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Gross features of the spectrum of the 36Ar nucleus
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Samples of the spectrum of the 36Ar nucleus are known in different energy windows.
In addition to the ground state region (GS), the superdeformed (SD) state is observed,
too, and there is a good candidate for the hyperdeformed (HD) one, as well. They
are populated in different reactions. We intend to describe the gross features of the
spectra of different energies, deformations and reactions in a unified way. We apply the
multiconfigurational dynamical symmetry (MUSY). The SU(3) quantum numbers of
the shape isomers from previous studies pave the way for this description. The MUSY
reproduces the gross features of the spectra to a reasonable approximation. The energy
spectrum of the three valleys (GS, SD, HD) indicates that the multiconfigurational
symmetry is valid to a good approximation, and different cluster configurations coexist
in the shape isomers.

Keywords: multiconfigurational dynamical symmetry, excitation spectrum, clusteriza-
tion, shape isomers
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1. Introduction

The 36Ar nucleus has several interesting features, therefore, it has attracted con-

siderable experimental and theoretical investigations. In addition to its low-lying

spectrum1–3 many of its highly-excited states have been observed in 32S(α, γ)36Ar

process, as well as in resonance reactions of heavy ions 20Ne+16O and 24Mg+12C.

Theoretical structure studies have been performed within different approaches.

Especially remarkable is the alpha-cluster calculation in the Bloch-Brink model,

which indicated many stable configurations.4

The most remarkable aspect of the structure of 36Ar is probably the pres-

ence of the shape isomers. Its superdeformed (SD) state was observed in multi-

ple gamma-coincidence experiments in the 24Mg(20Ne,2α)36Ar reaction.5 Several

structure model reproduced this state in good agreement with each other and with

the experimental data.

1
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The hyperdeformed (HD) state was predicted first from the alpha-cluster model4

(as a local minimum of the energy surface). Then the possible binary cluster-

configurations of this state was investigated in6 (together with the clusterization

of the ground and superdeformed states). This study sheds some light not only

on the structure of the deformed states, but also on the possible reaction channels

in which they could be populated. The 20Ne+16O and 24Mg+12C fragmentations

turned out to be the favored ones. Following these theoretical predictions in7 it was

reported that the newly observed 24Mg+12C resonances together with the known
20Ne+16O ones seem to form a rotational band with the moment of inertia very close

to that of the predicted HD state from the alpha-cluster calculation. Furthermore,

an independent theoretical approach, based on the quadrupole-shape stability and

self-consistency study of8 predicted also a very stable HD state in good agreement

with the result of the cluster model and the experimental observation. All these

findings suggest that the observed rotational-like band is a very good candidate

for the hyperdeformed state of 36Ar, which is, therefore, the first self-conjugate nu-

cleus with experimentally observed (or indicated) super- and hyperdeformed states.

Of course, gamma-coincidence measurement would be highly desirable in order to

decide uniquely on the existence of the HD state.

The connection between the deformation, clusterization and shell structure was

found recently in terms of a dynamical symmetry,9 called multiconfigurational dy-

namical symmetry (MUSY). It is the common intersection of the shell, collective

and cluster models for the multi major shell problem. (See below for more details.)

As a consequence it provides us with the relations of the wavefunctions as well

as with the relations of the spectra of different approaches. It seems to be very

effective in accounting for the gross features, and in connecting spectra of different

configurations in different energy windows.

In case of the 28Si nucleus e.g. the MUSY was able to describe in a unified way

the low-lying well-known bands and the high-lying cluster spectrum.10 Not only

that the 12C+16O resonance spectrum was obtained from the Hamiltonian of the

quartet model11 of the ground-state region, but it was obtained as a parameter-free

prediction. This study revealed that the 12C+16O resonances form the spectrum of

the second minimum of the potential energy surface, which is built on the (recently

discovered) superdeformed state.12, 13 Similarly, the highly excited spectrum of the

0+ states of the 24Mg+4He configuration was predicted by the same Hamiltonian,

in good agreement with the experimental results.14 This symmetry also reveals that

seemingly very different cluster and shell configurations can be identical due to the

effect of the antisymmetrization. For the 28Si states it is shown in detail in.15

In this paper we apply the multiconfigurational dynamical symmetry for the

description of the 36Ar spectrum. The main question we address is if a simple

Hamiltonian (with an analytical solution) can account for the energy spectrum of

a set of states distributed in the first (ground-state), second (superdeformed) and

third (hyperdeformed) valley of the energy surface. In addition, these states are
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observed as different configurations: shell, 32S+4He, 24Mg+12C, and 20Ne+16O.

From the viewpoint of the study of the shape isomers this work completes the

symmetry-based previous investigations of.6, 8 So far the shape isomers were pre-

dicted, and their possible clusterizations were studied, but their energies were not

determined. Most of the structure models give the shape isomers as local minima

of the energy surface, but the method applied in8 is different. It investigates the

stability and the self-consistency of the quadrupole shape, as a function of the defor-

mation parameters.16 Actually, the stability and the self-consistency of the SU(3)

symmetry is investigated, but its quantum numbers uniquely define the quadrupole

shape.17, 18 It is an alternative method to the well-known energy-minimum calcu-

lation, and the analogous results from a basically independent procedure makes

the theoretical predictions even more reliable. Furthermore, providing us with the

SU(3) quantum numbers of the shape isomers, this approach has a direct connection

to the reaction channels, via the selection rule. Our present work gives the energy

of the shape isomers, and by doing so it makes the symmetry-governed studies com-

plete. Furthermore, it provides us not only with the energies for the ground-bands

of the different minima, like ground-state, superdeformed and hyperdeformed, but

also for the excited bands, i.e. for the whole spectrum (of different configurations).

2. Multiconfigurational dynamical symmetry

The multiconfigurational dynamical symmetry9 connects the shell, collective and

cluster models of the multi-major-shell problem, as mentioned above. It has an in-

teresting mathematical structure and physical content. It contains a simple dynam-

ical symmetry, defined by a single algebra-chain in each (shell, quartet or cluster)

configuration, and a further symmetry which connects the configurations to each

other. For the shell or quartet configuration it is usually the algebra-chain of the

Elliott model19, 20

U(3) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2) (1)

[n1, n2, n3] , (λ, µ),K, L, M,

where only the space symmetries of the states are indicated. U(3) is a subalgebra

of U(N), where N is the number of single-particle orbitals in the major shell. The

spin-isospin part is characterized by Wigner’s UST (4) group,21 and the antisym-

metry of the total wavefunction is guaranteed by the adjoint representations of

U(N) and UST (4).22 In case of the multi-major shell problem the principle of the

antisymmetrization in terms of the related U(3) and UST (4) representations is the

same, though technically it is more complicated.15

For a binary cluster configuration the space symmetry of the states is defined

by

UC1
(3)⊗ UC2

(3)⊗ UR(3) ⊃ UC(3) ⊗ UR(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3) (2)

where C1 and C2 refers to cluster no 1, and 2, and the internal structure of the
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4 Gábor Riczu and József Cseh

clusters is accounted for by the Elliott model.23 R stands for the relative motion,

which is described by the vibron model with algebraic structure of UR(4).
24 In this

case, too, the spin-isospin sector is described by UST (4), and the antisymmetry

requirement is satisfied.23

For the many-major-shell problem, a unified classification scheme is provided

by the algebra-chain

Ux(3)⊗ Uy(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3) (3)

for the shell, collective and cluster models.9 The extension of the Elliott model for

the major shell excitations is the symplectic model.25–27 The symplectic model has

a contracted version,28, 29 which is a multi-major-shell collective model, based on

bosonic degrees of freedom. For the shell and collective models x stands for the band-

head (valence shell), for the cluster model it refers to the internal cluster structure.

y indicates in each case the major shell excitations; in the shell and collective

model cases it takes place in steps of 2~ω, connecting oscillator shells of the same

parity, while in the cluster case it is in steps of 1~ω, incorporating all the major

shells. For the cluster model it has only completely symmetric (single-row Young-

tableaux) irreducible representations (irreps): [n, 0, 0], while in the case of the shell

and collective models it can be more general. As it is indicated by this unified

classification scheme, the model space of the three models have a considerable

overlap, but they are not identical.

The MUSY is a composite symmetry in the sense that the simple dynamical

symmetries of the different configurations are connected to each other by a further

symmetry. (This logical structure resembles to that of the dynamical supersymme-

try of nuclear structure, where the simple dynamical symmetries of the bosonic and

fermionic sectors are connected by the supertransformations.30–32) In the MUSY

case the connecting transformations are those of the pseudo-space of the particle

indices.33, 34 It is not visible in the shell-like scheme of chain (3), rather one should

look at a classification scheme of the A-particle problem, in which the particle

indices are explicitly included.33–35

The multiconfigurational dynamical symmetry is obtained when one choses a

Hamiltonian which is invariant with respect to the transformations in the pseudo-

space of particle-indices. This is the case, if it is expressed in terms of the operators

of the second part of chain (3). A particularly simple Hamiltonian of such kind is

written in terms of the Casimir operators of the algebras U(3) ⊃ SU(3) ⊃ SO(3).

Therefore, the two pillars of the multiconfigurational dynamical symmetry are

i) the unified classification scheme (3) of the shell (or quartet), and collective as

well as cluster states, and ii) a Hamiltonian, which is symmetric with respect to the

transformations (in the pseudo-space of particle indices), that connect the different

configurations.

Due to the microscopic treatment of the model spaces, i.e. all the nucleon de-

grees of freedom are taken into account, and the Pauli-principle is appreciated, the

different configurations may overlap with each other. An especially interesting case
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is when this overlap is 100%. Such situations can easily be realized once we con-

struct the full no-core shell model space up to a certain excitation number. The

shell model basis is complete, therefore, any state vector can be expanded in this

basis, and the basis states belonging to different SU(3) irreps are orthogonal to each

other. Thus in case the multiplicity of the shell model basis of a specific SU(3) irrep

is 1, then all the (different cluster) configurations are identical with it, having only

a single term in the shell-model expansion. As a consequence, the total overlap of

different configurations of basis (3) is easy to be detected. Furthermore, the ground

state, and the shape isomers usually have very good SU(3) symmetry,16, 36 so the

symmetries of the basis states illuminate the fact that seemingly different configu-

rations can be identical with each other, as a result of the antisymmetrization.

A further interesting feature of the MUSY is that it shows a dual breaking of

symmetries.15 In this respect it is similar to the dynamical symmetry of the El-

liott model as well as to many other dynamical symmetries of the nuclear structure

models. In particular, the U(3) and SU(3) symmetries are dynamically broken by

the symmetry breaking interaction, represented by the invariant operator of the

SO(3) algebra.37 On the other hand the total Hamiltonian separates into an intrin-

sic (U(3) and SU(3) dependent), and a collective (SO(3) dependent) parts. In other

words, the fast and slow degrees of freedom are separated. Both parts of the Hamil-

tonian are SO(3) invariant, but the ground state (and many other states) of the

intrinsic Hamiltonian are not rotationally invariant. Thus the SO(3) symmetry is

spontaneously broken in the eigenvalue problem of the intrinsic Hamiltonian. Fur-

thermore, as pointed out in the previous paragraph, the nonspherical shape of the

intrinsic state can have seemingly different configurations, but the differences might

be washed out by the antisymmetrization. When the total Hamiltonian is consid-

ered, then the (rotational) symmetry is recovered, as it is usual in the spontaneous

breaking.37

3. Experimental data

As described in the introduction, the GS and SD bands of the 36Ar are known

experimentally. (We have considered the 6+ state at 9.182 MeV as a member of

the ground-band, in line with Refs.2, 5) Furthermore, there is a promising candidate

for the HD band.7 In the compilation38 one sees seven further 24Mg+12C and two
20Ne+16O resonances in addition to those incorporated in.7 In Fig.1. we have shown

also these states. The moment of inertia of this band is 11.36 ~
2/MeV .

In the low-lying region we arranged some states into bands. In particular, we

did so, when the energies of more than two states fall on the linear of J(J+1).1–3 In

some cases in-band E2 transitions are also known, as indicated in the lower part of

Fig.2. Based on these criteria we guess one positive parity and two negative parity

bands. We consider them merely as some loose indication, our main emphasis is the

investigation of the ground-band and shape isomers in a unified framework.
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Fig. 1. 12C+24Mg and 16O+20Ne resonances in the 36Ar nucleus as a function of J(J+1). The
similar figure of Ref.7) is extended by further resonances form.38

4. Calculation of the spectrum

Here we discuss the application of the MUSY for the description of the 36Ar. For

that, we assigned the model bands to the experimental ones. In doing so, we divided

the HD band into parts of positive and negative parities (Fig. 2), in line with our

model calculation.

In Ref.8 the U(3) quantum numbers of the GS, SD and HD states were deter-

mined from a symmetry stability and self-consistency calculation. Here we have

applied the quantum numbers from.8 The other HD band (of negative parity) are

associated with the band that was closest to the positive band in deformation and

had appropriate spin-parity content. Finally, we assigned the most deformed rep-

resentations of 0 and 1 ~ω model space to the three low-energy bands, that had

appropriate spin-parity content.

We have applied a simple MUSY Hamiltonian, which has an analytical solution

in the U(3) ⊃ SU(3) ⊃ SO(3) basis:10

Ĥ = (~ω)n̂+ aĈ
(2)
SU(3) + bĈ

(3)
SU(3) + d

1

2θ
L̂2. (4)

The first term is the harmonic oscillator Hamiltonian (linear invariant

of the U(3)), with a strength obtained from the systematics39 ~ω=45A−

1

3 -

25A−

2

3MeV=11.335 MeV. The second order invariant of the SU(3) (C
(2)
SU(3)) rep-

resents the quadrupole-quadrupole interaction. Its expectation value for an SU(3)

basis state with quantum numbers (λ, µ) is λ2 + µ2 + λµ + 3(λ + µ). The third

order Casimir-operator (C
(3)
SU(3)) with eigenvalues (λ − µ)(λ + 2µ+ 3)(2λ+ µ+ 3)
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splits the degeneracy of the prolate (λ > µ) and oblate (λ < µ) shapes with iden-

tical eigenvalues of the second order Casimir. θ is the moment of inertia calculated

classically for the rigid shape determined by the [n1, n2, n3] U(3) quantum num-

bers.40 In particular, the ratio of the semi-major axes z, x, and y is obtained from

a self-consistency argument:41

z

y
=

n1 +
A
2

n3 +
A
2

,
x

y
=

n2 +
A
2

n3 +
A
2

. (5)

Their lengths are determined by the volume conservation:

y = R0
3

√

A
(n3 +

A
2 )

2

(n1 +
A
2 )(n2 +

A
2 )

. (6)

(Here we applied R0 = 1.2fm.) The moment of inertia (in units of ~
2

MeV
) for a rotor

with axial symmetry (x = y) is given by

θ =
1

5
m(z2 + x2). (7)

This Hamiltonian proved to be useful in a unified description of low-lying quar-

tet spectrum and high-lying cluster spectrum in other examples, too.10, 14 So far,

however, it was applied only for the spectra of the first (ground-state) and second

(superdeformed) valley of the energy-surface. Here we check its applicability with

respect to the simultaneous description of the spectra of three local minima.

The parameters a, b and d were fitted to the experimental data: a=-0.11 MeV,

b=0.00047 MeV, d=1.03. (In the fitting procedure the better-known GS and SD

bands had a unit weight, the other bands had weight of 0.01.)

The in-band B(E2) value is given as

B(E2, Li → Lf) =
2Lf + 1

2Li + 1
α2|〈(λµ)KLi, (11)2||(λµ) KLf〉|

2C2
SU(3), (8)

where 〈(λµ)KLi,(11)2||(λµ)KLf〉 is a SU(3) ⊃ SO(3) Wigner coefficient,42 and α2

(=0.466 W.u.) is a parameter fitted to the experimental value of the 2+1 → 0+1
transition of 8.2 W.u.
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Fig. 2. The spectrum of the multiconfigurational dynamical symmetry (upper part) in comparison
with the experimental data of the 36Ar nucleus (lower part). The experimental ground, super and
hyperdeformed bands are labeled by GS, SD and HD, and the model bands by the n(λµ)Kπ labels.
The width of the arrow between the states is proportional to the strength of the E2 transition.
The real strength of the gray arrows (of the SD and HD bands) are 20 times of the illustrated
ones.

Fig. 3. The landscape of the quartet band-heads in the 36Ar nucleus.
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The distribution of the quartet (T=0, S=0) band-heads are shown in Fig.3. In

particular, the lowest-lying state of each SU(3) (λ, µ) representation is plotted in

the 0-13 ~ω major shells. They have either 0+, or 1− spin-parity due to the re-

lation of the Elliott quantum numbers of chain (1): K = min(λ, µ),min(λ, µ) −

2, ..., 1 or 0; L = K,K + 1, ...,K + max(λ, µ), except for K = 0, when L =

max(λ, µ),max(λ, µ) − 2, ..., 1 or 0. The energies are given by Eq. (4), with the

parameters given above.

We determined the shapes of the investigated states (Fig. 4). From the shell-

model side the quadrupole shape is given by the U(3) quantum numbers of the

state.40 The 20Ne+16O, 24Mg+12C, 32S+α cluster configurations can be obtained

from the Harvey prescription43, 44 and from the U(3) selection rule45–47 which de-

scribes the structural aspect of the fusion (or fission) of a nucleus in terms of the

harmonic oscillator basis. Since the multiplicity of the relevant U(3) representation

is 1 in the shell basis, these shell and cluster configurations turn out to be identical

with each other, due to the effect of the antisymmetrization.

Fig. 4. Shape of some states in 36Ar in increasing energy order. In [ ] parenthesis, the U(3)
labels are indicated, while the first integer shows the major shell excitation quanta. Note, that
the multiplicity of these U(3) states in the shell basis is 1, therefore, the indicated shell, and
cluster configurations have wavefunctions with 100% overlap in each case, as a consequence of the
antisymmetrization.
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Figure 5 shows the relationship between different clusterizations. Here the en-

ergies of band-heads of 0-4 ~ω cluster model spaces are presented. Please, note

that increasing energy corresponds to decreasing eigenvalues of second-order SU(3)

Casimir operator (within each major shell), i.e. decreasing deformation. It can be

seen that the ground state and the most deformed states are generated by 32S+α

and 24Mg+12C clusterizations, while the less deformed states occur only in 32S+α

configuration. Furthermore, the overlap of 32S+α and 24Mg+12C systems is signif-

icant, and the 20Ne+16O configuration appears only from 4 ~ω excitation.

Fig. 5. Band-heads (L=0 or 1) of 0-4 ~ω cluster model spaces in the 36Ar.

5. Summary and conclusions

In this paper we have investigated the spectrum of the 36Ar nucleus, observed in

different energy windows and in different reactions. This nucleus is special, inasmuch

its superdeformed state is known from multiple coincidence experiment,5 it has a

good candidate for the hyperdeformed state,7 and it allows several self-conjugate

cluster configurations.

We have applied a symmetry-governed approach in studying the question

whether or not the spectra of the first (ground-state), second (superdeformed)

and third (hyperdeformed) valley can be described in a unified way. In particu-

lar, we have applied the multiconfigurational dynamical symmetry, which is the

common intersection of the shell, collective and cluster models for the multi-major-

shell problem. Due to this feature the MUSY can be able to account for low-lying

shell-like and high-lying cluster spectra in a joint framework, incorporating also the

deformation of the states.

In previous symmetry-based studies of the 36Ar nucleus the shape isomers have

been determined.8 They were obtained from the investigation of the stability and

the self-consistency of the U(3) symmetry, which is uniquely related to the the

stability and self-consistency of the quadrupole deformation.16 This new method

is an alternative to the well-known energy-minimum calculations. It provides us
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with the U(3) symmetry of the states, and therefore, allows the application of a

selection rule for the allowed cluster configurations. On the other hand it does not

give the energy of the states. Our present study complete these investigations, by

determining the energy of the states not only for the lowest-lying band in each

valley, but for the detailed spectrum.

Here we have found that the gross features of the spectra of the three valleys

can simultaneously be accounted for by the MUSY. In the low-energy region we

have considered the ground-band a further positive parity and two negative parity

bands, which could be anticipated from the experimental data. In the second valley

the superdeformed band, while in third one the candidate hyperdeformed band was

considered, split into a positive and a negative parity parts. It is remarkable that

a simple Hamiltonian with analytical solution reproduces the gross features of the

observed spectrum.

This finding resembles the example of the 28Si nucleus. In that case it was pos-

sible even to extrapolate the high-lying cluster spectra from the low-lying quartet

spectrum.10 There a rich spectrum of well-defined low-lying bands was available,

including also the SU(3) symmetry of the states (prior to our study). In case of the
36Ar such an extrapolation does not work. Here much less information is available

on the low-lying spectrum, so there is no real basis for an extrapolation. Therefore,

in the fitting procedure we have taken into account the shape isomers, too. Nev-

ertheless, it is remarkable, that a very small (0.01) weight of the HD states was

enough to obtain a good fit. The multiconfigurational symmetry turns out to be

approximately valid, what is remarkable, especially in light of the differences of the

configurations, energy windows and deformation parameters.

We have studied the similarities of different cluster configurations, too. The
32S+4He, 24Mg+12C, and 20Ne+16O, fragmentations are known to be relevant for

the 36Ar, in the sense that these reaction channels have been studied experimentally.

(In these configurations the nuclei are supposed to be in their ground intrinsic

state, i.e. no nucleon excitations are taken into account, but collective rotations are

possible.) It turned out that in several states, like e.g. ground-, SD, and HD states

some cluster configurations and the shell configuration has complete overlap, as a

consequence of the antisymmetrization (see Figure 4). This statement is valid to

the extent the U(3) symmetry is a good for the wavefunctions, but it is known to

be especially good for the shape isomers.16 (See also the symmetry-diagnostics of

the most general shell model wavefunctions of light nuclei.48, 49) The distribution

of these cluster configurations along the energy scale is illustrated in Figure 5,

indicating a considerable overlap between the 32S+4He, 24Mg+12C, clusterizations,

which are dominant in the low-lying region. The 20Ne+16O, configuration starts to

play an important role around and above the superdeformed state.
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