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ABSTRACT 

Model-Based Systems Engineering (MBSE) is an adopted modelling and development approach for correct-by-

construction of complex software systems, such as space applications. TASTE [1] is a pragmatic and mature MBSE 

toolset supported by ESA that enables and provides automation for most of the phases of software system development: 

(i) heterogeneous system design through several modelling and programming languages (e.g., ASN.1, AADL, SDL, 

C/C++), (ii) code generation, build and deployment of the binary application(s), (iii) validation through static analysis 

and simulation, and (iv) formal verification of properties by model-checking. The formal verification capabilities have 

been recently added to the TASTE toolset in the ESA project Model-Checking for Formal Verification of Space Systems 

(MoC4Space) and validated on two real-life case studies. Within this paper we report on the results and lessons learned 

during the project. 

1 INTRODUCTION 

The development of large and complex software systems is a challenging task. MBSE, in general, allows various 

engineering teams to design such systems with minimal effort and cost and to obtain an integrated system conforming to 

its requirements. With respect to software systems, MBSE allows to produce correct applications for target platforms, 

provided the unambiguous and consistent software design and the incremental and iterative verification and validation of 

desired properties (e.g., typing, behaviour).  

TASTE [1] is an open-source MBSE toolset supported by ESA for software systems design, validation and verification, 

and binary application(s) generation. The software design involves defining the data structures in ASN.1 [2], the 

hierarchical system architecture in a flavour of AADL [3], the system behaviour either in a modelling language such as 

SDL [4] or in a programming language such as C/C++, and the system deployment on dedicated target platforms (e.g., 

x86 Linux, RTEMS). The software validation involves a plethora of techniques such as static type analysis, real-time 

scheduling analysis, guided/random simulation, debugging and testing. The software verification involves a dedicated 

model-checker that exhaustively analyses the system behaviour and gives a verdict for property satisfaction. 

The dedicated model-checker is based on the IF toolset [5] and has been recently developed and integrated in the TASTE 

toolset in the ESA Model-Checking for Formal Verification of Space Systems (MoC4Space) project1. This paper reports 

on the project results – the open-source developed tool and its use to two flight software representative case studies, as 

well as some lessons learned.   

2 A MODEL-CHECKER FOR TASTE 

Model-checking ([6], [7]) is a well-known formal verification technique for establishing the system correctness with 

respect to a set of properties. It consists of the exhaustive exploration of all the system behaviours and checking if the 

properties hold on all them. The advantages of model-checking are that it is fully automated and it produces diagnostic 

traces when a property is violated. However, the model-checking can become intractable even for reasonably complex 

systems due to all possible behaviours to explore. The model-checker developed in this activity, described in [8], is based 

on the IF toolset [5], an open-source toolset for model-checking of real-time systems including state-of-the-art model 

exploration and analysis techniques.  

The TASTE model-checker takes as input the design of the system of interest (SOI) in TASTE including data view (data 

structures in ASN.1), interface view (hierarchical architecture in AADL), and function behaviour (one implementation 

per function in either SDL, C/C++ or as a GUI – a model of the environment of the SOI). It supports three formalisms for 

 

1 This project is funded by the European Space Agency under contract number 4000133658/21/NL/CRS. 
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modelling properties: Boolean Stop Conditions (BSCs), Message Sequence Charts (MSCs) and Observers.  BSCs are the 

simplest property type that describe undesired behaviour of the system in the form of a state condition. When creating a 

BSC property, the tool automatically generates the skeleton for it in the form of an observer that the user completes with 

the desired condition using OpenGEODE (see Figure 1-(b)). MSCs describe (un)desired behaviour of the system as a 

sequence of input/output events between the system’s functions. MSC properties are created using the integrated MSC 

Editor, defining their type through a dedicated property-type comment. Examples of MSC properties are provided in 

Figure 2 and Figure 3. Finally, observers are the most complex properties that describe (un)desired behaviour in the form 

of state machines by monitoring and altering the system state and events. Observer properties are created using 

OpenGEODE. Examples of observer properties are provided in Figure 2 and Figure 3. For further details on the property 

language the reader is referred to [8]. 

The Model-Checker Wizard is integrated within the TASTE development environment – spacecreator, and provides the 

user interface to control and run the model-checking. The wizard provides the features to create, edit and/or update 

properties as defined above and to possibly restrict the scope of the model-checking e.g., by restricting the system’s 

environment through subtyping or the set of active functions for a certain property. All these features are provided in the 

Configuration tab illustrated in Figure 1-(a). In particular, the subtyping consists of restricting the domain of ASN.1 values 

sent over the required interfaces of GUI functions modelling the system’s environment. An example is provided in Figure 

1-(c). The user can also decide that no subtyping is needed, and in this case the tool generates by default the subtypes 

identical to the original types. 

 

Figure 1. (a) Model-checking Wizard – Configuration, (b) Boolean Stop Condition (BSC) property, (c) Subtyping, (d) Model-

Checking Wizard – IF model-checker options and results, (e) Message Sequence Chart illustrating a diagnostic trace for the BSC 

property. 

Furthermore, the Model-Checker Wizard further allows to select the specific options and to invoke the underlying IF 

model-checker as illustrated in Figure 1-(d).  Such options cover the algorithm for model exploration (depth-first or 

breadth-first search), the limits for exploration (time, number of states, number of inputs from environment) and the 

generation of diagnostic scenarios (success or error, maximum number of scenarios).  Upon invocation of the underlying 

model-checker through the Call IF button, the TASTE kazoo build system is first used to transform the TASTE design 

and property into their IF counterparts and then to run the IF model-checker on them. The IF model-checker executes on 

the setting specified and provides a result for property satisfaction – yes, no, or inconclusive in case one of the limits has 

been reached before the exploration finished, together with diagnostic scenarios. The diagnostic scenarios, if any, are 

automatically transformed into MSC, that can be analysed by the user. 

The tool is fully implemented, open source and available through the TASTE toolset in [9].  

3 VERIFICATION RESULTS 

The model-checking tool has been validated on two industrial case studies: the IXV mission and the ERGO planetary 

exploration demonstrator [10]. We describe here the case studies and verification results obtained, which can also be 

found in [9]. 

3.1 The IXV Case Study 

The IXV mission aimed to define the basic needs for re-entry from Low Earth Orbit. The case study considered in this 

activity is a subset of the fully automated on-board software that focuses on the flaps control system, illustrated in Figure 

2-(a). Two main functional chains have been modelled: the flaps positioning sequence implemented by ASW GNC CON 

upon reception of launch vehicle separation signal from Environment, and the flaps FDIR sequence and deactivation 

implemented by SL_DevExternal which programs the actions, SL_Svc_Cmd which executes the actions and SL_Svc_EM 

which stores the different values of the parameters involved. In total, the model has 5 functions, all modelled with SDL, 

except the Environment defined as a GUI function, embodying the launch vehicle and the flaps. 

The aim of the IXV case study is to provide a design representative of flight software which is simple enough to validate 

the model-checking tool.  A total of 12 properties have been defined for the case study in all three formalisms. Figure 2-



(b) illustrates a BSC property which checks whether three consecutive failure flapstatus values can be sent by the 

Environment, this triggering the execution of the FDIR process. The verification result confirms the nominal behaviour 

of the system design by producing diagnostic scenarios accordingly. Figure 2-(c) illustrates an MSC property which 

checks an undesired behaviour of the system design consisting in an incorrect triggering of the FDIR process (i.e., after 

reception of a healthy flapsstatus value from Environment). The model-checking of this property discards any incorrect 

behaviour of this type, as no error diagnostic scenarios have been found, thus confirming the expected system response. 

Finally, Figure 2-(c) illustrates an observer property which checks whether the system is capable of recovering the flaps 

after the FDIR sequence is completed, or deactivating the flaps. In this case the model-checker generates diagnostic 

scenarios for both the FDIR and flaps deactivation sequences that confirm the expected results. 

 

Figure 2. IXV case study: (a) interface view, (b) BSC property modelling the reception of 3 consecutive failure flapsstatus, (c) MSC 

property modelling an incorrect triggering of the FDIR process, (d) observer property modelling the flaps recovery after FDIR process. 

All the verification results obtained were expected, including the deliberate modelling of errors, thus fully validating the 

tool. Moreover, the verification took in average 10 seconds (most of the properties required a verification time below 10 

seconds), with a maximum of 91 seconds for a single property. The only limitation encountered with this case study is 

related to the expressiveness of the supported MSC formalism for specifying properties, which does not provide the means 

to specify interactions that should not be assessed by the model-checker. 

3.2 The ERGO Case Study 

The ERGO planetary exploration demonstrator is inspired by the Mars Sample Return (MSR) mission that covers the 

concepts and requirements of the Martian Long Range Autonomous Scientist. The case study considered in this activity 

consists of a subset of functionalities, “simulating” (simplified) traverses, sample collections, and image acquisitions, in 

E1 (telecommanding) and E4 (goal commanding) autonomy modes. The case study consists of a GroundControl for 

commanding, an Agent modelling deliberative and scheduling capabilities, GuidanceControl for traverse, RarmControl 

for sample caching, Camera for imaging, a 2-Battery system and FDIR. In total, the case study has 10 functions all 

modelled in SDL, except the GroundControl that is a GUI and GuidanceLibrary that supports the computations for 

GuidanceControl and is implemented in C++. The communication is done via 46 sporadic interfaces and 1 protected 

interface, and the functionalities require the periodic activation of 5 cyclic interfaces. 

 

Figure 3. ERGO case study: (a) BSC property modelling that the battery level shall not drop below 10, (b) MSC property modelling 

the decomposition of a TAKE_PIC_AT high-level goal, (c) observer property modelling that a drop operation shall not be performed 

a pick. 

A total of 16 properties have been defined for the case study in all three formalisms. Figure 3-(a) illustrates a BSC property 

which models that the system’s Battery1 level shall not drop below 10 units. The verification results show that this 

property is not satisfied as the Battery1 level drops periodically and reaches a level below 10 units if no request to recharge 

is issued by GroundControl. The model-checker produces 2100 error diagnostic scenarios, which shows the complexity 

of this case study. Figure 3-(b) illustrates an MSC property which models the decomposition of the takepictureat high-

level goal, which implies first reaching the requested pose, and upon successful completion taking an image. The model-



checker found 48 success diagnostic scenarios on which this pattern occurs, hence validating the property. Finally, Figure 

3-(c) illustrates an observer property which models that only sequences of pick and drop are correct to be executed by the 

robotic arm, and any initial request to drop or two consecutive requests to pick are errors. The model-checker found 1016 

error diagnostic scenarios, all of which starting with a drop operation being requested to the robotic arm, as the logic of 

which operations are available is not part of the design. 

The ERGO case study considers a complex TASTE design aimed to identify the limitations of the tool. A first limitation 

is related to the TASTE design itself, which had to be adapted for verification: the interfaces with the environment were 

changed to easily specify and use the subtyping, the components have their functionalities enabled by Boolean variables 

and their status is published only upon change. A second technical limitation is on the use of C/C++ implementation in 

the design, that involved the modification of the generated IF model. This feature is not fully supported and it is part of 

future work. A third limitation is related to the supported MSC property language and its expressiveness. For example, 

properties that start with a conjunction of interactions cannot be semantically represented and it is recommended to use 

the observer formalism to express complex properties. Finally, the explosion of the state space (possible behaviours) has 

been noticed, as for one property the model-checker was not able to conclude in a 1-hour time limit. In average the time 

for verification is 20 minutes per property, with noticeable difference between the time representation used. All the results 

obtained were as expected, including the detection of the specific modelling errors added to the design. 

4 DISCUSSION 

In this paper we described the TASTE model-checking tool developed in the MoC4Space project, based on the IF toolset. 

The tool is a user friendly open-source implementation for model-checking, already available within the TASTE toolset. 

The tool has been validated with two case studies, the IXV case study aiming to validate the approach and implementation 

for model-checking and the ERGO case study aiming to identify the limitations of the model-checker and propose some 

guidelines for models to be amenable to formal verification. The main limitations are related to the supported language 

for system and properties modelling and its expressiveness, and the state space explosion problem. In consequence, it is 

suggested that the system design is performed after the requirements are defined, such that the functions involved in the 

requirement satisfaction can be easily identified and used for verification. Additionally, the design should enable a fine-

grain control of the environment of the system e.g., by specifying the available functions, interfaces, and values. The 

design should minimize the number of timers or cyclic interfaces used, as they are a source for the state space explosion. 

Hence it is suggested to group and use one timer for timed behaviour whenever possible, and also to trigger periodic 

functionalities with the same cyclic interface (which inherently uses a timer). With respect to the timed behaviour, the 

timing constraints shall be also simplified to increase the reactivity of the system with respect to the environment, and 

hence reduce the exploration. As for the communication between the functions via sporadic interfaces, the signals shall 

be sent when the information exchanged is relevant. Finally, it is suggested to use the observer formalism for modelling 

properties, unless they are very simple. It has been identified that the MSC formalism is not rich enough to express 

complex interaction conditions, e.g., the property to be checked starts as a conjunction of interactions.  

Future work will address the limitations identified on the supported language for system and property modelling. 
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