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Abstract—Cycle slips strongly impact the performance of phase
tracking algorithm leading, in the worst case, to a permanent
loss of lock of the signal. In this paper, we propose a new
nonlinear phase estimator to obtain more robust tracks. The
latter stems from a Variational Bayes (VB) approximation used
within the optimal Bayesian filtering formulation in case of high-
order phase dynamics. A comparison with a more conventional
technique, namely a Kalman filter based PLL (Phase Lock Loop),
is performed in terms of mean square error of the phase estimate
and mean time to first slip. Results show that the proposed
method outperforms the conventional linear filter with respect
to both metrics, especially at low signal-to-noise ratio.

Index Terms—Nonlinear Bayesian filtering, Variational Bayes
approximation, Phase tracking, Cycle slips

I. INTRODUCTION

Carrier phase estimation has become a fundamental task in
many various engineering applications from sonar/radar [1]
to guidance/navigation [2]. Concerning the former, phase
measurements are directly related to parameters such as range,
bearing, and velocity which are crucial to the successful
detection, tracking, and imaging of targets; about the latter,
phase measurements provide high accuracy of a user/system’s
position (e.g., in case of GNSS (Global Navigation Satellite
System), carrier phase measurements offer a centimeter-level
position estimation against the metric-level accuracy pro-
vided by the conventional code measurements [2]). However,
phase measurements obtained by traditional phase tracking
techniques may be strongly weakened by the presence of
ambiguous phase jumps, known as cycle slips. The latter are
unpredictable, nonlinear phenomena which makes their math-
ematical analysis extremely difficult. Cycle slipping especially
occurs in harsh environment leading, in the worst-case, to a
complete drop-lock of the signal. A reacquisition process is
then necessary which afflicts the tracking performance. In the
literature, the phenomenon is well studied for the conventional
PLL [3]–[8]. To avoid cycle slipping, various solutions have
been presented over the years. Starting from the optimized
PLL architecture [9], a plethora of robust filtering techniques
have been adapted to the phase tracking problem such as
Kalman filter (KF) based techniques, Particle Filter (PF),
Gaussian sum filter [10], [11].
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In this paper, we propose a nonlinear filtering method based
on Variational Bayes inference [12], [13]. We actually continue
the work of [14], where only a first-order phase dynamics
was considered. Herein, we assume any order phase dynamics
so that not only the phase but its derivatives can be tracked
too. Applying then the Restricted Variational Bayesian (RVB)
approximation [12], we obtain a closed-form nonlinear update
equation which can be practically implemented with moderate
complexity and drastically decreases slipping occurrence.

The paper is organized as follows. In Section II, the state-
space model is presented. Principle of the VB filtering is then
introduced and applied in Section III. Numerical simulations
are described in Section IV. Finally, conclusion is given in
Section V.

II. STATE-SPACE MODEL

A. Measurement equation

In this study, we consider the observation

zk = αej[xk]1 + nk (1)

where α is a real amplitude. The measurement (1) only
involves the first element of the nx-length state vector xk (5),
namely [xk]1 (or φk), which is the phase to be tracked by our
estimator. The noise component nk is supposed to be complex
white and Gaussian with known power σ2

n, namely at instant k
nk ∼ CN (0, σ2

n). The Signal-to-Noise-Ratio (SNR) is defined
by

SNR =
E
{
|αej[xk]1 |2

}
E
{
|nk|2

} =
α2

σ2
n

(2)

where E(·) indicates the expected value operator. Given the
noise term nk and (1), the likelihood function is

f(zk|xk) = f(zk|[xk]1)

=
1

πσ2
n

exp
{
− 1

σ2
n

[
|zk|2 + α2 − 2α|zk| cos([xk]1 − ψk)

]}
(3)

with ∠zk
def
= ψk = atan2(={zk},<{zk}) the angle that

lies between [−π, π]. In this work, we assume known the
amplitude α and the noise power σ2

n. For conciseness reason,
they are omitted in the conditional terms. Accordingly, the
sensor factor associated with (3) is

s([xk]1) ∝ f(zk|xk) ∝ exp
{
βk cos([xk]1 − ψk)

}
(4)



where βk = 2α|zk|/σ2
n. In (4), we recognize a Tikhonov

distribution (or Von Mises distribution) with mean direction
ψk and concentration parameter βk. Its probability density
function (pdf) is denoted T (φk|ψk, βk) [15].

B. Dynamics equation

The time-varying evolution of the assumed high-order phase
dynamics is described through the so-called transition equation

xk =


φk
φ̇k
...
n

φ̇k

 = Axk−1 +wk−1 (5)

where
n

φ̇k is the nth derivative of the phase and wk represents
a centered Gaussian noise with a covariance matrix Q, viz.
wk ∼ N (0,Q). The so-called state-transition matrix A is
with appropriate dimension. The transitional density is thus

f(xk|xk−1) = (2π)(−
nx/2)|C|1/2

exp(−1/2((xk −Axk−1)ᵀC(xk −Axk−1))
(6)

where C is the precision matrix of xk|xk−1 given by

C = Q−1. (7)

III. VARIATIONAL BAYES TRACKING ALGORITHM

Herein, we introduce the principle of the RVB approx-
imation and apply it to high-order phase dynamics. The
methodology was originally described in [12] and applied for
first-order phase dynamics only in [14], [16].

A. Optimal filtering problem

The optimal Bayes filtering that iteratively evaluates the
filtering distribution f(xk|Zk) is obtained by alternating be-
tween (8) and (9) as follows [17]

f(xk|Zk−1) = f(x1), k = 1 (8a)

f(xk|Zk−1) =

∫
f(xk|xk−1)f(xk−1|Zk−1)dxk−1, k > 1

(8b)

and

f(xk|Zk) ∝ f(zk|xk)f(xk|Zk−1), k > 1 (9)

where f(x1) is the prior distribution at k=1 and Zk =
[z1, . . . , zk] denotes the aggregated set of observations till
the instant k. However, given the likehood function (3) and
the transitional density (6), the recursive propagation (9)
cannot be analytically determined. Though, using the RVB
approximation [12], we can consider a fixed functional form
for the filtering distribution, viz f(xk|Zk) ∼ f̃(xk|Zk). In
our case, we can show as presented after that it allows us to
obtain a tractable Bayes filter.

B. Principle of the RVB approximation
The RVB-based method relies on a twofold approximation

of the filtering problem. Following [12], in the first stage
a local Variational Bayes (VB) approximation is made, in
particular a conditional independence between xk and xk−1
is assumed

f̃(xk,xk−1|Zk) = f̃(xk|Zk)f̃(xk−1|Zk) (10)

where f̃(·) refers to the approximated posterior distribution.
The latter is then chosen to minimize the Kullback-Leibler
(KL) divergence [12]. This approximation leads to recursively
evaluate the posterior distribution f(xk|Zk) as follows
• Prediction and data update for k = 1

f̃(xk|Zk−1) ∝ exp
(

Ef̃(xk−1|Zk)

[
ln(f(xk|xk−1))

])
(11)

with

f̃(xk−1|Zk) ∝ exp
(

Ef̃(xk|Zk)

[
ln(f(xk|xk−1))

])
× f̃(xk−1|Zk−1).

• Prediction and data update for k > 1

f̃(xk|Zk) ∝ f(zk|xk)f̃(xk|Zk−1). (12)

The operator Ef(x)
[
g(x)

]
denotes the expected value of the

function g(x) with respect to the density function f(x).
To obtain a closed-form filter, a second approximation is

made. In particular, through RVB approximation the distribu-
tion f̃(xk−1|Zk) in (11) is replaced by the fixed posterior dis-
tribution f̃(xk−1|Zk−1). The prediction distribution becomes
then

f̃(xk|Zk−1) ∝ exp
(

Ef̃(xk−1|Zk−1)

[
ln(f(xk|xk−1))

])
.

(13)
Using the sensor factor (4) and the transitional density (6),
we can show that RVB filtering has the following closed-form
expressions
• Prediction and data update for k = 1

f̃(x1|Z0)
def
= f(x1) (14a)

f̃(x1|Z1) ∝ T ([x1]1|ψ1, β1)× f(x1). (14b)

• Prediction and data update for k > 1

f̃(xk|Zk−1) = N
(
xk|AEf̃(xk−1|Zk−1)

[xk−1],C−1
)

(15a)

f̃(xk|Zk) ∝ T ([x1]1|ψk, βk)× f̃(xk|Zk−1) (15b)

where N(x|µ,Ω) is the multivariate normal pdf with mean µ
and covariance matrix Ω.

(Demonstrations are not given here but will be detailed in
a future work.)

The functional form of the filtering distribution is stable
through the iteration (14)-(15) and is tractable if one can
derive the MMSE (Minimum Mean Square Error) estimator
with respect to the approximated RVB distribution (15b) that
we denote as

x̂rvb
k

def
= Ef̃(xk|Zk)

[xk] =

∫
xkf̃(xk|Zk)dxk. (16)



C. RVB estimator

1) Initialization: We propose a factorized form to describe
the initial condition: f(x1) = f(x1,1)f(x1−1

) where
the notation x−1 designates the (nx-1)-length vector x
to which the first element has been removed. In that
case, using (16) with (14b) the RVB estimator at k = 1
is

x̂rvb
1

def
=

[
x̂rvb
1,1

x̂rvb
1−1

]
(17)

where

x̂rvb
1,1 =

∫
x1,1T (x1,1|ψ1, β1)f(x1,1)dx1,1∫
T (x1,1|ψ1, β1)f(x1,1)dx1,1

(18a)

x̂rvb
1−1

=

∫
x1−1

f(x1−1
)dx1−1

. (18b)

Without any knowledge of the initial phase and its
derivatives, we can choose as an example a uniform
distribution for the prior of x1, i.e.

f(x1,1)
def
= f(φ1) ∝ I[−π,π](φ1) (19a)
f(x−1) ∝ II(x−1) (19b)

where I denotes a set of symmetrical intervals. Us-
ing (19a) and (18a), the expression of x̂rvb

1,1 (or φ1) turns
out to be the same as that in [14]. Using (19b) and (18b),
we obtain then x̂rvb

1−1
= 0.

2) Recursion: The recursive equation of the estimator for
k > 1 is derived substituting the posterior distribu-
tion (15b) into (16). Its expression is shown in (20) with

P1
def
= [C1,1 − cᵀ−1C

−1
−1c−1]−1 (21)

where
• [Ax̂rvb

k−1]1 is the first element of Ax̂rvb
k−1;

• Iq(·)’s are the modified Bessel functions of the first
kind at qth order;

• C1,1 is the first diagonal element of C;
• C−1 is the matrix C to which the first column and

row have been removed;
• c−1 is the first column of C where the first element

has been removed.
As can be seen, the expression (20) maintains the nonlinear
nature of the measurement equation (1). Moreover, we can
see a similarity between (20) and the traditional KF update
state expression. As a matter of fact, (20) is the sum of
the predicted state estimate Ax̂rvb

k−1 plus a function of the
innovation term ψk − [Ax̂rvb

k−1]1 that is nonlinear (unlike the
Kalman gain function). Note that the vector

[
1;−C−1−1c−1

]ᵀ
remains constant over the time. Moreover, since the Bessel
function decreases rapidly with respect to (wrt) the summation
index q, a truncation of the infinite sum in (20) to qmax is
enforced. Finally, it is worth noticing that at first-order, namely
nx = 1, then the filtering of [14] is recovered.

IV. NUMERICAL SIMULATIONS

In what follows, performance of the proposed RVB es-
timator (20) is assessed numerically on synthetic data and
compared to a KF-based PLL [18].

A. Scenario

In this study, the received signal is generated as in (1). The
phase dynamics follows a polynomial evolution as

φk = φ0 + φ̇0Tk +
φ̈0T

2k2

2
(22)

where φ0, φ̇0, φ̈0 are respectively the initial phase (step),
phase rate (ramp), acceleration (parabola) and T is the tracking
update time. Accordingly, we choose a third-order phase
model known as the PVA (Position, Velocity and Acceleration)
model [19]–[21]. The state matrix A is thus equal to

A =

1 T T 2/2
0 1 T
0 0 1

 (23)

and the process noise covariance Q is [19], [22]

Q = Σpva

T 5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T


+ Σpv

T 3/3 T 2/2 0
T 2/2 T 0

0 0 0

+ Σp

T 0 0
0 0 0
0 0 0

 .
(24)

where the notation Σ represents the power spectral density
(PSD) of the continuous-time white noise [20].

B. Processing parameters

The input parameters of the received signal and of both
algorithms are presented in Tab. I. Note that tuning the PSDs
of the process noise covariance matrices Q (24) is not simple.
Particularly for the RVB estimator, its update equation (20)
is not only nonlinear but also depends only partially on the
covariance matrix Q, via the terms P1 and

[
1;−C−1−1c−1

]ᵀ
.

So far, we have thus experimentally set its PSD values so
that both KF-PLL and RVB filters result in a non-informative
estimator below approximately the same SNR value (see later
Fig. 1 when so-called RMSE-mod is approximately equal to
π/
√

3).
1) RVB initialization: A value of qmax = 50 is chosen

which leads to, in a first attempt, a good balance between
computational cost and accuracy of estimation.

2) KF-based PLL initialization: To have a fair comparison,
an ATAN2 discriminator is used for the KF-based PLL.
Accordingly, the phase noise power is approximated as in [22,
A-13].

C. Phase tracking

1) Performance metrics: We focus on our main parame-
ter of interest, that is the phase estimate [xk]1. Given the
nonlinear nature of phase tracking, two metrics are chosen
to characterize on the one hand the precision of estimation
letting alone the slip phenomenon and on the other hand the
occurrence of slips. More precisely, the first metrics is the Root
Mean Square Error of the phase error modulo-2π (denoted
as RMSE-mod) which is defined as ẽk = (φk − φ̂k)[−π,π].
In our simulations, a steady-state is always reached after a



x̂rvb
k = Ax̂rvb

k−1 + 2P1

∑+∞
q=1 qIq(βk) sin[q(ψk − [Ax̂rvb

k−1]1)]e−
q2P1

2

I0(βk) + 2
∑+∞
q=1 Iq(βk) cos[q(ψk − [Ax̂rvb

k−1]1)]e−
q2P1

2

[
1

−C−1−1c−1

]
(20)

TABLE I: Input parameters

Parameter Variable Value
Phase φ0 0 rad

Phase rate φ̇0 0 rad/s

Phase acceleration φ̈0 π/0.16 rad/s2

Monte Carlo realizations Mc 1000

Tracking update time T 0.02 s

RVB PSDs

√
ΣpT 0.8π rad√
ΣpvT 20π rad/s√
ΣpvaT 100π rad/s2

KF-PLL PSDs

√
ΣpT 0.2π rad√
ΣpvT 0.8π rad/s√
ΣpvaT 0.2π rad/s2

certain transient time. We depict only the value of RMSE at
steady-state. The second metrics of interest is the Mean Time
to First cycle Slip (MTFS). We assess it as described in [14].
Both metrics are evaluated via Monte Carlo simulations and
presented wrt the SNR (2).
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Fig. 1: RMSE-mod

2) Results: As can be seen in Figs. 1 and 2, the RVB
estimator outperforms the KF estimator wrt both metrics.
In particular, in Fig. 1 the RMSE-mod of RVB appears
to be lower for most of the SNR values. Below a SNR
of ≈ −10 dB, both phase estimators can be considered as
noninformative since their RMSE-mod is equal to that of
a uniform distribution on [-π,π]. Above, the precision of

estimation of both algorithms increases wrt the SNR. Though,
the RVB outperforms here clearly the KF-PLL particularly at
low to medium SNR (i.e., approximately from -6 to 8 dB).
The MTFS is shown in Fig. 2. In practice, a time limit is
set to observe the occurrence of a slip. It is fixed to half-a-
day. As can be seen, the RVB has tremendously higher MTFS
at low to medium SNRs indicating a low probability of slip
occurrence compared to the KF-PLL. Note that at high SNR,
RMSE-mods and MTFS of both algorithms are comparable.
As a matter of fact, they both act as a linear filter in absence
of cycle slips.
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Fig. 2: MTFS

V. CONCLUSION

In this paper we proposed a robustified phase tracking
technique to avoid cycle slipping at any order dynamics. The
method is based on a RVB approximation which leads to
a nonlinear and tractable filter with closed-form expression
and moderate computational complexity. Performance of the
associated MMSE estimator is evaluated in terms of RMSE-
mod and MTFS and compared with a conventional KF-based
PLL. The new nonlinear filter shows significant performance
improvement with low cycle slip occurrence.

In future work, we intend to implement our algorithm in a
more practical scenario, namely in a software-based receiver
using real GNSS data. Compared to [14], a wider range of
scenarios will be addressed since our new algorithm is suited
for high-order dynamics.
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