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Abstract—DDR SDRAM memories are resources commonly
used on multicore platforms and hence, being a main source of
interference. To deal with this issue, we propose a methodology
based on task/memory mapping optimization through multi-
objective heuristic-based algorithms. By placing the tasks on the
platform cores and the memory in the DDR SDRAM banks,
we minimize the DDR SDRAM interference while considering
other aspects such as the task execution parallelism and deadline
margin. To evaluate the fitness of the task/memory map, the
optimization algorithms make use of cost function equations.
In order to compute the DDR memory interference cost, we
use a fast executing self-designed cost function. The execution
parallelism is computed using the workload variance cost func-
tion. The deadline margin of a task is computed considering
the inter and intra core interference. The task/memory mapping
outcomes are checked through tests for which the heterogeneous
MPSoCs Keystone II and Sitara AM5728 are used. To assure
certification, the WCET constraints of the resulting near-optimal
Pareto solutions are verified through formally validated bounding
frameworks.

Index Terms—Heterogeneous multicore platforms, Task and
memory mapping, Multi-objective optimization, DDR SDRAM

I. INTRODUCTION

The DDRx SDRAM memory is the main memory for the
Processing Elements (PEs) making up a multi-core platform.
Therefore, bounding and reducing the impact of the inter-
ference taking place on this memory is essential for real-
time critical applications. For this purpose, task and memory
mapping, which allows to allocate the tasks to dedicated
cores as well as restricting its respective data to bounded
DDR3 memory address regions, can be used. In addition
to the DDR3 memory interference, some other criteria (e.g.,
parallelism, energy consumption [5]) can be optimized at the
same time by using multi-objective optimization algorithms.
These algorithms yield near-optimal mappings (in our case)
for a platform to behave at its best according to the selected
criteria and respecting some constraints (e.g., deadlines). To

do so, they require a cost function per criterion to optimize.
Multi-objective mapping based on metaheuristic algorithms,
e.g., Evolutionary Algorithms (EA), are those multi-objective
algorithms whose working principle is based on a heuristic.
This allows to efficiently explore the search space at the
expense of returning near-optimal solutions.

The aim of this work is to propose an efficient method
based on near-optimal task/memory mapping that minimizes
the worst-case DDR3 SDRAM interference while considering
two other criteria (execution parallelism and margin dead-
line) through multi-objective heuristic-based optimization al-
gorithms. The DDR memory interference impact is computed
by a self-designed cost function equation which executes
fast enough to be integrated into an optimization strategy.
The execution parallelism of the tasks, which is evaluated
through the load variance cost function, is chosen as a second
conflicting optimization objective. As a third objective, we
have chosen the task deadline margin which is computed
considering the intra and inter core interference. Opposing the
three of them yields a Pareto front which allows the designer
to decide the near-optimal task/memory mapping that better
suits their design (Section V). The developed task/memory
mapping optimization tool makes use of the general-purpose
Python metaheuristics-based framework for multi-objective
optimization called jMetalPy [3]. The near-optimal mapping
evaluations are done on the heterogeneous platforms Keystone
II [9] and Sitara AM5728 [10] by Texas Instruments (TI).
In order to carry out the previous evaluations, a set of tests
and a measurement framework based on performance counters
and time stamp counters are used. As the considered DDR
memory interference cost function equation validation was
done through measurements, it may be considered unsafe.
Therefore, we propose to attach to our mapping tool a WCET
verification system, which would determine if the resulting
Pareto solutions are indeed safe or not. This verification



system would be made of a formally proven DDR memory
interfering bounding method, e.g., [8]. The multicore platforms
implementation, the DDR memory cost function and the
task/memory mapping tool for heterogeneous platforms can
be found in this repository1.

II. RELATED WORK

A. DDR Interference Analysis

DDR SDRAM bounding can be achieved via different ap-
proaches: (1) request-driven analysis, (2) job-driven analysis,
(3) hybrid analysis and (4) holistic analysis. Request-driven
focuses on the interference that an individual memory request
receives. Afterwards, all the task request is multiplied by
the interference cost [7], [14]. Job-driven is based on the
number of interfering memory requests from other cores of the
platform. Some works consider the minimum of the last two
analysis in order to reduce the overestimation [11], [15]. The
hybrid analysis computes the memory interference bounding
by mixing the request-driven and the job-driven analysis [8].
The holistic analysis focuses on the system rather than its parts
[6]. We remark the use of inequations and solvers to obtain
the bounding like it is done in works [6], [8]. The use of
inequations to obtain exact bounds cannot be integrated in our
framework because of the complexity and time consuming of
solving these. However, their use is proposed for checking the
validity of the task/memory mapping solutions given by the
metaheuristic algorithms.

B. Task Mapping Optimization

The use of metaheuristic algorithms for task mapping is
a common practice for finding efficient solutions to multi-
objective problems. [5] shows how through a self designed
mapping tool called MPASSIGN, tasks are satisfactorily
mapped on a NoC-based homogeneous many-core platform
according to the selected objectives, e.g., workload and mem-
ory distribution, energy efficiency, NOC communication cost.
Work [4] makes use of genetic algorithms for efficiently
assigning tasks to nodes in a heterogeneous platform while
dealing with multiple conflicting objectives. These objectives
are: (1) the task execution quality maximization, (2) the energy
and (3) bandwidth consumption minimization. Both works
[4], [5] deal with multi-objective optimization through task
mapping as intended in our work, but they do not target
the DDR memory interference optimization which is our
main goal. Nonetheless, the reduction of DRAM memory
interference via task mapping has been already put into
practice in works like [13]. In this work, the idea is to
keep the memory demands of tasks concurrently executing
below the minimum available memory bandwidth. Tasks are
strategically placed on cores in order to minimize the main
memory interference using three approaches: (1) A heuristic
algorithm called FFDM that focuses on the memory demands,
(2) two neighborhood search algorithms for improving the
initial solution yielded by FFDM and (3) a metaheuritic-based

1https://github.com/ISAE-PRISE/sinteo

simulated annealing which approximates global optimization.
[11] designs their own task mapping algorithm based on the
conclusions extracted during their DRAM analysis: DRAM
bank partitioning and co-locating memory-intensive tasks on
the same core reduces interference. In contrast to our work,
[11], [13] focus on single-objective optimization, missing the
opportunity to optimize conflicting objectives accompanying
the DDR interference, e.g., parallelism.

III. BACKGROUND

A. DDR3 SDRAM Device Addressing

In terms of address mapping, the main components making
up a DDR3 memory device are the ranks, the banks and their
associated row buffers. A rank is a collection of banks. A bank
is a memory device defined by columns and rows where data
is stored. Banks work independently from each other and in
parallel, what reduces certain operational latencies. Attached
to each bank there is a row buffer which stores a row of data.
These buffers work similar to caches. Every time a new data
row for a given bank needs to be manipulated, the current
row present in the buffer must be saved before loading the
new one.

The memory is accessed by defining the column, row,
bank and rank values. From a grid perspective, the columns
represent the Y axis, the rows the X axis, and the ranks and
banks are regions and sub-regions of the grid (see Figure
1). By design, all the banks can be kept opened, allowing
interleaving among them with no costs. However, switching
to a different row for a given bank has a time penalty
(row buffer precharge and activation). Similarly, switching
among ranks has an impact. The physical address bits are
used to select the column, row, bank and rank. On the
Keystone II platform, the address decoding is done as follows:
address → RowSize|RankSize|BankSize|ColumnSize|Bus Size.
In bits length, the resultant decoding would be: address →
16|0|3|10|3, e.g., the physical address 0x80282000 generates
an output like: column 0, row 32808, bank 1. It is by manip-
ulating the latter (e.g., through the memory management unit,
pointers, padding) that we can achieve the bank partitioning.

Fig. 1: DDR memory organization: Columns, Rows and Banks

B. Metaheuristic-based Multi-objective Optimization

Metaheuristic-based algorithms are high-level procedures
that, in spite of mathematically not assuring the most optimal
solution, offers great ones especially for NP-hard problems,
e.g., task mapping. Among these algorithms we can dis-
tinguish those used for single-objective optimization, e.g.,



mono-objective simulated annealing, and for multi-objective
optimization, e.g., Particle Swarm Optimization (PSO). This
work focuses on the latter type of algorithms as we want
to optimize several aspects at the same time. In this work,
the algorithms used for task mapping are population-based
algorithms. Inside this category, we differentiate among five
types of EAs according to its heuristic: the genetic-based EA
(NSGA-II, SPEA2 and MOCell), swarm-based (SMPSO and
OMOPSO), differential-based EA (GDE3), decomposition-
based EA (MOEA/D) and indicator-based EA (IBEA). These
population-based EAs generally consist in generating an initial
population, i.e., group of individuals, and modify the indi-
viduals of that population, i.e., set of solutions, according to
the algorithm heuristic and the measured fitness using a cost
function. For example, genetic algorithms, which are based
on genetic representation, generates sets of solutions (chromo-
somes). These chromosomes contains all the variables (genes)
to tune for finding the best combination. A chromosome inter-
acts with another (parents) by exchanging genes (crossover)
in order to generate new chromosomes (offspring). However,
only the fittest chromosomes, based on the cost functions,
are selected for breeding. This process ensures that the best
solutions sets are kept and the worst are discarded. The genes
of the offspring may randomly change (mutation) to avoid
convergence. The process is repeated until the termination
conditions are met, e.g., number of iterations. The different
working principles of the metaheuristic algorithms condition
their final output. According to works [2], [5], to find the most
complete sets of solutions, different algorithms should be used
for the same problem. Thus, all the aforementioned algorithms
are used, but only a few of them are shown in the results in
Section V-D due to visualization purposes.

C. System On a Chip

This work uses the TI heterogeneous multicore SOC Key-
stone II model TCI6636K2H [9] located inside the EValuation
Module (EVM) TCIEVMK2H. The SOC is made up of differ-
ent PEs, where we can point out (I) 4 ARM Cortex A15 cores,
(II) 8 C66x DSP cores. Furthermore, the TI heterogeneous
multicore SOC Sitara AM5728 [10] found in the BeagleBoard
X15 board is also used for the task mapping validation process
(see Section V-D). This SOC is made up of many different
processors, where the 2 C66x DSPs and 2 ARM Cortex A15
cores available are used. The SOC heterogeneity plays an
important role on the task/memory mapping process. An DSP
or ARM core’s instruction pipelining, out of order execu-
tion (reservation stations size), speculative execution (branch
predictor) or multithreading capabilities greatly defines the
processors performance and its interfering capacity.

1) Considerations: Along this work the following points
about the multicore platform usage always apply:

• No data caches: We disable the L1D and L2 cache to
increase the task’s access frequency to the DDR3 memory
and just focus on one shared memory, i.e., no shared
caches.

• Bare-metal: No operating systems have been used in
order to gain entire control of the system and ease the
data treatment due to OS derived effect, e.g., preemption,
frequency throttling.

• Priority and Starvation: The interconnection slave pri-
orities of the platforms are equally set to ensure the same
treatment to every core (one priority level).

• Periodicity: Tasks are periodically executed using a non-
preemptive Start-Finish-Idle pattern in a predefined order.

IV. COST FUNCTIONS DESCRIPTION

A. Task Model

The cost functions used in this work relies on different task
properties. A task τi is described by:

τi := (Ci, Ai, SPi, Si, ACORi, PEi, Bi, Ti)

where:
− Ci: The Worst-Case Execution Time (WCET) in isola-

tion. Ci ϵN+.
− Ai: The number of DDR3 accesses. Ai ϵN+.
− SPi: The Store Proportion (SP) indicates the share of

stores in Ai. SPi = 1−LPi where SPi and LPi ϵ [0, 1].
LPi is the Load Proportion of Ai.

− Si: The number of row switches in isolation. Si ϵN+.
− ACORi: The Average Commands per Opened Row

(ACOR) defines the number of DDR commands that τi
can execute before a bank row switch is produced by
another task on a different PE pointing to the same bank.
ACORi is 1 for closed-page policy SDRAM controllers.

− Bi: The bank to which τi is mapped to. Bi ϵ [0, Nb − 1].
− PEi: The PE to which τi is mapped to. PEi ϵ [0, Nc−1].
− Ti: The period of τi, which is also the deadline. Ti ϵN+.
The set of tasks is defined as T = {τ0, ..., τn−1}. Task

properties Ci, Ai, SPi, LPi, Si and ACORi are measurement-
based while Bi, PEi and Ti are application design dependent.

B. Cost Functions

In this work, we make use of three cost functions: Load
variance, maximum DDR SDRAM interference and min-
imum deadline margin. The load variance is used for
calculating the distribution of the workload across the cores
by considering the variance of the tasks execution time Ci as
shown in Equation 1:

Workload V ariance(T ) =

P−1∑
p=0

(load(p)− C̄)2

P
(1)

where load(p) =
∑

PEi=p Ci, C̄ is the average load, and P is
the number of considered PEs of the specified platform (Cortex
A15 cores plus C66X DSPs in our case).

The maximum DDR SDRAM interference cost function
yields the highest interference impact suffered by a task of
the set. This function differentiates between the interference
caused from the inside of the analyzed task DDR memory bank



(intra-bank interference) and the other banks (inter-bank inter-
ference) as DDR3 memory timings are not homogeneously
applied. Therefore, we make use of the bank partitioning
technique during the implementation on the platforms. The
cost function considers the effect of command batching and
the opened-row policy. As well, a differentiation of the DDR
memory request types (e.g., read, write, row switch) is done
(see Section IV-A and Table I). Due to space constraints,
the development and evaluation of the self-developed cost
function is omitted2. Thus, we jump directly to Equation 2,
which computes the interference cost for a given task through
the addition of the intra-bank (ICintra(τi)) and inter-bank
(ICinter(τi)) interference.

IC(τi) = ICintra(τi) + ICinter(τi) (2)

It must be noted that the tasks will see their execution time
enlarge after the interference insertion. This affects the propor-
tion of time tasks interfere each other, subsequently affecting
the interference impact which must be recalculated. To cope
with this problem, we consider a recursive implementation of
Equation 2 described by Algorithm 1. IC is repeatedly called
until the DDR memory interference value converges. An array
with the IC values for all tasks is returned.

Algorithm 1: recursive IC calculation
Input: T (input task set)
Output:
– IC[T ] (interf. cost for each task in T )
– B (true iff the algorithm succeeds)
Local Variables:
– n (the recursion index)
– ICn[T ] (interference cost at step n)
/* Initialization */

1 n=0
2 ∀τi ∈ T , ICn[τi] = 0
/* Recursive loop */

3 while true do
4 for each τi ∈ T , compute ICn+1(τi) by Eq. 2
5 if ∀τ ∈ T , ICn+1(τi) == ICn(τ) then
6 return (ICn, true)

7 if ∃τi ∈ T such that Ci + ICn+1(τi) > Ti then
8 return (ICn, false)

9 n = n+ 1

Finally, the maximum DDR SDRAM interference cost
function is defined by Equation 3 as the maximum DDR
SDRAM interference cost from the set retrieved from Algo-
rithm 1:

MaximumDDRSDRAM Interference (T ) =

max
τiϵT

(Algo1(T )) (3)

The last cost function is the minimum deadline margin
which is defined by Equation 4. This cost function retrieves
the smallest time difference between the task deadline (period

2Please, refer to the technical report on the development of the cost function
at https://github.com/ISAE-PRISE/sinteo

Ti in our case) and the total amount of time it takes to execute
from the task set T . The time a task takes to execute in
the worst-case is assumed to be the WCET of the tasks on
the same core (Ci +

∑i ̸=j
PEj=PEi

Cj) plus the suffered DDR
memory interference (Algorithm 1 (T )).

Minimumdeadlinemargin (T ) =

min
τiϵT

{Ti − Ci −
i ̸=j∑

PEj=PEi

Cj − ICi}
(4)

where ICi is the interference cost returned by Algo1(T ) for
task τi

V. TASK AND MEMORY MAPPING OPTIMIZATION

A. Task/Memory Mapping Tool

A task/memory mapping tool is developed in Python in or-
der to explore the different mapping solutions on the Keystone
II and Sitara AM5728 platforms. This aforementioned tool
makes use of the jMetalPy framework [3], which provides
a general-purpose multi-objective optimization environment
and a large set of defined metaheuristic algorithms. Its design
makes it easy to use for task/memory mapping purposes. Our
tool considers the following features:
□ Exploration space: The upper and lower bounds for

the mapping solutions are set. These bounds are not
homogeneous as the mapping solution contains the task-
core and core-DDR memory bank maps, which differ
from each other. Table II shows an example of mapping.
For the task-core part, the value represents the core and
the index the task. For the core-bank part, the index now
represents the core and the value the DDR memory bank
used by the tasks of that core. The blue and green colors
represent the core type, e.g., Cortex A15, C66x DSP.

□ Cost functions: The considered cost functions for the
metaheuristic algorithms are added (see Section IV-B).
The algorithms compute the near-optimal task-core and
core-DDR3 memory bank maps according to these func-
tions output.

□ Tasks: The tasks τi to map and its profiling information
(see Sections IV-A and V-B). This information is required
by both, the problem definition and the cost functions.

□ Platform architecture: The platform architecture spec-
ifications, e.g., PEs types and quantity, DDR memory
layout, timings and thresholds, platform topology.

□ Constraints: Mapping constraints are defined e.g., tasks
total memory must fit inside the bank they are pointing
to, deadlines must be respected.

B. On-Board Measurement Framework

Metrics are used for: (1) tasks profiling, more specifically
for Ci, Ai, SPi, LPi, Si and ACORi and (2) validation of the
task/memory mapping. The amount of measurements used for
(1) and (2) is 105. The measurements are obtained from the
Keystone II and Sitara AM5728 in different ways depending
on the target:



TABLE I: Tasks main properties on Keystone II

Task Type Description C (Cycles) A (Accesses) SP LP S (Actives) ACOR
sb0 (ARM) Synthetic

benchmark Integer vectors operations. 36315 437 0.312 0.688 0 2.46
sb0 (DSP) 33202 443 0.298 0.702 0 1.70

rb0 (ARM) Real
benchmark

ROSACE engine management.
Floating-point operations.

3107 51 0.628 0.372 16 3.40
rb0 (DSP) 12698 197 0.518 0.482 16 2.20
rb1 (ARM) Real

benchmark
ROSACE altitude filtering.
Floating-point operations.

5110 84 0.631 0.369 14 3.36
rb1 (DSP) 18927 304 0.514 0.486 23 2.10

TABLE II: Task/Memory mapping representation example

• ARM Performance Monitor Unit: The ARM cores
make use of performance counters to measure events
from a running program. The number of counters and
events vary depending on the ARM architecture version.
An ARM Cortex A15 core (architecture version 7) has
a cycle execution counter and 6 general counters where
we can set the event to study from a list (see [1]). These
counters are accessed using a Start-Stop pattern.

• DSP Time Stamp Counter: The DSPs make use of
a 64bit register to record the execution time. To avoid
inconsistencies while retrieving the time value, a copy
of the 32 MSBs is automatically triggered each time we
access the 32 LSBs of the register. A Start-Read access
pattern is used.

• DDR3 Memory Controller Performance Counters:
The DDR3 controller provides two general purpose per-
formance counters and one dedicated to the controller
execution time. The events, e.g., accesses, reads, row
actives, can be counted either from a specific core or
a system perspective. The counters registers are accessed
using a Start-Read pattern.

C. Testing Considerations

Benchmark tasks are used for making up the application
whose tasks and associated memory are to be mapped by the
mapping tool. We can distinguish two types of benchmarks:
synthetic and real application tasks. Table I lists the tasks and
their main characteristics for the Keystone II platform. The real
application tasks are adaptations from the ROSACE case study
tasks [12]. The application whose near-optimal maps are to be
found by the mapping tool, is made up of 8 monoperiodic tasks
(τ0(rb1), τ1(rb1), τ2(rb1), τ3(rb1), τ4(sb0), τ5(sb0), τ6(rb0)
and τ7(rb0)) with a period of 1.2ms and a deadline equivalent
to it (see tasks in Table I). Tests in Section V-D consider 4
SDRAM banks while tests in Section V-E consider 4 and 8
banks. For evaluation purposes, 8 cores out of the 12 available
on Keystone II are used (2 ARM cores and 6 DSPs). The 2
ARM cores and 2 DSPs on Sitara are used.

D. Two-Objective Optimization

The put into practice of the multi-objective algorithms
for the task mapping is shown here. The Task/Memory

Mapping Tool (see Section V-A) is used for retrieving the
near-optimal mapping. The task mapping objectives are to
minimize both, the DDR3 worst-case memory interference
(minimize(Maximum DDR SDRAM Interference(T ))) and load
variance (minimize(Workload Variance(T ))) of the tasks. Op-
timal and non-optimal sets of solutions are obtained when
running the heuristic algorithms for the Keystone II and Sitara
platforms considering the application described in Section
V-C. All dominated solutions (non-optimal) are removed,
leaving a set of solutions called Pareto frontier, where the
involved trade-off is seen. Figures 2a and 2b show different
Pareto frontiers from the set of algorithms used for the
Keystone II and Sitara AM5728 respectively. Each different
color depicts the non-dominated solutions for a particular
algorithm according to its DDR3 memory interference (Y axis)
and workload distribution (X axis). The different curves are the
respective Pareto frontiers. In the top-left of Figure 2a, where
the number of cores exceed the number of banks, we can
appreciate heterogeneous solutions due to the difficulty of the
meta-heuristic algorithms to find the best bank sharing combi-
nations. This heterogeneity is not found in Figure 2b because
SDRAM banks are never shared by cores. Finally, Figures 3a
and 3b depict a unique Pareto frontier by removing the non-
optimal solutions considering all the algorithms nondominated
outputs for the Keystone II and Sitara AM5728 respectively.
This set of solutions are the ones to be considered during our
mapping. It is up to the designer to choose whether to enhance
one feature at the expense of the other one (interference or
parallelism). The first solution from the right with a maximum
interference of zero is the monocore implementation where the
interference is minimum and the variance maximum.

To check that these solutions are right, they are tested
on their respective platforms. The five solutions marked in
Figure 3a (I to V) are the ones chosen for evaluation on the
Keystone II. They have been selected in maximum interference
descendent order (from left to right). Their respective mapping
configurations are shown in Table III, which follows the same
logic as Table II. Cores 0 and 1 are ARM cores and from 2 to
7 DSPs. The resulting DDR interference impact for those five
solutions are compared in Figure 4a. The X axis represents
the different solutions while the Y axis shows the worst-case
measured interference impact. The tasks whose interference
impact was measured are shown in green, red, yellow and blue
colors which belong to tasks τ0, τ4, τ5 and τ7 respectively.
We should pay special attention to τ4 and τ5 which are the
larger tasks in terms of execution time and DDR accesses and
hence the most interfered ones. Solution I has all its tasks
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Fig. 2: Multiple algorithms nondominated set of solutions.

TABLE III: Task maps to validate on Keystone II

Task-Core Map Core-Bank Map Cores Used Banks Used
I 1 1 0 0 4 7 1 6 3 3 1 0 1 2 0 2 5 4
II 1 1 0 0 2 6 1 0 2 3 1 3 1 3 0 3 4 4
III 0 0 1 0 0 7 1 1 2 3 0 3 3 1 2 0 3 3
IV 1 0 1 0 5 5 2 1 0 3 0 0 3 2 0 1 4 4
V 0 0 1 1 5 5 5 1 3 1 3 3 3 1 2 0 3 3

severely affected compared to the other solutions, which is
caused by the bank sharing (5 cores against 4 DDR3 banks).
Solutions II, III, IV and V are good examples for showing
that the number of cores not always mean higher maximum
interference, especially when each core has a private bank.
Solutions II and IV have more overall interference due to an
extra core running in parallel. However, Solution III, which
uses three cores, splits τ4 and τ5 (most interfering tasks) onto
two cores, reducing the workload variance to the detriment of
the maximum interference. Therefore, through the spreading
of execution intensive tasks we reduce the workload variance
and through the stacking of these onto the same core we reduce
the DDR3 interference. Solution V is the lowest interfered due
to the τ4 and τ5 merge and the use of three cores.

Another measurement-based validation test is provided us-
ing the Sitara SoC. Figure 3b depicts the near-optimal Pareto
frontier solutions found for the same set of tasks previously
used. Nevertheless, the profiling values for these change
as they are executed on another system. Compared to the
Keystone II configuration, here the cores have always private
banks. Table IV shows the mapping of the marked solutions I
to V. The cores 0 and 1 are ARM cores and 2 and 3 are DSPs.
Banks from 0 to 3 are used. Figure 4b shows the measured data
of the tagged solutions in descendent order of interference. It
can be seen how the worst case interference, found in τ4 or
τ5, is reduced. As per Figure 3b, note again that a solution
with less cores can produce more interference than one with
more (Solutions III and IV). The reason is the same as on
the Keystone II: the most interfering tasks split on two cores.
Solution III mapping separates τ4 and τ5 on two different
cores. In this way, τ4 is interfered during its whole execution
by τ5 and vice-versa. Solution IV groups τ4 and τ5 together,

TABLE IV: Task maps to validate on Sitara AM5728

Core Map Bank Map Active Cores Banks Used
I 2 1 2 0 1 0 3 3 1 3 2 0 4 4
II 0 1 3 1 0 1 2 0 1 0 2 3 4 4
III 1 0 1 0 1 0 1 0 1 2 2 2 2 2
IV 1 0 0 1 1 1 2 0 0 1 2 0 3 3
V 1 1 0 0 1 1 1 1 1 0 3 0 2 2

which are interfered during 42% of their execution by one
core and 39% by the other one.

In terms of execution time, the solutions for algorithms
NSGA-II, MOCell, OMOPSO, SMPSO in Figure 3a were
obtained in 9.29, 3.29, 3.28 and 2.52 minutes respectively
with an algorithm iteration speed of 63.23, 167.23, 172.61 and
208.61 iterations/s. The same algorithms took 9.07, 2.59, 3.28
and 2.08 minutes for solutions in Figure 3b with a speed of
65.57, 195.46, 255.85 and 279.44 iterations/s. The heuristic
algorithms were configured to carry out 35000 evaluations
(iterations) with a population size of 2000. A computer with
an Intel Core i7-8750H CPU @ 2.20GHz was used.

E. Three-Objective Optimization

In here, the deadline margin is added as a third objective
in order to increase the gap between the deadline and the
WCET of a task after interference. The objective is defined as
maximize(Minimum Deadline Interference(T )). This objective
is positively correlated with the execution parallelism while it
is negatively correlated with the SDRAM interference. The
results are presented in Figures 5a and 5b where 4 and
8 DDR SDRAM banks are used. Both figures shows the
same kind of behavior. From closer to farther, the mapping
solutions see their load variance decrease. Consequently, the
minimum deadline margin difference and maximum DDR
memory interference increase. However, there is a change of
behavior that implies to decrease the deadline margin and
increase the memory interference in exchange of less load
variance. It is in this last behavior where Figures 5a and 5b
differ from each other. The former is more affected in terms of
interference due to the DDR memory bank sharing among the
cores. The latter uses 8 banks, and hence, every core can have
its own private bank. This leads to an interference reduction.



(a) On Keystone II. (b) On Sitara AM5728.

Fig. 3: Absolute nondominated solutions.

(a) On Keystone II. (b) On Sitara AM5728.

Fig. 4: Measurement-based task mapping validation.

Load Variance

1e9
0.2

0.4
0.6

0.8
1.0

1.2 Dea
dli

ne
 Marg

in 

 (C
ycl

es)
1e

6

1.10
1.11

1.12
1.13

1.14
1.15

1.16

M
ax

im
um

 In
te

rfe
re

nc
e 

 (C
yc

le
s)

0
5000
10000
15000
20000
25000
30000
35000
40000

Best Solutions

Task mapping on platform cores

(a) Assuming 4 DDR memory banks.
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(b) Assuming 8 DDR memory banks.

Fig. 5: Three-objective task/memory mapping optimization on Keystone II.



F. WCET Verification

In Sections V-D and V-E, we show the Pareto near-optimal
solutions for minimizing the maximum DDR memory inter-
ference and workload variance, and maximizing the dead-
line margin through multi-objective optimization algorithms.
However, as the used interference cost function had only
been proven based on measurements (not formally proven),
a verification step is required to ensure that the WCET con-
straints are satisfied. This verification step, which is required
for certification, consists in checking if the real WCET of
the yielded tasks remain below their respective deadlines ac-
cording to other DDR memory bounding methodologies such
as the inequations-based bounding through linear optimization
proposed in [6], [8]. Their methods are formally proven,
meaning that the maximal interference value they return is
an upper-bound of the real interference experienced by the
tasks. Solving inequations is time expensive if used for the
solutions exploration but not when checking the near-optimal
solutions. The diagram found in Figure 6 describes how would
be the entire procedure. The blue block at the left represents
the task/memory mapping process. Its output (Pareto front) is
passed as an input to the WCET validation block in green
color. In this block we run a verified bounding methodology
for each solution of the Pareto front. Those solutions whose
tasks do not comply with their imposed deadline are removed.

Fig. 6: Overview of the task/memory mapping system with
formal verification.

VI. CONCLUSIONS AND FUTURE WORK

We show the capabilities of task/memory mapping regarding
the retrieval of near-optimal DDR SDRAM interference solu-
tions while optimizing conflicting objectives. It could be seen
the trade-off that implied minimizing the SDRAM interference
and the task workload variance on the Keystone II and Sitara
AM5728 SoCs (see Figures 3a and 3b) and the effect of
maximizing the task deadline margin on the Keystone II
platform (see Figures 5a and 5b). This allows us to select the
solution that better complies with our application constraints,
e.g., timing, safety margin, interference. We remark the fact
that there are solutions where less cores concurrently working
lead to more interference. This is due to the tasks stacking on
the cores and the core type. Besides, Pareto solutions avoid
sharing banks due to the high intra-bank cost, unless it is
strictly necessary, i.e., the number of cores is bigger than the
number of banks.

During this work data caches have been disabled to increase
the DDR3 memory access rate and avoid shared caches
interference. As future work, we would like to analyse this
kind of interference and the privatization of shared caches
from the task/memory mapping perspective. Besides, it would
be interesting to reproduce this presented work within a RTOS
environment. Moreover, the proposed WCET verification sys-
tem implementation is pending.
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