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Abstract. Accurate accounting of emissions and removals of CO2 is critical for the planning and verification of emission reduc-

tion targets in support of the Paris Agreement. Here, we present a pilot dataset of country-specific net carbon exchange (NCE;

fossil plus terrestrial ecosystem fluxes) and terrestrial carbon stock changes aimed at informing countries’ carbon budgets.

These estimates are based on “top-down” NCE outputs from the v10 Orbiting Carbon Observatory (OCO-2) modeling inter-

comparison project (MIP), wherein an ensemble of inverse modeling groups conducted standardized experiments assimilating5

OCO-2 column-averaged dry-air mole fraction (XCO2 ) retrievals (ACOS v10), in situ CO2 measurements, or combinations of

these data. The v10 OCO-2 MIP NCE estimates are combined with “bottom-up” estimates of fossil fuel emissions and lateral

carbon fluxes to estimate changes in terrestrial carbon stocks, which are impacted by anthropogenic and natural drivers. These

flux and stock change estimates are reported annually (2015–2020) as both a global 1◦× 1◦ gridded dataset and as a country-

level dataset. Across the v10 OCO-2 MIP experiments, we obtain increases in the ensemble median terrestrial carbon stocks10

of 3.29–4.58 PgCO2 yr−1 (0.90–1.25 PgC yr−1). This is a result of broad increases in terrestrial carbon stocks across the

northern extratropics, while the tropics generally have stock losses but with considerable regional variability and differences

between v10 OCO-2 MIP experiments. We discuss the state of the science for tracking emissions and removals using top-down

methods, including current limitations and future developments towards top-down monitoring and verification systems.

Copyright statement. ©2022. California Institute of Technology, government sponsorship acknowledged.15
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1 Introduction

To reduce the risks and impacts of climate change, the Paris Agreement aims to limit the global average temperature increase

to well below 2 ◦C above pre-industrial levels and pursue efforts to limit these increases to less than 1.5 ◦C. To this end, each

Party to the Paris Agreement agreed to prepare and communicate successive Nationally Determined Contributions (NDCs) of

greenhouse gas (GHG) emission reductions. Collective progress toward this goal of the Paris Agreement is evaluated in Global20

Stocktakes (GSTs), which are conducted at five-year intervals; the first GST is scheduled in 2023. The outcome of each GST

is then used as input, or as a “ratchet mechanism”, for new NDCs that are meant to encourage greater ambition.

In support of the first GST, Parties to the Paris Agreement are compiling inventories of GHG emissions and removals to in-

form their progress toward the emission-reduction targets in their individual NDCs. These inventories are generally estimated

using “bottom-up” approaches, wherein CO2 emission estimates are based on activity data and emission factors while CO225

removals by sinks are based on inventories of carbon stock changes and models. This approach allows for explicit characteriza-

tion of CO2 emissions and removals into the five main sectors specified in the 2006 IPCC Guidelines for National Greenhouse

Gas Inventories (IPCC, 2006): Energy, Industrial Processes and Product Use (IPPU), Agriculture, Forestry and Other Land

Use (AFOLU), Waste, and Other. Bottom-up methods can provide precise and accurate country-level emission estimates when

the activity data and emission factors are well quantified and understood, such as for the fossil fuel combustion category of30

the energy sector in many countries. However, these estimates can also have considerable uncertainty when the emission pro-

cesses are challenging to quantify (such as for AFOLU) or if the activity data are inaccurate or missing. In addition, these

estimates do not capture carbon emissions and removals from unmanaged systems, which are not directly considered in the

Paris Agreement, but nevertheless impact the global carbon budget and growth rate of atmospheric CO2.

As a complement to these accounting-based inventory efforts, an independent “top-down” assessment of net surface–35

atmosphere CO2 fluxes may be obtained from ground-based, airborne and space-based observations of atmospheric CO2 mole

fractions. These top-down methods have undergone rapid improvements in recent years, as recognized in the 2019 Refinement

to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019). And, although these methods were not

deemed to be a standard tool for verification of conventional inventories, a number of countries (UK, Switzerland, USA, and

New Zealand) have adopted atmospheric inverse modeling as a verification system in national inventory reports. Initially, these40

countries have focused on non-CO2 gasses (e.g., EPA, 2022), but top-down assessments of the CO2 budget are now underdevel-

opment in New Zealand (https://niwa.co.nz/climate/research-projects/carbon-watch-nz). Furthermore, significant investments

towards building anthropogenic CO2-emissions monitoring and verification support capacity are ongoing within the European

Commission’s Copernicus Program (see Sect. 8.2.1).

In top-down CO2 flux estimation, the net surface–atmosphere CO2 fluxes are inferred from atmospheric CO2 observations45

using state-of-the-art atmospheric CO2 inversion systems (e.g., Peiro et al., 2022). This approach provides spatially- and

temporally-resolved estimates of surface–atmosphere fluxes for land and ocean regions from which country-level annual land–

atmosphere CO2 fluxes can be estimated. The impact of fossil fuel (and usually fire CO2 emissions) on the observations are

accounted for in the inversions by prescribing maps of those emissions and assuming that they are perfectly known. Thus,
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fossil fuel and fire CO2 emissions are not diagnosed yet by these inversions, but net surface–atmosphere CO2 fluxes from50

the terrestrial biosphere and oceans are. Terrestrial carbon stock changes can then be calculated by combining net surface–

atmosphere CO2 fluxes with estimates of fossil fuel emissions and horizontal (“lateral”) fluxes occurring within the terrestrial

biosphere or between the land and ocean (Kondo et al., 2020). One example of a lateral flux is harvested agricultural products,

where carbon is sequestered from the atmosphere by photosynthesis in one region but then this carbon is harvested and exported

to another region as agricultural products. Similarly, carbon sequestered by photosynthesis in a forest can be leached away by55

streams and rivers, and then exported to the ocean. These lateral carbon fluxes are not directly identifiable in atmospheric

CO2 measurements, but accounting for their impact is required in order to convert net land fluxes into stock changes. These

estimated terrestrial carbon stock changes reflect the combined impact of direct anthropogenic activities and changes to both

managed and unmanaged ecosystems in response to rising CO2, climate change, and disturbance events (such as fires).

The top-down budgets presented here extend several previous studies that have developed approaches to compare inversion60

results to United Nation Framework Convention of Climate Change (UNFCCC) inventories. Ciais et al. (2021) proposed a

protocol for reporting bottom-up and top-down fluxes so that they can be compared consistently. Chevallier (2021) noted

that inversion results for terrestrial CO2 fluxes should be restricted to managed lands and applied a managed land mask to

the gridded fluxes of the CAMS CO2 inversions for the comparison to UNFCCC values in ten large countries or groups of

countries. Deng et al. (2022) compared CO2, CH4 and N2O fluxes from inversion ensembles available from the Global Carbon65

Project. For CO2, they used six CO2 flux estimates from inverse models that assimilated measurements from the global air-

sample network, filtered their results over managed lands and corrected them for CO2 fluxes induced by lateral processes to

compare with carbon stock changes reported to the UNFCCC by a set of 12 countries. We expand upon these previous studies

by providing top-down CO2 budgets from the v10 Orbiting Carbon Observatory Model Intercomparison Project (v10 OCO-2

MIP), wherein an ensemble of inverse modeling groups conducted standardized experiments assimilating OCO-2 column-70

averaged dry-air mole fraction (XCO2 ) retrievals (retrieved with version 10 of the Atmospheric CO2 Observations from Space

(ACOS) full-physics retrieval algorithm), in situ CO2 measurements, or combinations of these data. This allows us to quantify

the sensitivity of top-down carbon budget estimates to the inversion modeling system and the atmospheric CO2 dataset used to

constrain flux estimates.

This paper is outlined as follows. The remainder of Sect. 1 describes the objectives of this work (Sect. 1.1) and provides75

background information on both the global carbon cycle (Sect. 1.2) and top-down atmospheric CO2 inversions (Sect. 1.3).

Section 2 defines the carbon cycle fluxes of interest. Section 3 describes the flux datasets and their uncertainties, including:

fossil fuel emissions, the v10 OCO-2 MIP, riverine fluxes, wood fluxes, crop fluxes, and the net terrestrial carbon stock loss.

Section 4 provides an evaluation of the v10 OCO-2 MIP flux estimates. Section 5 presents two metrics for interpreting the

top-down constraints on the CO2 budget. Section 6 gives a description of the dataset, Sect. 7 shows the characteristics of the80

dataset, and Sect. 8 discusses current limitations and future directions. Finally, Sect. 9 gives the conclusions of this study.
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1.1 Objectives

This is a pilot project designed to start a dialogue between the top-down research community, inventory compilers, and the

GHG assessment community to identify ways that top-down CO2 flux estimates can help inform country-level carbon budgets

(see Worden et al. (2022) for a similar pilot methane dataset). To meet this objective, the primary goal of this work is to provide85

two products: (1) annual net surface–atmosphere CO2 fluxes and (2) annual changes in terrestrial carbon stocks. These products

are provided annually over the six-year period 2015–2020 on both a 1◦× 1◦ global grid and as country-level totals with error

characterization.

These products are intended to be used to help inform inventory development and identify areas for future research in both

top-down and bottom-up approaches. Including, informing strategies for operational top-down carbon cycle products that can90

be used for tracking combined changes in managed and unmanaged carbon stocks and help quantify the impact of emission

reduction activities.

1.2 Overview of the carbon cycle

The carbon cycle describes the movement of carbon between various reservoirs in the Earth system. Carbon cycles between the

atmosphere, oceans, and terrestrial biosphere through a number of pathways, while the burning of fossil fuels and cement pro-95

duction release geologic carbon to the atmosphere (40.0± 3.3 PgCO2 yr−1 or 10.9± 0.9 PgCyr−1 over 2010–2019; Canadell

et al., 2021). On an annual net basis, roughly half of the emitted CO2 from anthropogenic sources is absorbed by terrestrial

ecosystems and oceans (Friedlingstein et al., 2022), reducing the rate of atmospheric CO2 increase (18.7± 0.08 PgCO2 yr−1

or 5.1± 0.02 PgCyr−1 over 2010–2019; Canadell et al., 2021). Here we briefly review the movement of carbon between the

reservoirs, and how these processes are modulated by human activities.100

Fluxes of carbon between the atmosphere and ocean are driven by the difference in partial pressures of CO2 between seawater

and air, resulting in roughly balancing fluxes from the ocean-to-atmosphere and atmosphere-to-ocean of ∼ 293 PgCO2 yr−1

(∼ 80 PgCyr−1) each way (Ciais et al., 2013), with a residual net atmosphere-to-ocean flux due to increasing atmospheric CO2

(9.2± 2.2 PgCO2 yr−1 or 2.5± 0.6 PgCyr−1 over 2010–2019; Canadell et al., 2021). Regional variations in the solubility and

saturation of CO2 in ocean waters drive net fluxes, with net fluxes to the atmosphere in upwelling regions, such as the eastern105

boundary of basins and in equatorial zones (McKinley et al., 2017). Meanwhile, there is net removals by the ocean in western

boundary currents and at extratropical latitudes (McKinley et al., 2017). Within the oceans, circulation patterns, mixing, and

biologic activity act to redistribute carbon.

On land, terrestrial ecosystems remove atmospheric carbon through photosynthesis, referred to as Gross Primary Production

(GPP) (Fig. 1). GPP draws roughly 440 PgCO2 yr−1 (120 PgC yr−1) from the atmosphere (Anav et al., 2015). Roughly half110

of this carbon is emitted back to the atmosphere by plants through autotrophic respiration, while the remaining carbon is used

to generate plant biomass and is referred to as Net Primary Production (NPP). On an annual basis, the carbon sequestered

through NPP is roughly balanced by carbon loss through a number of processes. The largest of these processes is heterotrophic

respiration, which is the respiratory emission of CO2 (from the dead organic matter and soil carbon pools) by heterotrophic
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organisms, and accounts for 82–95% of NPP (Randerson et al., 2002). The combination of heterotrophic and authotrophic115

respiration is called ecosystem respiration (Reco). The remaining processes have smaller magnitudes, but are still critical for

determining the carbon balance of ecosystems. Biomass burning, the emission of carbon to the atmosphere through combustion,

releases roughly 7.3 PgCO2 yr−1 (2 PgC yr−1) to the atmosphere on an annual basis, but with considerable interannual

variability (van der Werf et al., 2017). Carbon can also be emitted from the terrestrial biosphere to the atmosphere in the form

of carbon monoxide (CO), methane (CH4) and other biologic volatile organic compounds (BVOCs), which are oxidized to CO2120

in the atmosphere. Rivers move carbon in the form of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and

particulate organic carbon (POC). This carbon of terrestrial origin is partly transported to the open ocean, partly released to the

atmosphere from inland waters and estuaries, and partly buried in aquatic or marine sediments. Finally, anthropogenic activities

such as harvesting of crop and wood products result in lateral transport of carbon, such that the removal of atmospheric CO2

through NPP and emission of atmospheric CO2 through respiration (e.g., decomposition in a landfill) or combustion (e.g.,125

burning of biofuels) occurs in different regions. See Fig. 1 for an illustration of these fluxes.

Globally, there is a long-term net uptake of atmospheric CO2 by the land (approximately -6.6 PgCO2 yr−1 or -1.8 PgC2 yr−1

over 2010–2019; Canadell et al., 2021), which is the residual of an emission due to net land use change (5.9± 2.6 PgCO2 yr−1

or 1.6± 0.7 PgCyr−1 over 2010–2019; Canadell et al., 2021) and removal by other terrestrial ecosystems (12.6± 3.3 PgCO2 yr−1

or 3.4± 0.9 PgCyr−1 over 2010–2019; Canadell et al., 2021). This removal is partially driven by direct feedbacks between130

increasing CO2 and the biosphere, such as CO2 fertilization of photosynthesis and increased water use efficiency. Carbon-

climate feedbacks also lead to both increases and decreases in terrestrial carbon stocks: for example, warming at high latitudes

leads to a more productive biosphere but it also leads to increased plant and soil respiration (Kaushik et al., 2020; Walker et al.,

2021; Canadell et al., 2021; Crisp et al., 2022). In addition, the release of nitrogen through anthropogenic energy and fertilizer

use may also drive increased carbon sequestration by the terrestrial biosphere. Regrowth of forests in previously cleared areas,135

especially in the extratropics, is also thought to be an important uptake term (Kondo et al., 2018; Cook-Patton et al., 2020).

Currently, the relative impact of each of these contributions to long-term terrestrial carbon sequestration is poorly known, and

likely varies between biomes and climates.

While the existence of a long-term global land sink is supported through a number of lines of evidence (Ballantyne et al.,

2012; Keeling and Graven, 2021), regional-scale emissions and removals are less well quantified. Regional-scale carbon se-140

questration can differ substantially from the global mean and can be impacted by the regional climate, disturbance events

(Frank et al., 2015; Wang et al., 2021), and anthropogenic activities (Caspersen et al., 2000; Harris et al., 2012). The need to

better quantify regional-scale emissions and removals of carbon has motivated much of the recent expansion of in situ CO2

observing networks, the launch of space-based CO2 observing systems, and the development of CO2 inversion systems.

1.3 Background on atmospheric CO2 inversions145

Atmospheric CO2 inversions estimate the underlying net surface–atmosphere CO2 fluxes from atmospheric CO2 observations,

and this is what is meant by the “top-down” approach (Bolin and Keeling, 1963; Tans et al., 1990; Enting et al., 1995; Gurney

et al., 2002; Peiro et al., 2022). In this approach, an atmospheric chemical transport model (CTM) is employed to relate

6
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Figure 1. CO2 is removed from the atmosphere through photosynthesis (GPP) and then emitted back to the atmosphere through a number of

processes. Three processes move carbon laterally on Earth’s surface, such that emissions of CO2 occur in a different region than removals: (1)

Agriculture; harvested crops are transported to urban areas and to livestock, which are themselves exported to urban areas. CO2 is respired

to the atmosphere in livestock or urban areas. (2) Forestry; logged carbon is transported to urban and industrial areas, then emitted to through

decomposition in a landfill or combustion as a biofuel. (3) Water cycle; carbon is leached from soils into water bodies, such as lakes. The

carbon is then either deposited, released to the atmosphere, or transported to the ocean (Regnier et al., 2022). Arrows show carbon fluxes and

colors indicate whether the flux is associated with (grey) fossil fuel emissions, (dark green) ecosystem metabolism, (red) biomass burning,

(light green) forestry, (yellow) agriculture, or (blue) the water cycle. Semi-transparent arrows show fluxes that move between the surface

and atmosphere, while solid arrows show fluxes that move between land regions. Dashed arrows show surface–atmosphere fluxes of reduced

carbon species that are oxidized to CO2 in the atmosphere. For simplicity, a cement carbonation sink, volcano emissions, and a weathering

sink are not included in this figure.

surface–atmosphere CO2 fluxes to observed atmospheric CO2 mole fractions. As an inverse problem, the upwind CO2 fluxes

are estimated from the downwind observed CO2 mole fractions. The surface CO2 fluxes are adjusted so that forward-simulated150

CO2 mole fractions better match the CO2 measurements while considering the uncertainty statistics on the observations,

transport, and prior surface fluxes.
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The atmospheric CO2 inversion problem is generally ill-posed, such that the solution is underdetermined by the observational

constraints. In this case, additional information is required to produce a unique solution and prevent overfitting of the data

(Lawson and Hanson, 1974; Tarantola, 2005). Typically, this is performed using Bayesian inference, where prior mean fluxes155

and their uncertainties provide additional information required to estimate fluxes (Rayner et al., 2019). Prior mean fluxes of net

ecosystem exchange are usually obtained from dynamic global vegetation models, while prior mean air-sea fluxes are derived

from surface water partial pressure of CO2 (pCO2) datasets or from ocean models (e.g., Peiro et al., 2022). The resulting

posterior flux estimates combine the constraints on surface fluxes from atmospheric CO2 data with the prior knowledge of the

fluxes. If there is a high density of assimilated CO2 observations, then the posterior fluxes will be more strongly impacted by160

the assimilated data, whereas, in regions with sparse observational coverage, the posterior fluxes will generally remain similar

to the prior fluxes (assuming similar prior flux uncertainties across regions).

Measurements of atmospheric CO2 best inform diffuse biosphere–atmosphere fluxes on large spatial scales. This is because

CO2 has a long atmospheric lifetime, such that the perturbation to atmospheric CO2 due to emissions and removals from

individual processes and locations gets mixed in the atmosphere (Gloor et al., 2001; Liu et al., 2015). For example, the mea-165

surements of CO2 at Mauna Loa, Hawaii, provide a good estimate of the global-scale changes of CO2 surface fluxes. Inferring

smaller-scale flux signals requires a high density of CO2 observations (to capture gradients in atmospheric CO2) and accurate

modeling of atmospheric transport (to relate the measurements with surface fluxes). The accuracy of flux estimates depend on a

number of factors, particularly the accuracy and precision of the data, transport model, and prior constraints. Stringent require-

ments on the accuracy of space-based column-averaged dry-air mole fraction (XCO2 ) retrievals are required to infer surface170

fluxes (Chevallier et al., 2005a; Miller et al., 2007). Biases in XCO2 retrievals from the Orbiting Carbon Observatory (OCO-

2) related to spectroscopic errors, solar zenith angle, surface properties, and atmospheric scattering by clouds and aerosols

have been identified (Wunch et al., 2017b). However, intensive research has reduced retrieval errors over time (O’Dell et al.,

2018; Kiel et al., 2019). As will be shown in Sect. 4.1, biases in OCO-2 XCO2 retrievals over land are thought to be relatively

small, although regionally structured biases may be present. However, OCO-2 XCO2 retrievals over oceans may contain more175

large-scale spatially coherent retrieval errors that can adversely impact flux estimates.

Accurate atmospheric transport is critical for correctly relating surface–atmosphere fluxes to observations. Due to com-

putational constraints, CTMs are typically run offline with coarsened meteorological fields relative to the parent Numerical

Weather Prediction model, which has been shown to introduce systematic transport errors in some configurations (Yu et al.,

2018; Stanevich et al., 2020). In addition, these offline CTMs have been shown to have large-scale systematic differences in180

transport associated with the implementation of transport algorithms (Schuh et al., 2019, 2022). These errors appear to be

of the same order as the retrieval biases, although the patterns in time and space are different. Systematic errors related to

model transport (and errors in prior information) can partially be accounted for by performing multiple inversions that differ

in CTM and prior constraints employed. This motivates inversion model intercomparison projects (MIPs), such as the OCO-2

MIP project (see Sect. 3.2; Crowell et al., 2019; Peiro et al., 2022). From these ensembles of inversions, estimates of both185

systematic errors (accuracy) and random errors (precision) can be obtained from the model spread.
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2 Definitions

In this work, we focus on the carbon budget of Earth’s land area, including aquatic systems such as rivers and lakes. In

particular, we consider fluxes of carbon between the land and the atmosphere, and lateral carbon transport processes on land

and between the land and ocean. We define the following annual net carbon fluxes (see Fig. 2 for an schematic representation190

of these fluxes):

– Fossil fuel and cement emissions (FF): The burning of fossil fuels and release of carbon due to cement production,

representing a flux of carbon from the land surface (geologic reservoir) to the atmosphere.

– Net Biosphere exchange (NBE): Net flux of carbon from the terrestrial biosphere to the atmosphere due to biomass burn-

ing (BB) and ecosystem respiration (Reco) minus Gross Primary Production (GPP) (i.e., NBE = BB + Reco−GPP). It195

includes both anthropogenic processes (e.g., deforestation, reforestation, farming) and natural processes (e.g., climate-

variability-induced carbon fluxes, disturbances, recovery from disturbances).

– Terrestrial Net Carbon Exchange (NCE): Net flux of carbon from the surface to the atmosphere. For land, NCE can

be defined as:

NCE = NBE + FF (1)200

– Lateral crop flux (F crop trade): The lateral flux of carbon in (positive) or out (negative) of a region due to agriculture.

– Lateral wood flux (Fwood trade): The lateral flux of carbon in (positive) or out (negative) of a region due to wood product

harvesting and usage.

– Lateral river flux (F rivers export): The lateral flux of carbon in (positive) or out (negative) of a region transported by the

water cycle.205

– Net terrestrial carbon stock loss (∆C loss): Positive values indicate a loss (decrease) of terrestrial carbon stocks (or-

ganic matter stored on land), including above- and below-ground biomass in ecosystems and biomass contained in

anthropogenic products (lumber, cattle, etc). This is calculated as:

∆C loss = NBE−F crop trade−Fwood trade−F rivers export (2)

– Net terrestrial carbon stock gain (∆Cgain): Positive values indicate a gain (increase) of terrestrial carbon stocks, and210

is the negative of ∆C loss:

∆Cgain =−∆C loss (3)

9

https://doi.org/10.5194/essd-2022-213
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 2. Carbon fluxes for a given land region, such as a country. Boxes with solid backgrounds show reservoirs of carbon. Arrows with

hatched shading show fluxes between reservoirs. NCE is underlined to emphasize that this quantity is estimated from the atmospheric

CO2 measurements using top-down methods. Italicized quantities are obtained from bottom-up datasets (FF , F crop trade, Fwood trade,

F rivers export). Bold quantities are derived in this study from the top-down and bottom-up datasets (NBE, ∆Cgain, ∆Closs).

2.1 Country and regional aggregation

To aggregate gridded 1◦× 1◦ flux estimates to country totals we use a country mask (Center for International Earth Science

Information Network - CIESIN - Columbia University, 2018). We also provide NCE and ∆C loss estimates for several country215

groupings. A number of regional intergovernmental organizations are included: the Association of Southeast Asian Nations

(ASEAN), the African Union (AU) and each of its sub-regions (North, South, West, East, and Central), the Community of Latin

American and Caribbean States plus Brazil (CELAC+Brazil), the Economic Cooperation Organization (ECO), the European

Union (EU), and the South Asian Association for Regional Cooperation (SAARC). We also include some geographic regions,
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specifically North America, the Middle East and Europe. Countries included in these groupings are listed in the supplementary220

materials (Text S1).

3 Flux datasets

Here, we describe the methodologies and datasets for estimating FF (Sect. 3.1), NCE (Sect. 3.2), country-level F rivers export

(Sect. 3.3), country-level F crop trade and country-level Fwood trade (Sect. 3.4). Gridded lateral fluxes are estimated using a

somewhat different approach, and are described in Sect. 3.5. Finally, we describe how these data are used to estimate ∆C loss225

(Sect. 3.6).

3.1 Fossil fuel and cement emissions

Gridded 1◦×1◦ fossil CO2 emissions, including from cement production, are calculated as follows. Monthly gridded emissions

up to 2019 are taken from the 2020 version of the Open-source Data Inventory for Anthropogenic CO2 (ODIAC2020, 2000–

2019) emission data product (Oda and Maksyutov, 2011; Oda et al., 2018). The 2020 emissions were not part of ODIAC,230

but were projected using the Carbon Monitor (CM) emission data product (https://carbonmonitor.org/, downloaded 19th May

2021). For each month in 2020 and later, the ratio between that month’s emissions and the emissions from the same month in

2019 was calculated from the CM emission data. Since CM provides daily emissions per sector for a handful of major emitting

countries and the globe, CM emissions are summed over sectors and days in each month to create monthly total emissions per

named country and the rest of the world (RoW). The ratio of each (post-2019) month’s emission to the same month in 2019 is235

then calculated per named country and RoW, then distributed over a 1◦×1◦ grid assuming homogeneity of the ratio over each

named country and RoW. 2019 ODIAC emissions for that month are then multiplied by the ratio to generate 1◦× 1◦ monthly

emissions after 2019. While this method loses the information of day-to-day variability provided by CM, this is a conscious

choice to be consistent over the entire inversion period. Finally, we impose day-of-week and hour-of-day variations on these

fluxes following the Temporal Improvements for Modeling Emissions by Scaling (TIMES) diurnal and day-of-week scaling240

(Nassar et al., 2013). The 1◦× 1◦ uncertainty map is based on the combination of the global level FF uncertainty (one-sigma

of 4.2%, Andres et al., 2014) and the grid level emission differences due to the different disaggregation methods (Oda et al.,

2015). Note that these FF uncertainties are not considered in the inversions used for this product development.

Country-level fossil fuel emission estimates are obtained by aggregating the 1◦× 1◦ estimates using the country mask.

Uncertainties on country-level estimates are calculated using the fractional uncertainties of Andres et al. (2014).245

3.2 Net Carbon Exchange (NCE) and Net Biosphere Exchange (NBE)

We employ results from the v10 OCO-2 MIP, which is an international collaboration of atmospheric CO2 inversion modelers

that produces ensembles of CO2 surface–atmosphere flux estimates by assimilating space-based OCO-2 retrievals of XCO2 and

in situ CO2 measurements. The v10 OCO-2 MIP is updated from the v9 OCO-2 MIP described in Peiro et al. (2022). Updates

to the v10 OCO-2 MIP are presented here with additional details available at https://gml.noaa.gov/ccgg/OCO2_v10mip/.250
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The v10 OCO-2 MIP consists of a number of inversion systems that perform a set of experiments following a standard

protocol. Here, we include fluxes from 11 of the 14 MIP models (Table 1; CMS-Flux and JHU were excluded due to time

constraints and LoFI was excluded because it employs a non-traditional inversion approach that does not follow the MIP

protocol). There are five v10 OCO-2 MIP experiments that each ensemble member performs, which differ by the data that is

assimilated (CO2 datasets described in Sect. 3.2.1):255

– IS: assimilates in situ CO2 mole fraction measurements from an international observational network,

– LNLG: ACOS v10 land nadir and land glint total column dry-air mole fractions (XCO2 ) from OCO-2,

– LNLGIS: assimilates both in situ and ACOS v10 OCO-2 land nadir and glint XCO2 retrievals together,

– OG: assimilates ACOS v10 OCO-2 ocean glint XCO2 retrievals

– LNLGOGIS: assimilates all the above datasets together.260

For each experiment, each inversion group imposes a common fossil fuel emission dataset identical to the one described

in Sect. 3.1. All other prior flux estimates were chosen independently by each modeling group and are listed in Table 1.

The inversions assimilate the standardized v10 OCO-2 and in situ data from 6 September 2014 through 31 March 2021 (see

Sect 3.2.1), with the length of spin-up period and in situ data assimilated during that period being left up to the discre-

tion of each group in the MIP. Each modeling group submitted net air–sea fluxes and NBE across 2015–2020, interpolated265

from the native resolution to a 1◦× 1◦ spatial grid at monthly resolution, which are publicly available for download from

https://gml.noaa.gov/ccgg/OCO2_v10mip/.

The performance of each atmospheric CO2 inversion was evaluated through comparisons of the posterior CO2 mole-fraction

field (i.e., CO2 fields simulated forward with the posterior fluxes) against independent in situ CO2 measurements and OCO-2

XCO2 retrievals that were withheld from the assimilation for validation, as well as XCO2 retrievals from the Total Column270

Carbon Observing Network (TCCON; Wunch et al., 2011). The evaluation of the experiments is presented in Sect. 4, with

additional analysis available from the v10 OCO-2 MIP website.

For this study, the best estimate of NCE is taken to be the ensemble median for each experiment (denoted NCEexperiment

). The uncertainty in NCE is calculated as an estimate of the standard deviation (denoted σNCE) using the interquartile range

(IQR) of the flux-inversion ensemble:275

σNCE =
IQR(NCE)

1.35
. (4)

For country-level fluxes, the NCE estimates are first aggregated to country totals for each ensemble member before calculating

the median and standard deviation. This is done because there are spatial covariances between 1◦× 1◦ grid cells. Thus, first

aggregating regions for each ensemble member accurately propagates the aggregate differences between regions across the

ensemble members.280

13

https://doi.org/10.5194/essd-2022-213
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 3. Assimilated observations for IS and LNLG v10 MIP experiments. Number of monthly (a) in situ CO2 measurements and (b)

ACOS v10 OCO-2 land nadir and land glint XCO2 retrievals binned into 10 s averages, and (c) ACOS v10 OCO-2 ocean glint XCO2

retrievals binned into 10 s averages. Spatial distribution of (d) in situ (e) ACOS v10 OCO-2 land XCO2 retrievals, and (f) ACOS v10 OCO-2

ocean XCO2 retrievals over 2015–2020. Shipboard and aircraft in situ CO2 measurements are aggregated to a 2◦× 2◦ spatial grid, surface

site measurements are shown as scattered points, and ACOS v10 OCO-2 XCO2 retrievals are shown aggregated to a 2◦× 2◦ spatial grid.

The NBE estimate is calculated by subtracting the ODIAC Fossil Fuel emissions from NCE. The variance in NBE is then

taken to be the sum of the variances of NCE and FF:

σ2
NBE = σ2

NCE + σ2
FF (5)

3.2.1 Atmospheric CO2 data included in v10 OCO-2 MIP

In situ CO2 measurements (Fig. 3a,d) are drawn from five data collections made available in Obspack format (Masarie et al.,285

2014). Those source ObsPacks and their references are listed in Table 2. The majority of data are from the openly available

GLOBALVIEW+ program, but with some additional provisional data for 2020–21, and data from other programs not partic-

ipating in the GLOBALVIEW+ project. CO2 measurements are broadly divided into two categories: those measurements we

identify as suitable for assimilation, and other measurements not suitable for assimilation.

In CO2 inverse analyses, uncertainties ascribed to in situ measurements are a combination of the uncertainty in the measure-290

ment and a representativeness error from the forward model inability to accurately simulate the measurement (due to aspects

like a coarse model grid). To characterize the representativeness error, we used an empirical scheme based on simulations

from the v7 OCO-2 MIP (Crowell et al., 2019). In situ CO2 measurements are simulated in a forward simulation, and then the

model-data mismatch statistics are calculated to characterize the representativeness errors at each measurement location and

for each season. Although this was the standard method for characterizing uncertainties for modeled in situ measurements,295

each v10 OCO-2 MIP group was free to choose how to set the uncertainties in their specific set-ups.

Of the in situ measurements designated as being appropriate for assimilation, about 5% were withheld for cross-validation

purposes. These data were chosen to be as independent as possible from the measurements that were assimilated. For quasi-

continuous measurements, such as those taken every 15 minutes at NOAA tall towers, measurements were withheld for entire
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days: we chose 5% of the days in the dataset, and we withheld every assimilable measurement on that day. This is also how CO2300

measurements on NIES ships were treated. Entire aircraft profiles in the NOAA light-aircraft profiling network are assumed to

consist of vertically correlated measurements, so entire profiles were withheld: we chose 5% of aircraft profiles to withhold.

Most flask sites have measurement sampling protocols intended to ensure independence; they are often taken at weekly or

biweekly intervals during meteorological conditions meant to allow regional background air masses to be sampled. Thus, we

chose to withhold 5% of assimilable flask measurements. We also verified that datasets at the same site were withheld on the305

same days; aircraft profiles over tower sites were, for instance, withheld on the same days that tower data were withheld.

OCO-2 land (Fig. 3b,e) and ocean (Fig. 3c,f) XCO2 retrievals are performed using version 10 of NASA’s Atmospheric CO2

Observations from Space (ACOS) full-physics retrieval algorithm (O’Dell et al., 2018). A common set of OCO-2 retrieval

“super-obs” data were derived from these retrievals and were assimilated by each modeling group. These “super-obs” are

obtained by aggregating retrievals into 10 s averages (which better match the coarse transport models grid cells used in the310

inversions) following the same procedure as the v9 OCO-2 MIP (Peiro et al., 2022). Specifically, individual scenes within the

10 s span are weighted according to the inverse of the square of the XCO2 uncertainty (standard deviations) produced by the

retrieval, and correlations of +0.3 for land scenes and +0.6 for ocean scenes are assumed when calculating the uncertainty on

the 10-second averages (see Sect. 3.2.1 of Baker et al., 2022); transport model errors are also considered (based on Schuh

et al., 2019). Only 10 s spans with 10 or more good quality retrievals were used (sparser data being thought to be more prone315

to cloud-related biases). In the same vein as was done for the in situ data, XCO2 data from 5% of the orbits (entire orbits were

withheld), chosen at random, were withheld for evaluation purposes.

3.3 Country-level F rivers export

Rivers transport carbon laterally across land regions (e.g., to a lake) and from the land to the ocean. This lateral transport must

be accounted for to quantify the total change in terrestrial carbon in a given region. However, there is considerable uncertainty320

in lateral carbon flux by rivers. To account for this, we use two independent estimates of country-level totals: one from the

Dynamic Land Ecosystem Model (DLEM), and the other based on Deng et al. (2022) who use the Global NEWS model

(Mayorga et al., 2010) and observations across COastal Segmentation and related CATchments (COSCATs) (Meybeck et al.,

2006) that include DIC (of atmospheric origin), DOC and POC. These datasets cover 2015–2019. For 2020, we impose the

2015–2019 mean.325

The DLEM is a process-based terrestrial ecosystem model that couples biophysical, soil biogeochemical, plant physiological

and riverine processes with vegetation and land-use dynamics to simulate and predict the vertical fluxes, lateral fluxes, and

storage of water, carbon, GHGs, and nutrient dynamics in terrestrial ecosystems and their interfaces with the atmosphere and

land-ocean continuum (Tian et al., 2010, 2015a). There are three major processes involved in simulating the export of water,

carbon, and nutrients from land surface to the coastal ocean: 1) the generation of runoff and leachates, 2) the leaching of330

water, carbon and nutrients from land to river networks in the form of overland flow and base flow, and 3) transport of riverine

materials along river channels from upstream areas to coastal regions. The key processes and parameterization in the DLEM

have been described in previous publications regarding the water discharge (Liu et al., 2013; Tao et al., 2014), riverine carbon
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fluxes (Ren et al., 2015, 2016; Tian et al., 2015b; Yao et al., 2021), and riverine nitrogen fluxes (Yang et al., 2015; Tian et al.,

2020) from the terrestrial ecosystem to coastal oceans. The newly improved DLEM aquatic module better addresses processes335

within global small streams, which were recognized as hotpots of GHG emissions (Yao et al., 2020, 2021). DLEM produces

estimates of the land loadings of carbon species (DIC, DOC, and POC), CO2 degassing and carbon burial during transporting,

and the exports of carbon (DIC, DOC, and POC) to the ocean for 105 basin-level segmentations (modified from COSCATs)

(Meybeck et al., 2006). To estimate country totals, we map the basin carbon loss across land by assuming that the net carbon

flux occurs uniformly across each basin. We then use the country mask to estimate the country totals for each region.340

Deng et al. (2022) estimate the lateral carbon export by rivers to the coast minus the imports from rivers entering in each

country (for relevant cases), including DOC, POC and DIC of atmospheric origin. Estimates of DOC, POC and DIC are

obtained from the Global NEWS model (Mayorga et al., 2010), with a correction based on Resplandy et al. (2018) so that the

global total exported to the coastal ocean is 2.86 PgCO2 yr−1 (0.78 PgC yr−1). Deng et al. (2022) perform a correction to the

Global NEWS estimates to remove the contribution of lithogenic carbon, using the methodology of Ciais et al. (2021).345

For the analysis that follows, we estimate country-level totals of riverine lateral carbon fluxes by combining the estimates of

DLEM with those of Deng et al. (2022). We take the mean of the two estimates to be the best estimate and take the magnitude

of the difference between the estimates to be the one-sigma uncertainty. Figure S1 shows the 2015–2019 mean annual net

riverine lateral carbon fluxes. Fluxes are uniformly negative, implying a net flux of carbon from the land to the ocean and

reduction in stored carbon for all countries. Fluxes are most negative in tropical rainforest and tropical monsoon climates, and350

they are smallest in more arid regions.

3.4 Country-level F wood trade and F crop trade

Wood and crop products are traded between nations. We estimate the annual lateral fluxes of carbon due to this trade following

the approaches of Deng et al. (2022) and Ciais et al. (2021). This approach utilizes crop and wood trade data compiled by

the Food and Agriculture Organization of the United Nations (FAO, http://www.fao.org/faostat/en/#data). The crop flux was355

estimated from the annual trade balance of 171 crop commodities calculated for each country. For wood products, we use the

bookkeeping model of Mason Earles et al. (2012) to calculate the fraction of imported carbon in wood products that is oxidized

in each of 270 countries during subsequent years. One-sigma uncertainties in country-level fluxes are assumed to be 30% of

the mean value. This dataset covers 2015–2019. For 2020, we assume fluxes equal to the 2015–2019 mean. The net crop and

wood lateral fluxes and their uncertainties are shown in Fig. S2.360

3.5 1◦ × 1◦ lateral flux estimates

Lateral fluxes at a higher resolution (1◦× 1◦) follow similar principles to national values but were estimated separately with

different implementation choices. High-resolution proxy data (satellite-derived NPP, population or livestock maps, etc.) enabled

subnational disaggregation. For each 1◦× 1◦ grid cell, we assume the standard deviation of the mean flux to be 30% for

Fwood trade and F crop trade, and 60% for F rivers export.365
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3.6 Estimate of carbon stock loss (∆Closs)

Finally, we calculate ∆C loss using Eqn. 2 with the datasets described above. Assuming that the components contributing to

∆C loss are independent, we calculate the uncertainty on ∆C loss by combining the uncertainties (one standard deviations) from

the component fluxes in quadrature:

σ2
∆Closs

= σ2
NBE + σ2

F crop trade
+ σ2

Fwood trade
+ σ2

F rivers export
(6)370

4 Evaluation of v10 OCO-2 MIP experiments

The performance of top-down CO2 flux estimates can be impacted by a number of factors, including biases in the assimilated

data, model transport, prior constraints, and in the inversion architectures. Therefore, evaluating the performance of v10 OCO-2

MIP fluxes against independent datasets is critical for assuring high quality flux estimates. Here, we evaluate the v10 OCO-2

MIP experiments in two ways. First, we compare the posterior CO2 fields against independent CO2 measurements (Sect. 4.1).375

Second, we compare the inferred air–sea CO2 flux against estimates based on surface ocean CO2 partial pressure (pCO2)

measurements (Sect. 4.2).

4.1 Evaluation of posterior CO2 fields

We consider four atmospheric CO2 datasets:

1. Withheld in situ CO2 measurements. These are measurements contained in the Obspack collection described in Sect. 3.2.1380

but intentionally withheld for evaluation purposes. Independence from the assimilated data is ensured following the steps

described in Sect. 3.2.1.

2. XCO2 retrievals from the TCCON. These data are acquired from a network of ground-based Fourier Transform Spec-

trometers measuring direct solar spectra from which XCO2 is retrieved (Wunch et al., 2011). For this analysis, we include

30 TCCON sites listed in table A1. These data are filtered and aggregated following the method outlined in Appendix C385

of Crowell et al. (2019).

3. Withheld OCO-2 land glint and land nadir XCO2 retrievals. These data could have been assimilated, but they are inten-

tionally withheld for evaluation purposes (Sect. 3.2.1).

4. Withheld OCO-2 ocean glint XCO2 retrievals. These data could have been assimilated, but they are intentionally withheld

for evaluation purposes (Sect. 3.2.1).390

We first perform a simple check on the inversion results by comparing the atmospheric CO2 growth rate estimated from the v10

OCO-2 MIP experiments to that derived directly from NOAA CO2 measurements (Fig. 4). The growth rate is estimated from

CO2 measurements and model co-samples at “marine boundary layer” sites, which predominantly observe well-mixed marine

boundary layer air representative of a large volume of the atmosphere. A smooth curve is then fit to these data to estimate

18

https://doi.org/10.5194/essd-2022-213
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 4. Mean 2015–2019 global mean CO2 growth rate estimated from NOAA site measurements and for the v10 OCO-2 MIP experiments.

The estimates of the CO2 growth rate for each experiment are computed by sampling the model CO2 fields at the same times and locations

as those used to derive the NOAA measurement-based estimate. Each v10 OCO-2 MIP experiment is shown as a box plot, with the error

bars showing the full range, the shaded region showing the interquartile range, and the solid line showing the median ensemble member of

the ensemble.

the global growth rate (Thoning et al., 1989). This is the same method employed by NOAA to report the CO2 growth rate395

(gml.noaa.gov/ccgg/trends/). We estimate the uncertainty in the measurement-based growth rate from the difference between

the growth rate estimated here and that reported on the NOAA website. Differences between these estimates are primarily

driven by differences in measurement sampling used for the website relative to that used here (as we are limited to withheld

co-samples here). We calculate the uncertainty as the standard error of the mean for the differences between the growth rates

estimated here and by NOAA across 2015–2019. This gives an uncertainty on the 5-year growth rate of ±0.053 ppmyr−1.400

Note that NOAA reports the growth rate using the X2019 scale, whereas our estimates here are from the X2007 scale, which

may contribute to the differences. We find that the IS, LNLG, and LNLGIS experiments show good agreement with the NOAA

estimate over this period. However, both the OG and LNLGOGIS experiments are found to have a high bias. This suggests that

there may be a spurious trend in the v10 OCO-2 ocean glint XCO2 retrievals of 0.04–0.13 ppm yr−1 (OG experiment bias) that

impacts flux estimates from both experiments that assimilate ocean glint data.405

Second, we estimate the overall data–model agreement as the root-mean-square (RMS) error for the the withheld in situ

CO2, TCCON XCO2 , withheld OCO-2 land XCO2 , and withheld OCO-2 ocean XCO2 (Fig. 5). For the in situ and OCO-2

data, the normalized RMS is shown, meaning that the data–model difference is divided by the observational uncertainty (one-

sigma). Overall, we find reasonably good agreement between the evaluation datasets and posterior fields for all experiments.

The OG experiment gives the largest RMS errors against the withheld in situ CO2, TCCON XCO2 , and OCO-2 land XCO2 .410

This provides further evidence that the ocean glint data may have some residual biases that adversely impact the flux estimates.
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Figure 5. 2015–2020 root-mean-square (RMS) error between the v10 OCO-2 MIP experiments and (a) TCCON XCO2 retrievals, (b) withheld

in situ CO2 measurements, (c) withheld OCO-2 land XCO2 retrievals, and (d) withheld OCO-2 ocean XCO2 retrievals. For the comparisons

with withheld in situ and OCO-2 observations, the normalized RMS estimate is plotted (that is, the data–model mismatch is divided by the

observational uncertainty). Note that and NIES IS and CSU co-samples are not available and not included in this plot.

Finally, we examine the mean bias over 2015–2020 for 30◦ latitude bins (Fig. 6). Similar to previous comparisons, we

find that the OG experiment stands out as being more biased against the independent data relative to the other experiments.

In particular, the data–model difference for the OG experiment tends to be low (higher modeled CO2) than the evaluation415

datasets. This is particularly evident in the northern extratropics. Over 30◦–60◦ N, where independent data is densest, we

find that the OG ensemble median is biased by -0.69 ppm against TCCON, -0.74 ppm against witheld in situ, and -0.48 ppm

against witheld OCO-2 LNLG, suggesting a possible meridional bias in the OCO-2 ocean XCO2 retrievals. The IS, LNLG,

and LNLGIS experiments tend to show similar data–model differences, suggesting limited ability to distinguish between the

performance of these inversions in large-scale features.420
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Figure 6. Median bias (data minus model) over 30◦ latitude bins averaged over 2015–2020 for (a) TCCON XCO2 retrievals, (b) withheld in

situ CO2 measurements, (c) withheld OCO-2 land XCO2 retrievals, and (d) withheld OCO-2 ocean XCO2 retrievals. Note that and NIES IS

and CSU co-samples are not available and not included in this plot.

All experiments show some biases against TCCON sites. In particular, low biases (high modeled CO2) are found for 0◦–

30◦ S and 60◦–90◦ N. The underlying cause for these differences is unknown. Figure S3 shows the monthly-mean data–model

differences for each TCCON site and each experiment. The differences can be quite variable between sites, but are generally

similar between experiments (for IS, LNLG, and LNLGIS). Some of these differences may be related due to representativeness

errors, particularly for urban sites. For example, Caltech and JPL are within Los Angeles County and show a large positive425

bias, while nearby Edwards is less impacted by urban emissions and shows a much smaller bias (Schuh et al., 2021). However,

other differences are harder to explain, such as a negative trend in the data–model bias for Park Falls and positive at Darwin

during the 2015–2020 period. Site-to-site biases among TCCON sites may also contribute to these differences.

Overall, this analysis finds that the OG experiment shows the poorest agreement against the evaluation datasets (excluding

the withheld ocean glint data). The LNLGOGIS experiment shows the second worst performance against evaluation datasets,430

while the remaining experiments (IS, LNLG, and LNLGIS) all show good agreement against the evaluation data. These results

suggest that there may be residual biases in the OCO-2 ocean glint dataset that adversely impact the OG and LNLGOGIS

experiments.
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4.2 Comparison of air–sea fluxes with pCO2-based estimates

The exchange of CO2 between the atmosphere and the ocean (air–sea flux) can be estimated from measurements of the surface435

ocean partial pressure of CO2 (pCO2). These pCO2 data are extrapolated to global maps and combined with gas transfer

velocity parameterizations to infer global maps of the air–sea CO2 fluxes (Fay et al., 2021). Although significant uncertainties

remain, particularly in accurately representing the gas transfer velocity (Fay et al., 2021), comparisons between the pCO2-

based air–sea fluxes and v10 OCO-2 MIP experiments can inform possible biases between estimates and inform potential areas

for future research.440

Here, we compare v10 OCO-2 MIP air–sea fluxes to an ensemble of air–sea flux estimates from SeaFlux (Fay et al., 2021;

Gregor and Fay, 2021). SeaFlux developed a standardized approach to harmonize and extend six air–sea CO2 flux products

from as many surface pCO2 products: JENA-MLS (Rödenbeck et al., 2013), MPI-SOMFFN (Landschützer et al., 2014, 2020),

CMEMS-FFN (Denvil-Sommer et al., 2019; Chau et al., 2022), CSIR-ML6 (Gregor et al., 2019), JMA-MLR (Iida et al.,

2021), and NIES-FNN (Zeng et al., 2014). For each pCO2 product, we examine the mean of three air–sea fluxes obtained445

using different wind reanalysis datasets to estimate the gas transfer parameterization (ERA5, JRA55, and CCMP2). The spread

among these six estimates provides a measure of uncertainty in the extrapolation of pCO2 data to a global grid, but does not

account for errors in the gas transfer velocity formulation nor the uncertainties in the reanalysis winds used as input (Fay et al.,

2021). Note that the prior estimates of air–sea CO2 fluxes in v10 OCO-2 MIP experiments are generally pCO2-based flux

estimates, and therefore not independent from the SeaFlux datasets.450

Figure 7 shows the 2015–2019 mean air–sea fluxes for each of the six SeaFlux products and for the v10 OCO-2 MIP exper-

iments across 30◦ latitude bands and large ocean regions. Over the global ocean, the pCO2-based air–sea fluxes tend to give

stronger removals (median =−10.0 PgCO2 yr−1 or−2.7 PgCyr−1, range =−0.2 to − 12.9 PgCO2 yr−1 or−3.5 to − 2.5 PgCyr−1)

than the v10 OCO-2 MIP, which range from −7.9± 1.9 PgCO2 yr−1 (−2.1± 0.5 PgCyr−1) for the IS experiment to

−10.2± 1.28 PgCO2 yr−1 (−2.8± 0.4 PgCyr−1) for the OG experiment. On regional scales, the v10 OCO-2 MIP experi-455

ments overlap with the pCO2-based estimates except for the northern high latitudes (60◦–90◦ N), where pCO2-based estimates

suggest a systematically larger removals. Similarly, the pCO2-based estimates tend to give greater removals over the southern

midlatitudes (20◦–50◦ S).

The different v10 OCO-2 MIP experiments tend to give similar air–sea fluxes, except for the OG experiment in the tropics.

Although not systematic, the OG experiment suggests weaker emissions in the tropics of 0.2± 1.3 PgCO2 yr−1 (0.05± 0.34 PgCyr−1)460

relative to the median pCO2-based estimate of 1.6 PgCO2 yr−1 (0.43 PgCyr−1) with a range of 0.4 to 1.8 PgCO2 yr−1

(0.10 to 0.50 PgCyr−1). Thus, similar to the evaluation of posterior CO2 fields, the OG experiment is an outlier among the v10

OCO-2 MIP experiments, further supporting the possibility that residual biases may exist in the ocean glint XCO2 retrievals.

5 Metrics for interpreting country flux estimates

To aid users in interpreting top-down country-level flux estimates, we provide two metrics. The first metric is called the “Z465

statistic” and quantifies the statistical agreement between the IS and LNLG NCE estimates, and thus gives an indication of
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Figure 7. (a) Zonal-mean air–sea CO2 flux (positive values represent flux towards atmosphere) for 30◦ increments of latitude based on

1◦×1◦ estimates averaged over 2015–2019. (b) air–sea CO2 flux for six large ocean regions. Colored bars show the MIP experiment results

(median +/- one standard deviation) and the symbols show the pCO2-based air–sea fluxes from the six SeaFlux products.

how robust flux estimates are across the v10 OCO-2 MIP experiments (Sect. 5.1). The second metric is called the Fractional

Uncertainty Reduction (FUR) and informs the impact of the assimilated CO2 data on the estimated fluxes (Sect. 5.2).

5.1 Z statistic

The Z statistic is defined as,470

Z statistic =
NCELNLG−NCEIS

std(NCELNLG−NCEIS)
, (7)

where the denominator represents the standard deviation in NCELNLG−NCEIS across the ensemble members. Differences

in NCE and ∆C loss between v10 OCO-2 MIP experiments can be considerable. As an example, Fig. 8a shows that differences

between NCELNLG and NCEIS are notable for South America and Africa. The LNLG experiment gives more positive ∆C loss

(carbon loss from land) over northern sub-Saharan Africa and northeast South America, but more negative ∆C loss over south-475

ern tropical Africa, southern and eastern South America, and southeast Asia. We examine the Z statistic (Fig. 8b) to quantify

the statistical significance of these difference (magnitude greater than 1.96 indicates statistically significant differences at level

α = 0.05). Most countries do not have statistically significant differences, indicating relatively good agreement between the IS
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Figure 8. Difference between LNLG and IS experiments. (a) NCELNLG minus NCEIS, and (b) The Z statistic (Eqn. 7) indicating the

difference between LNLG and IS experiments.

and LNLG ensembles. Significant differences primarily occur in small to mid-sized tropical countries. Canada also shows a

systematic difference driven by small uncertainties in the IS and LNLG estimates.480

5.2 Fractional uncertainty reduction (FUR)

Byrne et al. (2022) reports the uncertainty in NCE as the standard deviation across v10 OCO-2 MIP ensemble members

(estimated using Eqn. 4). This metric incorporates uncertainties related to model transport and aspects of the inversion config-

uration, such as optimization technique and a priori flux estimates. However, this metric is different to the uncertainty metric

usually computed in a Bayesian framework, that is, the Bayesian posterior uncertainty. That uncertainty quantifies the impact485

of errors in the observations and prior constraints on the posterior flux estimates. The Bayesian posterior uncertainty is not

reported for practical reasons, as the majority of contributing models do not calculate this quantity, so it is not possible to

calculate this quantity across the ensemble.

In this section, we examine the posterior uncertainty estimates from two contributing inversion systems (CAMS and TM5-

4DVar) and compare these estimates to the ensemble-based uncertainty estimate provided with the dataset. Then, we define490

the metric of Fractional Uncertainty Reduction (FUR) between the posterior and prior NCE estimates based on the TM5-

4DVar model (as CAMS does not estimate uncertainties for the LNLGIS and LNLGOGIS experiments), which can be used to

understand the relative impact of assimilated atmospheric CO2 data on estimates of country-level NCE and ∆C loss.

Both CAMS and TM5-4DVar estimate CO2 fluxes using four-dimensional variational assimilation (4D-Var) and estimate

posterior uncertainty estimates using a Monte Carlo method derived by Chevallier et al. (2007). The realism of the prior and495

posterior CAMS uncertainty estimates have already been the topic of several studies (see Chevallier, 2021, and references

therein). Figure 9 shows the ensemble-based uncertainty, prior/posterior uncertainty from CAMS (prior, IS and LNLG only)

and prior/posterior uncertainty from TM5-4DVar for four countries. Notably, the magnitudes of the prior/posterior uncertainties

from CAMS and TM5-4DVar are quite different, with CAMS uncertainties being 2–8 times larger. Differences in prior/poste-
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Figure 9. (top) NCE and (bottom) σNCE for four countries in 2018. The v10 OCO-2 MIP ensemble spread-based error estimate is shown

in black, the TM5-4DVar Bayesian uncertainty estimate is shown in red, and the CAMS Bayesian uncertainty estimate is shown in green

(only for Prior, IS, and LNLG).

rior uncertainties of this magnitude are not unusual among inversion systems, and highlight the sensitivity of Bayesian uncer-500

tainty estimates to choices about prior uncertainties. Both CAMS and TM5-4DVar posterior uncertainties are smaller relative

to their prior by similar amounts, driven by the assimilated CO2 data. The magnitude of the ensemble-based uncertainty tends

to fall in-between the CAMS and TM5-4DVar estimates. However, the CAMS and TM5-4DVar posterior uncertainty estimates

decrease as more data are assimilated (as expected), while the ensemble spread does not. In fact, the ensemble spread increases

with data density in some cases (e.g., Australia LNLGIS). Thus, overall, we find that the ensemble-based uncertainty estimate505

is of similar magnitude to the prior/posterior estimate, but that the magnitude of posterior uncertainty is quite dependent on the

assumed prior uncertainty.

We now calculate the FUR metric in NCE from the TM5-4DVar Bayesian uncertainties (note that we use TM5-4DVar only

because CAMS does not report LNLGIS or LNLGOGIS uncertainties). FUR is calculated from the prior flux standard deviation

(σprior) and posterior flux standard deviation (σposterior) as:510

FUR = 1− σposterior

σprior
(8)

This quantity ranges between 0 and 1, with larger values indicating that the Bayesian uncertainties have decreased more

(relative to the prior) due to the observational constraints from assimilated data. This metric is useful for understanding how

the assimilation of data influences the NCE and ∆C loss estimates, which may not be captured by the ensemble spread. For

example, Saudi Arabia has a small NCE uncertainty estimate but this is largely driven by prior knowledge that biosphere CO2515

fluxes and the atmospheric CO2 data has little impact on the NCE estimate.
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Figure 10. Estimate of the Fractional Uncertainty Reduction (FUR) on the v10 OCO-2 MIP estimates for each experiment based on Bayesian

uncertainty estimates from the TM5-4DVar inversion.

Figure 10 shows FUR for the IS, LNLG, LNLGIS, and LNLGOGIS experiments. FUR is larger in regions with denser

observational coverage. For example, the IS FUR is close to 1 in the USA and parts of Europe, reflecting dense CO2 measure-

ments, but it remains small for many tropical countries, where sampling is sparse. Meanwhile, the LNLG experiment generally

has larger FUR values than the IS experiment in the tropics, reflecting denser sampling, but has lower values for some small520

high-latitude countries, such as in Scandinavia.

6 Dataset description

The dataset described in this paper, Byrne et al. (2022), provides annual totals of country-level and 1◦× 1◦ gridded ∆C loss,

NBE, NCE, F rivers export, and the combined F crop trade +Fwood trade fluxes, as well as their uncertainties over 2015–2020. In

addition, the country-level Z statistic (Eqn. 7) and FUR (Eqn. 8) metrics are provided to help interpret the flux and stockchange525

estimates. These data are provided for the v10 OCO-2 MIP IS, LNLG, LNLGIS, and LNLGOGIS experiments. The OG

experiment is excluded due to poor evaluation against independent CO2 measurements and pCO2-based air–sea fluxes, likely

due to residual XCO2 biases in the OCO-2 ocean glint XCO2 retrievals (Sect. 4). We note that biases in ocean glint XCO2

retrievals will also adversely impact flux estimates from the LNLGOGIS, and caution against using these data when they show
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differences from the IS, LNLG, and LNLGIS experiments. Future improvements to the OCO-2 XCO2 retrievals are expected530

to reduce residual XCO2 biases and thus the quality of the LNLGOGIS experiment is expected to improve in future OCO-2

MIP experiments.

For the 1◦× 1◦ gridded dataset, we emphasize that caution is needed in interpreting these data. As discussed in Sect. 1.3,

atmospheric CO2 inversion analyses provide the best constraints on the largest spatial scales (e.g., continental-to-global). The

confidence in these top-down estimates decreases at smaller spatial scales. The minimum spatial resolution for robust flux535

estimates is dependent on the density and precision of the measurements, and is challenging to quantify. However, scales

smaller than France or Germany in geographic extent are unlikely to be meaningfully constrained. Thus, we recommend

only using 1◦× 1◦ CO2 fluxes aggregated to larger spatial scales. In aggregating, we recommend propagating uncertainties

by assuming first 100% correlation (sum of the 1◦× 1◦ uncertainties) and then 0% correlation (square root of the sum of

the squared uncertainties) between grid cells. We strongly encourage contacting the authors before using the gridded 1◦× 1◦540

dataset.

These data are available for download from the Committee on Earth Observation Satellites’ (CEOS) website:

https://doi.org/10.48588/npf6-sw92. The country-level data are available for download as comma-separated values (CSV),

Network Common Data Form (NetCDF) and Microsoft Excel worksheet files. The 1◦× 1◦ gridded dataset is available as a

NetCDF file.545

7 Characteristics of the dataset

Globally, over 2015–2020, we report FF emissions of 35.79± 1.50 PgCO2 yr−1 (9.76± 0.41 PgCyr−1), F rivers export of

−3.35± 0.59 PgCO2 yr−1 (−0.91± 0.16 PgCyr−1), and globally balanced F crop trade and Fwood trade. Table 3 gives the

global annual mean changes in the atmospheric burden of CO2, ∆Cgain and ocean sequestration. Across the experiments, the

median fraction of fossil fuel emissions remaining in the atmosphere is 55–56%, while 32–36% is sequestered by the ocean and550

9-13% is sequestered by terrestrial ecosystems. Note that this omits land use change (LUC) emissions of ∼ 3.85 PgCO2 yr−1

(∼ 1.05 PgCyr−1, Friedlingstein et al., 2022), which are compensated for by additional carbon uptake by land. Of the com-

bined FF+LUC emissions, 50% remains in the atmosphere, 29–33% is sequestered by the ocean and 18-21% is sequestered

by terrestrial ecosystems. Relative to Global Carbon Budget 2021 (GCB 2021; Friedlingstein et al., 2022) we find 2.24–

3.53 PgCO2 yr−1 (0.61–0.96 PgC yr−1) less removal by land (mean/median difference) but greater removal by the ocean of555

0.87–2.24 PgCO2 yr−1 (0.24–0.61 PgC yr−1), however, these difference are consistent within one standard deviation of the

mean/median values. Interestingly, we report greater removals by the ocean than GCB 2021 but reduced air–sea flux relative

to SeaFlux. This can be explained by the fact that pCO2-based air–sea flux estimates generally give larger mean ocean carbon

uptake than model estimates (Fay and McKinley, 2021) and that we estimate a larger F rivers export than GCB 2021.

Meridionally, NCE is largest in the northern extratropics, coinciding with the largest FF emissions (Fig. 11). However, the560

northern extratropics also show negative ∆C loss, implying increasing terrestrial carbon stocks, particularly between 30◦–60◦ N.

NCE is less positive in the tropics, primarily due to lower FF emissions. However, this region tends to show neutral-to-positive
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Table 3. 2015-2020 global mean atmospheric increase, terrestrial carbon gain (∆Cgain) and ocean carbon gain from the IS, LNLG, LNLGIS,

and LNLGOGIS experiments (mean/median ± one standard deviation). Positive values of ∆Cgain and ocean carbon gain indicate increases

in carbon stocks. GCB 2021 were obtained from the Global Carbon Budget 2021 (Friedlingstein et al., 2022) with ∆Cgain calculated as the

difference between the land sink and land-use change emissions with errors propagated in quadrature.

Experiment Atmosphere ∆Cgain Ocean carbon gain

IS
19.73± 0.19PgCO2yr−1

(5.38± 0.05PgCyr−1)

4.58± 2.44PgCO2 yr−1

(1.25± 0.66PgCyr−1)

11.35± 2.01PgCO2 yr−1

(3.10± 0.55PgCyr−1)

LNLG
19.64± 0.09PgCO2 yr−1

(5.36± 0.02PgCyr−1)

3.29± 2.93PgCO2 yr−1

(0.90± 0.80PgCyr−1)

12.91± 2.63PgCO2 yr−1

(3.52± 0.72PgCyr−1)

LNLGIS
19.64± 0.06PgCO2 yr−1

(5.36± 0.02PgCyr−1)

4.19± 2.77PgCO2 yr−1

(1.14± 0.75PgCyr−1)

11.98± 2.32PgCO2 yr−1

(3.27± 0.64PgCyr−1)

LNLGOGIS
19.97± 0.18PgCO2 yr−1

(5.45± 0.05PgCyr−1)

4.03± 2.36PgCO2 yr−1

(1.10± 0.64PgCyr−1)

11.54± 1.79PgCO2 yr−1

(3.15± 0.49PgCyr−1)

GCB 2021
19.8± 0.73PgCO2 yr−1

(5.39± 0.2PgCyr−1)

6.82± 3.15PgCO2 yr−1

(1.86± 0.86PgCyr−1)

10.67± 1.83PgCO2 yr−1

(2.91± 0.5PgC yr−1)

∆C loss, suggesting that terrestrial carbon stocks may be decreasing. The LNLG and IS results also differ most in the tropics,

with LNLG suggesting greater terrestrial carbon stock loss over 0◦–30◦ N but less over 0◦–30◦ S. The differences in CO2 fluxes

between these experiments are not well understood, and both experiments evaluate well against independent data (Sect. 4).565

The spatial distribution of NCE over 2015–2020 at 1◦× 1◦ and aggregated to country-scale for the LNLGIS experiment is

shown in Fig. 12. At 1◦× 1◦ (Fig. 12a-b), localized fossil fuel emissions are visible, generally corresponding to urban areas

and industrialized regions. These emissions are interspersed over broad source and sink structures that are driven by biosphere

removals or emissions. Land biosphere removal is most evident across the northern mid-high latitudes. In contrast, tropical

removals and emissions are more regional. When NCE is aggregated to the country-scale (Fig. 12c-d), most countries are570

net sources driven by fossil fuel emissions, particularly in the northern extratropics. Figure 12e-f shows the 2015–2020 mean

country-level ∆C loss for the LNLGIS experiment. Increasing terrestrial carbon stocks (negative ∆C loss) is found for most

extratropical countries, while tropical countries can have gains or losses. Notably, the uncertainty in ∆C loss is larger in the

tropics, particularly for mid-sized countries. Overall, small to mid-sized countries generally have uncertainties comparable to

the magnitude of ∆C loss, reflecting the fact that atmospheric CO2 measurements best constrain fluxes over large scales. Spatial575

maps of NCE and ∆C loss for each experiment are shown in the supplementary materials (Fig. S4-7).

Differences in NCE and ∆C loss between the v10 OCO-2 MIP experiments can be considerable (the statistical significance of

these differences is quantified by the Z statistic, see Sect. 5.1). The underlying cause of differences between the v10 OCO-2 MIP

experiments are not well understood, but the differences are likely impacted by the different spatial and temporal distribution of
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Figure 11. Zonal-mean (a) NCE, (b) FF + lateral fluxes, and (c) ∆C loss for 30◦ increments of latitude based on 1◦× 1◦ estimates averaged

over 2015–2020. IS, LNLG, LNLGIS and LNLGOGIS median estimates are shown by solid lines and one-sigma uncertainties are shown by

the shaded region.

LNLG and IS measurements (see Sec. 5.2), model transport errors (Stephens et al., 2007; Schuh et al., 2019, 2022) and residual580

retrieval biases in the OCO-2 XCO2 retrievals (Peiro et al., 2022). Unfortunately, the regions showing the largest differences

in fluxes generally have few independent atmospheric CO2 measurements for validation, limiting our ability to distinguish

between different causes. Thus, we believe that NCE and ∆C loss estimates are most reliable when agreement is found across

the v10 OCO-2 MIP experiments.

We will now show examples of carbon budgets for four countries from this dataset. Figure 13 shows the 2015–2020 mean585

FF, F rivers export, F crop trade, Fwood trade, ∆C loss, and NCE fluxes for the USA, India, Indonesia, and Australia. All of the

CO2 fluxes on the left of the dashed line combine to give the NCE flux constrained by the v10 OCO-2 MIP experiments. We

find that FF is the strongest contributor to NCE for all countries, but that ∆C loss also plays a strong modulating role. For

example, negative ∆C loss (increasing terrestrial carbon stocks) for the USA reduces NCE to be less than would be expected

given the FF emissions. Conversely, Indonesia has positive ∆C loss (decreasing terrestrial carbon stocks), resulting in increased590

NCE relative to FF. Some countries also show differences in ∆C loss between v10 OCO-2 MIP experiments. For example, the

LNLG and LNLGIS experiments suggest negative ∆C loss for India, while the IS suggest ∆C loss is roughly neutral. Figures of

carbon budgets for 28 additional countries (Fig. S8) and 14 regions (Fig. S9) are shown in the supplementary materials.

The carbon budgets can also be examined for individual years (Fig. 14). Both Indonesia and Australia show considerable

variations in ∆C loss that drive variations in NCE over this period. Indonesia has a large positive ∆C loss in 2015, driven595
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Figure 12. Median (NCE) and one standard deviation (σNCE) of NCE on a (a-b) 1◦× 1◦ grid and (c-d) aggregated to country-scale for the

v10 OCO-2 MIP LNLGIS experiment averaged over 2015–2020. (e-f) Median and one standard deviation of country-scale ∆C loss averaged

over 2015–2020 derived from the LNLGIS v10 OCO-2 MIP experiment.

by warm-dry weather and fires during 2015 El Niño (Yin et al., 2016). Australia showed strong negative ∆C loss (except

for IS) during 2016, which was the 15th wettest year on record (precipitation 17% above average; Bureau Of Meteorology,
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Figure 13. CO2 budget for the USA, India, Indonesia, and Australia averaged over 2015–2020. Bars show the median +/- one standard

deviation of FF, F rivers export (R), F crop trade+Fwood trade (CW), ∆C loss, and NCE (note that these quantities are related through Eqn. 2).

2017). Australia also showed anomalous positive ∆C loss during 2019, which was the warmest and driest year on record, with

considerable terrestrial carbon loss related to biomass burning in the southeast (Byrne et al., 2021). Variations in NCE are also

found related to FF emissions. In particular, a reduction in NCE is found for 2019 and 2020 in the USA that is primarily linked600

to a reduction in FF emissions rather than ∆C loss. Timeseries of NCE and ∆C loss for 28 additional countries (Fig. S10, S11)

and 14 regions (Fig. S12, S13) are shown in the supplementary materials.

8 Discussion

Here we discuss the current limitations of top-down country-level CO2 budgets and activities that can improve these estimates.

Sect. 8.1 discusses current CO2 observing systems and possible future expansions. Sect. 8.2 discusses current atmospheric CO2605

inversion systems, planned developments, and opportunities for improvement. Finally, Sect. 8.3 discusses remaining challenges

in estimating carbon stock changes from atmospheric CO2 inversions.

8.1 Observations

In the context of global inversion analyses, measurements of atmospheric CO2 best inform annual-mean biosphere–atmosphere

CO2 fluxes over large spatial scales (e.g., continental-to-global) due to rapid mixing in the atmosphere and gaps in current610

measurement coverage. The confidence in these top-down estimates decreases as we move to smaller spatial scales, with the

minimum spatial scale being dependent on the density, precision and sensitivity of the measurements. Future refinements in

top-down CO2 budgets will depend on increasing observational density (Sect. 8.1.1) , improved validation (Sect. 8.1.2), and

data harmonization (Sect. 8.1.3).
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Figure 14. Timeseries of the carbon budget for the USA, India, Indonesia, and Australia. Solid lines show the median estimates and shaded

areas show +/- one standard deviation.

8.1.1 Expanding observations615

An expanding network of CO2 observing systems provides an opportunity to reduce uncertainties in top-down estimates of

NCE. Across much of the globe, country-level estimates of NCE have been limited by the observational coverage of in situ

CO2 measurements and XCO2 retrievals. However, there are a number of planned expansions in observing systems that will

help fill data gaps.

The first-generation of space-based CO2 systems currently in operation (GOSAT, GOSAT-2, OCO-2, OCO-3, TanSat) were620

designed primarily as proof-of-concept missions to demonstrate that space-based measurements could yield XCO2 retrievals

with the precision and accuracy required to quantify emissions and removals of CO2. Planned future missions will expand
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and improve upon current observing systems. MicroCarb, a France-UK mission, is expected to start operations in 2023 with

an additional spectral band to better characterize the light path for the estimation of XCO2 (Bertaux et al., 2020). Japan’s

GOSAT-GW mission (https://gosat-gw.nies.go.jp/en/), which will be launched in early 2024, will also incorporate improved625

capabilities for CO2 as well as CH4. Soon after, NASA plans to launch the GeoCarb mission (https://www.ou.edu/geocarb),

which will be hosted on a commercial communications satellite in geostationary orbit at a longitude around 85◦ W. From that

vantage point, GeoCarb can return the data needed to estimate the column average dry air mole fraction of CO2, CH4 and

carbon monoxide (CO) over most of North and South America at a spatial resolution of 5 to 10 km every day. In 2025, the

European Copernicus program will begin to deploy the first operational CO2 and CH4 monitoring constellation, CO2M (Pinty630

et al., 2017; Janssens-Maenhout et al., 2020). The CO2M constellation will eventually include up to three satellites, flying in

formation to collect measurements at 2 km by 2 km resolution over the entire globe at weekly intervals. In addition, a follow-on

to the Chinese TanSat mission is currently under development (Yang et al., 2018).

Most current and planned space-based CO2 observing systems are passive, in that they rely on reflected sunlight to retrieve

XCO2 . Active satellite missions, which use lidars for their light source, could provide coverage when reflected sunlight is not635

available or of insufficient intensity, such as at night and at high latitudes in the winter hemisphere when solar zenith angles

are large. These systems also have the potential to better characterize systematic errors in current passive instruments by using

pulse timing information to get a better estimate of path length and to filter out scattered light from clouds and aerosols (Abshire

et al., 2010).

As space-based CO2 observing systems expand, sub-orbital discrete air sampling (i.e., flask) and continuous CO2 observing640

systems will remain critical for developing top-down CO2 budgets. These in situ observations are the global standard for GHG

measurements, because they can undergo direct calibration relative to the WMO CO2-in-air mole fraction scale, which is SI-

traceable (Hall et al., 2021). , In contrast, open-path remote sensing measurements (both TCCON and satellite) can not be

calibrated using standard gasses; they can only be compared to in situ vertical profile observations made relative to the WMO

scale, with the differences used to adjust the remote sensing observations (e.g., Wunch et al., 2011). As such, in situ data are645

critical for linking remote sensing observations of CO2 to the accepted trace gas scales. In situ data also provide complementary

observational coverage to space-based observing systems (Byrne et al., 2017). Space-based measurements have broad spatial

coverage but with seasonal variations driven by sunlight, and have data gaps in persistently cloudy regions. In contrast, flask

and in situ data can be deployed year-round and regardless of cloud cover. Additionally, in situ observations most typically

represent the planetary boundary layer where flux signals in atmospheric CO2 are larger than the signal as expressed in the650

column mean (Feng et al., 2019). Thus, these data play a critical role for improving carbon cycle constraints, especially in

high latitude and persistently cloudy regions (such as the tropics), and we encourage an expansion of these systems in these

undersampled regions. Regular measurements of CO2 using light aircraft above several sites in Amazonia exist (e.g., Gatti

et al., 2021; Miller et al., 2021), but these measurement records, as well as a nascent aircraft program in Uganda, have been so

far funded using short-term grants.655

Measurements of stable- (13C/12C) and radio- (14C/C) isotope ratios of carbon in CO2 provide powerful tools for source

attribution. Radiocarbon is absent from fossil fuels making it ideal for distinguishing fossil versus biologic carbon fluxes, and
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inversions using measurements of CO2 and 14C/C have been used to provide top-down constraints on national-scale fossil CO2

emissions (Basu et al., 2020). Atmospheric 13C/12C ratios provide insight into ecosystem stress and its relation to climate via

constraint of ecosystem water use efficiency (photosynthesis relative to water loss by transpiration) and has been used in box660

models (Keeling et al., 2017) and inversions (Peters et al., 2018). Atmospheric 13C/12C ratio data are generally available where

discrete air samples are collected by various networks, but 14C/C ratio data are more limited as they tend to require larger

samples and measurement costs are greater. Other tracers closely related to CO2, such as O2/N2 (Keeling and Graven, 2021)

and Carbonyl Sulphide (e.g., Hu et al., 2021; Remaud et al., 2022) are also limited yet provide valuable information on global

ocean/NBE and regional-scale photosynthesis/respiration partitioning, respectively. Increasing the temporal and spatial density665

of these data, particularly across poorly sampled regions, will allow for more diagnostic power of carbon cycle processes than

is possible with CO2 alone.

8.1.2 Data validation

Validation of XCO2 retrievals is critical for ensuring that retrieval biases do not strongly impact flux estimates. Current gaps in

coverage of ground-based and airborne measurements have limited our confidence in flux inferences from space-based data.670

For example, large CO2 emissions over northern Sub-Saharan Africa are a robust feature of the inversions that assimilate

satellite XCO2 retrievals (Palmer et al., 2019), but there are few independent CO2 measurements to confirm whether this

inference is a real signal or an artifact of regional retrieval biases. Increased validation of space-based observations will also

provide critical support for improved space-based inferences. Space-based measurements rely on validation against ground

based XCO2 retrievals from the TCCON (Wunch et al., 2011) and the COllaborative Carbon Column Observing Network675

(COCCON, Frey et al., 2019). In turn, these sites rely on in situ CO2 measurements from aircraft profiles and AirCore (Karion

et al., 2010) to tie their measurements to the WMO scale (Wunch et al., 2010; Messerschmidt et al., 2011). These data have been

critical for validating and improving XCO2 retrievals (Wunch et al., 2017b; O’Dell et al., 2018; Kiel et al., 2019). Continued

funding of these activities will be crucial for improving top-down CO2 flux estimates and expansion of these observing systems

into undersampled regions, such as the tropics and high latitudes, will also be important for identifying and addressing residual680

XCO2 retrieval biases. In addition, efforts to cross-calibrate TCCON and COCCON sites will be helpful for minimizing site-to-

site biases and identifying spurious drifts in XCO2 . We encourage future campaigns aimed at site-to-site comparisons similar

to the FRM4GHG campaign that deployed total column GHG traveling standard instruments at several TCCON sites as part

of ESA’s FRM4GHG-2 project (Sha et al., 2020).

8.1.3 Data harmonization685

Further advancements in top-down flux estimates will be possible through combining the observational constraints from the

constellation space-based sensors and ground-based instruments. Assimilating these data concurrently within inversion systems

will increase our ability to recover net fluxes over smaller regions. However, these instruments must be cross-calibrated against

common standards to use these data together, as small inter-calibration differences could potentially strongly impact flux

estimates. We encourage support of these critical cross-calibration activities, as are outlined in Crisp et al. (2018).690
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8.2 Atmospheric CO2 inversions

Atmospheric CO2 inversion analyses are a critical tool for estimating surface fluxes from observations of atmospheric CO2.

Expanding observational coverage provides both opportunities and challenges for inversion systems. By addressing the current

limitations of our inversion systems, we will be able to take full advantage of increasing observations to improve country-level

top-down estimates of NCE and ∆C loss. Here we discuss ongoing and planned developments (Sect. 8.2.1), improving model695

transport (Sect. 8.2.2), missing processes and required assumptions (Sect. 8.2.3), and uncertainty quantification (Sect. 8.2.4).

8.2.1 Ongoing and planned developments

To date, there are four operational or quasi-operational atmospheric CO2 inversion systems: CarbonTracker (Jacobson et al.,

2020), CAMS (Chevallier et al., 2005b), Jena CarboScope (Rödenbeck et al., 2018) and CMS-Flux (Liu et al., 2021a) that

are regularly updated on annual or quarterly timescales. These systems produce NBE and air-sea flux estimates from either in700

situ CO2 measurements (CarbonTracker, Jena CarboScope), OCO-2 XCO2 retrievals (CMS-Flux) or both (CAMS). Similarly,

there are seven inversion models (including the aforementioned models) that update CO2 flux estimates annually for the Global

Carbon Budget (Friedlingstein et al., 2022), including CAMS (Chevallier et al., 2005b), CarbonTracker Europe (CTE van der

Laan-Luijkx et al., 2017), Jena CarboScope (Rödenbeck et al., 2018), UoE in situ (Feng et al., 2016), NISMON-CO2 (Niwa

et al., 2017), MIROC4-ACTM (Saeki and Patra, 2017; Chandra et al., 2021), and CMS-Flux (Liu et al., 2021a).705

The OCO-2 MIP activities have semi-regularly performed ensemble inversion experiments (Crowell et al., 2019; Peiro

et al., 2022). To date, OCO-2 MIP experiments have been linked to new versions of the ACOS retrieval algorithm, with

major improvements to the quality of XCO2 retrievals occurring during each update. However, as the quality of retrievals have

improved (particularly for ACOS v10 onwards), updates to the ACOS retrieval algorithm are becoming less of a driver for new

OCO-2 MIP experiments. In the future, OCO-2 MIP activities could become more regular with annual updates.710

The first top-down CO2 system for use in inventory development is CarbonWatch-NZ, under development in New Zealand

(https://niwa.co.nz/climate/research-projects/carbon-watch-nz). This program includes expanded CO2 measurement sites and

the development of a regional atmospheric CO2 inverse system to quantify the carbon budgets of New Zealand’s forest,

grassland and urban environments. Initial results suggest stronger uptake by intact forests than estimated through bottom-

up estimates (Steinkamp et al., 2017). This system may serve as an example for other nations through the Integrated Global715

Greenhouse Gas Information System (IG3IS) framework.

Beyond existing activities, there are a number of planned projects. The European Commission’s Copernicus program

(https://www.copernicus.eu) has a number of developments ongoing and planned, particularly in building anthropogenic CO2

emissions monitoring and verification support capacity (CO2MVS; Janssens-Maenhout et al., 2020), which is directly linked to

the development and launch of the new CO2M mission and is expected to be operational from 2026 onwards. Further, there are a720

number of recently completed, ongoing, and planned projects to develop and improve inversion systems to develop operational

capacity. Examples include the recently completed CO2 Human Emissions (CHE) project (https://www.che-project.eu/) and

follow-up CoCO2 project (https://coco2-project.eu/) that is ongoing, as-well as the VERIFY project (https://verify.lsce.ipsl.fr/).
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These projects are developing and refining inversion systems to estimate anthropogenic fossil fuel emissions as well as emis-

sions and removals from the AFOLU sector. Future planned projects include developing approaches to utilize co-emitted725

species and auxiliary observations (14C, solar induced fluorescence, Carbonyl Sulfide, and others) in order to isolate some of

the CO2 budget components and improve our understanding of the carbon cycle. For example, multiple data streams could be

used together to optimize the dynamic global vegetation model parameters (e.g., Peylin et al., 2016).

In contrast to recent European efforts, there is no mandate for an operational top-down carbon flux-attribution system

in the US. Nevertheless, efforts at NOAA centered around CarbonTracker (Jacobson et al., 2020) have been able to pro-730

duce NBE estimates with relatively low latency harnessing the Agency’s substantial flask and in situ CO2 network. In ad-

dition, NOAA has developed a higher spatial resolution North American regional inverse system, CarbonTracker-Lagrange

(https://gml.noaa.gov/ccgg/carbontracker-lagrange/; Hu et al., 2019). In anticipation of the launch of OCO in 2009, NASA has

supported research and development efforts needed to prototype an operational flux estimation system. In particular, the Carbon

Monitoring System program (https://carbon.nasa.gov/) has led to the development of both low-latency (2 month) atmospheric735

CO2 reanalysis (Weir et al., 2021) and approaches to combine top-down NCE estimates with other trace gas measurements

(e.g., CO) and non-atmospheric carbon data (e.g., above-ground biomass) to provide improved understanding of carbon cycle

processes (Liu et al., 2017; Byrne et al., 2020, 2021; Bloom et al., 2020). There is substantial technical capacity to build an

operational system but requires a coordinated effort between federal agencies, academia, and private interests.

In Canada, a prototype operational regional inverse modeling system, the Environment and Climate Change Canada (ECCC)740

National Carbon Flux Inversion System (ENCIS), is being developed to provide quantitative information on CO2 (and CH4)

flux estimates over Canada from national to provincial scales, as well as to understand the carbon cycle in Canada such as CO2

flux in boreal managed and unmanaged forests, wetland emissions of CH4, and GHG emissions over a potentially thawing

permafrost in response to the climate change. ENCIS is a regional inverse modeling system based on Lagrangian approach and

driven by metrology from the Global Environmental Multiscale (GEM) model (Girard et al., 2014) and is expected to have745

1◦× 1◦ spatial resolution.

8.2.2 Improving CTM transport

Errors in the representation of atmospheric transport by CTMs has long been recognized as a major source of error in atmo-

sphere CO2 inversion analyses (Law et al., 1996; Law and Simmonds, 1996; Denning et al., 1995, 1999a, b; Baker et al.,

2006a; Stephens et al., 2007). Improvements to model transport will provide critical improvements to NCE and ∆C loss es-750

timates. Systematic errors in model transport limit our ability to relate surface fluxes and CO2 observations, and can lead to

incorrect inferences of surface fluxes (Yu et al., 2018; Schuh et al., 2019; Stanevich et al., 2020). Improving model transport

will require work in two areas: (1) improving model parameterizations of unresolved transport, particularly in coarse off-

line CTMs (like GEOS-Chem run at 4◦× 5◦ in this ensemble) where the spatial and temporal coarsening of meteorological

fields can “average-out” vertical transport that is resolved in the parent model (Yu et al., 2018; Stanevich et al., 2020); and755

(2) increasing spatial and temporal resolution in model simulations, which can better resolve atmospheric transport processes

(Agustí-Panareda et al., 2019; Schuh et al., 2019). However, it should be noted that there are limitations to the improvements
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that can come from increased model resolution in the global inversion context due to underlying meteorological uncertainties

(Liu et al., 2011; Polavarapu et al., 2016, 2018; McNorton et al., 2020). Computational cost is also a significant challenge in

inversion systems, because transport models usually scale poorly on supercomputers, for example because of the volume of760

meteorological data required as input.

As transport models are refined, it will be critical to periodically test their ability to represent large scale atmospheric

dynamics. This can be tested using long-lived trace gas species, including sulfur hexafluoride (Schuh et al., 2019), idealized

age of air tracer (Krol et al., 2018), and beryllium-7 (Stanevich et al., 2020). Simulations of these trace species are critical in

the context of inversion MIPs to gauge inter-model variability and average model bias (Schuh et al., 2019). Similarly, Rn 222 is765

a useful short lived gas species that enables modelers to evaluate the vertical mixing within the column (Remaud et al., 2018).

In addition, model intercomparison studies have proven useful for diagnosing transport errors (e.g., Gaubert et al., 2019; Zhang

et al., 2022), and we recommend further activities, such as within the Atmospheric Tracer Transport Model Intercomparison

Project (TRANSCOM) framework.

8.2.3 Missing processes and required assumptions770

The flux estimates provided here do not explicitly account for the atmospheric-chemical production of atmospheric CO2,

which occurs from the oxidation of reduced carbon gasses. Instead, these fluxes are either prescribed as surface–atmosphere

fluxes (e.g., for FF CO emissions) or neglected from the prior fluxes. This can cause inverse modeling systems to implicitly

incorporate the atmospheric CO2 source in optimized surface-atmosphere emissions and removals (i.e. air–sea fluxes and

NBE), which can be far from the actual source of the reduced gas. For example, FF CO emissions are largely emitted in the775

northern extratropics but largely oxidized to CO2 in the tropical troposphere. These incorrectly located emissions of CO2 are

large enough to impact top-down inversions (Enting and Mansbridge, 1991; Suntharalingam et al., 2005; Nassar et al., 2010;

Wang et al., 2020). Future studies that aim to incorporate an atmospheric source of CO2 would help correct for this current

spatial bias (Ciais et al., 2022).

A critical assumption in the top-down CO2 budgets estimated here has been that FF emissions are known and unbiased.780

Uncertainties in inventory-based FF emission estimates at global and country levels (e.g., Andres et al., 2014) are smaller than

top-down NCE estimates; however, inventory-based emission estimates are prone to systematic biases due to the nature of the

estimation approach (Guan et al., 2012; Oda et al., 2019) and FF uncertainties could bias the partitioning of NCE between FF

and NBE (and propagate into ∆C loss) over countries with large emissions and lower reliability of statistical data collection

system, such as China. For example, Saeki and Patra (2017) show that an inferred increase in removals of CO2 by the biosphere785

over China during 2001–2010 are likely to be an artifact imposed by an error in the trend of anthropogenic CO2 emissions.

8.2.4 Uncertainty quantification

The uncertainty in NCE reported here is an estimate of the standard deviation of the v10 OCO-2 MIP ensemble members.

This is meant to characterize uncertainties originating from the inversion configuration (such as the transport model, inver-

sion method, and prior constraints). However, there are also limitations to this method. First, there is only a small ensemble790

37

https://doi.org/10.5194/essd-2022-213
Preprint. Discussion started: 12 July 2022
c© Author(s) 2022. CC BY 4.0 License.



of 11 MIP ensemble members included in this analysis, and an over-representation of inversions using two transport models:

TM5 (3) and GEOS-Chem (5), which makes uncertainty quantification challenging. Future approaches that employ “borrowing

strength” (Mearns and et al., 2007; Cressie and Kang, 2016) could be employed to better characterize ensemble uncertainty.

Second, the ensemble-based uncertainty does not capture some sources of uncertainty. In particular, Bayesian posterior un-

certainties are not considered here (see Sect. 5.2), due to the fact that many of the inversion systems participating in the v10795

OCO-2 MIP do not calculate this uncertainty. In addition, we find that the ensemble members that produce Bayesian uncertain-

ties show large differences in magnitude. Thus, this is an area of future improvement for MIP activities, and we recommend

more work into characterizing this error component in ensemble inversion experiments. We also note that using an analytic

framework, posterior uncertainties and their sensitivities to prior information could be further examined, as has been done for

methane (Worden et al., 2022).800

8.3 Stockchange estimates

AFOLU emissions and removals are generally quantified as terrestrial carbon stockchanges in managed lands. A number of

challenges remain in estimating this quantity from top-down methods. Firstly, lateral fluxes of carbon remain quite uncertain

(and associated uncertainty estimates are themselves quite uncertain). The best constrained lateral fluxes are annual country-

level Fwood trade and Fwood trade, which are reported to the UN Food and Agriculture Organization. These fluxes are more805

uncertain on sub-national scales and sub-annual timescales. Meanwhile, F rivers export is best quantified on basin scales, where

stream gauge measurements inform carbon fluxes. Improving sub-national and sub-annual estimates of lateral fluxes would

have several benefits: first, this would allow for better sub-national attribution, where regional fluxes could be better quanti-

fied. Second, this would allow for incorporating the atmospheric imprint of these carbon fluxes as prior information within

atmospheric CO2 inversion analyses, which may improve flux estimates on sub-national scales.810

The Global Stocktake and Paris Agreement do not consider emissions and removals from unmanaged lands. Separating

managed lands from unmanaged lands is top-down NCE remains a major challenge, given the smoothed large-scale CO2 flux

constraints provided by these top-down methods and the fact that both managed and unmanaged lands can experience consid-

erable stock changes driven by interannual climate variations (e.g., El Niño) and in response to rising CO2 and climate change.

In addition, separating managed and unmanaged lands is further complicated by the fact that there is considerable ambiguity815

in the definitions managed lands, which can also vary by country (Grassi et al., 2018; Chevallier, 2021). We recommend that

each party provide a mask to unambiguously define the plots considered as managed from year to year (Chevallier, 2021).

9 Conclusions

We introduced a pilot top-down CO2 budget dataset (Byrne et al., 2022) intended to start a dialogue between research com-

munities and to identify ways that top-down flux estimates can inform country-level carbon budgets. This dataset provides820

annual country-level and 1◦× 1◦ gridded top-down NCE and ∆C loss over 2015–2020, in addition to bottom-up FF and lateral

fluxes. These data are provided for four experiments from the v10 OCO-2 MIP that differ in the data used in the assimilation:
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IS, LNLG, LNLGIS, and LNLGOGIS. In addition, we provide two metrics for interpreting country-level estimates: (1) the

Z-statistic (Sect. 5.1), which quantifies the agreement between IS and LNLG NCE estimates, and (2) the FUR (Sect. 5.2),

which quantifies the impact of atmospheric CO2 data in reducing flux uncertainties.825

Country-level flux estimates generally show robust signals for large extratropical countries (e.g., USA, Russia, China).

Agreement between the experiments generally decreases for mid-sized countries (e.g., Turkey), particularly in regions with

sparse observational coverage for the in situ network (such as the tropics). Large divergences between the IS and LNLG

experiments occur in some regions, particularly northern Sub-Saharan Africa, and could be related to the sparsity of in situ

CO2 measurements or biases in OCO-2 retrievals. However, the sparsity of independent CO2 measurements in these regions830

precludes definitive conclusions. We urge caution in interpreting the 1◦× 1◦ gridded results and suggest collaborating with

with experts in atmospheric CO2 inversion systems when using those data.

The accuracy of top-down NCE estimates were characterized through comparisons against independent atmospheric CO2

datasets, and through comparisons against pCO2-based air–sea CO2 fluxes. Overall, the IS, LNLG, and LNLGIS were found

to show the best agreement against independent CO2 measurements, and we recommend using these experiments for analysis.835

Poorer agreement for experiments assimilating OCO-2 ocean glint XCO2 retrievals, suggesting that residual retrieval biases

adversely impact the LNLGOGIS experiment and we urge caution in interpreting these data.

For future GSTs, top-down NCE estimates will be refined as new space-based XCO2 observing systems expand and retrieval

algorithms are improved. Complementary expansions of ground-based and aircraft-based CO2 measurements in under-sampled

regions will similarly fill critical observational gaps in regions with large uncertainties and susceptibility to retrieval biases.840

Improvements to atmospheric CO2 inversion systems, including reductions to systematic transport errors and improved error

characterization, will be critical for refining top-down CO2 budgets. And improved estimates of lateral carbon fluxes and

managed lands maps will refine estimates of AFOLU emissions and removals.

10 Data availability

Top-down CO2 budgets (Byrne et al., 2022) are available from the Committee on Earth Observation Satellites’ (CEOS) website:845

https://doi.org/10.48588/npf6-sw92. Gridded NBE and air-sea fluxes from the OCO-2 MIP are available at

https://gml.noaa.gov/ccgg/OCO2_v10mip/. Fossil fuel emissions prescribed in the inversions can be downloaded from

https://zenodo.org/record/4776925#.YNX96hNKj2U. The ODIAC2020 emission data product can be downloaded from the

Global Environmental Database hosted by the Center for Global Global Environmental Research at NIES

(https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2020.html). SeaFlux pCO2-based air–sea fluxes were downloaded from850

https://zenodo.org/record/5482547#.Yowg18ZlD1I, accessed 23 May 2022.
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Appendix A: TCCON sites

Table A1. TCCON sites used for evaluation of posterior CO2 fields of the v10 OCO-2 MIP experiments.

TCCON site Country Latitude Longitude Reference

Eureka Canada 80.05◦ N 86.42 ◦W Strong et al. (2019)

Ny-Ålesund Norway 78.9◦ N 11.9 ◦E Notholt et al. (2019b)

Sodankylä Finland 67.4◦ N 26.6 ◦E Kivi et al. (2014)

East Trout Lake Canada 54.4◦ N 105.0 ◦W Wunch et al. (2017a)

Bremen Germany 53.10◦ N 8.85 ◦E Notholt et al. (2019a)

Karlsruhe Germany 49.1◦ N 8.4 ◦E Hase et al. (2014)

Paris France 48.8◦ N 2.4 ◦E Te et al. (2014)

Orléans France 47.9◦ N 2.1 ◦E Warneke et al. (2019)

Garmisch Germany 47.5◦ N 11.1 ◦E Sussmann and Rettinger (2018a)

Zugspitze Germany 47.3◦ N 11.0 ◦E Sussmann and Rettinger (2018b)

Park Falls USA 45.9◦ N 90.3 ◦W Wennberg et al. (2017)

Rikubetsu Japan 43.5◦ N 143.8 ◦E Morino et al. (2014)

Lamont USA 36.6◦ N 97.5 ◦W Wennberg et al. (2016b)

Anmeyondo Korea 36.5◦ N 126.3 ◦E Goo et al. (2014)

Tsukuba Japan 36.1◦ N 140.1 ◦E Morino et al. (2018a)

Nicosia Cyprus 35.1◦ N 33.4 ◦E Petri et al. (2020)

Edwards USA 34.2◦ N 118.2 ◦W Iraci et al. (2016)

JPL USA 34.2◦ N 118.2 ◦W Wennberg et al. (2016a)

Caltech USA 34.1◦ N 118.1 ◦W Wennberg et al. (2014)

Saga Japan 33.2◦ N 130.3 ◦E Kawakami et al. (2014)

Hefei China 31.9◦ N 117.2 ◦E Liu et al. (2018)

Izaña Spain 28.3◦ N 16.5 ◦W Blumenstock et al. (2017)

Burgos Philippines 18.5◦ N 120.7 ◦E Morino et al. (2018b)

Manaus Brazil 3.2◦ N 60.6 ◦W Dubey et al. (2014)

Ascension Island UK 7.9◦ S 14.3 ◦W Feist et al. (2014)

Darwin Australia 12.4◦ S 130.9 ◦E Griffith et al. (2014a);

Réunion island France 20.9◦ S 55.5 ◦W De Mazière et al. (2017)

Wollongong Australia 34.4◦ S 150.9 ◦E Griffith et al. (2014b)

Lauder 125HR New Zealand 45.0◦ S 169.7 ◦E Sherlock et al. (2014)
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