following constraints:
C1 Consecutive active commands: Two consecutive active

commands must be executed within a time difference of
tRRD. Besides, only four ACT commands are allowed
for a time window equal to tFAW . Figure 9 describes
this constraint.

CLK

CMD ACT

B0
Col6

3*tRRD

tRRD

NOP NOP NOP ACT NOP NOP NOP NOPACT NOP NOP ACT NOPNOP

B1
Col2

B2
Col0

B3
Col2

tRRD tRRD tFAW - 3*tRRD

Addr

Fig. 9: Multiple active commands execution behavior

C2 Active to Precharge: For an intra-bank scenario, the
elapsed time between the issue of an ACT and a PRE
command must not exceed tRAS .

C3 Intra-bank active to active: Similar to C2, the elapsed

time between the issue of two ACT commands must not
exceed tRC in an intra-bank situation.

C4 RD/WR to Precharge: The minimum RD to PRE spac-
ing is given by tRTP . Likewise, the WR to PRE minimum
spacing time is tWR. Figure 8 shows how this constraints
is respected by waiting the write recovery time tWR

before performing a PRE.

C. Memory Controller Arbitration

In this work, the used DDR3 MC commands scheduling is
determined by the First-Ready First-Come-First-Served (FR-
FCFS) algorithm, which reorders the commands in the Com-
mand FIFO in order to maximize the total throughput. The
following logic is followed [5]:

1) Read prioritization: For each master, the controller will
advance a RD before an older WR if they are issued to
a different block address2 to reduce the platform cores
stalling time. In the case both commands are to the same
block, to maintain data coherency, the commands are
dequeued in order of arrival (first in, first out logic).

2) Opened row prioritization: The commands pointing to
an already opened row of a bank will be selected first
to reduce the row switch cost. This is possible thanks
to the implemented open-row policy. When there are no
more commands with their corresponding banks opened,
the deactivation of the current bank row (PRE) and the
activation of the new row (ACT) is performed.

3) RD/WR Batching: The selected RD and WR commands
are executed in batches or bursts of a defined size to
reduce the number of turnarounds. The arbitration will
switch to another batch type every time one of them has
been executed. The oldest commands have priority.

The quantified effects of the arbitration logic can be seen in
[10]. In terms of commands priority, the controller follows a
Column-First scheduling policy where RD and WR commands
(column accesses) are prioritized over ACT and PRE com-
mands (row accesses). The execution order in the Keystone
II and Sitara AM5728 DDR3 controllers are: RD, WR, ACT
and PRE. RD and WR commands have the same priority after
being reordered according to the arbitration rules.

IV. CONSIDERATIONS

In this work, the following points always apply:
• Platform: The heterogeneous platform considered for

carrying out measurement-based evaluations of the cost
function are the Keystone II model TCI6636K2H [6]
and Sitara AM5725 [7], both by Texas Instruments. The
former MPSoC is made up of 4 ARM Cortex A15 cores
and 8 C66x DSPs. However, in this work, we evaluate
the results with 2 ARM cores and 6 DSPs, i.e., a total
of 8 cores in parallel. The latter MPSoC is made up of
a large number of different processing units of which we
consider the 2 ARM Cortex A15 cores and 2 C66x DSPs.

2On Keystone II and Sitara AM5728 a block address is defined as a 2048
bytes length region.

• DDR SDRAM: The memories used are a DDR3 SDRAM
version DDR3-1600K and a DDR SDRAM version
DDR3-1066F for the Keystone and Sitara respectively.
Both have a single rank and 8 banks. During the eval-
uation, 4 banks are used. The main properties of these
memories are found in Table I.

• No data caches: We disable the L1D and L2 cache to
increase the access frequency of the tasks to the DDR3
memory as well as getting rid of the L2 shared cache
interference.

• Bare-metal: No operating systems have been used in
order to gain entire control of the system and ease
the data treatment by avoiding OS derived effects, e.g.,
preemption, frequency throttling.

• Priority: We consider a single level of priority, i.e., same
criticality level. Therefore, the priority of the slaves of the
platform interconnection is the same.

• Starvation: The initial values of the interconnection
slaves starvation counters are increased to the maximum
possible value. If these counters reach zero due to starva-
tion, the priority of the slave is temporarily increased. The
DDR3 SDRAM command priority raise counter (anti-
starvation mechanism) is left at default setting.

V. FORMAL DESCRIPTION

A. Tasks Model

The functions developed to estimate the worst-case interfer-
ence rely on some tasks properties. Tasks are defined as:

τi := (Ci,Ai(t), SPi, Si, ACORi, PEi, Bi, Ti)

where:

− Ci: The WCET in isolation. Ci ϵN+.
− Ai(t): The DDR3 memory accesses cumulative distribu-

tion function. Ai(t) ϵN+ and t ϵ [0, Ci].
− SPi: The Store Proportion (SP) indicates the share

of stores in Ai(t). SPi = 1 − LPi where SPi and
LPi ϵ [0, 1]. LPi is the Load Proportion of Ai(t).

− Si: The number of row switches (ACTs) in isolation.
Si ϵN+.

− ACORi: The Average Commands per Opened Row
(ACOR) defines the number of DDR commands that τi
can execute before a bank row switch is produced by
another task. ACORi ϵQ+. This parameter is described
in Section V-A1.

− Bi: The bank to which τi is mapped to. Bi ϵ [0, Nb − 1].
− PEi: The Processing Entity (PE) to which τi is mapped

to. PEi ϵ [0, Nc − 1].
− Ti: The period of τi, which is also the deadline. Ti ϵN+.

The set of tasks is defined as T = {τ0, ..., τn−1}. During the
equations development, τi will be often used for representing
the task under analysis and τj for representing an interfering
task from T . To denote the total number of tasks sharing a
specific bank b, we define tsb(b) = |{τnϵT |Bn = b}|.

1) ACOR: The internal composition of a task is com-
plex due to the diverse instruction set and the instructions
dependency which can cause stalls. Besides, the number of
instructions execution that can be carried out while waiting
for data to arrive to the processor from a previous instruc-
tion is limited, for example, by the instructions queue size
(reservation stations) or data paths number. These facts make
it difficult to theoretically compute the value for the open-
row policy effect ACORi for each task. A solution not
involving a deep task disassembly analysis is to obtain this
value through measures. The task whose ACORi is to be
obtained, is run in parallel with a saturating benchmark, e.g.,
stream of stores. Both tasks must work within the same bank
and different rows. In this way, interfering row switches other
than Si are produced (Si||). Si|| is obtained using the DDR3
memory controller counters. Thus, the switches imposed by
the interfering task are obtained. The task under analysis
SDRAM accesses are divided by this imposed row activations,
resulting in accesses per row switch. By doing this, it can be
known the processor average DDR3 command accumulation
capacity for a given task execution. Equation 1 describes the
previous:

ACORi =
Ai(Ci)

Si||

(1)

The idea behind Equation 1 is exemplified in Listing 1,
which shows a fragment of benchmark sb0 (see Table II). We
can distinguish some DDR memory execution groups due to
the instructions independence: (1) Lines 2 and 3, (2) Lines
5 and 7 and (3) Lines 9, 10 and 11. The average number of
access per row active would be (2+2+3)/3 = 2.33 access/ac-
tive. If we measure it using an interfering micro-benchmark
as previously proposed, we obtain 2.46 access/active for the
entire benchmark. This happens due to the open-row policy of
the controller, that for efficiency purposes, executes together
the commands in each group. The difference between both
methods is very small. Hence, we consider the measurement-
based method equivalent to the theoretical one.

Listing 1: sb0 benchmark disassembly fragment on an ARM
Cortex A15

1 i n 0 [i]= i n 0 [i]+ i n 0 [i]* i n 1 [i] ;
2 80031 a8c : l d r r1 , [r8 , r3 , l s l #2]
3 80031 a90 : l d r r2 , [r5 , r3 , l s l #2]
4 80031 a94 : mla r2 , r1 , r2 , r2
5 80031 a98 : s t r r2 , [r5 , r3 , l s l #2]
6 f o r (i =0 ; i<s i z e ; i ++)
7 80031 a9c : l d r r3 , [r4]
8 80031 aa0 : add r3 , r3 , #1
9 80031 aa4 : s t r r3 , [r4]

10 80031 aa8 : l d r r3 , [r4]
11 80031 aac : l d r r2 , [r6]
12 80031 ab0 : cmp r3 , r2
13 80031 ab4 : b l o #0 x80031a8c

B. DDR3 Memory Interference Cost Function

This cost function design relies on four aspects: (1) DDR3
SDRAM device, (2) DDR3 Memory Controller, (3) Plat-
form Architecture and (4) Application. As a result of (1), we

(a) Execution length before interference

(b) Execution length after interference

Fig. 10: Biperiodical DDR3 interference example

permanently differentiate between the interference originated
from inside the bank (intra-bank interference) and outside it
(inter-bank interference).

1) Interference Time Interval: To begin with, we need to
compute the number of interfering RDs and WRs executing
before the task under analysis. To do so, we need to calculate
the proportion of time in which a task is interfered by another.
This proportion is dynamic in the sense that tasks will see their
execution time increased due to the interference. Therefore,
we need to recalculate this proportion until stabilization is
achieved. In order to consider the tasks period differences, we
compute the times the period of τj (Tj) entirely fits inside the
execution time of τi (Ci). Finally, it must be noted that shorter
period tasks with respect to τi may be able to execute again
due to the experienced overhead introduced by τj . Figures
10a and 10b exemplifies this case by showing the overheads
produced among the tasks τ1 in blue, τ2 in yellow and τ3 in
green. τ3 is a task with a shorter execution period. It can be
seen that due to the interference of τ2 and τ3, τ1 total execution
time exceeds 15ms. This causes τ1 to be entirely interfered by
the third and fourth τ3 executions. The same applies for τ2
that is interfered by three τ3 executions instead of two.

To cope with the previous problems, we consider a recur-
sive implementation described by Algorithm 1. The Relative
Interference Exposition (RIE) shown in Equation 2 calculates
the time length that τi is exposed to τj . The function calls the
DDR3 interference cost function IC (Equation 12) for updating
the Ci and Cj values.

RIE(τi, τj) =

⌊
Ci + α ∗ IC(τi)

Tj

⌋
+

min

Ci + α ∗ IC(τi)−
⌊
Ci+α∗IC(τi)

Tj

⌋
∗ Tj

Cj + α ∗ IC(τj)
, 1

 (2)

Note that IC is expressed in MC cycles and Ci in core cycles.
Then, the former has to be converted to the later by multiplying
by a factor of α = freqcore/freqSDRAM (i.e., the bus clock
multiplier).

2) Number of interfering commands: The function named
Periodic Generalized Number of Commands in Line (PGNCL)
shown in Equation 3 estimates the total number of interfering

accesses. For this purpose, we make use of the cumulative
DDR3 memory access distribution of the tasks. By using
this equation, we make the assumption that all the interfering
accesses affect the task under analysis.

PGNCLX(τi) =
∑

τj ,j ̸=i

Aj(Cj ∗RIE(τi, τj)) (3)

where X is intra or inter. Note that PGNCLintra and
PGNCLinter consider those τj in the same (Bj = Bi) and
different (Bj ̸= Bi) bank than τi respectively.

3) Write and Read transmission cost: The two most com-
mon command types are WRs and RDs. These commands
take BL

2 cycles for its data burst to be transmitted through the
data bus. tCCD cycles must pass for a command of the same
type to be executed in the command bus. In normal conditions
tCCD = BL

2 (see Figures 2 and 3). In addition, we have to
consider the intra-bank and inter-bank turnaround cases (see
Figures 4, 6 and 5). The set of Equations 4 shows the Write
Transmission (WT) and Read Transmission (RT) calculations
with turnaround penalties which uses the values found in Table
I. We don’t consider the effect of ranks as only one is present
in the platforms of this work. Please refer to [9], [12] for more
information on the effect of ranks on turnaround transitions
and the tRTRS rank switch delay.

WT intra = WT inter = WL+
BL

2
+ tWTR

RT intra = CL+
BL

2
+ 2

RT inter = CL+
BL

2
+ 2−WL

(4)

4) Data Transmission Cost: The MC executes a specified
number of RDs and WRs in batches to avoid the turnaround
penalty (RD/WR batching technique). Therefore, to fairly
calculate the overall transmission penalty, we distinguish how
many RD/WR commands are executed together. This is done
by multiplying PGNCL by a proportion obtained using the
Command Batch Size (CBS). CBS is the amount of RDs or
WRs that can be executed before switching from one batch to
another. The worst case is estimated with Equation 5.

CBS(τi) = min

(∑
∀b∈B

min

(∑
Bk=b Ak(Ck)∑
Bk=Bi

Ak(Ck)
, 1

)
,MS

)
(5)

where MS is the Maximum Size set in the RD/WR
threshold register. CBS considers the amount of commands
in each used bank, which are relativized to the task under
analysis bank. CBS is limited by MS as we can not exceed
the configured batch threshold3. The total Data Transmission

3TI refers to the write and read batches as SDRAM read/write bursts.
Register RWTHRESH is used for setting the burst size, where its field
WR THRSH is for the writes and RD THRSH for the reads. Both fields
accept values from 0 to 31 (see [5], [7]).

Cost (DTC) is expressed in Equation 6, where X is intra or
inter.

DTCX(τi) =
1

CBS
∗ PGNCLX(τi)∗(

S̄P
X ∗WTX + L̄P

X ∗RTX
)
+

(1− 1

CBS
) ∗ PGNCLX(τi) ∗

BL

2

(6)

The equation distinguishes between (1) the turnaround and
(2) the consecutive data transmission. To calculate (1), it
is necessary to know how many turnarounds are produced
through the tasks execution (1

CBS ∗ PGNCLX(τi)). Then,
multiply the resultant value by the sum of the writes and reads
transmission cost (S̄PX ∗WTX + L̄P

X ∗ RTX). S̄PX and
L̄P

X are the average intra/inter store and load proportions
of T respectively, i.e., 1

N

∑
τk∈T |X SPi and 1 − S̄P

X . To
calculate (2), we multiply the number of consecutive reads and
writes by its burst length ((1− 1

CBS) ∗PGNCLX(τi) ∗ BL
2).

5) Row Switch Cost: Now we include the cost coming from
the row buffer management of the banks. The Row Switch
Cost (RSC) is the time delay suffered by τi when the row in
a row buffer is replaced by another. Equation 7 is used when
a row switch is produced in the same bank as τi. Otherwise,
Equation 8 is applied.
RSCintra is the sum of four addends: (1) the maximum

between the RD to PRE and WR to PRE transition cost
(max(tRTP , tWR)), (2) PRE execution cost (tRP), (3) ACT
execution cost (tRCD) and (4) the maximum between CL and
WL (max(CL,WL)). Figures 7 and 8 show the previous
timings and transitions. In (1) we get the maximum because we
can’t be sure of the last command type (RD or WR) before
the execution of PRE. This term complies with Constraint
C4. Other two important timing violation constraints to verify
are Constraint C2 and Constraint C3. These are satisfied as
max(tRTP , tWR) + tRCD + max(CL,WL) + BL

2 > tRAS

and the previous plus tRP is > tRC .
RSCinter introduces: (1) a single DDR3 cycle delay for the

PRE command and (2) either tRRD or tFAW −3∗tRRD cycles
depending on the situation. In order to satisfy Constraint C1
(see Figure 9), when 4 or less banks are used, tRRD is applied.
Otherwise, tFAW − 3 ∗ tRRD is used.

RSCintra =max(tRTP , tWR) + tRP+

tRCD +max(CL,WL)
(7)

RSCinter =

{
1 + tRRD if NB ≤ 4

1 + tFAW − 3 ∗ tRRD otherwise
(8)

where NB is the number of banks used.
6) Number of Row Switches: For the intra-bank interfer-

ence, we start by assuming that for every interfering access
command that took place during the execution of τi (i.e.,
Equation 2), the latter suffers a row switch. This value can’t
exceed Ai(Ci) as the number of actives can’t be higher than
the number of accesses. To consider the open-row policy,
Ai(Ci) and Aj(Cj ∗ RIE(τi, τj)) are divided by ACORi

and ACORj respectively.

In the case of inter-bank interference, the number of row
switches affecting τi is calculated per external bank. For
each bank interference calculation we can differentiate two
parts. The first applies only when there are no intra-bank
interference for the given Bj , i.e., a single τj accesses the
bank (tsb(Bj) = 1). Therefore, just those switches carried
out by τj in isolation (Sj) are considered. The second part
considers the forced switches caused by τj when intra-bank
interference takes place (tsb(Bj) > 1). It is calculated dividing
Aj(Cj ∗ RIE(τi, τj)) by its ACORj . We assume that the
maximum interfering row switches per bank is limited by the
number of row switches of τi.

These quantities are calculated with the Number of Row
Switches (NRS) function (Equations 9 and 10).

NRSintra(τi) =
∑

τj ,j ̸=i,
Bj=Bi

min

(
Ai(Ci)

ACORi
,

Aj(Cj ∗RIE(τi, τj))

ACORj

) (9)

NRSinter(τi) =

NB−1∑
b=0,b ̸=Bi

min

(
Ai(Ci)

ACORi
,

∑
τj ,j ̸=i

tsb(Bj)=1

Sj +
∑

τj ,j ̸=i,Bj=b
tsb(Bj)>1

Aj(Cj ∗RIE(τi, τj))

ACORj

) (10)

7) Total Row Switch Cost: The Total Row Switch Cost
(TRSC) (Equation 11) calculates the total impact the inter-
fering row switches have on τi. This is done by multiplying
the number of switches calculated by Equation 9 and 10 by
their respective switching cost returned by Equations 7 and 8.

TRSCX(τi) = NRSX(τi) ∗RSCX (11)

8) Interference Cost Function: Finally, the global Interfer-
ence Cost (IC) expression is shown in Equation 12. It is the
sum of the data transmission and the row switch cost for both
cases, the intra-bank and inter-bank interference.

IC(τi) = IC(τi)
intra + IC(τi)

inter =

TRSCintra(τi) + DTCintra(τi)+

TRSCinter(τi) + DTCinter(τi)

(12)

Algorithm 1 repeatedly calls IC(τi) until the interference
value converges. Experimentation has shown that, after 4 or 5
iterations, the interference variation was not significant. This
is necessary as explained in Section V-B1. An array with the
IC(τi) values for all tasks is returned.

VI. EXPERIMENTATION

A. Measurement framework

The measurement framework plays an important role in this
work. We need it for: (1) retrieving the properties Ci, Ai,
SPi, LPi, Si and ACORi of the task (see Section V-A),
(2) analyzing the behavior of the DDR device and controller,
and (3) retrieve the measured WCET for the test scenarios.

Algorithm 1: recursive IC calculation
Input: T (input task set)
Output:
– IC[T] (interf. cost for each task in T)
– B (true iff the algorithm succeeds)
Local Variables:
– n (the recursion index)
– ICn[T] (interference cost at step n)
/* Initialization */

1 n=0
2 ∀τ ∈ T , ICn[τ] = 0
/* Recursive loop */

3 while true do
4 for each τi, τj ∈ T , τj ̸= τi, compute RIEn+1(τi, τj) by Eq.

2 using ICn

5 for each τi ∈ T , compute ICn+1(τi) by Eq. 3 to 12 using
RIEn+1

6 if ∀τi ∈ T , ICn+1(τi) == ICn(τi) then
7 return (ICn, true)

8 if ∃τi ∈ T such that Ci + ICn+1(τi) > Ti then
9 return (ICn, false)

10 n = n+ 1

The procedure followed for obtaining the tasks metrics vary
according to core type:

• ARMv7 Performance Counters: The ARM Cortex A15
cores use performance counters to monitor different
events from the core perspective. This ARM core has a
dedicated cycle execution counter and six general purpose
counters for which we can choose an event (see events
in [1]). We access these by using a Start-Stop pattern.

• C66x DSP Time Stamp Counter: The C66x DSPs can
record the execution time of a task by reading a 64bit
time stamp register. For each read to the 32 LSBs of
the register, a copy of the 32 MSBs is automatically
performed by hardware to avoid time inconsistencies. The
time stamp register is accessed using a Start-Read pattern.

• DDR3 Memory Controller Performance Counters:
The DDR3 MC is able to monitor SDRAM events. This is
done through one dedicated cycle execution performance
counter and two general purpose counters for which we
can choose the target event (e.g., accesses, reads) and
filter by master (e.g., Cortex A15, C66x, system). The
counters are accessed using a Start-Read pattern.

B. Experimentation Results

Equation 12 is tested by doing a direct comparison between
theoretical and measured outputs. To do so, the following
expression is used: Output(τi) = 1+ α∗ICi

Ci
. The interference

impact ICi for τi is retrieved from Algorithm 1 and is
multiplied by the core-controller frequency conversion factor
α (1.5 and 1.87 for our Keystone and Sitara configuration)
and normalized with respect to τi. The result is added to the
normalized τi itself, i.e., plus one.

In terms of execution time, our Python implementation
of Algorithm 1 (running on an Intel Core i7-8750H CPU
@2.20GHz) takes less than 3ms to complete for an 8 interfer-
ing cores test case.

The test scenarios used for evaluating the cost function
equation makes use of a set of benchmark tasks which play
the role of real tasks. We distinguish two types of benchmarks
tasks: synthetic and real application tasks. The real application
tasks are adaptations from the ROSACE case study tasks [11].
To carry out the cost function equation evaluation each active
core runs either a synthetic or a real task. Different cores can
execute different instances of the same type of task. Table II
lists the tasks and their main characteristics. Several scenarios
made up of different task-core, core-DDR3 bank and task
period combinations are used, and have been divided in two
parts. The first one is for monoperiodic conditions, i.e., all
tasks execute according to a unique period, and the second for
biperiodic conditions, i.e., two periods are used. The graphs
depict the normalized execution time (Y axis) as function of
interfering cores (X axis), which accumulate. The graphs show
the measured execution time in yellow, the cost function output
in blue and the cost function output without considering the
MC RO in green.

TABLE II: Tasks main properties on Keystone II

Task Description C A(C) SP S ACOR
sb0

(ARM) Synthetic
benchmark.

Vectors operations.

36315 437 0.31 0 2.46

sb0
(DSP) 33202 443 0.30 0 1.70

rb0
(ARM) Real benchmark.

ROSACE engine
management.

3107 51 0.63 16 3.40

rb0
(DSP) 12698 197 0.52 16 2.20

rb1
(ARM) Real benchmark.

ROSACE altitude
filtering.

5110 84 0.63 14 3.36

rb1
(DSP) 18927 304 0.51 23 2.10

rb2
(ARM) Real benchmark.

ROSACE elevator
management.

6229 96 0.67 25 3.31

rb2
(DSP) 21708 356 0.52 32 2.21

1) Monoperiodic: The tests carried out consider a unique
period T1 of 900µs. Figures 11, 12 and 13 show intra-
bank interference, i.e., a single bank, and the same type of
task (sb0). The results show that the measured WCET are
correctly upper-bounded by the theoretical computation and,
most importantly, the increasing tendency as function of the
interference cores addition is well described. It is interesting
to see the final value difference depending on the core type
executing τi (sb0). For the ARM case (Figure 11) we end up
having 3.37 and 5.22 units while for the DSP case (Figure
13) we find 4.17 and 6.79 units of measured and theoretical
cost respectively. The core difference impact is well captured
by the DDR3 interference equation. However, note that the
theoretical value is a bit far from the worst-case measured
value, which is normal taking into account the pessimistic
assumptions made in Equation 12, e.g., no batching for intra-
bank interference where some may be found, always assuming
the more time consuming WR to PRE transition (RD to PRE
can also occur). The theoretical value with no MC RO is
even more pessimistic as the open-row policy optimization
is not considered, obtaining 8.9 and 9.68 units for the ARM
0 and DSP 0 respectively. Figure 12 shows the total number

Fig. 11: Execution time of sb0 on ARM 0 as function of other
cores. Intra-bank interference. Keystone II.

Fig. 12: Total SDRAM accesses and row activations evolution
as function of cores. Intra-bank interference. Keystone II.

of accesses and row switches evolution for the scenario in
Figure 11 from a system point of view. As only a single
bank is used, the number of ACTs increases every time a
core is activated due to the compulsory row switches. Note
that when only ARM 0 is running, no row switches are
produced because it works within the same DDR memory
row the whole time (see that S value is zero in Table II). The
figure reports an average of 2.08 access/actives. This figure is
useful for understanding the open-row policy advantage and
the importance of considering it by Equations 9 and 10 by
using Equation 1.

Fig. 13: Execution time of sb0 on DSP 0 as function of other
cores. Intra-bank interference. Keystone II.

Fig. 14: Execution time of sb0 on ARM 0 as function of other
cores. Intra-bank and inter-bank interference. Keystone II.

Fig. 15: Execution time of sb0 on DSP 0 as function of other
cores. Intra-bank and inter-bank interference. Keystone II.

Figure 14 keeps the same type of task for all cores but
changes the memory configuration to one where several banks
are used. Intra-bank and inter-bank interference are found.
The former is produced by DSP 4, which causes the notable
interference rise from DSP 3 to DSP 4. The latter can be seen
when adding DSP 1, DSP 2, DSP 3, DSP 5, ARM 0 and ARM
1 which has less impact. Overall, the measured WCET is well
upper-bounded and the tendency well described. However, as
previously seen for the intra-bank interference, the inter-bank
interference calculation also overestimates. This is partially
due to the assumption that every row active sequence (PRE +
ACT) of the studied task always suffers an external bank row
switch (Equations 8 and 10). This is very unlikely to happen
as all the used banks would need to precharge and activate a
new row almost at the same time repeatedly during the whole
execution (see Figure 9).

A scenario where different type of tasks are used is shown
in Figure 15. Intra-bank interference is produced by DSP 0
and DSP 1. The other cores introduce inter-bank interference.
τi is running on an ARM resulting in a short execution time.
This makes τi be interfered by fragments of the other tasks
with longer execution times, except for ARM 1 which runs
the same task type.

The previous results were all taken from the Keystone II
SoC. Figures 16 and 17 show the behavior of the interference

Fig. 16: Execution time of sb0 on DSP 0 as function of other
cores. Intra-bank and inter-bank interference. Sitara AM5728.

Fig. 17: Execution time of rb1 on ARM 0 as function of other
cores. Intra-bank and inter-bank interference. Sitara AM5728.

on the Sitara AM5728 SoC. We remark again the impact
difference due to the intra-bank interference of the two first
core additions and the inter-bank interference of the last added
core. Besides, we point out the fact that the DSPs on Sitara
AM5728 has less interfering capacity due to a lower operation
frequency compared to the ARM cores.

2) Biperiodic: The tests for the biperiodic cases consider
a fixed period T1 of 900µs and a variable T2. The aim of the
T2 variation is to show the importance of the period of a task
in terms of interference as depicted in Figures 10a and 10b.

Figures 18 and 19 show the interference cost that is caused
by changing the period T2 value from 60µs to 90µs re-
spectively for the tagged tasks. Both scenarios use the same
task mapping and memory configuration (a single bank). The
increase of period T2 reduces the amount of time T2 tasks
interfere T1 tasks. For example, this can be clearly appreciated
looking at the values when enabling DSP 4 and DSP 5,
where the measured values for T2 = 60µs are 2.82 and 3.36
(equivalent to 102408 and 122018 cycles) and for T2 = 90µs
are 2.47 and 2.85 respectively (89698 and 103497 cycles). This
reduction in interference is well captured, having a theoretical
impact of 4.89 and 6.48 for T2 = 60µs (177580 and 235321
cycles) and 4.37 and 5.48 for T2 = 90µs (158697 and 199006
cycles).

Figure 20 shows the scenario where different banks are
used. The period T2 is 30µs. However, T2 is not low enough
to make the corresponding τj re-execution have an effect on

Fig. 18: Execution time of sb0 on ARM 0 as function of other
cores (T1 = 900µs, T2 = 60µs). Keystone II.

Fig. 19: Execution time of sb0 on ARM 0 as function of other
cores (T1 = 900µs, T2 = 90µs). Keystone II.

τi as the interference overhead suffered by τi is not making
its execution time exceed T2. The highest impact is produced
by DSP 4 which is accessing the same bank as τi.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we show the development and evaluation of a
DDR SDRAM interference cost function equation. The results
show that the cost function always yields values above the
measured WCET for different monoperiodic and biperiodic
scenarios. As well, it correctly describes the behavior of
the SDRAM interference when adding the interfering core.

Fig. 20: Execution time of sb0 on ARM 0 as function of other
cores (T1 = 900µs, T2 = 30µs). Keystone II.

Besides, we can appreciate the overpessimistic theoretical
results when not considering the MC reordering optimization.
Indeed, the key is to make the cost function be able to
model the DDR device (e.g., inter and intra bank interference
timing difference, RD/WR distinction), the MC (e.g., open-
row policy, command burst), the heterogeneity of the platform
(e.g., ARM Cortex A15 and C66x DSP distinction) and the
task properties (e.g., measured WCET in isolation, SDRAM
accesses).

As future work, we plan to test this cost function equation
while having the data caches enabled. This would allow us to
reduce the DDR3 interference further in exchange of L2 shared
cache interference. A priori, if private caches are assumed, the
procedure would be the same, just requiring the tasks profiling
with the cache memories enabled. However, if the caches are
shared, inter-core interference in form of evictions could take
place. In this case, cache locking or cache partitioning should
be applied to avoid modelling this kind of interference.

ACKNOWLEDGMENT

This work was supported by the Defense Innovation Agency
(AID) of the French Ministry of Defense (research project
CONCORDE N° 2019 65 0090004707501) and the French
Civil Aviation Authority (DGAC) (research project PHY-
LOG).

REFERENCES

[1] ARM. Cortex A15 MPCore Technical Reference Manual, March 2012.
[2] Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio C.

Buttazzo. A holistic memory contention analysis for parallel real-time
tasks under partitioned scheduling. In IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2020, Sydney, Australia,
April 21-24, 2020, pages 239–252. IEEE, 2020.

[3] Mohamed Hassan and Rodolfo Pellizzoni. Bounding dram interference
in cots heterogeneous mpsocs for mixed criticality systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(11):2323–2336, 2018.

[4] Mohamed Hassan and Rodolfo Pellizzoni. Analysis of Memory-
Contention in Heterogeneous COTS MPSoCs. In 32nd Euromicro
Conference on Real-Time Systems, volume 165 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 23:1–23:24, 2020.

[5] Texas Instruments. Keystone II Architecture DDR3 Memory Controller
User’s Guide, March 2015.

[6] Texas Instruments. 66AK2Hxx Multicore DSP+ARM® KeyStone™ II
System-on-Chip (SoC), October 2017.

[7] Texas Instruments. AM572x Technical Reference Manual, August 2019.
[8] JEDEC ASSOCIATION. DDR3 SDRAM. JESD79-3C, 2008.
[9] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark H. Klein, Onur

Mutlu, and Ragunathan Raj Rajkumar. Bounding and reducing memory
interference in cots-based multi-core systems. Real-Time Systems, 2016.

[10] Alfonso Mascareñas González, Frédéric Boniol, Youcef Bouchebaba,
Jean-Loup Bussenot, and Jean-Baptiste Chaudron. Heterogeneous Mul-
ticore SDRAM Interference Analysis, page 12–23. RTNS’2021. 2021.

[11] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and
Pierre Siron. The rosace case study: From simulink specification to
multi/many-core execution. In IEEE 19th Real-Time and Embedded
Technology and Applications Symposium, pages 309–318, 2014.

[12] Zheng Wu, Rodolfo Pellizzoni, and Danlu Guo. A composable worst
case latency analysis for multi-rank dram devices under open row policy.
Real-Time Systems, 52, 11 2016.

[13] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan.
Parallelism-aware memory interference delay analysis for cots multicore
systems. In 2015 27th Euromicro Conference on Real-Time Systems,
pages 184–195, 2015.

