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ABSTRACT

In this paper, we argue that the very convincing performance of recent deep-neural-model-based NLP
applications has demonstrated that the distributionalist approach to language description has proven to be
more successful than the earlier subtle rule-based models created by the generative school. The now
ubiquitous neural models can naturally handle ambiguity and achieve human-like linguistic performance
with most of their training consisting only of noisy raw linguistic data without any multimodal grounding
or external supervision refuting Chomsky’s argument that some generic neural architecture cannot arrive at
the linguistic performance exhibited by humans given the limited input available to children. In addition,
we demonstrate in experiments with Hungarian as the target language that the shared internal represen-
tations in multilingually trained versions of these models make them able to transfer specific linguistic
skills, including structured annotation skills, from one language to another remarkably efficiently.

KEYWORDS

distributional vs. generative models of language, zero-shot cross-lingual knowledge transfer, multilingual contextual
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1. INTRODUCTION

Noam Chomsky theorized that the human brain contains a special unique mechanism he
termed ‘the language acquisition device’ (Shatz 2007), which he thought to be quite separate and
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different from other cognitive faculties. He imagined this faculty as an innate generative uni-
versal grammar that has a number of parameters, which are set during the language acquisition
process in a child’s brain. Chomsky’s main argument for his theory was what he perceived as a
poverty of stimulus concerning linguistic input during language acquisition. Although quite
influential, the idea was debated by a body of research in applied linguistics and neuroscience
(Pullum & Scholz 2002). Chomsky’s formulation of the problem ended up for the most part as a
dogma of a school of steadily dwindling orthodox followers. While it is a trivial fact, that
humans are endowed with some sort of predisposition toward language learning not exhibited
by most other species,1 the substantive issue is whether a full description of that predisposition
incorporates anything that entails specific contingent facts about natural languages. This is what
Pullum & Scholz (2002) argued against quite convincingly even without supporting the idea that
domain-unspecialized algorithms for knowledge acquisition can suffice for learning natural
languages given children’s experience.

Predating Chomsky, originating in the work of Leonard Bloomfield and Morris Swadesh, the
insight that the distribution of words or morphs is the most important source of information of
all grammatical knowledge was finally formalized in Zellig Harris’ work (Harris 1954). Applied
as a research procedure from the 1930s, it was the task of the linguist field worker to explore
distributions and categorize lexical items accordingly, which was a very labor-intensive task.
Later, owing mostly to the influence of Chomsky, the generative school of linguistics largely
abandoned the idea of inducing grammar from raw linguistic data. Instead, grammars were
created manually.

We will attempt to demonstrate below with a very concise review of some of the key points
and paradigms in the earlier and more recent history of computational linguistics and natural
language processing that since the development of an appropriate type of parallel hardware
made the efficient and automatic creation of rich distributional models of language feasible,
these models have demonstrated remarkable linguistic abilities that surpass those ever attained
by models based on the generative grammar tradition by a huge margin.

We will also cite literature showing that the internal representations of distributional models
of different natural languages have been found to be highly isomorphic, i.e. these representations
can be mapped to each other remarkably efficiently. Moreover, multilingual models, trained on
linguistic data representing several languages, consist of shared internal representations where
an aligned mapping of representations automatically emerges during the training process. These
shared representations make it possible for these models to apply specific linguistic skills they
attained for some language to other languages that the underlying model covers.

We present some case studies that feature Hungarian as the target language. While the
feasibility of linguistic transfer for end-to-end tasks, like summarization or translation, has also
been demonstrated, and is the main driving force behind these models, here we present results
on structured prediction tasks where the model is expected to output some sort of linguistic
annotation.

1One can also argue that the following biological factors may be relevant to humans having exceptional cognitive
faculties and being linguistic creatures: a) the human vocal tract is adapted to sophisticated and quasi-continuous
vocalization, b) humans have a high-above-average neural capacity, with a large number of neurons packed into a small
cerebral cortex (high neural density in the neocortex), and c) a protracted childhood with high neural plasticity
lengthening the period of physiological integration and adaptation.
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One experiment demonstrates the feasibility of zero-shot parsing with a dependency-based
meaning representation output. In that experiment, we find that shared typological features are
needed for the model to generate certain types of annotation: e.g. a model trained on a language
not featuring certain types of zero elements (e.g. subject pro drop) cannot properly parse
constructions containing such elements in another language.

In other experiments, we perform zero-shot transfer of named entity recognition, i.e.
identification of names and the type of their referents.

2. GENERATIVE GRAMMAR VS. DISTRIBUTIONALISM – THE END OF AN
ERA

Chomsky’s ideas of grammar and especially syntax also influenced computational linguistics
and language technology for quite some time. However, even during the era when rule-based
approaches dominated natural language processing, it was not Chomsky-style trans-
formational, minimalist, etc. grammars that actually worked. Nevertheless, the more-or-less
well functioning alternatives, like HPSG (Pollard & Sag 1994) or LFG (Dalrymple 2001),
that had working implementations (e.g. the Alpino parser for Dutch (Bouma et al. 2000),
based on an HPSG grammar, or the LFG-based Xerox Linguistic Environment (XLE,
Kaplan et al. 2004)) can be considered members of a family of generative grammars both in the
sense that they are formally explicit models and that they are characterized by a recursive
productivity.

Chomsky mostly ignored semantics, but computational grammars were not feasible without
some implementation of semantics that could be used to tackle the problem of immense am-
biguities posed by possible alternative grammatically feasible analyses. However, an effective
computational semantics seemed for a long time to be a Holy Grail.

2.1. The advent of statistical machine learning paradigms

As computing power and available memory of average computers increased, the application of
machine learning paradigms based on statistical methods became dominant partly supple-
menting,2 but in most cases rather displacing rule-based solutions, and, while some sort of
grammatical annotation was still an ingredient of many of these models, the annotation did not
come from some hand-crafted grammar, but it was learned during model training from gold-
standard expert annotation of treebanks. Statistical parsers (Klein & Manning 2003) and other
statistical NLP models, like those applied in the statistical machine translation paradigm (Koehn
2009), were also much less fragile than rule-based ones: while the latter failed to produce any
output for a significant portion of actually attested linguistic data (and generated too many
possible outputs for the rest), the former naturally came up with a ‘best’ or ‘most probable’
solution for any input (which, however, was not necessarily correct or even well-formed). These
systems, like humans, were no longer overwhelmed by ambiguity.

2E.g. in the Dutch Alpino parser, statistics from the Alpino treebank were used to rank and select output from the parser
providing information about ‘what makes sense’.
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Meanwhile the Chomskyan tradition also lost ground to alternative formalisms owing to the
relative lack of expressive power of hardcore Chomskyan syntax: functional relations of the age-
old dependency syntax tradition seemed to be more usable in computational models than
phrase-structure-based constituency. While the latter were almost exclusively used for decades,
the parsing scene later became dominated by dependency parsers partly due to the success of the
unified effort of the Universal Dependencies project.3

2.2. Neural models of machine learning

Technical evolution reached a point at the end of the 2000s where artificial neural networks
(ANNs) started to achieve state-of-the-art results in some areas previously dominated by other
machine learning paradigms. With the foundations set between the 1940s and the 60s (Hebb
1949; Rosenblatt 1958), functioning computational implementations of ANNs had been avail-
able since the 1970s (Werbos 1994), but they had limited practical use for a long time. The main
reason for this was that training of and inference by these models could only be emulated on by
today’s standards snail-pace sequential hardware that also had very serious memory limitations.
Another reason was the vanishing gradient problem,4 and a lack of massive amounts of training
data needed to train complex networks.

The basic idea, however, remained the same since the beginnings: artificial neural networks
consist of units attached to each other via connections of variable strength or weight, the units
are activated by some non-linear activation function of their input, and it is the connection
weights that largely determine the functioning of the network. Neural networks are trained in a
supervised manner: connection weights are updated during training by backpropagating pre-
diction error of the network that can be calculated as the difference of the network’s prediction
and the expected output.5

Appearance and increasing availability of powerful parallel computing architectures (Graph-
ical Processing Units, GPUs),6 a constant increase in computer power and the amount of data
available for training combined with a new neural training paradigm, which became known as
‘deep learning’ that could feasibly tackle the problem of error backpropagation during the training
of deep multi-layer neural networks turned out to be a game changer not only in image pro-
cessing, speech and language technology, but in practically all areas of information technology.
Like a few times before, speech technology pioneered the first deep neural networks, but soon

3https://universaldependencies.org/.
4The gradient (error signal) used to update the weights of connections in a multi-layer network during training
decreases exponentially with the distance of a layer from the output layer, so layers close to the input may train very
slowly.
5Neural networks are also widely used for representation learning, which is an essentially unsupervised training task. In
these training scenarios no additional ground truth output annotation is provided, but the training of the network is
still supervised in a strictly technical sense: the input itself is used as ground-truth supervision data to estimate
prediction error both in the case of training autoencoders, which create compressed representations from which the
autoencoder can more-or-less faithfully reconstruct the input, and in the case of neural language modeling, where the
model is trained to reconstruct (some aspects of) the input from a manipulated/incomplete input representation.
6Later also special Tensor Processing Units (TPUs) were developed specifically for the training and application of deep
neural networks, and integrated in supercomputers called TPU pods containing several (in an extreme case, several
thousand) such units.
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computer vision and natural language processing followed as domains of application. Generations
of different neural network architectures followed each other resulting in new success stories at
different modalities of input. Although different neural architectures turned out to be the most
effective for processing visual and sequential input, this does not mean that e.g. convolutional
neural networks (CNNs), most suitable for image processing, would not be successfully applicable
to linguistic input: although now not state-of-the-art, they can be fair ‘cheaper’ alternatives to
currently top-performing compute-and-memory-hungry transformer-based models.

2.2.1. Attention is all we need. For sequential input, a generic attention mechanism turned
out to be crucial in that neural networks managed to surpass the performance of all previous
machine learning paradigms. Within the NLP community, it was machine translation experts
who kept coming up with breakthrough neural models, all important mile-stone models
involving some new version of an attention mechanism. The introduction of attention to
recurrent neural networks in 2014 was the invention that put the first nails into the coffin of the
statistical machine translation paradigm (Bahdanau et al. 2014). Just three years later, the fully-
attention-based transformer model (Vaswani et al. 2017) again surpassed the performance of
recurrent models like long short-term memories (LSTMs) or gated recurrent units (GRUs) by a
large margin.

2.2.2. An urge to predict the unknown. A generic training mechanism of simple prediction
of expected or missing information also played a key role in the success story of deep (and
shallow) neural networks. The currently most successful training paradigm solves the problem
of limited training data for specific tasks by using a set of simple prediction tasks of recon-
structing missing (masked) or identifying corrupted parts of the input based on the context to
pretrain the model first. This pretraining paradigm uses only plain-text training data lacking any
extra annotation. Such data is abundant because crowds of the digital population continuously
generate vast amounts of text published online, which can be collected automatically by web
crawler programs.

The first such successful models were obtained by training extremely simple neural networks
having only a single layer of internal representation on simple and cheap sequential hardware
resulting in representations, called word embeddings, constituted by the connection weights
between the internal projection layer and the input or output layer of the network (Mikolov,
Chen et al. 2013). These embedding models provide a representation of words in the form of
real valued vectors of relatively small dimensions (compared to traditional vector space
models, which relied on word co-occurrence counts). Despite their extreme simplicity, these
models capture a surprising amount of semantic, syntactic, and morphological ‘knowledge’
concerning the words in the model. Embedding models are simple but efficient realizations
of distributional semantics. This early result was thus also a breakthrough in computational
semantics, where traditional logic-based models struggled with representing meaning at least as
much as grammar-based models struggled with modeling linguistic form. The two traditional
representations of form and meaning had a hard time solving the problem of constraining each
other to find representations that actually make sense.

A weakness of early very simple static word embedding models was that they were not
capable of handling homonymy or polysemy creating a unified representation of each word
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averaging all its senses blending the sense representations in proportion to their frequency in the
training corpus. This is demonstrated by a 2-dimensional rendering of nearest neighbors of the
polysemous/homonymous Hungarian words egér ‘mouse (animal/computer peripheral)’ and
várV ‘wait/expect/stand by/welcome’ vs. várN ‘castle’ in word embedding models created from a
large morphologically analyzed Hungarian corpus as shown in Figure 1 (Siklósi 2018; Novák &
Novák 2022b).

Today’s much more complex deep neural networks (typically transformers) build contextual
language models during the training, in which the representations pertaining to individual el-
ements of the input reflect the actual sense of the item in the very specific linguistic context. As
mentioned before, the most widespread training paradigm consists of pre-training deep neural
models using large raw corpora to perform simple tasks like the prediction of masked items in
the input based on words in the context (masked language modeling, MLM), and subsequently
fine-tuning these models for specific tasks like sentiment analysis, question answering, natural
language inference, etc. Pre-training the models on raw corpora makes it possible for the models
to learn ‘language’ from more data rather than having to pick it up from the much more limited
amount of annotated training data available for the specific tasks. The first transformer-based
model using masked language model pre-training was BERT (Devlin et al. 2019). Later similar
models varied details of the architecture and/or the training procedure resulting in various
improvements. XLNet (Yang et al. 2019) uses permutations rather then masking. ELECTRA
(Clark et al. 2020) is trained using a separate network that corrupts the input used for training
the model by replacing some tokens with other tokens having a similar distribution, and the task
of the pre-trained network is just to identify the corrupted tokens rather than to reconstruct
them. This simplified training task results in significantly faster convergence of the model during
training.

When these pre-trained deep neural models are probed for the presence of specific linguistic
capacities, they show remarkable abilities of making subtle distinctions concerning various as-
pects of the input. All this in spite of the fact that these models are only exposed to plain (and to
some degree dirty) linguistic data during training without any multimodal contextual clues a
child is exposed to when learning language.

2.2.3. The emergence of linguistic competence. Although these artificial neural models
cannot be claimed to mimic the operations of natural neural networks in the human brain
(despite biological analogies inspiring the original neuron model and some of the network
architectures, development of the models was later driven more by a motivation to optimize
performance rather than by faithfulness to biological analogies), the success of this training
paradigm may also be taken as an argument against Chomsky’s hypothesis that a poverty of
stimulus would block a generic learning hardware from picking up language. These models are
not pre-wired to learn ‘language’, nevertheless, they succeed without formal supervised
training involving negative evidence, without being exposed to multimodal clues, driven only
by a generic ‘motivation’ to learn to predict phenomena observable in the environment, which
in their case is limited to raw unanchored linguistic data.

Prediction is a primary capacity and function of a nervous system. Self-correction of pre-
diction errors concerning raw language data alone drives these systems to converge to internal
representation states that can be used to perform diverse specific tasks concerning language.
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(a) Nearest neighbors of the homonymous
word egér ‘mouse’ in a Hungarian
word embedding model created from
morphologically analyzed text where
items are lemmas. Nearest neighbors
include both animals and IT terms, i.e.
the model captures both the ‘rodent’
and the ‘computer peripheral’ sense in
a single representation.

(b) Nearest neighbors of the homonymous
word vár ‘wait/castle’ in a Hungarian
word embedding model created
from morphologically analyzed text
where items are lemmas. The word’s
representation is fully dominated by the
10 times more frequent verb homonym.

(c) Nearest neighbors of várV ‘wait’ in
a Hungarian word embedding model
created from morphologically analyzed
text where items are PoS disambiguated
lemmata. The verb homonym itself is
highly polysemous. This is reflected by
the set of nearest neighbors.

(d) Nearest neighbors of várN ‘castle’ in
a Hungarian word embedding model created
from morphologically analyzed text
where items are PoS disambiguated lemmata.
This model captures the meaning
of the unambiguous noun homonym
well.

Figure 1. 2-dimensional projections of nearest neighbors of homonymous/polysemous Hungarian words
in various Hungarian word embedding models. The images were generated using the t-SNE algorithm

from 300-dimensional representations
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Although the models need to be separately fine-tuned to actually perform tasks different from
simple prediction of what is missing or corrupted, often a quite limited amount of data is
enough to get them perform surprisingly well, even if most of the model is frozen (not allowed to
learn) during fine-tuning.

One may still argue that the amount of raw linguistic training data a child is typically
exposed to would not be enough for these artificial neural models to learn a representation
performing on par with a child. This is probably true. And specialized neural subnetworks
underlie the human linguistic capacity7 similarly to the manner some brain areas like the
fusiform face area in the fusiform gyrus in the temporal lobe or the occipital face area in the
inferior occipital gyrus apparently play a crucial role in human face perception (Haxby et al.
2000; Zhen et al. 2013). Humans, like other primates, also have pre-wired spider and snake
recognitition subnetworks (Le et al. 2013; Rakison & Derringer 2008), as these are essential for
tropical primates’ survival. For modern humans living in environments lacking these specific
types of natural threats, these are just a less useful part of our biological heritage resulting in
bothering phobias rather than providing a skill essential for survival. These biological facts are,
however, immaterial to the generativism vs. connectionism debate, the context of which the
original Chomskian argument was formulated in. Even if the artificial neural networks currently
used to handle face recognition or language-related tasks have a structure quite different from
the ones present in the biological networks involved in performing these tasks and even if these
artificial networks take significantly more data to train than their specialized biological coun-
terparts, the indispensability or utility of a specific generative theory of human grammars does
not follow from these facts more than that of a generative theory of face or spider or snake
images.

2.2.4. What do these models ‘know’ about language? As an example of emerging linguistic
representations, it was shown that syntactic dependency relations between tokens in text can be
extracted from these models simply by mapping representations of tokens at specific layers of the
model using a linear transformation (i.e. projecting their representation to a 32–256 dimensional
‘syntax hyperplane’) and assuming a dependency link between nearest neighbors in the mapped
representation (Hewitt & Manning 2019). Gold standard dependency annotation of dependency
relations is needed to find the optimal mapping (i.e. for finding the hyperplane to look at), but the
representation itself is already there without explicit training for syntactic analysis, and it is fairly
accurate albeit not perfect. Note that the model does not only quite efficiently predict nearest
neighbors, but distances between all word pairs in the sentence.

Figure 2 shows dependency relations within an English sentence extracted from a contextual
model using a linear ‘syntax hyperplane’ structural probe (here a linear transformation pro-
jecting the representation to a hyperplane of 128 dimensions) based on representations in layer
16 of the English contextual language model BERT-Large. Note that this simple projection
model does not identify the direction of the attachment. One metric that can be used to evaluate
the ‘parses’ the models yields is UUAS (Undirected Unlabeled Attachment Score), which was
found to be 0.817 for layer 16 in the BERT-Large English language model.

7Broca’s and Wernicke’s areas were identified already in the 19th century, but their exact function, structure and the
additional brain structures relevant to language understanding and production are still largely unexplored.
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A recent critique of the method (Maudslay & Cotterell 2021) has demonstrated that per-
formance of the transformer models perceived by the syntactic probe degrades significantly
when tested on ‘Jabberwocky’ input, i.e. on text where all content words are replaced by plausible
non-words with matching part of speech,8 which the authors interpret as the models relying
heavily on distributional properties of content words rather than embodying a strong model of
syntax.9

2-D visualization of vector representation of tokens at middle layers of transformer language
models along with their gold dependency labels in multilingual models trained on text in many
different languages has showed a fairly consistent mapping of nodes with identical labels across
languages (Chi et al. 2020).10

In one research (Glavas & Vulic 2020), explicit syntactic knowledge from human-curated
treebanks was injected into pre-trained transformer models applying intermediate parsing
training (IPT) before further finetuning them for language understanding (sequence classifi-
cation and multiple choice classification) tasks. However, this knowledge was found to be
redundant w.r.t. the structural language knowledge transformers obtain through masked lan-
guage model pretraining: further training on gold standard parse trees was not found to
consistently improve their performance on tasks where earlier top performing systems relied on
parsers trained in a supervised manner. Another research (Sachan et al. 2021) found im-
provements in semantic role labeling (SRL) and relation extraction performance only when
combining contextual language models with gold parses (also at inference time), i.e. this can be
considered another negative result. Bai et al. (2021), in contrast, report consistent improvements
in performance on linguistic benchmarks tasks in GLUE (Wang et al. 2018) after tweaking
attention heads in transformer models based on parser output in their Syntax-BERT models as
part of intermediate pre-training.

Figure 2. Dependency relations extracted from layer 16 representations of English sentences from the
Penn Treebank in BERT-Large using a linear ‘syntax hyperplane’ nearest neighbors structural probe.
Gold dependencies at the top, system output at the bottom. The results above are from Hewitt &

Manning (2019)

8Plausible non-words: word forms that conform English phonotactic and morphotactic constraints.
9Note, that in Carroll’s Jabberwocky, far from all content words are non-words, and many of the ones that are, are
onomatopoetic or resemble something that makes sense.

10The multilingual UD corpus provides fairly consistent dependency annotation across languages: this made such an
evaluation possible.

Acta Linguistica Academica 69 (2022) 4, 405–449 413

Unauthenticated | Downloaded 01/20/23 10:32 AM UTC



2.3. Multilingual and language-agnostic representations

For simple word embedding models, a number of methods were shown to be effective to map
the representations across languages or to create cross-lingual word embeddings (CLWEs). A
CLWE is a shared cross-lingual word vector space where words with similar meanings obtain
similar vectors regardless of their actual language. Most mapping methods are projection-based.
The projection is achieved by learning a piecewise linear transformation based on a seed dic-
tionary (in earlier implementations containing several thousand items), through which a
monolingual WE space can be mapped to another monolingual space (Mikolov, Le & Sutskever
2013). The transformation maps each word vector in the source language space to a point in the
vicinity of the vector of its translation in the target language space. Later implementations
worked with just a few hundred cognate seed pairs, identical strings or simply numerals (weak
supervision). Then even the need for a seed dictionary was dropped using adversarial training.
Although a seed dictionary needs to be induced also in the fully unsupervised mapping methods,
this is achieved based on a heuristic that translations have similar similarity distributions across
languages.

Figure 3 shows nearest neighbors of the projections of some lexical items presented in
Section 2.2.2 várV ‘wait/expect/stand by/welcome’ and várN ‘castle’ in an English word embed-
ding model created from morphologically analyzed text. The mapping between the models was
performed following the method of Mikolov, Le & Sutskever (2013) as described in Novák &
Novák (2018). Comparing these with snapshots of the Hungarian model in Figure 1b shows that
the two models are quasi-isomorphic: i.e. they have similar lexical items in the neighborhood of
these lexemes.

There is a significant body of research literature describing work concerning cross-lingual
transfer using deep-neural-network-based models. The machine translation community
pioneered the first multilingual models (Firat et al. 2016; Johnson et al. 2017). It was

(a) Nearest neighbors of the projection
of the Hungarian lemma várV ‘wait’.

(b) Nearest neighbors of of the projection
of the Hungarian lemma várN ‘castle’.

Figure 3. Nearest neighbors of the projection of Hungarian words in an English word embedding model
created from morphologically analyzed text where items are PoS disambiguated lemmata. The images

were generated using the t-SNE algorithm
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discovered that, with neural machine translation models, it is possible to improve perfor-
mance in specific lower-resource languages and language-pairs, and even to translate between
language pairs for which the model had not been trained at all by training the encoder and the
decoder of the model in a shared manner on multiple languages. This resource-sharing also
made direct translation between all of the represented languages possible, and resulted in
savings in resources concerning both training, storage and inference, i.e. using the model
in production.

Multilingual training turned out to be fruitful not only in the domain of machine translation.
Multilingual pre-training of contextual language models like multilingual BERT (Devlin et al.
2019) and XLM-RoBERTa (Conneau, Khandelwal et al. 2020) made cross-lingual knowledge
transfer efficient for other NLP tasks as well. These models were trained using the same training
algorithm as their English or other monolingual counterparts but on massively multilingual
corpora consisting of more than 100 languages. These models have been used to train massively
multilingual syntactic dependency parsers (Kondratyuk & Straka 2019), zero-shot named entity
recognizers (Wu et al. 2020), etc., with even specific multilingual benchmarks prepared for
testing the cross-lingual generalization capability of models on various tasks such as sentence-
pair classification, structured prediction (POS tagging, NER), question answering, natural
language inference and sentence retrieval (Hu et al. 2020).

Conneau, Wu et al. (2020) and Dufter & Schütze (2020) examined the conditions necessary
for the emergence of multilingual shared representations in contextual language models, and
found that, contrary to former expectations, neither shared vocabulary nor a high similarity of
domain is necessary for an effective cross-lingual transfer: parameter sharing in the top layers
leads to the emergence of multilingual representations, i.e. the model must receive enough
data during training to begin to share parameters across the languages represented. Conneau,
Wu et al. (2020) also showed that monolingual contextual representations can be aligned to each
other quite effectively, like static word embeddings.

3. CROSS-LINGUAL TRANSFER OF ANNOTATION MODELS: TARGETING
HUNGARIAN

In this and the following section, we present two experiments where we used multilingual
models to perform zero-shot structured prediction tasks for Hungarian. As mentioned in Sec-
tion 2.3, the underlying multilingual models were trained on massively multilingual corpora,
which included Hungarian among the more than 100 languages they cover.

Before presenting these experiments, we show how syntactic structures emerge in multi-
lingual models using the linear ‘syntax hyperplane’ structural probe described in Section 2.2.4.
Figure 4 shows dependency relations in English sentences extracted from layer 6 of the
multilingual BERT model. The results are somewhat inferior to those obtained by Hewitt &
Manning (2019) from layer 16 of the larger monolingual English BERT-Large model (UUAS:
0.783 vs. 0.817). Here a more coarse-grained 32-dimensional syntax hyperplane was used, and
the more restricted capacity of the multilingual BERT model (12 layers, 110 million vs. 24 layers
and 340 million parameters of BERT-Large) seems also to have been overwhelmed by the 104
languages it was trained on. As we will see later, another multilingual model, XML-RoBERTa
performs significantly better in many tasks than multilingual BERT.

Acta Linguistica Academica 69 (2022) 4, 405–449 415

Unauthenticated | Downloaded 01/20/23 10:32 AM UTC



In Figure 5, we show dependency relations assigned by the model to Hungarian sentences
from the Szeged Dependency Treebank. Here we also probed layer 6 of multilingual BERT,
however, the 32-dimensional syntax hyperplane was identified using data concatenated from 11
UD corpora not including Hungarian: the training portion of one UD corpus each for Arabic,
Czech, German, English, Spanish, Farsi, Finnish, French, Indonesian, Latvian and Chinese
following the work presented in Chi et al. (2020). The UUAS obtained by this model for
Hungarian is 0.693.

Figure 4. Dependency relations extracted from layer 6 representations of English sentences from
Universal Dependencies English Web Treebank 2.0 in multilingual BERT using a 32-rank linear ‘syntax
hyperplane’ nearest neighbors structural probe. Gold dependencies at the top, system output at the

bottom, mismatches in red
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3.1. Dependency-based meaning representation parsing

Although the line of research on computational dependency grammars was for a long time
limited to tree representations due to implementation concerns,11 many deeper meaning rep-
resentations have been introduced that use acyclic structures (and usually also variables).

Figure 5. Dependency relations extracted from layer 6 representations of Hungarian sentences from
UD version of the Szeged Dependency Treebank in multilingual BERT using a 32-rank linear ‘syntax
hyperplane’ nearest neighbors structural probe. Gold dependencies at the top, system output at the

bottom, mismatches in red

11This is no longer so since enhanced dependencies have been introduced, although for most languages covered by the
Universal Dependencies project, no, or only a very limited and approximate machine-generated enhanced annotation
exists.
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Annotated resources (meaning banks) have been created for many of these formalisms with
English being the most prominent object language, although for many formalisms, other lan-
guages have also been covered.

Some of these meaning banks contain rich syntactic-semantic annotation based on general
theories of grammar. With certain simplifications, semantic annotations in these resources can
be converted to graph representations, which generic parsing algorithms can be trained to
generate.

One such resource, Elementary Dependency Structures (EDS), is based on English Resource
Grammar (Flickinger et al. 2017) aka English Resource Semantics (ERS) (Flickinger et al. 2014)
annotation. The underlying linguistic theory is Head-Driven Phrase Structure Grammar (HPSG,
Pollard & Sag 1994) with Minimal Recursion Semantics (MRS, Copestake et al. 2005). In EDS,
ERS representations are turned into variable-free semantic dependency graphs consisting of
labeled graph nodes representing logical predications and edges representing labeled argument
positions. The conversion from ERS to EDS discards information on semantic scope. The nodes
are anchored to spans of the input string. Figure 6 shows the EDS representation of an English
sentence.

Abstract Meaning Representation (AMR, Banarescu et al. 2013) features graphs comparable
to EDS, but with more abstract predication labels due to application of extensive lexical
decomposition and normalization towards verbal senses, e.g. representing similar as the verbal
sense ‘resemble’. In contrast to EDS (and some other models), AMR nodes are not explicitly
anchored to spans of the surface form, because when semantic decomposition and normali-
zation is applied, anchoring of individual component nodes becomes more than non-trivial.
Figure 7 shows the AMR representation of the same English sentence. Normalization to verbal
senses may also result in the inversion of canonical argument relations, e.g. researcher is rep-
resented as the person who is ARG0 of the verb research. The same applies to the subject of the
relative clause in the example sentence. Negation is represented as the feature polarity -.

Less ambitious in the coverage of aspects of meaning, Universal Conceptual Cognitive
Annotation (UCCA, Abend & Rappoport 2013) is an abstract annotation featuring only purely
semantic categories and structure. The foundational layer of UCCA consists of a very basic set of
semantic categories like Process, Argument, State, “Adverb” (modifier), etc., which are used as
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_research_n_1

research

ARG2
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Figure 6. EDS representation of the English sentence Neither Lorillard nor the researchers who studied
the workers were aware of any research on smokers of the Kent cigarettes. The arcs denote either
(untyped) argument relations between the nodes (ARG1, ARG2), bound variables (BV), or mark the

items conjoined by conjunctions (L-INDEX, R-INDEX)
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labels on edges linking unlabeled nodes representing semantic units and surface word forms. See
Figure 8 for the UCCA representation of our sample English sentence.

Prague Tectogrammatical Graphs (PTG, Zeman & Hajic 2020), is another graph-based
meaning representation formalism derived from the Prague Functional Generative Description
(FGD, Sgall et al. 1986), a dependency-based formalism, retaining a subset of Prague Tectog-
rammatical annotation. As Figure 9 suggests, PTG is a more syntax-oriented formalism with
typed dependency links.

Finally, Discourse Representation Graphs (DRG, Abzianidze et al. 2020) is a graph encoding
of Discourse Representation Structures (DRS), the meaning representations at the core of
Discourse Representation Theory (DRT, Kamp & Reyle 1993). This model handles many
challenging semantic phenomena from quantifiers to presupposition accommodation, and
discourse structure. Figure 10 presents the DRG representation of a (different) English sentence.

With the exception of EDS, the other formalisms mentioned cover other languages besides
English: there exists annotated data in Czech for PTG, in German and French for UCCA, in
German for DRG, and in Chinese for AMR.

There is a parser, called PERIN, which is capable of turning raw text into any of the flavors of
meaning representation graphs mentioned above (Samuel & Straka 2020). It was developed at
the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University, Prague. The parser is available at the ÚFAL GitHub repo12 including the

realize-01

polarity -

research-01

ARG1

and

ARG0

person

ARG1

company

op1

person

op2

name

op1 Lorillard

name

study-01

(ARG0)-of

research-01

(ARG0)-of

person

ARG1

work-01

(ARG0)-of

smoke-02

(ARG0)-of

cigarette

ARG1

name

op1 Kent

name

Figure 7. AMR representation of the English sentence Neither Lorillard nor the researchers who studied
the workers were aware of any research on smokers of the Kent cigarettes

12https://github.com/ufal/perin.
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trained parser models. There is also a link to an Interactive demo on Google Colab, which makes
testing the models on various inputs easy. Positive subjective impressions of the performance of
the English and especially the Czech PTG model of the parser on Hungarian input prompted us
to perform the experiment described here evaluating the zero-shot cross-lingual performance of
the model. Of the models available, we selected PTG, because

� the categories/concepts it operates with was immediately familiar,
� the annotation it generated seemed reasonable and detailed,
� the non-English model covers Czech, a language sharing many typological features with

Hungarian (rich morphology, relatively free word order, pro drop, etc.),
� the model was trained on a sizable 740k-token corpus,
� a rather detailed annotation manual (Mikulová et al. 2006) of the underlying Prague tec-

togrammatical annotation is available in English, and
� performance of PERIN on the Czech PTG data is relatively high as reported in Samuel &

Straka (2020).

Concerning the other formalisms mentioned above, we had the following impressions,
further motivating our model selection:

21
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H

Neither, nor Lorillard

the

researchers

who studied

the
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of any
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on smokers

of the Kent cigarettes .
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N C

23
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24

C 25
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F P A
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R Q
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C

P A

R P
A

remote

26

A

F

27

C

A P

P

30

A

R A P

31

A

R F E C U

Figure 8. UCCA representation of the English sentence Neither Lorillard nor the researchers who
studied the workers were aware of any research on smokers of the Kent cigarettes. A: argument,
P: process, S: state, C: center (main element of a non-scene unit), E: elaborator (of a center),

N: connector (of centers), Q: quantifier, R: relator (usu. preposition), F: function (e.g. the copula),
D: adverb (modifier), H: parallel scene, L: linker (of parallel scenes)
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� Annotation in the UCCA foundational layer is rather coarse-grained compared to PTG
(a handful of edge label types, no annotation on nodes).13 In spite of this, parsers perform
relatively poorly (F1 < 0.5 on edge labels) on UCCA. This might indicate consistency prob-
lems with the UCCA annotation.

� While reported performance of the parser is generally good on DRG, DRG output generated
for our Hungarian test corpus seemed to make relatively little sense.

� Performance of the parser is also good on EDS. However, an EDS-style model is trained only
for English. The model struggles on Hungarian input often completely misinterpreting
important constructions. This seems to be partly due to typological differences between
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sempos v
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Figure 9. PTG representation of the English sentence Neither Lorillard nor the researchers who studied
the workers were aware of any research on smokers of the Kent cigarettes

13On the positive side, some distinctions present in UCCA, such as state vs. process are orthogonal to those in other
annotation schemes, and these would be worth porting.
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Hungarian and English. E.g. grammatical relations expressed by prepositions and word order
are mainly expressed by suffixes in Hungarian, the latter being an agglutinative language. The
EDS model often fails to properly recognize these relations (locations, times, possessive
constructions, constituents not in canonical positions for English, etc.), because suffixes are
not independent tokens in Hungarian while the EDS annotation scheme assumes that they
should be.14 There is also pro drop in Hungarian, and this phenomenon affects a high
proportion of clauses (see section 3.3.2). The EDS model fails to recover all such covert
pronouns. Figure 11 shows the output of the EDS parser trained on English data for Hun-
garian input. It makes little sense. PDT output for the same sentence can be seen in Figure 12.

The PTG annotation the Czech PERIN model was trained on is derived from the Prague
Tectogrammatical Annotation, an elaborate system of deep linguistic analysis based on a many-
decade-long tradition of dependency-grammar-based linguistic research. The Prague

1
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entity.n.01

in

Degree TopicTime

Theme

GoalTheme
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Sub SubSub

crop.n.01

3

PRESUPPOSITION

in

Figure 10. DRG representation of the English sentence A similar technique is almost impossible to
apply to other crops, such as cotton, soybeans and rice

14Note, however, that the English PTG model, which utilizes a rich set of edge label categories to encode grammatical
relations, seems to be much less affected by these typological differences, as that formalism does not depend on these
relations to be expressed as independent tokens.
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Dependency Treebank (PDT) and the Prague Czech–English Dependency Treebank (PCEDT,
Haji�c et al. 2012), from which PTG data was derived, embody an immense amount of anno-
tation work. In addition to the deep syntactic annotation we review here, P(CE)DT annotation
includes morphological annotation and a dependency-based shallow ‘analytical’ syntactic
annotation of the underlying text. The tectogrammatical analysis was generated based on these
surface-level representations, and then manually checked and corrected.

The Prague dependency annotation scheme was ported to languages other than Czech or
English, examples including the Slovak Dependency Treebank (Gajdošová et al. 2016), the
PAWS Treebank (including Polish and Russian in addition to English and Czech, Nedoluzhko
et al. 2018), and the Prague Arabic Dependency Treebank (Haji�c & Zemánek 2004). However,
all these syntactic annotations were created manually. Here we examine automatic cross-lingual
annotation transfer.

This approach can save much manual annotation work, but evaluation still requires manual
effort and getting acquainted with the annotation guidelines.

3.2. Our approach

We had a 150-sentence fragment of the Hungarian Szeged Corpus (Csendes et al. 2004) an-
notated by the Czech PTG model. We manually corrected the output of the parser following
the annotation manual of the tectogrammatical level of the Prague Dependency Treebank
(Mikulová et al. 2006), turning it into gold standard annotation. Members of the annotation
team were trained in theoretical and computational linguistics encompassing dependency syntax
and formal semantics. Nevertheless, we had to understand and learn details of the annotation
scheme during the process, which required substantial effort. Examples in the Annotation
Guidelines have English translations, but unfortunately only a few examples have a full tree
representation. We converged on an annotation that we considered consistent with what is
described in the PDT annotation guidelines reiterating and rediscussing our solutions several
times, as our understanding of the annotation scheme evolved during the process. Access to
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Figure 11. Output of the EDS parser for the sentence Múlt év szeptemberében az osztállyal elmentünk
kirándulni a Balatonra. ‘In September last year, the class and I went on a trip to Lake Balaton.’ The

‘analysis’ makes little sense
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PCEDT would have been very helpful, however, only the Czech part of treebank is available
online,15 so we could not take a look at the English equivalents or efficiently search for specific
constructions not being speakers of Czech.

In order to have a fair evaluation of model transfer, we had to refrain from making mod-
ifications to the annotation scheme during manual correction. We tried to refrain from inter-
preting dubious situations ‘the way we would have made it’, we tried to figure out instead, how
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Figure 12. Analysis of the sentence Múlt év szeptemberében az osztállyal elmentünk kirándulni a
Balatonra. ‘In September last year, the class and I went on a trip to Lake Balaton.’: output of the Czech-
trained parser compared with gold annotation. Gold edges, labels and features are in red, those in the
parser output in blue when there is a mismatch. Applying Czech lemmatization patterns results in
erroneous lemmata (here simply replaced by surface forms instead of real Hungarian lemmata)

15https://lindat.mff.cuni.cz/services/pmltq/#!/treebank/pcedt20_cz/query/.
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ÚFAL experts would do it. We assumed that if the parser more-or-less consistently generates
some sort of sufficiently sensible annotation for a specific construction, it reflects a deliberate
annotation pattern in the training data.

3.2.1. The PERIN parser. The parser embodies a permutation-invariant model that predicts
all nodes at once in parallel and is trained using a permutation-invariant loss function not
sensitive to the ordering of nodes (Samuel & Straka 2020).

The language model the parser uses as a neural representation of the input when inferring
the graph annotation is XLM-RoBERTa (base). XLM-R (Conneau, Khandelwal et al. 2020) is the
encoder part of a transformer model pretrained originally on 2.5TB of filtered CommonCrawl
data in 100 languages including Czech and Hungarian to predict masked word forms. This
underlying multilingual neural language model makes an essential contribution to the decent
cross-lingual performance we encountered, enabling the parser to output sensible annotation for
input in a language the parser itself was not trained to handle originally.

The PERIN model uses relative string encodings to predict node labels that map token
strings onto label strings. Specifically, in the PTG model, lemmata (‘t-lemmata’) are used as node
labels. This mechanism works well when parsing text in the language the model was trained on.
However, it is not surprising that applying Czech lemmatization patterns to Hungarian word
forms results in strange lemmata like attaching the Czech infinitive ending -it to the Hungarian
stem kirándul ‘make an excursion’ and the mostly adjectival ending -�y to the inflected form
szeptemberében ‘in September of’ as shown in Figure 12. But since nodes are anchored to spans
in the input (practically to tokens), external lemmatization can be used to fix the node labels.
Our current solution was just replacing lemmata of non-zero elements with the corresponding
surface forms. Since tokens can be linked to nodes using the anchors in the annotation, it is
possible to evaluate the annotation ignoring the ill-formed lemmata.

While applying Czech lemmatization patterns to Hungarian obviously makes little sense, our
initial probing of the model indicated that dependency relations among content words (edge
labels in the graph, ‘functors’ and ‘subfunctors’ in PDT terminology) seem to carry over rela-
tively well to Hungarian (of course, with some errors, as is evident in Figure 12). It was this
aspect of the annotation that we wanted to concentrate on.

3.3. Results

We used the mtool16 evaluation, conversion and visualization tool to evaluate the zero-shot
output of both the Czech and the English PTG models against the gold standard version of the
test corpus. English PTG has less node features than the Czech model, and also the edge labels
generally lack subfunctor annotation. The English model also uses different patterns to generate
node labels (lemmata), so the performance of the models is only comparable after applying some
normalization to the annotations. The normalization included a) replacement of node labels
(lemmata) by the sequence of tokens anchored to the node (except for unanchored tokens,
which retained their labels, see Figure 12), and b) removal of subfunctor annotation from edge

16https://github.com/cfmrp/mtool.
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labels (except for subtypes of coref and bridging relations, as these also have subfunctors in the
English annotation).

Performance of the normalized output of the models as returned by mtool is compared in
Table 1. The Czech model definitely performs better at identifying grammatical relations (edges,
attributes) and the difference in node label recall reflects mainly its advantage at identifying zero
nodes (due to handling of pro drop and richer annotation of argument coreference relations in
light verb constructions).

Below we discuss specific details of the inspiringly good performance of the Czech model on
Hungarian input. Some shortcomings of the cross-lingual annotation seem to be related to
properties of the original annotation, or the the lack of a similar construction in the source
language.

3.3.1. Node properties. The PTG graph representations were created by automatic conver-
sion from tectogrammatical trees in P(CE)DT. English data comes from the Prague Czech–
English Dependency Treebank 2.0 (Haji�c et al. 2012) while the source of Czech data was the
Prague Dependency Treebank 3.5 (Haji�c et al. 2020).

Quite unfortunately, important grammatical features (number, person, tense, modality, degree,
etc.) were omitted during conversion. This results in that almost all relevant information is lost in
the annotation of e.g. covert pronouns (see Section 3.3.2) or modal auxiliaries (corresponding to
can, must, will, etc.). The latter are not represented in PDT annotation as independent nodes: they
only contribute a feature to the node of verb they combine with. This feature, however, was lost in
conversion: e.g. the node pertaining to el kellett menni ‘we had to go’ does not have any feature
corresponding to the deontic auxiliary in Figure 13, neither does the node of ha tudnék futni ‘if I

Table 1. Zero-shot performance of the English and Czech PTG models (PTG-en vs. PTG-cz) on the
Hungarian test set

PTG-en P R F

tops 1 1 1

labels 0.843 0.763 0.801

anchors 0.864 0.839 0.852

edges 0.682 0.558 0.614

attributes 0.714 0.546 0.619

PTG-cz P R F

tops 1 1 1

labels 0.842 0.857 0.849

anchors 0.844 0.854 0.849

edges 0.704 0.690 0.697

attributes 0.745 0.665 0.703

Bold values indicate best performance.
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could run’ in Figure 14b have one corresponding to the dispositional auxiliary. The lack of crucial
grammatical features in the representation may play an important role in the parser making errors
like establishing coreference relations between pronouns and noun phrases of different person/
number (e.g. between ‘she’ and ‘I’ in the parse of Eljön, mert szeretem őt. ‘She will come because I
love her.’ instead of linking ‘she’ and ‘her’: see Figure 14a).

Since much of what we would like to see there is not there, and some of what we do have is
irrelevant, we have not performed an exhaustive quantitative evaluation of the mapping of node
features. Nevertheless, we make some qualitative observations concerning the performance of the
parser with regard to specific node features present in the annotation in the following sections.

Part of speech Lexical nodes have at least a part-of-speech property, which is termed ‘se-
mantic’ in PDT terminology, but it is less semantic than what one would expect. E.g. nominalized
verbs are ‘semantic’ nouns. There are just a few deviations from syntactic part of speech:
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Figure 13. Analysis of the sentence Reggeli után még egy picit el kellett menni a környéken járkálni
egyet. ‘After breakfast (we) had to go around the area for some time.’ The node corresponding to el
kellett menni ‘we had to go’ does not have any feature corresponding to the deontic auxiliary due to loss
of data during conversion from PDT to PTG. Annotation errors in the parser output are marked in red

(missing) and blue (surplus)
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deadjectival adverbs corresponding to English -ly adverbs are tagged ‘semantic’ adjectives, and
numerals as adjectival or nominal quantifiers. Morphological negation is a Czech-specific feature
reflected in the part of speech category set that does not apply to Hungarian. Non-ly adverbs are
sometimes tagged as adjectives by the model, but otherwise part of speech is accurately identified.

Topic-focus articulation The Czech model also contains a feature related to topic-focus
articulation (tfa). This is an advanced feature rarely found in computational meaning repre-
sentations. We would have, however, expected four possible values instead of the actual three:
t 5 contextually bound expression (topic), f 5 contextually non-bound expression (new in-
formation), c 5 (contextually bound) contrastive expression. We think that it would be relevant
to distinguish contextually non-bound contrastive elements (focus proper) from contextually
bound contrastive elements (contrastive topic). We could not determine from the limited
description in the annotation manual how specific constructions (e.g. contrasting predicates)
should fit into the annotation scheme used in PDT. The parser often assigns values to this
feature that seem reasonable, but there are also cases where the annotation is obviously wrong

(a) Analysis of the sentence Eljön, mert
szeretem őt. ‘She will come because I love
her.’. The subject of the matrix verb is
erroneously linked with the subject of the
subordinate clause instead of the object
possibly due to the lack of key grammatical
features in the representation.

(b) Analysis of the sentence Ha tudnék
futni, futnék. ‘If I could run, I would
run.’ The modality is erroneously identified
as an assertion instead of potential.

Figure 14. Some types of erroneous analyses in the automatic zero-shot PTG annotation
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(e.g. assignment of the f value to topicalized definite expressions). The source of these problems
could be among others that word order constraints concerning contrastive elements (focus/
contrastive topic) are quite different in Czech and Hungarian (Czech: clause final, Hungarian:
preverbal) and that there is no definite article in Czech.

Factual and sentence modality The model is able to differentiate appeals, requests and
questions from assertions, however, quite surprisingly, it often fails to identify potential
(‘would’) and counterfactual (‘would have’)17 modalities: see e.g. Figure 14b.

Identification of grammatical/semantic relations Although an F1 score of around 0.7 for
edges/attributes (see Table 1) might not seem very high at first sight, this is not bad, especially
considering the rich variety of possible labels and the fact that the model was trained to parse
Czech, not Hungarian. It is not very much worse than the performance of the same parser model
for Czech input (edges: F1 5 0.84, edge labels (attributes): F1 5 0.78, Samuel & Straka 2020). The
model is especially good at identifying adjuncts (time, place, directional and manner adverbials).

In contrast, the annotation of predicate argument relations in PDT, which in most cases is
limited to two relations called act and pat, was a source of disappointment. These have nothing
to do with real thematic roles like agent or patient, but are mostly simply placeholders for the
first two arguments of any predicate. E.g. the subject of the window broke is act (Figure 15a),
while the predicate argument in the valency frame of the copula (i.e. blue in the car was blue) is
marked as pat (Figure 15b). But PTG is not alone having uninformative argument labels among
meaning representation schemes: others mentioned in Section 3 have ARG0, ARG1, etc.

3.3.2. Empty elements. The model also relatively successfully predicts empty elements, such
as dropped pronouns and ellipsis as long as similar patterns apply to both the source and the
target language.

Pro drop For example, Czech, similarly to Hungarian, features pro drop: i.e. subject pro-
nouns may optionally be omitted in neutral sentences, as shown in the two side-by-side one-
word sentences in (1). In the case of Hungarian, there is a lack of overt subject pronouns in most
cases when the pronoun is not emphasized. It is a nice feature of the model that it includes
existentially bound optional arguments in the analyses it generates (e.g. Olvasok. is interpreted as
‘I am reading something.’, see Figure 16a)

(1) Olvasok. �Ctu.
read.PRS.1SG read.PRS.1SG
‘I am reading. 5 I am reading (something).’

In Hungarian, the same sentence with an overt pronoun has different interpretations depending
on the intonation pattern (2).

(2) Én olvasok.
‘I am reading.’ (neutral, rare)
‘It is me who is reading.’ (focus)
‘As for me, I do read.’ (contrastive topic)

17In PDT the value ‘irreal’ is used for counterfactual.
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However, in cases where the same phenomenon (i.e. pro drop) does not apply to certain pronouns
in the source language, the model always fails to predict such covert pronouns in the target
language. In Hungarian, for example, object pronouns also undergo pro drop. What makes this
possible is that verbal morphology encodes not only subject agreement but also the definiteness of
the object, as illustrated in (3). If the morphology of verb form implies the presence of a definite
object, then the lack of an overt object implies the presence of an object pronoun (4a). In contrast,
there is no object pro drop in Czech (4b), thus the model fails to predict covert object pronouns for
Hungarian. Instead, we get the same interpretation with an existentially bound object that we get
for Olvasok (1). The output of the model for these constructs is shown in Figure 16.

(3) a. Olvasok egy könyvet.
read.PRS.1SG a book.SG.ACC
‘I am reading a book.’

b. Olvasom a könyvet.
read.PRS.DEF.1SG the book.SG.ACC
‘I am reading the book.’

(4) a. Olvasom.
read.PRS.DEF.1SG

(a) Graph of the sentence Az ablak
betört. ‘The window broke.’. The patient
subject has the functor ‘act’.

(b) Graph of the sentence Az autó kék
volt. ‘The car was blue.’ The subject
has the functor ‘act’, the predicate is
marked as ‘pat’.

Figure 15. Some examples of the uninformative argument relations ‘act’ and ‘pat’ in the PTG annotation
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(a) Analysis of the sentence Olvasok. ‘I
am reading.’ An existentially bound
generic zero object patient (‘something’)
is assumed by the model. The
same analysis is assigned (erroneously)
to Olvasom. ‘I am reading it.’ (b) Gold analysis of the sentence Olvasom.

‘I am reading it.’

(c) Analysis of the sentence Olvasok egy
könyvet. ‘I am reading a book.’

(d) Analysis of the sentence Olvasom az
újságot. ‘I am reading the newspaper.’

Figure 16. Some examples of how the Czech PTG model handles pro drop and existentially bound
arguments
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b. �Ctu to.
read.PRS.1SG that.ACC
‘I am reading it.’

Possessive constructions involving pronouns The same applies to possessive constructions
involving personal pronouns. The Czech (or English) version of these constructs involves a
possessive pronoun determiner followed by a noun, optionally modified by adjuncts (5b). In
Hungarian (and many similar agglutinating languages), the construct involves possessive suf-
fixes attached to the noun as inflection, and the presence of an overt pronoun is optional, and,
again, is mostly limited to cases of emphasis on the pronoun (5a). Since the possessive pronoun
is obligatory in Czech (it is the key element of the construction), the parser trained on Czech
data always fails to predict empty personal pronouns involved in possessive constructions in
Hungarian, too.

(5) a. az (én) anyám
the I mother.POSS.1SG

b. moje matka
my.FEM.SG.NOM mother.FEM.SG.NOM
‘my mother’

Ellipsis The model performs reasonably well predicting and reconstructing elliptical structures
as long as a similar elliptical construction is present in the language the model was trained on.
Both Czech and Hungarian feature gapping in the second clause in coordinated clauses.
However, in Hungarian (similarly to e.g. Turkish), gapping in the first clause is also a frequently
used construction. As shown in Figure 17, the parser fails to properly recognize the elliptical
structure if the gap is in the first clause (not an option in Czech or English). For the given
examples, we get a perfect parse only if the gap is in the second clause, and word order in the
first clause is SVO (Figure 17c).

Zero copula PDT much predates the Universal Dependencies (UD) project, and in contrast to
the lexical content head solution to copula constructions there, the copula is the head in PDT/PTG.
In Hungarian, there is a zero copula in the default 3rd person singular present indicative case, so
we needed to introduce a new zero copula (#zerocop) item to accommodate the annotation of zero
copula constructions to the scheme applied in PDT and PTG. In the case of the clause Az autó kék.
‘The car is blue.’, #zerocop would assume the same position assumed by the copula volt ‘was’ in the
past tense version of the sentence Az autó kék volt. ‘The car was blue.’, see Figure 15b. As it is, the
model fails to parse zero copula constructions due to the analysis above and the fact that there is
always an overt copula in Czech (see e.g. the completely failed analysis in Figure 19b). A UD-style
copula annotation where the predicative noun/adjective is considered the head of construction and
the copula is assumed an (optional) function word would naturally fit Hungarian, and such a
model would probably have fewer problems parsing zero copula constructions.

3.3.3. Coordination/parataxis. In contrast to subordination, coordination (in PDT terminol-
ogy: parataxis) is problematic for dependency-based annotation schemes because it is not an
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endocentric construction. The solution applied in the PTG implementation of PDT structures
makes coordinating conjunctions or, in the absence of these, punctuation (commas) the head of
coordinate structures, as shown in Figure 17c. The coordinated predicates (the two olvas ‘read’
nodes) are attached as pred–members to the #comma node (technical head of the coordinate
structure), and they are also linked directly by pred–effective edges to the node dominating the
whole structure, here the root of the sentence graph. The technical head (#comma) is attached
using a relation characterizing the paratactic structure (e.g. conjunction, disjunction, apposition,
etc., here: conj) to the node dominating the coordinate structure. This solution is again different
from the one applied in UD (where the left conjunct is promoted as the head of the construction

(a) Péter újságot olvas, Mari
képregényt. ‘Peter is reading a
newspaper, Mary a comic.’ – Gap
in second clause, SOV word order
in first clause. Minor error in the
analysis.

(b) Péter újságot, Mari képregényt
olvas. – Gap in first clause, SOV
word order in second clause. Wrong
analysis of first clause.

(c) Péter olvas újságot, Mari
képregényt. – Gap in second clause,
SVO word order in first clause.
Perfect analysis.

(d) Újságot Péter, képregényt Mari
olvas. – Gap in first clause, OSV
word order in second clause. Wrong
analysis.

Figure 17. Output of the Czech PTG grammar for various Hungarian gapping constructions. Only the
analysis in 17c is completely correct
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and all other conjuncts are linked to it by conj edges): it is analogous to the way coordination is
represented, e.g. in EDS.

Two aspects of this solution are problematic, however. Certain types of coordination, like
cause, consequence or confrontation, express an asymmetric relation. These types of relations
were doubled in the annotation scheme only because they also have a subordinating variant
(coordinating confr, reas vs. subordinating contrd, caus). The distinction is purely syntactic, and
most speakers would have an extremely hard time making a distinction between the subordi-
nating and the coordinating variant. The analyses, however, are totally different. What is more,
the representation of the paratactic variant of these constructions completely fails to distinguish
which conjunct plays which role, e.g. what is the cause and what is the consequence. These
unnecessary syntactic distinctions gave us a hard time during correction of the gold standard
data (and can be considered a rather unmotivated artifact in the PDT annotation).

Coordinated predicates were analyzed by the model as verb phrase coordination sharing a
single subject rather than assuming coreferring covert pronouns, as illustrated in Figures 18. We
accepted this solution assuming that similar constructions must have been analyzed analogously
in the Czech PDT treebank.
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Figure 18. Analysis of the sentence De végül is odaértünk, mert jött az egyik osztálytársam apukája
kocsival és elvitt minket. ‘But we ended up there because one of my classmates’ dad came in a car and

took us there.’ Apukája ‘dad’ is a shared argument of both jött ‘came’ and elvitt ‘took’
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3.3.4. Further problems. The model sometimes fails to integrate parts of the analysis into the
whole structure, or, in some cases, completely ignores some part of the input. This often seems
to be related to covert elements not attested in the source language like a zero copula or gapping
in the first conjunct (see e.g. Figure 17d).

Short function words are sometimes confused with short frequent function words in the
source language, and this may result in wrong and/or incomplete analysis. E.g. Hungarian s ‘and’
and a ‘the’ are sometimes confused with Czech s ‘with’ and a ‘and’, respectively, see Figure 19. In
the case of the sentence shown in Figure 19b, nothing is like it would be in Czech: inverted word
order, the definite article and the pronominal possessive construction unattested in the source
language all contribute to the failure of the analysis.

Function words (articles, postpositions, subordinating conjunctions, auxiliaries) are normally
merged with content words (the node is anchored on several tokens), but in some cases a partial
merge is performed (the function word is anchored both to an independent node of its own and
to the node of a content word) as shown in Figure 20. This is an error.

The model tokenizes the input at hyphens, and the hyphen remains unanchored. This is
problematic for Hungarian, because suffixes (e.g. case endings) are often attached with a hyphen
to the stem, and such case endings become independent tokens in the analysis. This is mostly a
technical issue, because the model usually ends up anchoring the tokens around the hyphen to
the same node, similarly to the way it handles conjunctions, auxiliaries, postpositions and
definite articles.

3.4. Concluding remarks on zero-shot meaning representation parsing

As we have seen, a good multilingual contextual language model can make zero-shot cross-
lingual transfer of quite elaborate syntactic annotation possible. The model yields reasonable
cross-lingual performance, and it can be feasibly applied in a semi-automatic annotation

(a) Analysis of the sentence Miközben ott álltam a
pusztán, egyesegyedül, láttam, hogy valaki közeleg
felém. ‘As I stood there in the plain, alone, I saw
someone approaching me.’ pusztán ‘in the plain’ is
dropped due to failed analysis of a.

(b) Completely failed
analysis of the sentence
Kék volt a kalapom. ‘My
hat was blue.’

Figure 19. Examples where a ‘the’ is misinterpreted as the Czech conjuntion a ‘and’
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scenario. Of the language pairs Czech–Hungarian vs. English–Hungarian, the former performs
better because the source and the target language share more typological characteristics like rich
morphology, free word order, pro drop, etc. even though they belong to different language
families. Moreover, the PDT/PTG annotation scheme utilizing a rich set of dependency relations
as edge labels seems to perform much better than, e.g. EDS where edge labels are completely
abstract, and annotation crucially relies on the content of nodes, which are assumed to be in-
dependent tokens, an annotation scheme fitting isolating languages well, but transferring rela-
tively poorly to agglutinating languages (where e.g. morphemes corresponding to prepositions
are not independent tokens).

4. FURTHER EXPERIMENTS

Our further experiments involved cross-lingual transfer in another structured prediction task:
named entity recognition (NER). Although named entity recognizers have been there since the
1990s, their creation required extensive manual effort for each target language. The cross-lingual
transfer paradigm we discuss in this paper seems to have changed that situation by providing
reasonable cross-lingual performance and thus substantially reducing the human effort
needed to create such models: as we will see, even what we get with quasi-zero effort is quite
reasonable.
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Figure 20. Graph output for the input sentence A szállásunk egy Balaton melletti kis üdül}ofaluban,
Zamárdiban volt, a Postának az üdül}oházában. ‘Our accommodation was in a small holiday village near
Lake Balaton, in Zamárdi, in the Posta’s holiday house.’ The postposition melletti ‘near’ is both merged

with the noun it modifies and has a node of its own
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4.1. Named entity recognition transfer for Hungarian

We performed a number of experiments concerning zero-shot transfer on named entity
recognition. In one experiment, we performed research concerning the automatic enhancement
of the annotation of the large NYTK-NerKor named entity corpus (Simon & Vadász 2021)
containing Hungarian texts of various genres. We have almost doubled the number of annotated
elements in the corpus and made the number of distinguished classes 7 times bigger. For this, we
applied cross-lingual transfer, which proved to be efficient according to our evaluation, but the
performance of various transfer models showed significant differences. We relied on zero-shot
application of transformer-based named entity recognition models trained on resources in other
languages: English and Czech, algorithmic merging with the original annotation, and semi-
automatic and manual correction.

4.1.1. Enriching the annotation using cross-lingual transfer and semi-automatic
correction. NYTK-NerKor is a typical 4-class (persons, organizations, places, ‘miscellaneous’)
named entity corpus, which we wanted to upgrade to something that includes useful entity classes
instead of the kitchen sink ‘miscellaneous’ category, and also annotation for numerical and time
expressions.

First we applied twomodels trained on the EnglishOntoNotes 5 corpus to theHungarian corpus.
The first model was created by the DeepPavlov team (Burtsev et al. 2018) fine-tuning multilingual
BERT (Devlin et al. 2019). The other model, flair/ner-english-ontonotes-large (Schweter & Akbik
2020), is based on XLM-RoBERTa (Conneau, Khandelwal et al. 2020), a multilingual contextual
language model trained on a significantly bigger multilingual corpus than multi-BERT.

We merged the annotation from the models with the original annotation. The merging
algorithm considered the spans in the input annotations gold standard in the case of overlapping
entity spans, and if the generated annotation contained a compatible entity subtype, the entity
type was updated accordingly.

While cross-lingual mapping resulted in some anomalies like inclusion of definite articles in
names,18 it had other side-effects that we found useful. E.g. since English prepositional phrases of
names (which are obviously annotated as named entities) often correspond to adjectives derived
from the given name in Hungarian, the output of the models also included entity annotation for
these adjectives, definitely another step forward from the annotation scheme used in all legacy
Hungarian NER corpora that systematically left adjectives derived from names unannotated.

We also applied a third model to the corpus. We used he Czech model of the NameTag 2
neural named entity tagger (Straková et al. 2019) trained on the Czech Named Entity Corpus
CNEC 2 (�Sev�cíková et al. 2007). This model is based on a fine-grained hierarchy of entity classes
having many subclasses within the broader categories like a distinction of companies vs.
governmental/political institutions vs. academic/educational/cultural/sports institutions and

18For some named entity types, like names of organizations, journals, titles of works of art, etc., a definite article is present
in Hungarian when the name is incorporated in the sentence structure – but not in parentheticals –, while there is no
article in English: Peter works at IBM. – Peter az IBM-nél dolgozik. Originally, we thought that this correspondence is
the source of the tendency of definite articles being included in named entities by the OntoNotes-based model. Later
having acquired access to the OntoNotes corpus, we found that the real source of the problem seems rather to be that,
in the OntoNotes corpus, determiners are generally included in named entity annotations.
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conferences/contests (the latter are also considered a subclass of organizations). NameTag 2 is
capable of returning nested annotations (with a maximal depth of two overlapping entities). Since
there is no definite article in Czech, we expected this model to have a problem with definite articles
similarly to the English models, but it turned out to have this problem only in the case of sentence-
initial capitalized definite articles (probably due to a constraint on capitalization that might be
included in the algorithm). A more prevalent problem with this model was that it often assigned
different classes to different occurrences of the same entity (and usually this was an error rather
than real ambiguity) and often left the same entity unannotated. Identification of the span of the
entities was also less accurate than what the English-based models generated.

The article problem and certain ill-formed quantifier expressions were easy to fix using
regular expression-based substitution patterns. We also created a gazetteer-like lemmatized
named entity inventory based on the output of the models that could be used to mark entries for
correction. Marked entries were then mass-corrected in their inflected forms as well in the
corpus.

Further details of the creation of the updated version of the NerKor corpus and a detailed
description of the distribution of entity types can be found in Novák & Novák (2022a) (in
Hungarian).

4.1.2. Evaluation of the models. We evaluated the zero-shot performance of the transfer-
based models: the OntoNotes 5-based Flair and DeepPavlov models and the Czech NameTag 2
tagger on the test set of the corpus. We also performed the evaluation with the tagset normalized
to the tags present in the original model (e.g. in the case of the OntoNotes 5-based models,
labels not present in the original model (typeset in bold in Table 3) were normalized (e.g CAR
→ PRODUCT, PROJ → EVENT) or ignored (e.g. MISC or AWARD) during evaluation). We
also trained a neural tagger model based on the Hungarian huBERT contextual language model
(Nemeskey 2021) on the training set of the corpus using the HuggingFace Transformers library
(Wolf et al. 2020) with an improved Viterbi-like decoding that eliminates invalid tag sequences
from the output (Nemeskey 2020). The performance of these models is shown in Table 2. We
report P, R and F1 scores as percentage.

Models using language transfer performed quite well, but among the English models trained
on the same corpus, the XLM-RoBERTa-based Flair model performed significantly (about 10%
F-measure) better. The Flair model using a “stronger” language model obtained higher precision
and recall values across the board for all named entity types, than the weaker model. The
performance of these models increased (by 5–6% F-measure) when the automatic regular-
expression-based correction of definite articles was applied to their output. The zero-shot
performance of the Flair model on entity types in common with those in the final version (i.e.
normalizing/ignoring the MEDIA, SMEDIA, PROJ, etc. tags not present in the original model) is
quite convincing. This performance made our re-annotation effort feasible.

The apparently quite weak performance of the Czech model is partly explained by the fact
that it works with a much more fine-grained tagset, thus in order to measure its performance,
the normalization of tags was unavoidable. Its performance, however, lags far behind the other
models after normalization, too. The Czech training set is much smaller than that of the other
models, and the more complex algorithm allowing nested entities might also play a role in its
weaker performance.
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Table 2. Performance of models on the test set, CZ: Czech model NameTag 2, DP: DeepPavlov OntoNotes/m-BERT, FL: Flair-OntoNotes-Large/
XLM-RoBERTa, NKC: NerKor þ Cars/huBERT, test: precision of the test set before manual correction

version
final tagset Det fixed normalized labels norm. labels, Det fixed

Model P R F1 P R F1 P R F1 P R F1

CZ 15.82 11.39 13.25 15.89 11.44 13.30 64.57 52.92 58.16 64.63 52.97 58.22

DP 66.32 60.41 63.23 71.66 65.27 68.31 68.79 63.42 65.99 74.63 68.81 71.60

FL 74.81 70.73 72.71 80.59 76.19 78.33 77.68 74.34 75.97 83.90 80.29 82.06

NKC 91.07 88.12 89.57 91.64 89.18 90.39

test 91.92 87.65 89.73

Best results are in bold.
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Table 3. Performance of the best model trained on NerKor þ Cars on each entity type compared to
the performance a similar model trained on the original NerKor annotation. Tags ordered within the
categories with descending frequency in the test set top to bottom. Tags in bold are not present in
the OntoNotes 5 tag set

NerKor F1 NerKor þ Cars F1

DATE 88.85

CARDINAL 83.78

NORP 87.12

ORDINAL 94.67

LAW 82.12

QUANTITY 91.11

DUR 74.67

PERCENT 84.21

TIME 66.67

LANGUAGE 83.33

AGE 100.00

MONEY 87.50

ORG 88.45 ORG 93.33

PER 95.32 PER 97.11

GPE 91.98

LOC 92.28 LOC 76.60

FAC 80.00

WORK_OF_ART 90.27

PROD 79.37

MEDIA 91.53

CAR 92.86

MISC 81.85 SMEDIA 73.33

EVENT 72.73

MISC-ORG 47.06

PROJ 66.67

AWARD 100.00

MISC 66.67

91.02 89.57/92.05
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4.1.3. Comparison of models trained on the original and the enhanced corpus. We also
compared the performance of the best tagger model with that of the same algorithm trained on
the original four-class NerKor annotation to see how the division of some entity classes
(especially MISC) into several subclasses impacts performance. For the sake of comparability, we
partitioned entity types into non-entities, which are not part of the original annotation (nu-
merical and time expressions, language names, NORP adjectives and law references), and named
entities. The results are shown in Table 3: non-entities at the top half (ordered by decreasing
frequency in the test set), entities at the bottom half, with aggregate scores at the bottom row (for
the NerKor þ Cars model: F1 5 89.57 on all entities, F1 5 92.05 on named entities).

The huBERT-based model with the Viterbi-based decoding performed similarly on named
entities to a similar model (emBERT) trained on the original version of the corpus (Simon
et al. 2022).

The F-score on locations is lower than in the case of the model trained on the original corpus
partly due to missed adjectival GPE entities (not present in the original annotation), massive
ambiguity of Europe as a continent or a reference to the EU (which was not consistently marked
in the not yet checked portion of the training corpus), ORG vs. FAC ambiguity of institutions
(universities) and obscure place names (GPE vs. LOC ambiguity). Most confusion is within
subtypes of locations.

Performance on frequent and easier-to-distinguish subtypes of MISC (WORK OF ART,
MEDIA and CAR) is better than on the generic MISC category, while for rare and difficult-to-
categorize entities (as well as for products) we got worse-than-average performance. Never-
theless, the division of the MISC class to several subclasses (even with mainly automatic
methods) did not result in a substantial drop in the performance of the system, the aggregate F1
score for named entities turned out to be even better than for the same type of model trained on
the original four-class annotation (92.05 vs. 91.02).

We illustrate the difference between the output of the model trained on the original four-
class corpus and that of the one trained on the new 28-class version in Figure 21.

4.2. Zero-shot transfer for Azerbaijani NER

Another experiment we performed involved zero-shot NER transfer from English to Azer-
baijani (Ibiyev & Novák 2021). In that experiment we used the same OntoNotes 5-based
English models like in our experiment with Hungarian, and we used the Azerbaijani part of the
WikiAnn dataset (Pan et al. 2017) as the base NER corpus (the only Azerbaijani NER corpus
available).

WikiAnn is a massively multilingual ‘silver standard’ named entity corpus covering 282
languages automatically generated from Wikipedia extracting fragments containing internal
links and annotating the link spans according to the coarse type19 of the Wikipedia entry the
link points to. Due to its volume, WikiAnn is often used as a benchmark, it is even part of the
multilingual XTREME benchmark (Hu et al. 2020), although it is full of errors: e.g. we found
that almost half of the entities marked as organizations in the Azerbaijani part are in error. As
shown in Table 4, the overall quality of the original Azerbaijani WikiNer annotation is worse

19WikiAnn contains only person, organization and location entities.
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Figure 21. Output of the model trained on the original four-class corpus (left) and the one trained on the
enhanced 28-class version (right)

Table 4. Comparison of the accuracy of the original Azerbaijani WikiAnn annotation to the zero-shot
performance of the Flair OntoNotes model on LOC/PER/ORG entities in the Hungarian NerKor þ Cars-
OntoNotesþþ test set (best scores in bold). With an overall F1 5 0.82, using WikiAnn as a benchmark
is quite questionable

AzWikiAnn P R F1 occ.

LOC 89.00 79.56 84.02 15,362

ORG 54.58 78.70 64.46 3,492

PER 94.25 81.70 87.53 4,888

all 85.02 79.96 82.41 23,743

FLO on NKC P R F1 occ.

LOC 93.69 76.94 84.50 317

ORG 73.16 89.21 80.39 339

PER 91.04 87.24 89.10 413

all 86.16 84.11 85.12 1,069
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than the zero-shot performance of the Flair English OntoNotes model on LOC/PER/ORG en-
tities in the Hungarian NerKor þ Cars-OntoNotesþþ test set, which makes using WikiAnn as a
benchmark to evaluate multilingual models quite questionable. Note also that the distribution of
entities is much more balanced in the NerKor þ Cars test set than in WikiAnn.

We have also found the zero-shot models, especially the Flair model, perform worse on
Azerbaijani WikiAnn than on NerKor, and the performance gap between the mBERT and XLM-
RoBERTa-based model was smaller than in the case of the Hungarian corpus, although the Flair
model also performs better here across the board; see Table 5. This may be due to fact that
languages with smaller monolingual corpora available for exploitation in multilingual transformer
pretraining (Azerbaijani in this case) perform worse in zero-shot transfer in general. Another
factor may be peculiarities of WikiAnn: a significant proportion (17.13%) of Azerbaijani WikiAnn
segments are short fragments consisting of a single entity or a list of entities without any context
except some punctuation, thus the models can only rely on lexical knowledge in the absence of
contextual clues. These ‘no context’ segments cover 14% of all entity occurrences.

5. CONCLUSIONS

In this paper, we shortly reviewed how recent artificial deep neural models acquire linguistic
capacities that were not attainable by earlier generative-grammar-based models by being only
exposed to raw linguistic data applying a learning paradigm based on an objective of predicting
missing or corrupted parts of the data. We also argued that these results can be regarded as
further arguments against Chomsky’s theory about a poverty of stimulus during language
acquisition and the assumed existence of a specific human language acquisition device, as these
models are based on generic neural architectures and are not exposed either to any multimodal
contextual clues, negative examples, explanation or annotation of any sort. We have demon-
strated that these models contain fairly accurate syntactic knowledge without any training to
perform parsing. The success of these models also proves that, in contrast to Chomsky, dis-
tributionalits were on the right track.

Models pre-trained in this fashion can subsequently efficiently be fine-tuned to perform
specific linguistic tasks including not only end-to-end skills like question answering or natural

Table 5. Comparison of zero-shot performance of the OntoNotes-based DeepPavlov (DPO) and Flair
(FLO) models on corrected Azerbaijani WikiAnn annotation (only on LOC/ORG/PER entities)

entities

DPO on AzWikiAnn FLO on AzWikiAnn

P R F1 P R F1

LOC 76.10 65.40 70.35 78.06 75.44 76.73

ORG 61.09 51.53 55.90 65.84 59.54 62.53

PER 72.12 77.67 74.80 74.26 80.10 77.07

all 73.70 66.81 70.09 76.06 74.96 75.50

Best results are in bold.
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language inference but also ‘structured prediction’ tasks such as deep linguistic annotation or
identification of names and the type of their referents. Moreover, models fine-tuned to perform
specific tasks from multilingual pre-trained models can efficiently transfer their specific skills
acquired in one language to other languages covered by the underlying multilingual model due
to massive parameter sharing in the internal representations formed during training in the
higher layers of these models.

To demonstrate this, we applied models trained in other languages (English and Czech) to
Hungarian data evaluating their performance. In one application, we generated dependency-
based meaning representations in the style of the Prague Tectogrammatical Dependency
Annotation for Hungarian, having found that typological similarity, i.e. the existence of specific
shared constructions between the source and target language affects the efficiency of transfer in
this case.

The other application we presented was transforming a sizable Hungarian named entity
resource into one that distinguishes 7-times as many different entity classes in a quite moderately
labor-intensive manner, and found that a model trained on the new richly annotated corpus
version is as accurate as one trained on the original limited and coarse-grained annotation.
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