
On the Impact of Numerical Accuracy Optimization
on General Performances of Programs

Nasrine Damouche1 and Matthieu Martel2

Abstract— The floating-point numbers used in computer
programs are a finite approximation of real numbers. In
practice, this approximation may introduce round-off errors
and this can lead to catastrophic results. In previous work, we
have proposed intraprocedural and interprocedural program
transformations for numerical accuracy optimization. All these
transformations have been implemented in our tool, Salsa.
The experimental results applied on various programs either
coming from embedded systems or numerical methods, show
the efficiency of the transformation in terms of numerical
accuracy improvement but also in terms of other criteria such
as execution time and code size. This article studies the impact
of program transformations for numerical accuracy specially
in embedded systems on other efficiency parameters such as
execution time, code size and accuracy of the other variables
(these which are not chosen for optimization).

I. INTRODUCTION

The floating-point arithmetic described by IEEE754 Stan-
dard [1], [23] is well-known for its intricate behavior. For
example, usual laws such as associativity and distributivity
of the addition and product do not hold, operations are not
invertible, etc. However, floating-point numbers are more and
more used in many industrial applications including critical
embedded systems. Unfortunately, floating-point computa-
tions can result in unexpected results, a recurrent problem
arising because of round-off errors that perturb the accuracy
of the results. These last years, techniques have been pro-
posed to systematically validate [3], [13], [14], [16], [25]
and improve [19], [24] the numerical accuracy of programs
and avoid failures. To deal with this issue, we improve the
numerical accuracy of computations by automatically trans-
forming programs in a source to source manner. The trans-
formation includes arithmetic expressions, intraprocedural
(assignments, conditionals, loops, etc.) and interprocedural
programs (functions). The evaluation of our tool on various
floating-point programs coming from embedded systems or
numerical algorithms shows that the numerical accuracy of
the optimized programs can often be significantly improved.
By transforming programs, we create large arithmetic ex-
pressions that we re-parse differently in order to find the
best way to rewrite the computation considered and then
return a more accurate expression among the mathematically
equivalent expressions and in polynomial time.

1Nasrine Damouche is member of the LAboratory of Mathematics and
PhysicS, University of Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan,
France. nasrine.damouche@univ-perp.fr

2Matthieu Martel is member of the LAboratory of Mathematics and
PhysicS, University of Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan,
France. matthieu.martel@univ-perp.fr

In our tool, Salsa, the computations of variable ranges
and error bounds are relying on static analysis methods by
abstract interpretation [4]. We use a set of transformation
rules for arithmetic expressions, commands [8] and func-
tions [7]. By using these rules, a transformed program is
more accurate in terms of accuracy in the sense that it returns
a result which is closer to the exact result that we would
obtain if we were using the arithmetic of real numbers. This
is confirmed by better theoretical experimental results [11].
This article introduces several contributions.

• The first point concerns the evaluation of the accuracy
of several variables. Salsa improves the accuracy of a
single variable of a program at once. The idea consists
of improving the accuracy of a given variable and then
of taking the transformed program and re-transforming
it by improving the accuracy of another variable. Doing
this process several times, and measuring the improve-
ment of the accuracy, we show that the transformations
done for one variable do not alternate significantly the
transformations done for another variable. It is then
possible to optimize the accuracy of many variables
using Salsa. This is a first multi-criteria optimization.

• Next, we have studied other ways of transforming pro-
grams to obtain compromise between numerical accu-
racy of programs and their execution time. Basically, to
optimize an expression, Salsa builds a kind of abstract
syntax tree called APEG [19] and containing many
expressions mathematically equivalent to the original
expression. It is then necessary to extract the final
expression from this APEG. In general, Salsa searches
the most accurate expression inside the APEG. Here we
explore other alternatives such as:

– reducing the number of operations of the program,
– balancing the binary syntactic tree of the program

to allow more instruction level parallelism, (ILP),
– merging the two processes, i.e., reducing the num-

ber of operations and balancing its binary syntactic
tree simultaneously.

Finding a compromise between execution time and
numerical accuracy is our second kind of multi-criteria
optimization.

• A third point concerns the size of the generated code.
This characteristic may be important in embedded sys-
tems with few memory. We show that the programs
transformed by Salsa are not much larger that the
original ones. In particular, when several variables are
optimized, the compromise between accuracy optimiza-

2018 5th International Conference on Control, Decision
and Information Technologies (CoDIT’18)

Thessaloniki, Greece
April 10-13, 2018

%Salsa%
double main (){
e0 = 0 . 0 ; t = 0 . 0 ; m = 150.0 ;
i 0 = 0 . 0 ; d t = 0 . 2 ; c = 0 . 0 ;
wh i le (t < 10.0) {

e1 = c − m ;
p = prop (e1) ;
i = i n t e g r a l (i0 ,m, c , d t) ;
d = d e r i v (e1 , e0) ;
r = p + i + d ;
m = m + r ∗ 0.01 ;
t = t + d t ;
e0 = e1 ;
}

r e t u r n m ;
}
double prop (double e1){

kp = 9.4514 ;
res = kp ∗ e1 ;
r e t u r n res ;

}
double i n t e g r a l (double i i , double mm, double cc ,

double d d t t){
k i = 0.69006 ;
res = i i + (k i ∗ d d t t ∗ (cc − mm)) ;
r e t u r n res ;

}
double de r i v (double e1 , double e0){

kd = 2.8454 ;
i n v d t = 5.0 ;
res = kd ∗ (e1 − e0) ∗ i n v d t ;
r e t u r n res ;

}

Fig. 1. Original PID Controller program.

tion and code size in much better than if we duplicate
the computations to improve optimally the accuracy of
each variable separately.

All our experiments are made on an Intel Core i7
with 8 Go memory on Ubuntu 15.04 in IEEE754 single
precision in order to emphasize the effect of the finite
precision.

We illustrate what Salsa does when performing the
transformations mentioned in the above items, on a signifi-
cant program commonly used in embedded systems: a PID
controller. The PID controller used here is far more complex
than other PID used in other articles [10], [8]. It uses a
finite length window to record the ten last values of errors
to compute the integral term and functions to compute P ,
I and D. This also illustrates the kind of code that Salsa
is able to transform. The program corresponding to the PID
is given in Figure 1. Several strategies have been proposed
in [7] to transform functions and, in this article, we also
evaluate them on the PID controller in terms of accuracy
and code size.

This article is organized as follows. In Section II, we ex-
plain briefly the basics of arithmetic expressions, intraproce-
dural and interprocedural transformations. In Section III, we
present the behavior of numerical accuracy when optimizing
many variables simultaneously. Section IV is dedicated to
time and accuracy simultaneous optimization. In Section V,
we give numbers on the code size of programs before
and after being optimized and the execution time required.
Related work is discussed in Section VI. Section VII gives
perspectives and future work.

II. BACKGROUND

In this section, we introduce background material con-
cerning the estimation of errors due to the floating-point
arithmetic and the optimization of arithmetic expressions,
commands and functions. We also introduce the sample
programs used in our experiments.

A. Sample Programs

In this section, we briefly present the sample programs
used in our experiments in Sections III, IV and V. In
addition to the PID controller introduced in Section I, we
use five example programs:
• Odometry: It consists of computing the position (x, y)

of a two wheeled robot by odometry [11],
• Rocket: It computes the positions of a rocket and

a satellite in space. It consists of simulating their
trajectories around the earth using the Cartesian and
polar systems, in order to project the gravitational forces
in the system composed of the earth, the rocket and the
satellite [9],

• Runge-Kutta 4: It integrates an order 1 ordinary
differential equation [11],

• Jacobi: It consists of an iterative computation that
solves linear systems of the form Ax = b,

• PID: It keeps a physical parameter at a specific value
known as the setpoint [11].

The last program, the PID, is a more complex implemen-
tation than in former articles. It uses functions to compute
the three terms P , I and D and a finite size window for the
integrator. Its implementation is given in Figure 1.

B. Floating-Point Arithmetic

In this section, we give a brief review on the IEEE754
Standard [1]. Then, we explain how the computations of the
round-off errors are done. First of all, floating-point numbers
are finite approximation of real numbers. This is why round-
off errors that arise during the computations may cause
damages in critical contexts. IEEE754 Standard formalizes
a binary floating-point number as a triplet made of a sign, a
mantissa and an exponent. The representation of a floating-
point number x written in base b is given by Equation 1.

x = s ·m · be−p+1 (1)

IEEE754 Standard defines four rounding modes for el-
ementary operations over floating-point numbers. These
modes are towards −∞, towards +∞, towards zero and to
the nearest respectively denoted by ↑+∞, ↑−∞, ↑0 and ↑∼
in this article. The semantics of the elementary operations
specified by IEEE754 Standard is given by Equation (2).

x~r y =↑r (x ∗ y) , with ↑r: R→ F (2)

where a floating-point operation, denoted by ~r, is computed
using the rounding mode r. The exact operation is denoted
∗, we have ∗ ∈ {+,−,×,÷}. Obviously, the results of the
computations are not exact because of the round-off errors.

-334-CoDIT'18 / Thessaloniki, Greece - April 10-13, 2018

Authorized licensed use limited to: ISAE. Downloaded on May 16,2022 at 14:28:18 UTC from IEEE Xplore. Restrictions apply.

This is why, we use also the function ↓r: R→ R that returns
the round-off errors. We have

↓r (x) = x− ↑r (x) . (3)

In order to compute the errors during the evaluation of
arithmetic expressions [21], we use values which are pairs
(x, µ) ∈ F × R = E where x denotes the floating-point
number used by the machine and µ denotes the exact error
attached to F, i.e., the exact difference between the real and
floating-point numbers as defined in Equation (3).

Example 2.1: For instance, let us consider the real number
1
3 . Its representation by the value v = (x, µ), is v = (↑∼(
1
3

)
, ↓∼

(
1
3

)
) = (0.333333, (13 − 0.333333)). The semantics

of the elementary operations on E is defined in [21].
�

In practice, our tool uses an abstract semantics [4] based
on E. The abstract values are represented by a pair of
intervals. The first interval corresponds to the range of the
floating-point values of the program and the second one
corresponds to the range of the errors obtained by subtracting
the floating-point values from the exact ones. In the abstract
value denoted by (x], µ]) ∈ E], we have x] the interval
corresponding to the range of the values and µ] the interval
of errors on x]. This value abstracts a set of concrete values
{(x, µ) : x ∈ x] and µ ∈ µ]} by intervals in a component-
wise way. We now introduce the semantics of arithmetic
expressions on E]. We approximate an interval x] with
real bounds by an interval based on floating-point bounds,
denoted by ↑] (x]). Here bounds are rounded to the nearest,
see Equation (4).

↑] ([x, x]) = [↑ (x), ↑ (x)] . (4)

The function that abstracts the concrete function ↓ is
denoted by ↓]. It over-approximates the set of exact values
of the error ↓ (x) = x− ↑ (x). Every error associated to
x ∈ [x, x] is included in ↓] ([x, x]). We also have for a
rounding mode to the nearest

↓] ([x, x]) = [−y, y] with y =
1

2
ulp

(
max(|x|, |x|)

)
.

(5)
Formally, the unit in the last place, denoted by ulp(x),
consists of the weight of the least significant digit of the
floating-point number x. Equations (6) and (7) give the
semantics of the addition and multiplication over E], for
other operations see [21]. If we sum two numbers, we must
add errors on the operands to the error produced by the
round-off of the result. When multiplying two numbers, the
semantics is given by the development of (x]1 + µ]1) ×
(x]2 + µ]2).

(x]1, µ
]
1) + (x]2, µ

]
2) =

(
↑] (x]1 + x]2), µ

]
1 + µ]

2+ ↓
] (x]1 + x]2)

)
,

(6)

(x]1, µ
]
1)× (x]2, µ

]
2) =(

↑] (x]1 × x
]
2), x

]
2 × µ

]
1 + x]1 × µ

]
2 + µ]

1 × µ
]
2+ ↓] (x

]
1 × x

]
2)
)
.
(7)

C. Transformation for Numerical Accuracy

In this section, we give a brief review on the transfor-
mation of programs to improve their numerical accuracy.
First, we present how to transform arithmetic expressions
introduced by [19]. Then we give the principles of the
transformation of both intraprocedural and interprocedural
programs presented in [8], [7].

1) Transformation of Expressions: In this section, we
present how to improve the numerical accuracy of arithmetic
expression [19]. The work in [19] consists of defining a
new intermediary representation called APEG for Abstract
Program Expression Graph. This approach represents in
polynomial size an exponential number of equivalent arith-
metic expressions. To limit the combinatorial problems, the
APEGs hold in abstraction boxes many equivalent expres-
sions up to associativity and commutativity. A box containing
n operands can represent up to 1 × 3 × 5... × (2n − 3)
possible formulas. In order to build large APEGs, two
algorithms are used (propagation and expansion algorithm).
The first algorithm searches recursively in the APEG where
a symmetric binary operator is repeated and introduces
abstraction boxes. Then, the second algorithm finds a ho-
mogeneous part and inserts a polynomial number of boxes.
In order to add new shapes of expressions in an APEG,
one propagates recursively subtractions and divisions into
the concerned operands, propagate products, and factorizing
common factors. Finally, an accurate formula is searched
among all the equivalent formulas represented in an APEG
using the abstract semantics of Section II-B. The APEGs are
an extension of the Equivalence Program Expression Graphs
(EPEGs) introduced by R. Tate et al. [26]. An APEG is
defined inductively as follows:

1) A constant cst or an identifier id is an APEG,
2) An expression p1 ∗p2 is an APEG, where p1 and p2 are

APEGs and ∗ is a binary operator among {+,−,×,÷},
3) A box ∗(p1, . . . , pn) is an APEG, where ∗ ∈ {+,×}

is a commutative and associative operator and the
pi,1≤i≤n, are APEGs,

4) A non-empty set {p1, . . . , pn} of APEGs consists of an
APEG where pi,1≤i≤n, is not a set of APEGs itself. We
call the set {p1, . . . , pn} the equivalence class.

Example 2.2: An example of APEG is given in Figure 2,
it represents all the following expressions:

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Fig. 2. APEG for the expression e =
(
(a+ a) + b

)
× c.

-335-CoDIT'18 / Thessaloniki, Greece - April 10-13, 2018

Authorized licensed use limited to: ISAE. Downloaded on May 16,2022 at 14:28:18 UTC from IEEE Xplore. Restrictions apply.

A(p) =

(
(a+ a) + b

)
× c,

(
(a+ b) + a

)
× c,(

(b+ a) + a
)
× c,

(
(2× a) + b

)
× c,

c×
(
(a+ a) + b

)
, c×

(
(a+ b) + a

)
,

c×
(
(b+ a) + a

)
, c×

(
(2× a) + b

)
,

(a+ a)× c+ b× c, (2× a)× c+ b× c,
b× c+ (a+ a)× c, b× c+ (2× a)× c

. (8)

�
In their article [26], R. Tate et al. use rewriting rules to
extend the structure up to saturation. In our context, such
rules would consist of performing some pattern matching in
an existing APEG p and then adding new nodes in p, once
a pattern has been recognized.

2) Transformation of programs: In this section, we sum-
marize our transformation rules introduced in our previous
work [7], [8]. We start by presenting the intraprocedural
transformation of programs. Then, we present the interpro-
cedural transformation of programs. These rules used to im-
prove the numerical accuracy of programs are implemented
in our tool, Salsa.

a) Intraprocedural Transformation: The intraprocedu-
ral transformation rules that we present in this section
includes assignments, conditionals, loops, etc. The princi-
ple of the transformation of commands relies on a set of
hypotheses:

• Programs are defined by a tuple

〈c, δ, C, β〉 →ν 〈c′, δ, C, β〉

where c is the program to be optimized, δ the formal
environment that maps variables to expressions, C is
the context, i.e., the program enclosing the command
to transform, β is the black list that contains variables
that must not be removed from the program and ν is
the reference variable at optimizing.

• To avoid conflict between read and written variables
at different control points, our parser puts the inputs
programs in SSA form (single static assignments).

• The best program, i.e. the most accurate, is obtained
by comparing the reference variable of the original and
transformed programs.

We survey below briefly the different kinds of transfor-
mation rules. We refer the interested reader to [8] to see the
details of these rules. We start with assignments. We have
two rules, the first consists of removing the assignment from
the program and saving it in the memory δ if some conditions
are verified. Otherwise, we build a large expression by sub-
stituting in it the formal expressions memorized previously
by the first rule in δ. Remark that by inlining expressions
in variables when transforming programs, we create large
formulas. In our implementation, in order to simplify their
manipulation, we slice these formulas, at a defined level of
the binary syntactic tree, in several sub-expressions, and we
assign them to intermediary variables, TMP. Finally, we inject
these new assignments into the main program.

Example 2.3: To explain the use of the transformation
rules of assignments, let us consider Equation (9) in which
three variables x, y and z are assigned. In this example, ν

consists of the variable z that we aim at optimizing, and
a = 0.1, b = 0.0001 are constants.

〈x = a + b; y = x + x; , δ, [], {y}〉
=⇒ν 〈nop; y = x + x; , δ′ = δ[x 7→ a + b], [x = a+ b;], {y}〉
=⇒ν 〈y = (a + b) + (a + b), δ′ = δ[x 7→ a + b], [], {y}〉
=⇒ν 〈y = (((b + b) + a) + a), δ′, [], {y}〉

(9)

In Equation (9), initially, the environment δ is empty, the
black list contains y and the reference variable ν at optimiz-
ing is y. If we apply the first rule of assignment, we may
remove the variable x and memorize it in δ. So, the line
corresponding to the variable discarded is replaced by nop
and the new environment is δ = [x 7→ a+b]. Next, we apply
a rule for sequences which discards the nop statement. For
the last step, we may not discard y because the condition is
not satisfied (y = ν). Then, we substitute x by their value in
δ and we transform the expression.

�
Our implementation transforms also conditionals and

loops. For conditionals, if the condition is statically known,
then we keep just the evaluated branch and we transform
it, else, we transform both branches of the conditional. In
some cases, we deal with undefined variables because they
have been discarded from the program and saved in the
environment δ as indicated in the first transformation rule
for assignments. We then re-inject them into the program
and we do the necessary transformations. For the while
loops, we transform the body of the loop ensuring that the
variables of the condition do not belong to the environment δ.
Otherwise, we have to re-insert the variables memorized in
the environment into the program as doing for the last rule
of conditionals. The last transformation rules concerns the
sequences of commands. If one member of the sequence is
nop, then we transform only the other member, else, we
transform both of them.

b) Interprocedural Transformation: In this section, we
briefly show how to transform functions using a set of
transformation rules formally defined in [6], [7]. We assume
that any program has a function named main which is the first
function called at execution time, and the returned variable
v is the target variable to be optimized ν = {v}.

Basically, our interprocedural transformation follows the
same objective as the intraprocedural one.

We aim at creating large arithmetic expressions which
can be recombined into more accurate ones as explained
in Section II-C.1. The larger the expressions are, the more
opportunities we have to rewrite them. The first interpro-
cedural transformation rule, (R1), consists of inlining the
body of the function into the calling function. This makes
it possible to create larger expressions in the caller. Then
the new program can be more optimized by applying the
intraprocedural transformation rules previously seen in Sec-
tion II-C.2.a. Recall that, the use of rule (R1) depends of
two aspects: the main function must contain fewer number of
calls to the callee function and the body of the callee function
must not be enough larger. The second transformation rule,
(R2), is used when we deal with a small number of calls
to a large function in the original program. The idea is

-336-CoDIT'18 / Thessaloniki, Greece - April 10-13, 2018

Authorized licensed use limited to: ISAE. Downloaded on May 16,2022 at 14:28:18 UTC from IEEE Xplore. Restrictions apply.

%Salsa%
double main () {
e0 = 0 . 0 ; t = 0 . 0 ; m = 0.150e3 ;
wh i le (t < 10.0) {

e1 = −0.150e3 ;
kp = 0.94514e1 ;
res1 = (kp ∗ −0.150e3) ;
i i = 0.0 ;

mm = 0.150e3 ;
cc = 0.0 ;
d d t t = 0.2 ;
k i = 0.69006 ;
res2 = (i i + ((k i ∗ d d t t) ∗ (cc − m))) ;
kd = 0.28454e1 ;
i n v d t = 0.5e1 ;
res3 = ((kd ∗ (−0.150e3 − e0)) ∗ i n v d t) ;
m = (((0 . 1 e−1 ∗ (−0.213405e4)) + ((0 . 1 e−1
∗ (−0.207018e2)) + (0 .1 e−1 ∗ (−0.141771e4)))) + m) ;

t = (0 .2 + t) ;
e0 = −0.150e3
}

r e t u r n m ;
}

Fig. 3. Optimized PID Controller program using R1 of Section II-C.2.b.

to specialize the function with respect to the argument by
passing the abstract value of the argument to the function
when the variability of the interval is small (for example
whenever it contains less than ω floating-point numbers).
By variability, we mean that the distance between the lower
bound and the upper bound of an interval is small. If the
variability of the interval i = [i, i] is smaller than a parameter
ω then, we apply the second rule, we substitute the argument
of the function by the abstract value of the parameter.
In practice, we choose ω = 24 × ulp(max(|i|, |i|) where
ulp(x) is defined in Section II-B. Note that we conserve
the original function in our code when the condition on the
variability is not satisfied. The last rule, (R3), consists of
substituting the formal expression of the parameters of a
given function call to the formal parameters inside the body
of the called function. It can be seen as a lazy evaluation
of the parameters in the caller. By applying this rule, we
obtain the new function whose parameters are the variables
of the expressions of the arguments. Then we rewrite the new
function by using the intraprocedural transformation rules
to optimize the numerical accuracy of the computations. In
Figure 1, we give the code of the original PID program and
the optimized programs obtained by using respectively only
the rule (R1), (R2) or (R3) previously presented.

III. MULTI-VARIABLES OPTIMIZATION

In this section, we compare the improvement of one single
variable versus more than one variable and we study the
interest in improving the same variable several times. The
question addressed here is to know whether, by optimizing
the numerical accuracy of a given variable, we decrease the
accuracy of another variables within the program or not.
Hence, we compare the improvement of numerical accuracy
of a single variable to the accuracy obtained when optimizing
this variable several times (in our case, we optimize it three
times). We also, optimize different variables of the program.
That means that we optimize the first variable, then we
take the optimized program and we optimize it for the

%Salsa%
double main () {
e0 = 0 . 0 ;
t = 0 . 0 ;
m = 0.150e3 ;
wh i le (t < 10.0) {

e1 = (c − m) ;
p = propTMP 2 () ;
i = integra lTMP 7 () ;
d = derivTMP 10 () ;
m = (((+ 0 . 1 e−1 ∗ (−0.213405e4)) + ((+0 .1 e−1
∗ (−0.207018e2)) + (+0.1e−1 ∗ (−0.141771e4)))) + m) ;

t = (0 .2 + t) ;
e0 = −0.150e3
}

r e t u r n m ;
}
double derivTMP 10 () {

TMP 8 = −0.150e3 ;
res = (+0.28454e1 ∗ (−0.150e3 ∗ 0.5e1))
r e t u r n res ;

}
double integralTMP 7 () {

TMP 4 = 0.150e3 ;
TMP 6 = 0.2 ;
res = (TMP 6 ∗ (TMP 4 ∗ 0.69006))
r e t u r n res ;

}
double propTMP 2 () {

TMP 1 = −0.150e3 ;
res = −0.141771e4
r e t u r n res ;

}

Fig. 4. Optimized PID Controller program using R2 of Section II-C.2.b.

second variable, and so on. The results measured show that
the transformations done for one variable do not alternate
significantly the transformations done for other variables. In
our experiments, we have evaluated the optimization of the
accuracy of several variables on the programs odometry,
Jacobi and Rocket introduced in Section II-A.

For instance, if we take the odometry program which
computes the position (x, y) of a two wheeled robot, we
remark that by optimizing the variable x twice, or when
optimizing x and then y, we obtain the same result. In other
words, the variable y is optimized in the same way alone
or jointly with x. Figure 6 summarizes the results obtained
for odometry, Jacobi and Rocket. For example, for
odometry, in the first line of Figure 6, we optimize x once.
Its accuracy passes from 1.9855e−13 to 6.5252e−14 and at
the same time, the accuracy of y passes from 2.6080e−13 to
9.2143e−14. The variable y which has not been chosen for
optimization is optimized anyway. We have also observed
on the other examples that optimizing the accuracy of one
variable increases the accuracy of the others. We could think
that the transformation done for one variable decreases the
accuracy of the others. Our experiments show that this is not
the case and that several variables can be optimized for our
sample programs.

IV. TIME AND ACCURACY OPTIMIZATION

The main idea of this experiment consists of finding a
compromise between the numerical accuracy of programs
and their execution time. To do this, we take the original
program and we rewrite it in three different ways. In the
first strategy, the program is rewritten in manner to obtain a

-337-CoDIT'18 / Thessaloniki, Greece - April 10-13, 2018

Authorized licensed use limited to: ISAE. Downloaded on May 16,2022 at 14:28:18 UTC from IEEE Xplore. Restrictions apply.

Code Optimized value Initial error on X Error after Transformation on X Initial error on Y Error after Transformation on Y

Odometry

X 1.9855e−13 6.5252e−14 2.6080e−13 9.2143e−14

X → X 6.5252e−14 5.3587e−14 9.2143e−14 6.1489e−14

X→X→X 5.3587e−14 6.5252e−14 6.1489e−14 9.2143e−14

X→Y 6.5252e−14 5.3587e−14 9.2143e−14 6.1489e−14

Code Optimized value Initial error on X Error after Transformation on X Initial error on Y Error after Transformation on Y

Rocket

X 1.2909e−14 2.4145e−14 2.8569e−14 1.3977e−14

X→X 2.4145e−14 2.4145e−14 1.3977e−14 1.3977e−14

Y 1.2909e−14 2.4145e−14 2.8569e−14 1.3977e−14

Y→Y 2.4145e−14 2.4145e−14 1.3977e−14 1.3977e−14

Code Optimized value Initial error on X1 Error after Transformation on X1 Initial error on X2 Error after Transformation on X2

Jacobi

X1 2.4242e−16 1.3759e−16 2.5658e−16 1.4595e−16

X1→X1 1.3759e−16 1.3759e−16 1.4595e−16 1.4595e−16

X2 2.4242e−16 1.3759e−16 2.5658e−16 1.4595e−16

X2→X2 1.3759e−16 1.3759e−16 1.4595e−16 1.4595e−16

Fig. 6. Optimizing one vs. several reference variables of Odomerty, Rocket and Jacobi programs.

%Salsa%
double main () {
e0 = 0.0 ;
t = 0.0 ;
m = 0.150e3 ;
wh i le (t < 10.0) {

e1 = (c − m) ;
p = propTMP 1 () ;
i = integra lTMP 2 () ;
d = derivTMP 3 () ;
m = (((+ 0 . 1 e−1 ∗ (−0.213405e4)) + ((+0 .1 e−1
∗ (−0.207018e2)) + (+0.1e−1 ∗ (−0.141771e4)))) + m) ;

t = (0 .2 + t) ;
e0 = −0.150e3
}

r e t u r n m ;
}
double derivTMP 3 () {

res = (+0.28454e1 ∗ (−0.750e3)) ;
r e t u r n res ;

}
double integralTMP 2 () {

res = (−0.207018e2) ;
r e t u r n res ;

}
double propTMP 1 () {

res = −0.141771e4 ;
r e t u r n res ;

}

Fig. 5. Optimized PID Controller program using R3 of Section II-C.2.b.

balanced expression in terms of its binary syntactic tree. By
this, we mean that we change the order of the parentheses of
the expressions in order to obtain a balanced syntactic tree
while respecting the semantics of the original program. For
example, ((a+b)+c)+d is less balanced than (a+b)+(c+d).
Balanced expressions are better suited than unbalanced ones
with regard to the instruction level parallelism offered by
modern processors. In other words, the balanced tree allows
one to accelerate the computations on certain architectures.

In the second strategy, we rewrite the original program by
reducing the number of operations in the given expressions
of the program. In other words, this strategy consists of
factorizing or simplifying the expressions of the program.
For example, a × (b + c) contains less operations than
(a × b) + (a × c) and both expressions are mathematically
equivalent.

For the last strategy, we merge the two former approaches,
i.e., we reduce the number of operations of the program and

then we balance its binary syntactic tree. For example, by
reducing the number of operations, the expression ((x×a+
x×b)+x×c)+x×d becomes x× (((a+b)+c)+d). Then
this new expression is balanced and we obtain x×((a+b)+
(c+ d)).

For these three strategies, we measure the numerical accu-
racy of computations and the execution time needed for the
execution of each of them. We have experimented these three
strategies on four of the programs introduced previously in
this article: odometry, Jacobi, PID and Runge-Kutta
of order four. In each case, we take the original program and
we transform it by Salsa and then, we take the rewritten
program and we transform it also by Salsa. Then we
observe the behavior of each of them in terms of accuracy
and execution time. The first part of Figure 7 gives the results
obtained when just balancing the binary syntactic tree of
each program. We observe that the numerical accuracy of
computations is improved and the execution time needed by
the program is reduced. For instance, if we take the PID
controller program, Figure 7 shows that the initial error of
the original program which is 4.6680e−14, is reduced to
2.1346e−16 when using Salsa, where the initial error of
the transformed program with balancing the binary syntactic
tree which equals to 2.5637e−15 is improved to 1.9829e−16.
Now, if we focus on the execution time required by both
these programs, we find that the time is gone from 0.125s
to 0.098s, a significant improvement of 21.6%.

The results obtained with the second strategy also are
summarized in Figure 7. The figure shows that by reducing
the number of operation of the program, the numerical
accuracy of programs and their execution time are improved.
By example, the initial error on the PID program is passed
from 2.8574e−15 to 1.5211e−15 and the program needs 0.1s
to be transformed instead of 0.125s.

In the last experimentation, we have combined both re-
ducing the number of operations and then balancing the
syntactic tree of programs. We give still in Figure 7 the
results obtained by merging both approaches as explained
previously. This seems very interesting since the results are
more relevant. In case of the PID program, the optimized
error is 1.9829e−16 where the initial error was 2.5622e−15.

-338-CoDIT'18 / Thessaloniki, Greece - April 10-13, 2018

Authorized licensed use limited to: ISAE. Downloaded on May 16,2022 at 14:28:18 UTC from IEEE Xplore. Restrictions apply.

Code Original Program Transformed Program (bal. tree)
Initial error Transfo. error Transfo. time(s) Initial error Transfo. error Transfo. time(s)

Odometry 4.9801e−13 1.9829e−13 0.098 2.5637e−14 1.9829e−15 0.090
Runge-Kutta 4 4.6666e−13 2.9226e−13 0.098 4.6047e−14 2.9253e−15 0.067
Jacobi 2.9142e−16 1.7258e−16 1.098 2.5658e−16 1.5517e−16 0.125
PID 4.6680e−14 2.1346e−16 0.125 2.5637e−15 1.9829e−16 0.098

Code Original Program Transformed Program (nb. op)
Initial error Transfo. error Transfo. time(s) Initial error Transfo. error Transfo. time(s)

Odometry 4.9801e−13 1.9829e−13 0.098 2.4011e−14 1.8574e−15 0.091
Runge-Kutta 4 4.6666e−13 2.9226e−13 0.098 4.6805e−14 2.9312e−16 0.751
Jacobi 2.9142e−16 1.7258e−16 1.098 1.7176e−16 4.4408e−17 0.115
PID 4.6680e−14 2.1346e−16 0.125 2.8574e−15 1.5211e−15 0.100

Code Original Program Transformed Program (bal. tree & nb. op.)
Initial error Transfo. error Transfo. time(s) Initial error Transfo. error Transfo. time(s)

Odometry 4.9801e−13 1.9829e−13 0.098 1.5847e−14 1.9229e−15 0.080
Runge-Kutta 4 4.6666e−13 2.9226e−13 0.098 3.6095e−14 2.9253e−15 0.050
Jacobi 2.9142e−16 1.7258e−16 1.098 1.5658e−16 1.5017e−16 0.120
PID 4.6680e−14 2.1346e−16 0.125 2.5622e−15 1.9829e−16 0.070

Fig. 7. Reduction of the number of operations and/or balancing the binary syntactic tree of programs.

Same for the execution time, it is decreased from 0.125s into
0.070s. This shows that improving accuracy and execution
time simultaneously is possible on representative examples.

V. CODE SIZE

In this section, we aim at evaluating the performances of
Salsa from another point of view: numerical accuracy and
code size of programs. By transforming programs, we may
create new variables when we deal with large expressions
that we associate to TMP variables (see Section II). This
explains the code size before and after transformation. The
comparison between the original program code size and the
transformed one is given in Figure 8. For instance, in the
case of the PID Controller program, we remark that the
size of the original program is 623 Bytes while its code
after transformation is 1068 Bytes. In mean, the size of the
optimized code is less than twice the size of the original.

Despite increasing the size of program, the numerical
accuracy of each program is widely reduced (see Figure 8).
More precisely, if we take the PID Controller program, we
have that the numerical accuracy of the original program
is 0.2059e−13 while its accuracy after being transformed is
0.2221e−13. It means that the error of computation of the
PID Controller is reduced by 7.86%. This is mainly due to
the fact that Salsa performs partial evaluation during the
transformation and that computations with fewer operations
often generate less errors and are often privileged in the
choice of expressions in APEGs.

VI. RELATED WORK

During the last fifteen years, several static analyses of
the numerical accuracy of floating-point computations have
been introduced. While these methods compute an over-
approximation of the worst error arising during the exe-
cutions of a program, they operate on final codes, during
the verification phase and not at implementation time. Static
analyses based on abstract interpretation [4], [5] have been
proposed and implemented in the Fluctuat tool [17], [18]
which has been used in several industrial contexts. A main
advantage of this method is that it enables one to bound
safely all the errors arising during a computation, for large

ranges of inputs. It also provides hints on the sources of
errors, that is on the operations which introduce the most
important precision loss. This latter information is of great
interest to improve the accuracy of the implementation. More
recently, Darulova and Kuncak have proposed a tool, Rosa,
which uses a static analysis coupled to a SMT solver to com-
pute the propagation of errors [13]. None of the techniques
mentioned above generate more accurate programs.

Other approaches rely on dynamic analysis. For instance,
the Precimonious tool tries to decrease the precision of
variables and checks whether the accuracy requirements are
still full filled [2]. Lam et al. instrument binary codes in
order to modify their precision without modifying the source
codes [20]. They also propose a dynamic search method to
identify the pieces of code where the precision should be
modified. Again, these techniques do not transform the codes
in order to improve the accuracy.

Finally, another related research axis concerns the
compile-time optimization of programs to improve the ac-
curacy of the floating-point computation in function of
given ranges for the inputs, without modifying the formats
of the numbers [15]. The Sardana tool takes arithmetic
expressions and optimize them using a source-to-source
transformation. Herbie optimizes the arithmetic expressions
of Scala codes. While Sardana uses a static analysis
to select the best expression, Herbie uses dynamic analysis
(a set or random runs). A comparison of these tools is
given in [12]. These techniques are limited to arithmetic
expressions.

VII. CONCLUSION

In this article, we have shown the usefulness of our tool,
Salsa to improve the accuracy of programs in conjunction
with other criteria. These other criteria are often very im-
portant in embedded systems since they concern memory
and speed. We have experimented our tool to optimize
simultaneously the numerical accuracy and the execution
time of programs by first balancing the syntactic tree, second
reducing the number of operations of programs and finally
by merging both approaches. We have also shown that

-339-CoDIT'18 / Thessaloniki, Greece - April 10-13, 2018

Authorized licensed use limited to: ISAE. Downloaded on May 16,2022 at 14:28:18 UTC from IEEE Xplore. Restrictions apply.

Code Initial error Error after transformation % of improvement Code sizeo (Bytes) Code sizet (Bytes) codesizeo
codesizet

Odometry 0.5794e−14 0.4788e−14 17.36 900 1439 0.62
Rocket 2.8569e−14 1.3977e−14 51.07 1911 1624 1.1
Runge-Kutta 4 4.6666e−13 2.9226e−13 37.37 678 1649 0.41
Jacobi 2.9142e−16 1.7258e−16 40.77 1032 1959 0.52
PID 0.2059e−13 0.2221e−13 7.86 623 1068 0.58

Fig. 8. Numerical accuracy and code size measurements of programs.

by optimizing a single variable the accuracy of the other
variables is not decreased. Also, we have shown that by
creating new variables while transforming programs, the
code size of the optimized program is less than the size of
programs if we duplicate their code.

A future work consists of studying the impact of the
accuracy optimization of parallel programs and also to con-
sider an important issue that concerns the reproducibility
of the results: different runs of the same application yield
different results due to the variations in the order of the
parallel evaluation of the mathematical expression. It will be
very interesting to study how our technique could improve
reproducibility.

Another research direction concerns the optimization of
the data-types in order to save memory [22]. This consists
of finding the least formats (i.e., half, single or double
precision) required in order to ensure the accuracy of results.
In addition, it would be interesting to extend our program
transformation to help this format optimization.

REFERENCES

[1] ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, std
754-2008 edition, 2008.

[2] F. Benz, A. Hildebrandt, and S. Hack. A dynamic program analysis
to find floating-point accuracy problems. In ACM SIGPLAN PLDI’12,
pages 453–462. ACM, 2012.

[3] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. Static analysis by abstract interpretation of embedded critical
software. ACM SIGSOFT Software Engineering Notes, 36(1):1–8,
2011.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL’77, pages 238–252. ACM, 1977.

[5] P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In Principles of Programming
Languages, pages 178–190. ACM, 2002.

[6] N. Damouche. Improving the Numerical Accuracy of Floating-Point
Programs with Automatic Code Transformation Methods. PhD thesis,
Université de Perpignan Via Domitia, 2016.

[7] N. Damouche, M. Martel, and A. Chapoutot. Numerical accuracy
improvement by interprocedural program transformation. accepted.

[8] N. Damouche, M. Martel, and A. Chapoutot. Intra-procedural opti-
mization of the numerical accuracy of programs. In FMICS’15, volume
9128 of LNCS, pages 31–46. Springer, 2015.

[9] N. Damouche, M. Martel, and A. Chapoutot. Optimizing the accuracy
of a rocket trajectory simulation by program transformation. In CF’15,
pages 40:1–40:2. ACM, 2015.

[10] N. Damouche, M. Martel, and A. Chapoutot. Transformation of a PID
controller for numerical accuracy. ENTCS, 317:47–54, 2015.

[11] N. Damouche, M. Martel, and A. Chapoutot. Improving the numerical
accuracy of programs by automatic transformation. In International
Journal on Software Tools for Technology Transfer. Springer, 2016.
DOI: 10.1007/s10009-016-0435-0.

[12] N. Damouche, M. Martel, P. Panchekha, C. Qiu, A. Sanchez-Stern,
and Z. Tatlock. Toward a standard benchmark format and suite for
floating-point analysis. In P. Prabhakar S. Bogomolov, M. Martel,
editor, NSV, LNCS. Springer, 2016.

[13] E. Darulova and V. Kuncak. Sound compilation of reals. In POPL’14,
pages 235–248. ACM, 2014.

[14] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and
F. Védrine. Towards an industrial use of FLUCTUAT on safety-critical
avionics software. In FMICS’09, pages 53–69, 2009.

[15] P-L. Garoche, F. Howar, T. Kahsai, and X. Thirioux. Testing-based
compiler validation for synchronous languages. In J. M. Badger and
K. Yvonne Rozier, editors, NFM, volume 8430 of LNCS, pages 246–
251. Springer, 2014.

[16] E. Goubault. Static analysis by abstract interpretation of numerical
programs and systems, and FLUCTUAT. In SAS’13, volume 7935 of
LNCS, pages 1–3. Springer, 2013.

[17] E. Goubault, M. Martel, and S. Putot. Asserting the precision
of floating-point computations: A simple abstract interpreter. In
D. Le Métayer, editor, ESOP, volume 2305 of LNCS, pages 209–212.
Springer, 2002.

[18] E. Goubault, M. Martel, and S. Putot. Some future challenges in the
validation of control systems. In ERTS, 2006.

[19] A. Ioualalen and M. Martel. A new abstract domain for the represen-
tation of mathematically equivalent expressions. In SAS’12, volume
7460 of LNCS, pages 75–93. Springer, 2012.

[20] Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski, and
Matthew P. LeGendre. Automatically adapting programs for mixed-
precision floating-point computation. In Supercomputing, ICS’13,
pages 369–378. ACM, 2013.

[21] M. Martel. Semantics of roundoff error propagation in finite precision
calculations. Higher-Order and Symbolic Comput., 19(1):7–30, 2006.

[22] Matthieu Martel. Floating-point format inference in mixed-precision.
In Clark Barrett, Misty Davies, and Temesghen Kahsai, editors, NASA
Formal Methods - 9th International Symposium, NFM 2017, volume
10227 of Lecture Notes in Computer Science, pages 230–246, 2017.

[23] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.
Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[24] J.-R. Wilcox P. Panchekha, A. Sanchez-Stern and Z. Tatlock. Automat-
ically improving accuracy for floating point expressions. In PLDI’15,
pages 1–11. ACM, 2015.

[25] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrishnan.
Rigorous estimation of floating-point round-off errors with symbolic
taylor expansions. In FM’15, volume 9109 of LNCS, pages 532–550.
Springer, 2015.

[26] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A
new approach to optimization. Log. Meth. in Comp. Sci., 7(1), 2011.

-340-CoDIT'18 / Thessaloniki, Greece - April 10-13, 2018

Authorized licensed use limited to: ISAE. Downloaded on May 16,2022 at 14:28:18 UTC from IEEE Xplore. Restrictions apply.

