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Abstract We study the scaling properties of the differen-
tial cross section of elastic proton-proton (pp) and proton-
antiproton (pp̄) collisions at high energies. We introduce a
new scaling function, that scales – within the experimen-
tal errors – all the ISR data on elastic pp scattering from√

s = 23.5 to 62.5 GeV to the same universal curve. We ex-
plore the scaling properties of the differential cross-sections
of the elastic pp and pp̄ collisions in a limited TeV energy
range. Rescaling the TOTEM pp data from

√
s = 7 TeV to

2.76 and 1.96 TeV, and comparing it to D0 pp̄ data at 1.96
TeV, our results provide an evidence for a t-channel Odd-
eron exchange at TeV energies, with a significance of at least
6.26σ . We complete this work with a model-dependent eval-
uation of the domain of validity of the new scaling and its
violations. We find that the H(x) scaling is valid, model de-
pendently, within 200 GeV ≤

√
s ≤ 8 TeV, with a −t range

gradually narrowing with decreasing colliding energies.

1 Introduction

One of the most important and critical tests of quantum chro-
modynamics (QCD) in the infrared regime is provided by
the ongoing studies of elastic differential hadron-hadron scat-
tering cross section at various energies and momentum trans-
fers. The characteristics of the elastic amplitude, its both real
and imaginary parts, carry a plenty of information about the
inner proton structure, the proton profile in the impact pa-
rameter space and its energy dependence, as well as about

ae-mail: tcsorgo@cern.ch
be-mail: novak.tamas@uni-mate.hu
Before February 1, 2021:
Szent István University, Károly Róbert Campus
ce-mail: roman.pasechnik@thep.lu.se
de-mail: ster.andras@wigner.hu
ee-mail: istvan.szanyi@cern.ch

the properties of QCD exchange interaction at low momen-
tum transfers.

The first and most precise measurement of the total, elas-
tic and differential cross sections of elastic pp collisions, to-
gether with the ρ-parameter, has recently been performed
by the TOTEM Collaboration at the Large Hadron Collider
(LHC) at CERN at the highest energy frontier of

√
s = 13

TeV (for the corresponding recent TOTEM publications, see
Refs. [1–4]). A correct theoretical interpretation of the LHC
data, together with the lower-energy Tevatron and ISR data,
is a subject of intense debates and ongoing research devel-
opment in the literature, see e.g. Refs. [5, 6]. Among the
important recent advances, data by the TOTEM Collabo-
ration [4] for the first time have indicated the presence of
an odd-under-crossing (or C-odd) contribution to the elastic
scattering amplitude known as the Odderon [7]. In partic-
ular, a comparison of the differential cross-section of elas-
tic proton-proton (pp) scattering obtained by the TOTEM
Collaboration at

√
s = 2.76 TeV with D0 results on elas-

tic proton-antiproton (pp̄) scattering at 1.96 TeV [8] indi-
cates important qualitative differences that can be attributed
to the Odderon effect [4, 9]. In the more rigorous language
of QCD, an Odderon exchange is usually associated with a
quarkless odd-gluon (e.g. three-gluon, to the lowest order)
bound state such as a vector glueball, and a vast literature is
devoted to theoretical understanding of its implications. An
increase of the total cross section, σtot(s), associated with
a decrease of the real-to-imaginary ratio, ρ(s), with energy,
first identified at

√
s = 13 TeV [1, 2], also indicated a possi-

ble Odderon effect.
The TOTEM measurements have recently triggered in-

tense theoretical studies in the literature. In particular, the
Phillips-Barger parameterisation of the elastic amplitude has
been found to describe the recent pp data in Refs. [10, 11].
Several other Regge parameterisations have also been found
to describe the LHC data reasonably well (see e.g. Refs. [6,

ar
X

iv
:1

91
2.

11
96

8v
3 

 [
he

p-
ph

] 
 1

6 
Fe

b 
20

21



2

12, 13]), while the Pomeron dominance has been explored in
a generic Regge theory set-up in Refs. [14, 15]. In Ref. [5],
a new feature of the second diffractive cone in the differ-
ential cross-section of elastic scattering at large t and s has
been identified arguing about the existence of two station-
ary points in dσ/dt at the LHC energies and relating those
to the two-scale structure of protons at these energies. Re-
markably, this rules out the dominance of perturbative ex-
changes of a few non-interacting gluons pointing towards a
core-like proton substructure found also in the framework
of the so-called Lévy imaging technique in Refs. [9, 16].
For a thorough discussion of general properties of the s-
dependence of ρ(s) in the light of the TOTEM data and
its connections to the growing energy dependence of the
elastic-to-total cross–sections ratio, see Ref. [17]. A number
of studies based upon a QCD-based analysis of the Odderon
signatures considering the non-linear QCD evolution have
also been triggered recently (see e.g. Refs. [18–21]).

Important statements about the maximal nature of the
Odderon effect were made in Refs. [6, 22–24] but appar-
ently these studies still lack a rigorous statistical signifi-
cance analysis. Although the s-dependence of both σtot(s)
and ρ(s) is consistent with an Odderon effect, this indica-
tion is not a unique Odderon signal as the same effect can
also be attributed to the secondary Reggeon effects [18], re-
inforcing the elusiveness of the Odderon. As it was argued in
Ref. [25] any conclusions about the magnitude of the Odd-
eron effects based upon the ρ(s) measurement alone have
to be made with special care due to a zero in the real part
of the elastic amplitude at very small t, as the latter can af-
fect the Coulomb-Nuclear Interference (CNI) region at high
energies.

In earlier studies of Refs. [26, 27], the Odderon signa-
tures have been identified and qualitatively described in a
model-independent way using the power of the Lévy imag-
ing technique [9]. One of such signatures concern the pres-
ence of a dip-and-bump structure in the differential cross
section of elastic pp collisions and the lack of such a struc-
ture in elastic pp̄ collisions. The latter effectively emerges
in the t-dependence of the elastic slope B(t), that crosses
zero for elastic pp collisions and remains non-negative for
all values of t in elastic pp̄ collisions. Besides, Ref. [9] noted
that the position of the node of the nuclear phase φ(t), as
reconstructed with the help of the Lévy expansion method,
is characteristically and qualitatively different for elastic pp
from pp̄ collisions, thus, indicating the Odderon exchange.
In addition, the presence of a smaller substructure of the pro-
ton has been revealed in the data that is imprinted in the
behaviour of the t-dependent elastic slope B(t), apparent at
large values of t. In particular, in Refs. [9, 16, 26, 27] two
substructures of two distinct sizes have been identified in the
low (a few tens of GeV) and high (a few TeV) energy do-
mains, respectively. Besides, a new statistically significant

feature in the b-dependent shadow (or inelasticity) profile
has been found at the maximal available energy

√
s = 13

TeV and represents a long-debated hollowness, or “black-
ring” effect that emerges instead of the conventionally an-
ticipated “black-disk” regime [16, 26].

In this paper, in order to further unveil the important
characteristics of elastic hadron-hadron scattering we study
the scaling properties of the existing data sets available from
the ISR and Tevatron colliders as well as those provided by
the TOTEM Collaboration in a TeV energy range [1–4, 28].
We investigate a generic scaling behavior of elastic differ-
ential proton-(anti)proton scattering cross section, with the
goal of transforming out the trivial colliding energy depen-
dent variation of the key observables like that of the total
and elastic cross-sections σtot(s) and σel(s), the elastic slope
B(s) and the real-to-imaginary ratio ρ(s). We search suc-
cessfully for a universal scaling function and the associated
data-collapsing behaviour that is valid not only in the low-|t|
domain, but also in the dip-and-bump region. We discuss the
physics implications of such a scaling behaviour and explore
its consequences for understanding of the Odderon effect as
well as the high-energy behaviour of the proton structure.

The paper is organised as follows. In section 2, we re-
capitulate the formalism that is utilized for evaluation of the
observables of elastic proton-(anti)proton scattering in the
TeV energy range. In section 3, we connect this formalism to
a more general strategy of the experimental Odderon search,
namely, to the search for a crossing-odd component in the
differential cross-section of elastic proton-(anti)proton scat-
tering. In section 4, we study some of the scaling functions
of elastic scattering already existing in the literature as well
as propose a new scaling function denoted as H(x) that is
readily measurable in pp and pp̄ collisions. In particular,
in subsection 4.3 we introduce a new scaling function for
the diffractive cone or low values of the square of the four-
momentum (−t) region. We generalize this scaling function
for larger values of −t in subsection 4.4 and present a first
test of the H(x) scaling in the ISR energy range of 23.5 –
62.5 GeV in the same subsection. Subsequently, in section 5
we extend these studies to the TeV (Tevatron and LHC) en-
ergy range, where the possible residual effects of Reggeon
exchange are expected to be below the scale of the experi-
mental errors [29]. In section 6, we present a method of how
to quantify the significance of our findings, giving the for-
mulas that are used to evaluate χ2, confidence level (CL),
and significance in terms of the standard deviation, σ . In
section 7, we discuss how to employ the newly found scaling
behavior of the differential cross-section to extrapolate the
differential cross-sections of elastic pp scattering within the
domain of the validity of the new H(x) scaling. Let us note,
that this method of comparing differential cross-sections is
a possible strategy for the Odderon search. However, as we
detail later, the overall normalization uncertainties are large
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and reduce the statistical significance of these kind of re-
sults: practically it is a better strategy to compare scaling
functions, evaluated from the differential cross-sections in
such a way, that the overall normalization constants (includ-
ing their large errors) cancel. In section 8, we present fur-
ther, more detailed results of our studies with the help of
H(x) and compare such a scaling function for pp differen-
tial cross-sections at the LHC energies with the pp̄ scal-
ing function at the Tevatron energy. In section 9 we eval-
uate the significance of the Odderon-effect, and find that it
is at least a 6.26σ -significant effect, taking into account also
the improvements detailed in Appendix A. Subsequently, we
present several cross-checks in section 10 and discuss the
main results and its implications in section 11. Finally, we
summarize and conclude our work in section 12.

This manuscript is completed with several Appendices
that highlight various aspects of this analysis. Appendix A
details the robustness and symmetry properties of the χ2

definition and provides the final Odderon significance of at
least 6.26σ from a model-independent comparison of the
H(x) scaling functions of already published data. In Ap-
pendix B we discuss the model-independent properties of
the Pomeron and Odderon exchanges at the TeV energy scale,
under the condition that this energy is sufficiently large: as
the effects from the exchange of known hadronic resonances
decreases as an inverse power of s, at large enough ener-
gies Pomeron and Odderon exchanges can be identified with
the crossing-even and the crossing-odd contributions to the
elastic scattering, respectively. We demonstrate here that S-
matrix unitarity constrains the possible form of the impact-
parameter dependence of the Pomeron and Odderon ampli-
tudes. In Appendix C, we discuss model-dependent proper-
ties of the Pomeron and Odderon exchanges at the TeV en-
ergy scale and derive, how the H(x) scaling emerges within a
specific model, defined in Ref. [30]. This model is one of the
possible models in the class considered in Appendix B. We
evaluate the experimentally observable consequences of the
H(x) scaling in Appendix D, where we estimate the domain
of validity of the H(x) scaling also in a model-dependent
manner, based on Ref. [30]. Finally, in Appendix E we cross-
check the stability and robustness of the Odderon signal for
the variation of the x-range, the domain or support in x where
the signal is determined. We also identify here a minimal set
of only 8 out of 17 D0 datapoints, close to the diffractive
interference region, that alone carry an at least 5 σ Odd-
eron signal, when compared to the TOTEM datapoints in
the same region.

2 Formalism

For the sake of completeness and clarity, let us start first with
recapitulating the connection between the scattering ampli-

tude and the key observables of elastic scattering, following
the conventions of Refs. [30–33].

The Mandelstam variables s and t are defined as usual
s = (p1 + p2)

2, t = (p1− p3)
2 for an elastic scattering of

particles a and b with incoming four-momenta p1 and p2,
and outgoing four-momenta p3 and p4, respectively.

The elastic cross-section is given as an integral of the
differential cross-section of elastic scattering:

σel(s) =
∫

∞

0
d|t|dσ(s, t)

dt
(1)

The elastic differential cross section is

dσ(s, t)
dt

=
1

4π
|Tel(s,∆)|2 , ∆ =

√
|t| . (2)

The t-dependent slope parameter B(s, t) is defined as

B(s, t) =
d
dt

ln
dσ(s, t)

dt
(3)

and in the experimentally accessible low-t region this func-
tion is frequently assumed or found within errors to be a
constant. In this case, a t-independent slope parameter B(s)
is introduced as

B(s)≡ B0(s) = lim
t→0

B(s, t), (4)

where the t → 0 limit is taken within the experimentally
probed region. Actually, experimentally the optical t = 0
point can only be approached by extrapolations from the
measurements in various −t > 0 kinematically accessible
regions that depend on the optics and various settings of the
particle accelerators and colliding beams.

According to the optical theorem, the total cross section
is also found by a similar extrapolation. Its value is given by

σtot(s)≡ 2ImTel(∆ = 0,s) , (5)

while the inelastic cross-section is defined by

σin(s) = σtot(s)−σel(s). (6)

The ratio of the real to imaginary parts of the elastic ampli-
tude is found as

ρ(s, t)≡ ReTel(s,∆)

ImTel(s,∆)
(7)

and its measured value at t = 0 reads

ρ(s)≡ ρ0(s) = lim
t→0

ρ(s, t) . (8)

Here, the t → 0 limit is taken typically as an extrapolation
in dedicated differential cross section measurements at very
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low −t, where the parameter ρ0 can be measured using var-
ious CNI methods. The differential cross section at the opti-
cal (t = 0) point is thus represented as

dσ(s)
dt

∣∣∣
t→0

=
1+ρ2

0 (s)
16π

σ
2
tot(s) . (9)

In the impact-parameter b-space, we have the following
relations:

tel(s,b) =
∫ d2∆

(2π)2 e−i∆∆∆bbb Tel(s,∆) =

=
1

2π

∫
J0(∆ b)Tel(s,∆)∆ d∆ , (10)

∆ ≡ |∆∆∆ | , b≡ |bbb| . (11)

This Fourier-transformed elastic amplitude tel(s,b) can be
represented in the eikonal form

tel(s,b) = i
[
1− e−Ω(s,b)

]
, (12)

where Ω(s,b) is the so-called opacity function (known also
as the eikonal function), which is complex in general. The
shadow profile function is then defined as

P(s,b) = 1−
∣∣∣e−Ω(s,b)

∣∣∣2 . (13)

For clarity, let us note that other conventions are also
used in the literature and for example the shadow profile
P(b,s) is also referred to as the inelasticity profile function
since it corresponds to the probability distribution of inelas-
tic proton-proton collisions in the impact parameter b with
0 ≤ P(b,s) ≤ 1. When the real part of the scattering ampli-
tude is neglected, P(b,s) is frequently denoted as Ginel(s,b),
see for example Refs. [34–38].

3 Looking for Odderon effects in the differential
cross-section of elastic scattering

As noted in Refs. [10, 39], the only direct way to see the
Odderon is by comparing the particle and antiparticle scat-
tering at sufficiently high energies provided that the high-
energy pp or pp̄ elastic scattering amplitude is a sum or a
difference of even and odd C-parity contributions, respec-
tively,

T pp
el (s, t) = T+

el (s, t)−T−el (s, t), (14)

T pp
el (s, t) = T+

el (s, t)+T−el (s, t), (15)

T+
el (s, t) = T P

el (s, t)+T f
el (s, t), (16)

T−el (s, t) = T O
el (s, t)+T ω

el (s, t) . (17)

Here, the even-under-crossing part consists of the Pomeron
P and the Reggeon f trajectories, while the odd-under-crossing
part contains the Odderon O and a contribution from the
Reggeon ω .

At sufficiently high collision energies
√

s, the relative
contributions from secondary Regge trajectories are suppressed

since they decay as negative powers of
√

s. In Ref. [10], the
authors argued that the LHC energy scale is already suf-
ficiently large to suppress the Reggeon contributions, and
they presented the (s, t)-dependent contributions of an Odd-
eron exchange to the differential and total cross-sections at
typical LHC energies. More recently, this observation was
confirmed in Ref. [29], suggesting that indeed the relative
contribution of the Reggeon trajectories is well below the
experimental precision in elastic pp scattering in the TeV
energy range. The analysis of Ref. [10] relies on a model-
dependent, phenomenological picture formulated in the frame-
work of the Phillips-Barger model [40] and is focused pri-
marily on fitting the dip region of elastic pp scattering, but
without a detailed analysis of the tail and cone regions. In
Ref. [29], a phenomenological Reggeon + Pomeron + Odd-
eron exchange model is employed to study, in particular, the
possible hollowness effect in the high-energy elastic pp col-
lisions. A similar study of the Philips-Barger model was per-
formed in Ref. [11] using the most recent TOTEM data on
elastic pp scattering. Similarly, Ref. [41] has also argued
that the currently highest LHC energy of

√
s = 13 TeV is

sufficiently high to observe the Odderon effect.
In this paper, we follow Refs. [10, 29, 41] and assume

that the Reggeon contributions to the elastic scattering am-
plitudes for

√
s≥ 1.96 TeV and at higher energies are negli-

gibly small. We search for an odd-under-crossing contribu-
tion to the scattering amplitude, in a model independent way,
and find that such a non-vanishing contribution is present at
a TeV scale that is recognised as an Odderon effect. The
vanishing nature of the Reggeon contributions offers a di-
rect way of extracting the Odderon as well as the Pomeron
contributions, T O

el (s, t) and T P
el (s, t), respectively, from the

elastic pp and pp̄ scattering data at sufficiently high collid-
ing energies as follows

T P
el (s, t) =

1
2

(
T pp

el (s, t)+T pp
el (s, t)

)
for
√

s≥ 1 TeV, (18)

T O
el (s, t) =

1
2

(
T pp

el (s, t)−T pp
el (s, t)

)
for
√

s≥ 1 TeV . (19)

These kind of studies rely on the extrapolation of the
fitted model parameters of pp and pp̄ reactions to an ex-
actly the same energy, given that the elastic pp and pp̄ scat-
tering data have not been measured at the same (or close
enough) energies in the TeV region so far. Another prob-
lem is a lack of precision data at the low- and high-|t|, pri-
marily, in pp̄ collisions. Recently, the TOTEM Collabora-
tion noted in Ref. [4] that “Under the condition that the ef-
fects due to the energy difference between TOTEM and D0
can be neglected, the result" (namely the differential cross-
section measured by TOTEM at

√
s = 2.76 TeV) "provides

evidence for a colourless 3-gluon bound state exchange in
the t-channel of the proton-proton elastic scattering". In other
words, if the effects due to the energy difference between
TOTEM and D0 measurements can be neglected, the di-
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rect comparison of the differential cross section of elastic
pp scattering at

√
s = 2.76 with that of pp̄ scattering at√

s= 1.96 TeV provides a conditional evidence for a colour-
less three-gluon state exchange in the t-channel.

In this paper, we show that the conditional evidence stated
by TOTEM can be turned to an unconditional evidence, i.e.
a discovery of the Odderon, by closing the energy gap as
much as possible at present, without a direct measurement,
based on a re-analysis of already published TOTEM and D0
data.

Our main result, an at least 6.26σ Odderon effect, is ob-
tained by taking the data at a face value as given in published
sources, without any attempt to extrapolate them with a help
of a model, or using phenomenological, s-dependent param-
eters and extrapolating them towards their unmeasured val-
ues (in unexplored energy domains). Nevertheless, we have
tested what happens if one employs this kind of model as de-
tailed in a different manuscript, see Ref. [42]. These model-
dependent results lead to a higher than 7.08σ combined sig-
nificance for the Odderon effect, based on the results of Ap-
pendix C. The experimentally observable signs of the newly
found H(x) scaling are detailed in Appendix D, where we
also determine the model-dependent domain of validity of
this new scaling and find that this domain of validity is model-
dependently, but sufficiently large so that the Odderon signal
remains well above the discovery threshold of a 5σ effect,
as detailed in Appendix E. As the 7.08σ combined signif-
icance is based only on model-dependent results, evaluated
and combined at two energies,

√
s = 1.96 and 2.76 TeV (de-

tailed in both Appendix C and Appendix E), we find that
the model-independent approach, summarized in the body
of this manuscript and detailed in Appendix A and Appendix
B, provides a more conservative, 6.26 σ estimate for the
Odderon significance.

Our main result is based on the validity of a new kind of
scaling relation, called as the H(x)-scaling. We test this scal-
ing on the experimental data and show their data-collapsing
behaviour in a limited energy range. We demonstrate that
such a data-collapsing behaviour can be used to close the
small energy gap between the highest-energy elastic pp̄ col-
lisions,

√
s = 1.96 TeV and the lowest-energy elastic pp

collisions at the LHC where the public data are available,√
s = 2.76 TeV. We investigate the stability of this result

on the x-range or the domain of validity of the H(x) scaling
in Appendix E. We find that the result is extremely stable for
the removal of data points at the beginning or at the end of
the acceptance of the D0 experiment. Namely, 9 out of the
17 D0 data points can be removed without decreasing the
significance of the Odderon signal below the 5σ discovery
threshold.

We look for the even-under-crossing and odd-under-crossing
contributions by comparing the scaling functions of pp and
pp̄ collisions in the TeV energy range. In other words, we

look for and find a robust Odderon signature in the differ-
ence of the scaling functions of the elastic differential cross-
section between pp and pp̄ collisions. We thus discuss the
Odderon features that can be extracted in a model-independent
manner by directly comparing the corresponding data sets to
one another.

Let us start with three general remarks as direct conse-
quences of Eqs. (18,19):

– If the Odderon exchange effect is negligibly small (within
errors, equal to zero) or if it does not interfere with that
of the Pomeron at a given energy, then the differential
cross sections of the elastic pp and pp̄ scattering have to
be equal:

T O
el (s, t) = 0 =⇒ dσ pp

dt
=

dσ pp̄

dt
for
√

s≥ 1 TeV. (20)

– If the differential cross sections of elastic pp and pp̄ col-
lisions are equal within the experimental errors, this does
not imply that the Odderon contribution has to be equal
to zero. Indeed, the equality of cross sections does not
require the equality of complex amplitudes:

dσ pp

dt
=

dσ pp̄

dt
for
√

s≥ 1 TeV 6=⇒ T O
el (s, t)= 0 . (21)

– If the pp differential cross sections differ from that of
pp̄ scattering at the same value of s in a TeV energy
domain, then the Odderon contribution to the scattering
amplitude cannot be equal to zero, i.e.

dσ pp

dt
6= dσ pp̄

dt
for
√

s≥ 1 TeV =⇒ T O
el (s, t) 6= 0 . (22)

Such a difference is thus a clear-cut signal for the Odderon-
exchange, if the differential cross sections were measured at
exactly the same energies. However, currently such data are
lacking in the TeV energy range. Our research strategy in
this paper is to scale out the known s-dependencies of the
differential cross section by scaling out its dependencies on
σtot(s), σel(s), B(s) and ρ(s) functions. The residual scaling
functions will be compared for the pp and pp̄ elastic scat-
tering to see if any difference remains.

In what follows, we introduce and discuss the newly
found scaling function H(x) in section 4 and subsequently
evaluate the significance of these observations as detailed in
sections 6 and 9.

4 Possible scaling relations at low values of |t|

In this section, let us first investigate the scaling properties
of the experimental data based on a simple Gaussian model
elaborating on the discussion presented in Ref. [43]. The
motivation for this investigation is that we would like to
work out a scaling law that works at least in the simplest,
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exponential diffractive cone approximation, and scales out
the trivial s-dependencies of σtot(s), σel(s), ρ(s), and B(s).
Based on the results of such a frequently used exponen-
tial approximation, we gain some intuition and experience
on how to generalize such scaling laws for realistic non-
exponential differential cross sections.

Experimentally, the low-|t| part of the measured distri-
bution is usually approximated with an exponential,

dσ

dt
= A(s) exp [B(s)t] , (23)

where it is explicitly indicated that both the normalization
parameter A ≡ A(s) and the slope parameter B ≡ B(s) are
the functions of the center-of-mass energy squared s. If the
data deviate from such an exponential shape, that can be de-
scribed if one allows for a t-dependence of the slope pa-
rameter B ≡ B(s, t) as defined in Eq. (3). For simplicity, we
would like to scale out the energy dependence of the elastic
slope B(s) ≡ B(s, t = 0) from the differential cross section
of elastic scattering, together with the energy dependence of
the elastic and total cross sections, σel(s) and σtot(s), as de-
tailed below. For this purpose, let us follow the lines of a
similar derivation in Refs. [29, 43].

It is clear that Eq. (23) corresponds to an exponential
“diffractive cone” approximation, that may be valid in the
low-t domain only. This equation corresponds to the so called
“Grey Gaussian” approximation that suggests a relationship
between the nuclear slope parameter B(s), the real-to-imagi-
nary ratio ρ0(s), the total cross section σtot(s), and the elastic
cross section σel(s) as follows [29, 44, 45]:

A(s) = B(s)σel(s) =
1+ρ2

0 (s)
16π

σ
2
tot(s), (24)

B(s) =
1+ρ2

0 (s)
16π

σ2
tot(s)

σel(s)
. (25)

Such relations for A and B parameters in terms of the elastic
and total cross sections are particularly useful when study-
ing the shadow profile function as detailed below. The above
relationships, in a slightly modified form, have been utilized
by TOTEM to measure the total cross section at

√
s = 2.76,

7, 8 and 13 TeV in Refs. [1, 46–48], using the luminos-
ity independent method. In what follows, we do not sup-
press the s-dependence of the observables, i.e. σtot ≡ σtot(s),
σel ≡ σel(s).

4.1 Scaling properties of the shadow profiles

In the exponential approximation given by Eqs. (23,24,25),
the shadow profile function introduced in Eq. (13) has a re-
markable and very interesting scaling behaviour, as antici-

pated in Ref. [29]:

P(b,s) = 1−
[
1− r(s) exp

(
− b2

2B(s)

)]2
−

−ρ
2
0 (s)r

2(s) exp
(
− b2

B(s)

)
, (26)

r(s) ≡ 4
σel(s)
σtot(s)

. (27)

Thus, the shadow profile at the center, P0(s) ≡ P(b =

0,s) reads as

P0(s) =
1

1+ρ2
0 (s)
−
[
1+ρ

2
0 (s)

] [
r(s)− 1

1+ρ2
0 (s)

]2
, (28)

which cannot become maximally absorptive (or black), i.e.
P0(s) = 1 is not reached at those colliding energies, where
ρ0 is not negligibly small. The maximal absorption corre-
sponds to P0(s) = 1

1+ρ2
0 (s)

, which is rather independent of

the detailed b-dependent shape of the inelastic collisions
[29]. It is achieved when r(s) of Eq. (27) approaches the
value r(s) = 1/(1+ ρ2

0 (s)). Thus, at such a threshold, we
have the following critical value of the ratio

σel(s)
σtot(s)

∣∣∣∣
threshold

=
1

4
[
1+ρ2

0 (s)
] . (29)

As ρ0 ≤ 0.15 for the existing measurements and ρ0(s)
seems to decrease with increasing energies at least in the 8≤√

s≤ 13 TeV region, the critical value of the elastic-to-total
cross section ratio (29) corresponds to, roughly, σel/σtot ≈
24.5− 25.0 %. Evaluating the second derivative of P(b,s)
at b = 0, one may also observe that it changes sign from
a negative to a positive one exactly at the same threshold
given by Eq. (29). Such a change of sign can be interpreted
as an onset of the hollowness effect [29]. The investigation
of such a hollowness at b = 0 is a hotly debated topic in
the literature. For early papers on this fundamental feature
of pp scattering at the LHC and asymptotic energies, see
Refs. [35, 36, 45, 49–52], as well as Refs. [29, 34, 37, 38,
53–60] for more recent theoretical discussions.

As pointed out in Ref. [43], the threshold (29), within
errors, is reached approximately already at

√
s = 2.76 TeV.

The threshold behavior saturates somewhere between 2.76
and 7 TeV and a transition may happen around the thresh-
old energy of

√
sth ≈ 2.76−4 TeV. The elastic-to-total cross

section ratio becomes significantly larger than the threshold
value at

√
s = 13 TeV. As a result, the shadow profile func-

tion of the proton undergoes a qualitative change in the re-
gion of 2.76 <

√
s < 7 TeV energies. At high energies, with

σel ≥ σtot/4, the hollowness effect may become a generic
property of the impact parameter distribution of inelastic
scatterings. However, the expansion at low impact param-
eters corresponds to the large-|t| region of elastic scattering,
where the diffractive cone approximation of Eqs. (23,24,25)
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technically breaks down, and more refined studies are neces-
sary (see below). For the most recent, significant and model-
independent analysis of the hollowness effect at the LHC
and its extraction directly from the TOTEM data, see Ref. [16].

4.2 Scaling functions for testing the black-disc limit

When discussing the scaling properties of the differential
cross section of elastic scattering, let us mention that various
scaling laws have been proposed to describe certain features
and data-collapsing behaviour of elastic proton-proton scat-
tering already in the 1970s. One of the early proposals was
the so called geometric scaling property of the inelastic over-
lap function [61, 62]. The concept of geometric scaling was
based on a negligibly small ratio of the real-to-imaginary
parts of the scattering amplitude at t = 0, ρ0 ≤ 0.01 and re-
sulted in an s-independent ratio of the elastic-to-total cross-
sections, σel/σtot ≈ const(s), while at the LHC energies, ρ0
is not negligibly small and the elastic-to-total cross section
ratio is a strongly rising function of s. Here, we just note
about the geometric scaling as one of the earliest proposals
to have a data-collapsing behavior in elastic scattering, but
we look in detail for other kind of scaling laws that are more
in harmony and consistency with the recent LHC measure-
ments [43].

Let us first detail the following two dimensionless scal-
ing functions proposed in Ref. [33] and denoted as F(y) and
G(z) in what follows. These scaling functions were intro-
duced in order to cross-check if elastic pp collisions at the
LHC energies approach the so-called black-disc limit, ex-
pected at ultra-high energies, or not. In a strong sense, the
black disc limit corresponds to the shadow profile P(b) =
θ(Rb−b) that results in σel/σtot = 1/2, independently of the
black disc radius Rb. This limit is clearly not yet approached
at LHC energies, but in a weak sense, a black-disc limit is
considered to be reached also if the shadow profile function
at b = 0 reaches unity, i.e. P(b = 0) = 1, corresponding to
black disc scattering at zero impact parameter. This kind of
black disc scattering might have been approached at

√
s = 7

TeV LHC energy [30].
The first scaling function of the differential cross-section

is defined as follows:

F(y) =
|t|

σtot

dσ

dt
, (30)

y = |t|σtot , (31)

In the diffractive cone approximation, the s-dependence in
F(y) does not cancel, but it can be approximately written as

F(y) '
1+ρ2

0 (s)
16π

exp
[
−

1+ρ2
0 (s)

16π

σtot(s)
σel(s)

y
]

(32)

B(s)t = − B(s)
σtot(s)

y . (33)

This result clearly indicates that in the diffractive cone, gen-
erally the F(y) scaling is violated by energy-dependent fac-
tors, while in the black-disc limit of elastic scattering, corre-
sponding to σtot (s)

σel(s)
→ 2 and ρ0(s)→ 0, the F(y) scaling be-

comes valid as detailed and discussed in Ref. [33]. Indeed,
the aim to introduce the scaling function F(y) was to clar-
ify that even at the highest LHC energies we do not reach
the black-disk limit (in the strong sense). As discussed in
the previous section, the deviations from the black-disc limit
might be due to the effects of the real part and the hollow-
ness, i.e. reaching a black-ring limit instead of a black-disc
one at the top LHC energies.

Since in the F(y) scaling function the position of the
diffractive minimum (dip) remains s-dependent, yet another
scaling function denoted as G(z) was proposed to transform
out such s-dependence of the dip. This function was intro-
duced also in Ref. [33] as follows:

G(z) =
z|tdip(s)|
σtot(s)

dσ

dt

∣∣∣∣
t=z|tdip(s)|

, (34)

z =
t

|tdip(s)|
. (35)

In principle, all black-disc scatterings, regardless of the value
of the total cross section, should show a data-collapsing be-
haviour to the same G(z) scaling function. As observed in
Ref. [33], such an asymptotic form of the G(z) scaling func-
tion is somewhat better approached at the LHC energies as
compared to the lower ISR energies but still not reproduced
it exactly. This is one of the key indications the black-disc
limit in the elastic pp scattering is not achieved at the LHC,
up to

√
s = 13 TeV. This may have several other important

implications. For example, this result indicates that in sim-
ulations of relativistic heavy-ion collisions at the LHC en-
ergies, more realistic profile functions have to be used to
describe the impact parameter dependence of the inelastic
pp collisions: a simple gray or black-disc approximation for
the inelastic interactions neglects the key features of elastic
pp collisions at the TeV energy scales.

One advantage of the scaling variables y and z mentioned
above is that they are dimensionless. Numerically, G(z) cor-
responds to the F(y) function if the scaling variable y is
rescaled to z. As indicated in Fig. 23 of Ref. [33], indeed the
main difference between F(y) and G(z) is that the diffractive
minimum is rescaled in G(z) to the z = 1 position, so G(z)
has less evolution with s as compared to F(y). However, as
it is clear from the above discussion, the function

G(z) ' σel(s)
σtot(s)

B(s)z|tdip(s)|
dσ

dt

∣∣∣∣
t=z|tdip(s)|

, (36)

B(s)t = B(s)tdip(s)z, (37)

is well-defined only for pp elastic scattering, where a unique
dip structure is observed experimentally.

Even the dip region is not always measurable in pp re-
actions if the experimental acceptance is limited to the cone
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region, which is a sufficient condition for the total cross sec-
tion measurements. If the acceptance was not large enough
in |t| to observe the diffractive minimum, or, in the case
when the diffractive minimum did not clearly exist, then nei-
ther the F(y) nor the G(z) scaling functions would be usable.
So, the major disadvantage of these scaling functions for ex-
tracting the Odderon signatures from the data is that in pp̄
collisions no significant diffractive minimum is found by the
D0 collaboration at 1.96 TeV [8]. Besides, even if z variable
were defined, the above expressions indicate, in agreement
with Fig. 23 of Ref. [33], that the G(z) scaling function has
a non-trivial energy-dependent evolution in the cone (z� 1)
region. Due to these reasons, variables z and y are not appro-
priate scaling variables for a scale-invariant analysis of the
crossing-symmetry violations at high energies.

Having recapitulated the considerations in Ref. [43], with
an emphasis on the s-dependence of the parameters, let us
now consider, how these s-dependencies can be scaled out
at low values of |t|, where the diffraction cone approxima-
tion is valid, by evaluating the scaling properties of the ex-
perimental data on the differential elastic pp and pp̄ cross
sections. For this purpose, let us look into the scaling prop-
erties of the differential cross sections and their implications
related to the Odderon discovery in a new way.

4.3 A new scaling function for the elastic cone

In the elastic cone region, all the pp and pp̄ differential
cross sections can be rescaled to a straight line in a linear-
logarithmic plot, when the horizontal axis is scaled by the
slope parameter to −tB(s) while the vertical axis is simulta-
neously rescaled by B(s)σel(s), namely,

1
B(s)σel(s)

dσ

dt
= exp [tB(s)] versus x =−tB(s) . (38)

This representation, in the diffractive cone, scales out the s-
dependencies of the total and elastic cross section, σtot(s)
and σel(s), and also that of the slope parameter, B(s). As a
function of the scaling variable x = −tB, it will correspond
to the plot of exp(−x) i.e. a straight line with slope −1 on a
linear-logarithmic plot. It is well-known that the elastic scat-
tering is only approximately exponential in the diffractive
cone, but by scaling out this exponential feature one may
more clearly see the scaling violations on this simple scal-
ing plot. We will argue that such a scaling out of the trivial
energy-dependent terms can be used as a powerful method
in the search for the elusive Odderon effects in the compari-
son of elastic pp and pp̄ data in the TeV energy range.

In what follows, we investigate the scaling properties of
the new scaling function,

H(x) ≡ 1
B(s)σel(s)

dσ

dt
, (39)

x = −tB(s) . (40)

This simple function has four further advantages summa-
rized as follows:

1. First of all, it satisfies a sum-rule or normalization con-
dition rather trivially,

∫
dxH(x) = 1, as follows from the

definition of the elastic cross section.
2. Secondly, if almost all of the elastically scattered parti-

cles belong to the diffractive cone, the differential cross-
section at the optical point is also given by dσ

dt

∣∣
t=0 =

A(s) = B(s)σel(s), and in these experimentally realized
cases we have another (approximate) normalization con-
dition, namely, H(0) = 1.

3. Third, in the diffractive cone, all the energy dependence
is scaled out from this function, i.e., H(x) = exp(−x)
that shows up as a straight line on a linear-logarithmic
plot with a trivial slope −1.

4. Last, but not least, the slope parameter B(s) is readily
measurable not only for pp but also for pp̄ collisions,
hence the pp and the pp̄ data can be scaled to the same
curve without any experimental difficulties.

Let us first test these ideas by using the ISR data in
the energy range of

√
s = 23.5− 62.5 GeV. The results are

shown in Fig. 1 which indicates that the ISR data indeed
show a data-collapsing behaviour.

At low values of x, the scaling function is indeed, ap-
proximately, H(x) ' exp(−x), that remains a valid approx-
imation over, at least, five orders of magnitude in the de-
crease of the differential cross section. However, at the ISR
energies, the scaling seems to be valid, within the exper-
imental uncertainties, not only at low values of x = −Bt,
but extended to the whole four-momentum transfer region,
including the dip and bump region (15 ≤ x ≤ 30) as well.
Even at large-|t| after the bump region, corresponding to x≥
30, the data can approximately be scaled to the same, non-
exponential scaling function: H(x) 6= exp(−x) in the tails of
the distribution. Thus, Fig. 1 indeed indicates a non-trivial
data-collapsing behaviour to the same, non-trivial scaling
function at the ISR energy range of

√
s = 23.5−62.5 GeV.

This observation motivated us to generalize the deriva-
tion presented above in this section, to arbitrary positively
definite non-exponential scaling functions H(x). Such a gen-
eralisation is performed in the next subsection, in order to
give a possible explanation of the data-collapsing behaviour
in Fig. 1.

4.4 Generalized scaling functions for non-exponential
differential cross-sections

In this section, we search for a novel type of scaling func-
tions of pp elastic data that may be valid not only in the
diffractive cone, but also in the crucial dip and bump region,
as well. In Fig. 1, we have noticed that the data-collapsing
behaviour may extend well above the small x =−tB region
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Fig. 1 Scaling behaviour of the differential cross section dσ/dt of elastic pp collisions in the ISR energy range of
√

s = 23.5 – 62.5 GeV. The
measured differential cross section data are taken from Ref. [63] and references therein. These data are rescaled to H(x) = 1

Bσel
dσ

dt as a function of
x =−tB. This figure indicates a clear, better than expected data-collapsing behaviour.

significantly beyond the diffractive maximum, indicating a
clear deviation of the scaling function H(x) from the expo-
nential shape.

In addition, a recent detailed study of the low-|t| be-
haviour of the differential elastic pp cross section at

√
s = 8

TeV observed a more than 7σ -significant deviation from the
exponential shape [64, 65], which also corresponds to a non-
exponentiality in the scaling function H(x) even in the low-
|t|, or small x, range.

In this section, we thus further generalize the derivation
of the H(x) = exp(−x) scaling function, in order to allow
for arbitrary positively definite functions with H(x = 0) = 1
normalisation, and to develop a physical interpretation of the
experimental observations.

Let us start the derivation from the relation of the elastic
scattering amplitude in the impact parameter space tel(s,b)
and the complex opacity function Ω(s,b) based on Eq. (12),
using the same notation as in Ref. [30]:

tel(s,b) = i
[
1− exp(−i ImΩ(s,b))

√
1− σ̃in(s,b)

]
. (41)

The shadow profile function P(s,b) is equal to the inelastic
scattering profile σ̃in(s,b) as follows from Eq. (13), P(s,b)=

σ̃in(s,b). The imaginary part of the opacity function Ω is
generally not known or less constrained by the data, but
it is experimentally known that ρ0(s) is relatively small at
high energies: at all the measured LHC energies and below,
ρ0 ≤ 0.15, hence, ρ2 ≤ 2.3 %.

Here, we thus follow the choice of Ref. [30], that has
demonstrated that the ansatz

ImΩ(s,b) =−ρ0(s)
2

σ̃(s,b) (42)

gives a satisfactory description of the experimental data in
the −t ≤ 2.5 GeV2 region, with a small coefficient of pro-
portionality that was denoted in Ref. [30] by α ∝ ρ0 param-
eter. This ansatz assumes that the inelastic collisions at low
four-momentum transfers correspond to the cases when the
parts of proton suffer elastic scattering but these parts are
scattered to different directions, not parallel to one another.
This physical interpretation is actually due to ρ0 � 1 and
ImΩ(s,b)� 1. We will use this approximation below to
demonstrate that the H(x) scaling function can have more
complex shapes, that differ from H(x) = exp(−x).

Based on the results of the previous section obtained in
the diffractive cone in the ρ0� 1 and σ̃(s,b)� 1 limit, we
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have the following scaling property of the opacity function:

Re exp [−Ω(s,b)] = 1− r(s)E(x̃), (43)

Im exp [−Ω(s,b)] = ρ0(s)r(s)E(x̃), (44)

x̃ = b/R(s), (45)

R(s) =
√

B(s) , (46)

where r(s) is four times the ratio of the elastic to the to-
tal cross section, as given in Eq. (27), and E(x̃) describes
the distribution of the inelastic collisions as a function of
the dimensionless impact parameter b normalised to

√
B(s),

the characteristic length-scale of the pp collisions at a given
value of the center-of-mass energy

√
s.

This ansatz allows for a general shape of the impact pa-
rameter b-dependent scattering amplitude, that leads to a
H(x) scaling. Under the assumption that the b-dependence
may occur only through the two-dimensional scaling vari-
able x̃, as described by the scaling function E(x̃),

tel(s,b) = (i+ρ0(s)) r(s)E(x̃) , (47)

a general form of the H(x) scaling can be obtained. Here we
assume that E(x̃) is a real function that depends on the mod-
ulus of the dimensionless impact parameter x̃ = b/R(s). For
normalization, we choose that the Fourier-transform Ẽ(0) =
1, which also corresponds to the condition∫

d2x̃E(x̃) = 1 , (48)

keeping in mind that we have two-dimensional Fourier-trans-
form which at zero is equal to the integral over the two dif-
ferent directions in the impact-parameter space.

Let us investigate first the consequences of the scaling
ansatz of Eq. (47) for the shadow profile function P(s,b).
The algebra is really very similar to that of the exponential
cone approximation that was implemented above. We obtain
the following result:

P(s,b) =
1

1+ρ2
0 (s)
−

− (1+ρ
2
0 (s))

[
r(s)E

(
b

R(s)

)
− 1

1+ρ2
0 (s)

]2

. (49)

Evaluating the above relation at b = 0 and using the normal-
ization condition E(0) = 1, we obtain again that the shadow
profile at zero impact parameter value has a maximum that is
slightly less than unity: P(s,0)≤ 1/(1+ρ2

0 ). It is interesting
to note that the maximum in the profile function is reached
at the same threshold (29) as in the case of the exponential
cone approximation, corresponding to

r(s)|threshold =
1

1+ρ2
0 (s)

, (50)

σel

σtot

∣∣∣∣
threshold

=
1

4(1+ρ2
0 (s))

. (51)

Thus a threshold-crossing behaviour seems to happen if the
elastic-to-total cross-section ratio exceeds 0.25. Remarkably,
in the domain of validity of our derivation, this threshold
crossing point is independent of the detailed shape of the
H(x) scaling function for a broad class of models. However,
it is also clear from Eq. (49) that the shape of E(x̃) func-
tion plays an important role in determining the hollowness
effect, so a detailed precision shape analysis is necessary to
obtain the significance of this effect.

Starting from the definition, Eq. (2), the scattering am-
plitude in the b-space (47) yields the following form of the
differential cross section in the momentum space:

dσ

dt
=

1+ρ2
0 (s)

4π
r2(s)R4(s)|Ẽ(R(s)∆)|2 . (52)

Utilizing Eq. (46), we find that this form of the differential
cross section is dependent on the four-momentum transfer
squared, t, indeed only through the variable x ≡ −B(s)t =
R2(s)∆ 2, so it is a promising candidate to be a scaling vari-
able.

Now, if we consider the function (52) at the optical point,
t = 0, we find

A(s) =
dσ

dt

∣∣∣∣
t=0

=
1+ρ2

0 (s)
4π

r2(s)R4(s)|Ẽ(0)|2 . (53)

If the impact parameter dependent elastic amplitude has an
s-dependent internal scale and s-dependent strength, we thus
obtain the following generalized scaling relation for arbi-
trary elastic scattering amplitudes that satisfy Eq. (47):

1
A(s)

dσ

dt
≡ H(x) =

|Ẽ(
√

x)|2

|Ẽ(x = 0)|2
. (54)

This scaling is derived for ρ0 � 1 and σ̃(s,b)� 1, and it
indicates that the H(x) with a non-exponential scaling func-
tion is a very interesting theoretical possibility. Further gen-
eralizations of this derivation are possible and interesting but
go clearly well beyond the scope of this manuscript, that
aims to look for Odderon effects using the experimentally
available information on this H(x) scaling and its possible
violations.

In addition to providing an insight to the meaning of
the non-exponential behaviour in the interference (dip and
bump) region, the above derivation also clarifies meaning of
the normalization of H(x). In particular, the normalization
of H(x) scaling function on the left hand side of Eq. (54)
should be made by the value of the differential cross sec-
tion at the optical (t = 0) point as given by Eq. (53). This
value for differential cross sections with nearly exponen-
tial diffractive cone is indeed approximately equal to A(s) =
B(s)σel(s). In this case, the normalization condition H(0) =
1 is maintained, while the integral of H(x) becomes unity
only for differential cross sections dominated by the expo-
nential cone (i.e. when the integral contribution from the
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non-exponential tails is several orders of magnitude smaller
as compared to the integral of the cone region).

For the total cross section, we find from Eq. (5)

σtot(s) = 2r(s)R2(s)Ẽ(0) =

√
16π A(s)
1+ρ2

0 (s)
. (55)

Note that here we have indicated the normalization just for
clarity, but one should keep in mind that in our normaliza-
tion, Ẽ(0) = 1, and correspondingly, H(x = 0) = 1 by defi-
nition.

As clarified by Eq. (54), the scaling function H(x) coin-
cides with the modulus squared of the normalized Fourier-
transform of the scaling function E(x̃), if the elastic ampli-
tude depends on the impact parameter b only through its
scale invariant combination x= b

R(s) and if ρ(s, t)≡ ρ0(s). In
this case, the H(x) scaling is directly connected to the impact
parameter dependence of the elastic amplitude and trans-
forms out the trivial s-dependencies coming from σtot(s),
σel(s), B(s), and ρ0(s) functions. This approximation has
enabled us to establish possible physical reasons of this new
scaling, and to derive non-exponential shapes for the H(x)
scaling function and to connect violations of the H(x) scal-
ing to the hollowness effect in the shadow profile function
of the proton at ultra-high energies. At the time of closing
this manuscript, the generalization of the above derivation
to a t-dependent ρ(s, t) function is still incomplete, and will
be the subject of a separate study. Nevertheless, in our nu-
merical analysis of the H(x) scaling, detailed in the subse-
quent sections, in the comparisons of the scaled differen-
tial cross-sections and the deduced Odderon significance we
have not imposed any ρ(s, t)≡ ρ(s) condition. Our analysis
is generic and has been done using the published experimen-
tal data sets only, without imposing any theoretical assump-
tions such as a t-independent ρ(s, t) etc.

The above derivation also indicates that it is a promis-
ing possibility to evaluate the H(x) scaling function directly
from the experimental data. It has a clear normalization con-
dition, H(0) = 1. Furthermore, in the diffractive cone, for
nearly exponential cone distributions, H(x) ≈ exp(−x). We
have shown in this section, that even if one neglects the
possible t dependence of ρ(s, t), arbitrary positively defi-
nite H(x) scaling functions can be introduced if the elas-
tic amplitude is a product of s-dependent functions, and its
impact parameter dependence originates only through an s-
dependent scaling variable which can be conveniently de-
fined as x̃2 = b2

B(s) . Thus, the violations of the H(x) scaling
may happen if not only the slope parameter B(s), the real-
to-imaginary ratio ρ0(s) and the integrated elastic and to-
tal cross sections σel(s) and σtot(s) depend on s, but also
the b-dependence of the elastic scattering amplitude starts
to change noticeably. Namely, the H(x) scaling breaks if
the scaling relation tel(b,s) = C(s)E(b/R(s)) gets violated
in the above mentioned case.

Let us also note that the leading-order exponential shape
of H(x) ≈ exp(−x) can be derived as a consequence of the
analyticity of Tel(s,∆) at ∆ = 0 corresponding to the t = 0
optical point, as follows. By leading order we mean the re-
sult of a first-order Taylor series expansion at x = 0, so that
H(x) ≈ exp(−x) ≈ 1− x, although beyond this approxima-
tion the functional behaviour of the H(x) function cannot be
determined from analyticity. If Tel(s,∆) is an analytic func-
tion at ∆ = 0, then its leading-order behaviour is Tel(s,0)+
c(s)∆ , where c(s) is a complex coefficient that is in gen-
eral dependent on s. Hence, in this approximation the differ-
ential cross-section behaves as dσ/dt ' A(s)exp(B(s)t) ≈
A(s)(1+B(s)t + . . .) corresponding to the scaling function
H(x) ≈ exp(−x) in the diffractive cone. Similar considera-
tions, related to (non)-analyticity of modulus squared ampli-
tudes and Lévy stable source distributions were introduced
to Bose-Einstein correlations in high energy physics in Ref. [66].

On the other hand, our recent analysis of the differential
elastic cross sections in the LHC energy range [9, 26] sug-
gests that the approximation H(x) ≈ exp(−x) breaks down
since the TOTEM experiment observed a significant non-
exponential behaviour already in the diffractive cone. In this
case, at low values of |t|, nearly Lévy stable source distribu-
tions can be introduced, that lead to an approximate H(x) ∝

exp(−xα) behaviour, where α = αLevy/2 ≤ 1. In this case,
the leading order behaviour is non-analytic, H(x)≈ 1− xα .
We have shown in Refs. [9, 26], at low |t|, such a stretched
exponential form with α ' 0.9 describes the elastic scatter-
ing data from ISR to LHC energies reasonably well in a very
broad energy range from 23.5 GeV to 13 TeV.

The main limitation of the above derivation is that al-
though it leads to a H(x) scaling, the real-to-imaginary ra-
tio ρ(s, t)→ ρ0(s) is independent of t in this approxima-
tion. So let us consider a generalization, where the real to
imaginary ratio is not only s but also t dependent. We will
discuss, model independently, such a scenario in terms of
the impact parameter dependent elastic scattering amplitude
in Appendix B. Such a t dependence of ρ(s, t) can actu-
ally be realized in a number of physical models. In greater
details, we consider one particular model, that has a H(x,s)
type of scaling limit and the s-dependent scaling violations
are related to the s-dependence of the opacity parameter in
this model. We discuss the emergence of the H(x) scaling
within a physical model, the so-called Real Extended Bialas-
Bzdak model of Refs. [30, 31, 33, 67–70] in Appendix C.
We evaluate the domain of validity of this ReBB model in
(s,x = −tB) in Appendix D, in order to determine if this
domain is including (or not) a kinematic region, where the
H(x) scaling indicates the Odderon signal.
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5 Results in the TeV energy range

We established that the H(x) scaling holds within exper-
imental errors at the ISR center-of-mass energies varying
from 23.5 to 62.5 GeV, i.e. less than by a factor of three.
Let us also investigate the same scaling function at the LHC
energies, where the TOTEM measurements span, on a log-
arithmic scale, a similar energy range, from 2.76 TeV to 13
TeV, i.e. slightly more than by a factor of four. The TOTEM
data at 13, 7 and 2.76 TeV are collected from Refs. [1],
[28], and Ref. [4], respectively, and plotted in Fig. 2. Note
that the possible scaling violating terms are small in the√

s = 2.76−7 TeV region: they are within the statistical er-
rors, when increasing

√
s from 2.76 to 7 TeV, i.e. by about

a factor of 2.5. Let us also stress that we do not claim the
validity of the H(x) scaling up to the top LHC energy of√

s = 13 TeV, as scaling violating terms start to be signifi-
cant at that energy, in particular, close to the diffractive dip
region.

Let us look into the scaling behaviour in the energy range
of
√

s = 2.76−7 TeV in more detail.
The left panel of Fig. 2 indicates that the H(x) scaling

valid within statistical errors in the
√

s = 2.76− 7 TeV en-
ergy range. The confidence level of this comparison corre-
sponds to a CL = 99 % (statistical errors only). The right
panel of the same Fig. 2 indicates that this scaling is vio-
lated, beyond systematic errors, if the

√
s = 13 TeV data

are also included into this comparison: the violation of the
H(x) scaling by the 13 TeV data is focused to the region
of the diffractive dip. However, in the x < 10 region, the
H(x) scaling is approximately valid at each of these LHC
energies of

√
s = 2.76, 7 and 13 TeV. Instead of being ap-

proximately valid in the whole measurable x region, at the
LHC this scaling remains valid at all these three LHC en-
ergies only through about 3-4 orders of magnitude drop in
the differential cross-section at lower values of x. The so
called “swing” effect becomes clear at

√
s = 13 TeV: the

scaling function starts to decrease faster than exponential be-
fore the diffractive mimimum, and also the diffractive min-
imum moves to lower values in x as compared to its posi-
tion at lower LHC energies. This swing effect, apparent in
Fig. 2, can be interpreted in terms of changes in the shadow
profile of protons at the LHC energies as the energy range
increases from 2.76 through 7 to 13 TeV. Indeed, such small
s-dependent scaling violations in the H(x) scaling function
show the same qualitative picture as what has been observed
by the direct reconstruction of the P(s,b) shadow profiles in
the TeV energy range in several earlier papers, see for ex-
ample Refs. [37, 38, 71] or our Refs. [9, 26, 30].

Inspecting the left panel of Fig. 2, we find, that the H(x)
scaling functions agree within statistical errors, if the col-
liding energy is increased from

√
s = 2.76 TeV to 7 TeV.

The right panel of the same figure shows that these data

change significantly if the colliding energy increases further
to
√

s = 13 TeV. This implies that the possible scaling vio-
lating terms are small as they are within the statistical errors,
when increasing

√
s from 2.76 to 7 TeV, by about a factor of

2.5. We have checked that TOTEM preliminary data at
√

s
= 8 TeV also satisfy this H(x) scaling [72, 73].

However, this H(x) scaling is violated by s-dependent
terms when increasing

√
s from 8 to 13 TeV, and such a

scaling violation is significantly larger than the quadratically
(maximally) added statistical and t-dependent systematic er-
rors, as indicated on the right panel of Fig. 2.

This behaviour may happen due to approaching a new
domain, where the shadow profile function of pp scattering
changes from a nearly Gaussian form to a saturated shape,
that in turn may develop hollowness at 13 TeV and higher
energies. The experimental indications of such a threshold-
crossing behaviour were summarized recently in Ref. [43],
and are also described above: a new domain may be indi-
cated by a sudden change of B(s) in between 2.76 and 7 TeV
and, similarly, the crossing of the critical σel(s)/σtot(s) =
1/4 line in multi-TeV range of energies, somewhere between
2.76 and 7 TeV. From the theoretical side, we have previ-
ously noted such as drastic change in the size of the pro-
ton substructure between the ISR and LHC energy domains
from a dressed quark-like to a dressed di-quark type of a
substructure [9, 26] which may be, in principle, connected
to such a dramatic change in the scaling behaviour of the
elastic cross section. However, in this work we focus on
the scaling properties of the experimental data, and do not
intend to draw model-dependent conclusions. Nevertheless,
we use the model-dependent results as well in order to cross-
check our model-independent conclusions. Some details of
the model-independent calculations are summarized in Ap-
pendix A and Appendix B, while our model-dependent es-
timates are described in Appendix C, Appendix D and Ap-
pendix E.

In Fig. 3 we directly compare the H(x) scaling functions
of the differential cross sections, using the same ISR and
LHC data, as in Figs. 1 and 2, respectively. This range of
data now spans nearly a factor of about 500, about a three
orders of magnitude increase in the range of available col-
liding energies, from 23.5 GeV to 13 TeV. As can be seen in
the corresponding Fig. 3, the scaling works approximately
in the diffractive cone, however, the H(x) scaling function
cannot be considered as an approximately constant if such a
huge change in the colliding energies is considered.

Comparing Figs. 1, 2 and 3, we find that the s-dependence
of the H(x) scaling functions is rather weak if s changes
within a factor of two, however, there are very significant
changes if the range of energies is changing by a factor of a
few hundred, from the ISR energy range of

√
s= 23.5−62.5

GeV to the LHC energy range of 2.76 – 7.0 – 13.0 TeV.



13

-Bt

0 10 20 30 40

/d
t

σ
) 

 d
elσ

 1
 / 

(B
 

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1
 

7 TeV
2.76 TeV

-Bt

0 10 20 30 40

/d
t

σ
) 

 d
elσ

 1
 / 

(B
 

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1
 

13 TeV
7 TeV

Fig. 2 Scaling behaviour of the differential cross section dσ/dt of elastic pp collisions at LHC energies. Elastic scattering data are measured
by the TOTEM Collaboration at

√
s = 13 TeV [1], at

√
s = 7 TeV [28], and at

√
s = 2.76 TeV [4]. Left panel shows the 2.76 and 7 TeV data

points with statistical errors only, while the right panel shows the 7.0 and 13.0 TeV data with statistical and t-dependent systematic errors added in
quadrature. The left panel indicates, that the H(x) scaling is within statistical errors valid between

√
s = 2.76 TeV and 7.0 TeV, so the H(x) scaling

works from 7 TeV downwards. The right panel indicates that the H(x) scaling is violated, when the colliding energy is increased from
√

s = 7.0 to
13 TeV: the right panel indicates scaling violations that go well beyond the combined statistical and systematic errors.
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Fig. 3 Scaling behaviour of the differential cross section dσ/dt of elastic pp collisions from ISR to LHC energies. Data points are the same
as shown in Figs 1 and 2. (Left panel): Data points are shown with statistical errors only. (Right panel): Same data set, but now showing both
statistical and t-dependent systematic errors added in quadrature.

In the left panel of Fig. 4, the H(x) function of the
√

s =
2.76 TeV TOTEM data set of Ref. [4] is compared with that
of the pp̄ collisions measured by the D0 collaboration at√

s= 1.96 TeV Tevatron energy [8]. The right panel of Fig. 4
compares the H(x) scaling functions of elastic pp collision
at
√

s = 7 TeV LHC energy [28, 74] to that of the elastic pp
collisions at the Tevatron energy,

√
s = 1.96 TeV. On both

panels, the statistical errors and t-dependent systematic er-
rors are added in quadrature. Lines are shown to guide the
eye corresponding to fits with the model-independent Lévy
series studied in Refs. [9, 26]. These plots suggest that the
comparison of the H(x) scaling functions or elastic pp to pp̄

collisions in the TeV energy range is a promising method for
the Odderon search, and a precise quantification of the dif-
ference between the H(x) scaling functions for pp to pp̄ col-
lisions data sets is important. But how big is the difference
between the H(x) scaling functions of elastic pp collisions
at similar energies?

The H(x) scaling of the differential cross section dσ/dt
of elastic pp collisions is compared at the nearby

√
s = 2.76

and 7 TeV LHC energies in Fig. 5. These plots are similar to
the panels of Fig. 4. The H(x) scaling functions are remark-
ably similar, in fact, they are the same within the statistical
errors of these measurements. Due to their great similarity,
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it is important to quantify precisely how statistically signifi-
cant their difference is.

We stress in particular that the possible scaling viola-
tions are small, apparently within the statistical errors, when
pp results are compared at LHC energies and

√
s is increased

from 2.76 to 7 TeV, by about a factor of 2.5. This makes it
very interesting to compare the differential cross-sections of
pp and pp̄ elastic scattering at the nearest measured ener-
gies in the TeV range, where crossing-odd components are
associated with Odderon effects. Actually, the largest

√
s of

pp̄ elastic scattering data is 1.96 TeV [8] while at the LHC
the public data set on the elastic pp scattering is available
at
√

s = 2.76 TeV [4], corresponding to a change in
√

s by
a factor of 2.76/1.96 ≈ 1.4. This is a rather small multi-
plicative factor on the logarithmic scale, relevant to describe
changes both in high energy pp and pp̄ collisions. Given that
the H(x) scaling function is nearly constant between 2.76
TeV and 7 TeV within the statistical errors of these data sets,
we will search for a significant difference between the H(x)
scaling function of elastic pp collisions at

√
s = 2.76 and 7

TeV as well as that of the elastic pp̄ scattering at
√

s = 1.96
TeV. If such a difference is observed, then there must be a
crossing-odd (Odderon) component in the scattering ampli-
tude of elastic pp and pp̄ scatterings.

Let us now consider Fig. 6. This plot compares the H(x)
scaling functions for pp̄ collisions at various energies from√

s = 546 GeV to 1.96 TeV. Within experimental errors,
an exponential cone is seen that extends to x = −tB ≈ 10
at each measured energies, while for larger values of x the
scaling law breaks down in an energy dependent manner. At
lower energies, the exponential region extends to larger val-
ues of x ≈ 13, and the tail regions are apparently changing
with varying colliding energies. Due to this reason, in this
paper we do not scale the differential cross section of elas-
tic pp̄ collisions to different values of

√
s as this cannot be

done model-independently. This property of elastic pp̄ colli-
sions is in contrast to that of the elastic pp collisions, where
we have demonstrated in Figs. 1,2 that in a limited energy
range between

√
s = 23.5 and 62.5 GeV, as well as at the

LHC in the energy range between
√

s = 2.76 and 7 TeV, the
H(x) scaling works well. Due to these experimental facts
and the apparent violations of the H(x) scaling for pp̄ col-
lisions in the x = −tB ≥ 10 region, in this paper we do not
attempt to evaluate the energy dependence of the differen-
tial cross sections for pp̄ collisions. However, based on the
observed H(x) scaling in pp collisions, we do find a model-
independent possibility to rescale the differential cross sec-
tions of elastic pp collisions in limited energy ranges.

After the above qualitative discussion of H(x) scaling
for both pp and pp̄ elastic collisions, let us work out the de-
tails of the possibility of rescaling the measured differential
cross sections to other energies in the domain where H(x)
indicates a scaling behaviour within experimental errors.

The left panel of Fig. 7 indicates the result of rescal-
ing of the differential cross sections of elastic pp scattering
from the lowest

√
s = 23.5 GeV to the highest 62.5 GeV

ISR energy, using Eq. (67). We have evaluated the level of
agreement of the rescaled 23.5 GeV pp data with the mea-
sured 62.5 GeV pp data with the help of Eq. (60). The re-
sult indicates that the data measured at

√
s = 23.5 GeV and

duly rescaled to 62.5 GeV are, within the errors of the mea-
surements, consistent with the differential cross section of
elastic pp collisions as measured at

√
s = 62.5 GeV. This

demonstrates that our method can also be used to extrapolate
the differential cross sections at other energies by rescaling,
provided that the H(x) scaling is not violated in that energy
range and that the nuclear slope and the elastic cross sec-
tions are known at a new energy as well as at the energy
from where such a rescaling starts.

A similar method is applied at the LHC energies in the
middle panel of Fig. 7. This plot also indicates a clear agree-
ment between the 2.76 TeV data and the rescaled 7 TeV data,
which corresponds to a χ2/NDF = 39.3/63 and a CL of
99.2 % and a deviation on the 0.01 σ level only. This sug-
gests that indeed the rescaling of the differential cross sec-
tion of elastic scattering can be utilized not only in the few
tens of GeV range but also in the few TeV energy range.
Most importantly, this plot indicates that there is a scaling
regime in elastic pp collisions, that includes the energies of√

s = 2.76 and 7 TeV at LHC, where the H(x) scaling is
within errors, not violated. This is in a qualitative contrast to
the elastic pp̄ collisions at TeV energies, where the validity
of the H(x) scaling is limited only to the diffractive cone re-
gion with x≤ 10, while at larger values of x, the H(x) scaling
is violated.

The right panel of Fig. 7 indicates a surprising agree-
ment: after rescaling of the differential cross section of elas-
tic pp collisions from 2.76 TeV to 1.96 TeV, we find no sig-
nificant difference between the rescaled 2.76 TeV pp data
with the pp̄ data at the same energy,

√
s = 1.96 TeV. The

agreement between the extrapolated pp and the measured
pp̄ differential cross sections correspond to an agreement at
a CL of 7.9 %, i.e. a surprising agreement at the 1.76σ level.
It can be seen on the right panel of Fig. 7 that in the swing
region, before the dip, the rescaled pp differential cross sec-
tion seems to differ qualitatively with the pp̄ collisions data.
However, according to our χ2 analysis that also takes into
account the horizontal errors of the TOTEM data, we find
that this apparent qualitative difference between these two
data sets is quantitatively not significiant: it is characterized
as an agreement within less than 2σ .

These plots suggest that the H(x) scaling functions of
elastic pp and pp̄ collisions differ at similar energies, while
the same scaling functions for elastic pp collisions are simi-
lar at similar energies, thus the comparison of the H(x) scal-
ing functions of elastic pp and pp̄ collisions is a promising
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Fig. 4 Left panel: Scaling function H(x) = 1
Bσel

dσ

dt of the differential cross section of elastic pp collisions at
√

s = 2.76 TeV LHC (red), as
compared to that of the elastic pp collisions at the Tevatron energy of

√
s = 1.96 TeV (blue), shown as a function of x =−tB. Right panel: Same

as the left panel, but now using elastic pp data at
√

s = 7 TeV (red), as compared to elastic pp collisions at
√

s = 1.96 TeV (blue). On both
panels, statistical errors and t-dependent systematic errors are added in quadrature. Lines are shown to guide the eye, corresponding to fits with
the model-independent Lévy series from Refs. [9, 26].

candidate for an Odderon search. Due to this reason, it is im-
portant to quantify how significant is this difference, given
that the H(x) scaling functions scale out the dominant s-
dependent terms, that arise from the energy-dependent σel(s)
and B(s) functions. Such a quantification is the subject of the
next section.

Before going into more details, we can already com-
ment on a new Odderon effect qualitatively. When compar-
ing the H(x) scaling function of the differential cross section
of elastic pp collisions at 2.76 and 7.0 TeV colliding ener-
gies, we see no qualitative difference. By extrapolation, we
expect that the H(x) scaling function may be approximately
energy independent in a bit broader interval, that extends
down to 1.96 TeV. Such a lack of energy evolution of the
H(x) scaling function of the pp collisions is in a qualitative
contrast with the evolution of the H(x) scaling functions of
pp̄ collisions at energies of

√
s = 0.546− 1.96 TeV, where

a qualitative and significant energy evolution is seen in the
x =−tB > 10 kinematic range. Thus, our aim is to quantify
the Odderon effect in particular in this kinematic range of
x = −tB > 10 in order to evaluate the significance of this
qualitative difference between elastic pp and pp̄ collisions.

6 Quantification with interpolations

In this section, we investigate the question of how to com-
pare the two different scaling functions H(x) = 1

Bσel

dσ

dt with
x=−tB introduced above measured at two distinct energies.
We would like to determine if two different measurements
correspond to significantly different scaling functions H(x),
or not. In what follows, we introduce and describe a model-

independent, simple and robust method, that enables us to
quantify the difference of datasets or H(x) measurements.
The proposed method takes into account the fact that the
two distinct measurements may have partially overlapping
acceptance in x and their binning might be different, so the
datasets may correspond to two different sets of x values.

Let us first consider two different datasets denoted as Di,
with i= 1,2. In the considered case, Di =

{
xi( j),Hi( j),ei( j)

}
,

j = 1, ...ni consists of a set of data points located on the hor-
izontal axis at ni different values of xi, ordered as xi(1) <
xi(2)< ... < xi(ni), Hi( j)≡ Hi(xi( j)) are the measured val-
ues of H(x) at x = xi( j) points, and ei( j) ≡ ei(xi( j)) is the
corresponding error found at xi( j) point.

In general, two different measurements have data points
at different values of x. Let us denote as X1 =

{
x1(1), ...x1(n1)

}
the domain of D1, and similarly X2 =

{
x2(1), ...,x2(n2)

}
stands for the domain of D2. Let us choose the dataset D1
which corresponds to x1(1) < x2(1). In other words, D1 is
the dataset that starts at a smaller value of the scaling vari-
able x as compared to the second dataset D2. If the first
dataset ends before the second one starts, i.e. when x1(n1)<

x2(1), their acceptances would not overlap. In this limiting
case, the two datasets cannot be compared with our method.
Fortunately, however, the relevant cases e.g. the D0 data on
elastic pp collisions at

√
s = 1.96 TeV have an overlapping

acceptance in x with the elastic pp collisions of TOTEM at√
s = 2.76, 7 and 13 TeV. So from now on we consider the

case with x1(n1)> x2(1).

If the last datapoint in D2 satisfies x2(n2)< x1(n1), then
D2 is within the acceptance of D1. In this case, let us in-
troduce f2 = n2 as the final point with the largest value of
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Fig. 5 Same as Fig. 4, but now the H(x) scaling of the differential cross section dσ/dt of elastic pp collisions is compared at the nearby
√

s = 2.76
and 7 TeV LHC energies. Left panel shows the data with statistical errors only, while on the right panel, statistical errors and t-dependent systematic
errors are added in quadrature. The two H(x) scaling functions are, within statistical errors, apparently the same.
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Fig. 6 Approximate H(x) = 1
Bσel

dσ

dt scaling of the differential cross
section dσ/dt of elastic pp collisions at

√
s = 0.546 to 1.96 TeV.

The scaling behaviour is valid in the exponential cone region, with the
scaling function H(x) = exp(−x). The scaling domain starts at x = 0
and extends up to x = −tB ' 10. Scaling violations are evident in the
−tB ≥ 10 region, when the colliding energy increases from 546 GeV
to 1.96 TeV, nearly by a factor of four.

x f from D2. If D2 has x2(n2)> x1(n1), then the overlapping
acceptance ends at the largest (final) value of index f2 such
that x2( f2)< x1(n1)< x2( f2 +1). This means that the point
f2 of D2 is below the largest value of x in D1, but the next
point in D2 is already above the final, largest value of x(n1)

in D1.

The beginning of the overlapping acceptance can be found
in a similar manner. Due to our choice of D1 as being a
dataset that starts at a lower value, x1(1) < x2(1), let us de-
termine the initial point i1 in D1 that already belongs to the

acceptance domain of D2. This is imposed by the criterion
that x1(i1−1)< x2(1)< x1(i1).

We compare the D1 and D2 datasets in the region of their
overlapping acceptance, defined above, either in a one-way
or in a two-way projection method. The projection 1→ 2
has the number of degrees of freedom NDF(1→ 2) equal to
the number of points of D2 in the overlapping acceptance.
For any of such a point xi(2), we used linear interpolation of
the nearest points from D1 such that x j(1)< xi(2)≤ x j+1(1)
in order to evaluate the data and the errors of D1 at this par-
ticular value of x = xi(2). This is done employing a default
(linear, exponential) scale in the (x,H(x)) plane, that is ex-
pected to work well in the diffraction cone, where the expo-
nential cone is a straight line. However, for safety and due to
the unknown exact structure at the dip and bump region, we
have also tested the linear interpolation utilizing the (linear,
linear) scales in the (x,H(x)) plane.

Similarly, the projection 2→ 1 has the number of de-
grees of freedom NDF(2→ 1) as the number of points of
dataset D1 that fell into the overlapping common accep-
tance. A linear extrapolation was used for each xi(1) points
in this overlapping acceptance, so that x j(2)< xi(1)≤ x j+1(2),
using both (linear, exponential) and (linear, linear) scales in
the (x,H(x))-planes. For the two-way projections, for exam-
ple 1←→ 2, the number of degrees of freedom is the sum
of the points of D1 and D2 in the overlapping acceptance,
defined as NDF(1←→ 2) = NDF(1→ 2) + NDF(2→ 1).

Let us describe the two-way projections in more detail as
the one-way projections can be considered as special cases
of this method. A common domain X12 =

{
x12(1), ...,x12(n12)

}
in the region of the overlap of the X1 and X2 domains can be
introduced as follows. Take the data points in the interval
[i1 . . .n1] from the D1 set and the data points in the inter-
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Fig. 7 Rescaling of the differential cross section of elastic pp collisions at the ISR and LHC energies, using Eq. (67). This demonstrates that our
method can also be used to get the differential cross sections at other energies by such a rescaling procedure, provided that the nuclear slope and the
elastic cross sections are known at the new energy as well as at the energy from where we start to rescale the differential cross section. In all panels,
we have evaluated the level of agreement between the rescaled and measured data with the help of Eq. (60). Left panel: Rescaling of the differential
cross sections from the lowest ISR energy of

√
s = 23.5 to the highest ISR energy of 62.5 GeV. The level of agreement between the rescaled 23.5

GeV pp data and the measured 62.5 GeV pp data corresponds to χ2/NDF = 111.0/110 with a CL = 21.3 % , that indicates an agreement within
1.3σ . Middle panel: Rescaling of the differential cross section of elastic pp collisions from the energy of

√
s = 7 TeV [28, 74] down to 2.76

TeV [4]. The level of agreement between the rescaled 7.0 TeV pp data and the measured 2.76 TeV pp data corresponds to χ2/NDF = 39.3/63
with a CL = 99.2 % , that indicates an agreement, within 0.01σ , corresponding to a nearly vanishing deviation. Right panel: Rescaling of the
differential cross section of elastic pp collisions from the energy of

√
s = 2.76 TeV, measured by TOTEM [4], down to 1.96 TeV, where it is

compared to the D0 dataset of Ref. [8]. The level of agreement between the rescaled 2.76 TeV pp data and the measured 1.96 TeV pp data is
quantified by a χ2/NDF = 18.1/11 and a CL = 7.9 % , that indicates an agreement within 1.76σ .

val [1 . . . f2] from the D2 set. This selection procedure pro-
vides a total of n12 = n1+ f2− i1+1 points. Let us order this
new set of points and denote such a united domain as X12.
This domain corresponds to a common acceptance region
which has n12 data points on the horizontal axis denoted as{

x12(1), ...,x12(n12)
}

.
In order to compare the datasets D1 and D2, one needs

to build two analog datasets that are both extrapolated to the
same common domain X12 starting from D1 and D2 as if the
data in both analog datasets were measured at the same val-
ues of x. So far, either D1 or D2 has some data value on any
element of the domain X12, but only one of them is deter-
mined.

Let us take first those points from X12 that belong to
D1, and label them with j index. There are n1− i1 +1 such
points. For such points, the data and error-bars of the ex-
trapolated data set D12 will be taken from D1: d12(x12( j)) =
d1(x1( j)), e12(x12( j) = e1(x1( j)). However, for the same
points, D2 has no measured value. But we need to compare
the data of D1 and D2 at common values of x. So D2 data and
errors can be interpolated using linear or more sophisticated
interpolation methods. If the binning is fine enough, linear
interpolation between the neighbouring datapoints can be
used.

At this point, let us consider that in the diffractive cone,
when an exponential approximation to the differential cross
section can be validated, the shape of the scaling function
is known to be H(x) ≈ exp(−x). This function is linear on
a (linear, logarithmic) plot of (x,H(x)). In what follows,
we will test both a (linear, exponential) interpolation in the
(x,H(x)) plots (that is expected to give the best results in the

diffractive cone) and a (linear, linear) interpolation that has
the least assumptions and that may work better than the (lin-
ear, exponential) interpolation technique around the diffrac-
tive minimum. These two different interpolation methods
also allow us to estimate the systematic error that comes
from the interpolation procedure itself. If the data points are
measured densely enough in the (x,H(x)) plot, both meth-
ods are expected to yield similar results. We present our final
results using both techniques and note that indeed we find
similar results with both methods.

Suppose that for the j-th point of data set D12 and for
some i value of D2, x2(i)< x12( j)< x2(i+1). Then a linear
interpolation between the i-th and i+1-th point of D2 yields
the following formula:

d12( j) = d2(i)+(d2(i+1)−d2(i))
x12( j)− x2(i)

x2(i+1)− x2(i)
. (56)

Similarly, the errors can also be determined by linear inter-
polation as

e12( j) = e2(i)+(e2(i+1)− e2(i))
x12( j)− x2(i)

x2(i+1)− x2(i)
. (57)

This way, one extends D2 to the domain X12, correspond-
ing to the overlapping acceptance of two measurements. If
there is a measured value in D2, we use that value and its
error bar. If there is no measurement in D2 precisely at that
given value of x that is part of the overlapping acceptance
(corresponding to a value x from D1) then we use the two
neighbouring points from D2 and use a (linear) interpolation
to estimate the value at this intermediate point. This method
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Fig. 8 Rescaling of the differential cross section of elastic pp collisions from the energy of
√

s = 7 to 1.96 TeV using Eq. (67). We have evaluated
the confidence level of the comparison between the rescaled 7 TeV pp data set and the 1.96 TeV pp̄ data set with the help of Eq. (60), that does not
take into account the horizontal errors of x coming from the slopes B and the type C point-to-point correlated errors on the vertical scale. Without
these important effects, the difference between the datasets provides a χ2/NDF = 73.6/17, equivalent to a confidence level of CL = 5.13×10−7%
and a statistically significant, 5.84σ effect.

works if the binning of both data sets is sufficiently fine so
that non-linear structures are well resolved.

This way, for those j = 1, ...,n1− i1 +1 points from X12
that belonged to D1, we have defined the data values from
D1 by identity and defined the data points from D2 by linear
interpolation from the neighbouring bins, so for these points
both data sets are defined.

A similar procedure works for the remaining points in
D12 that originate from D2. The number of such points is f2.
Let us index them with k = 1, ..., f2. For these points, data
and error-bars of the extrapolated data set D12 will be taken
from D2: d21(x12(k)) = d2(x2(k)), while the errors are given
as e12(x12(k))= e2(x2(k)). However, for the same points, D1
has no measured value. As we need to compare the data of
D1 and D2 at common values of x, for these points, D1 data
and errors can be extrapolated using the linear or more so-
phisticated interpolation methods based on the nearest mea-
sured points. If the binning is fine enough, linear interpola-
tion between the neighbouring data-points can be appropri-
ately used. For broader bins, more sophisticated interpola-
tion techniques may also be used that take into account non-
linear interpolations based on more than two nearby bins,
for example interpolations using Levy series expansion tech-
niques of Ref. [9]. However, in the present manuscript such
refinements are not necessary as the (linear, linear) and the

(linear, exponential) interpolations in (x,H(x)) give similar
results.

Consider now that for the k-th point of data set D12 and
for some l-th value of D2, x1(l) < x12(k) < x1(l + 1). Then
linear interpolation between the l-th and l+1-th point of D2
yields the following formula:

d21(k) = d1(l)+(d1(l +1)−d1(l))
x12(k)− x1(l)

x1(l +1)− x1(l)
. (58)

Similarly, the errors can also be determined by linear inter-
polation as

e21(k) = e1(l)+(e1(l +1)− e1(l))
x12(k)− x1(l)

x1(l +1)− x1(l)
. (59)

This way, using the linear interpolation techniques be-
tween the neighbouring data points, we can now compare
the extended D1 and D2 to their common kinematic range:
D1 was embedded and extrapolated to data points and er-
rors denoted as d12(x12) and e12(x12) while D2 was embed-
ded and extrapolated to data points and errors denoted as
d21(x12) and e21(x12), respectively. Note that the domain of
both of these extended data sets is the same X12 domain.
The index “12” indicates that D1 was extended to X12, while
index “21” indicates that D2 was extended to domain X12.
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Now, we are done with the preparations to compare the
two data sets, using the following χ2 definition:

χ
2 ≡ χ

2
A =

n12

∑
j=1

(d12( j)−d21( j))2

e2
12( j)+ e2

21( j)
. (60)

In this comparison, there are no free parameters, so the num-
ber of degrees of freedom is NDF = n12 = n1 + f2− i1 +1,
the number of data points in the unified data sample.

Based on the above Eq. (60) we get the value of χ2 and
NDF, which can be used to evaluate the p-value, or the con-
fidence level (CL), of the hypothesis that the two data sets
represent the same H(x) scaling function. If CL satisfies the
criteria that CL > 0.1%, the two data sets do not differ sig-
nificantly. In the opposite case, if CL < 0.1% the hypothesis
that the two different measurements correspond to the same
a priori H(x) scaling function, can be rejected.

The advantage of the above χ2 definition by Eq. (60)
is that it is straightforward to implement it, however, it has
a drawback that it does not specify how to deal with the
correlated t or x = −tB dependent errors, and horizontal or
x errors. The t measurements at

√
s = 7 TeV are published

with their horizontal errors according to Table 5 of Ref. [28].
These errors should be combined with the published errors
on the nuclear slope parameter B to get a horizontal error
on x indicated as δx. Such a horizontal error has to be taken
into account in the final calculations of the significance of
the Odderon observation.

Regarding the correlations among the measured values,
and the measured errors, the best method would be to use
the full covariance matrix of the measured differential cross
section data. However, this covariance matrix is typically
unknown or unpublished, with an exception of the

√
s = 13

TeV elastic pp measurement by TOTEM [3]. Given that this
TOTEM measurement of dσ/dt at 13 TeV indicates already
the presence of small scaling violating terms in H(x) accord-
ing to Fig. 2, this 13 TeV dataset cannot be used directly in
our Odderon analysis, that is based on the s-independence of
the scaling function of the differential elastic pp cross sec-
tion H(x) 6= H(x,s) in a limited range that includes

√
s =

2.76 and 7 TeV, but does not extend up to 13 TeV. However,
we can utilize this TOTEM measurement of dσ/dt at 13
TeV, to test the method of diagonalization of the covariance
matrix that we apply in our final analysis of the Odderon
significance.

Our analysis of the covariance matrix relies on a method
developed by the PHENIX Collaboration and described in
detail in Appendix A of Ref. [75]. This method is based on
the following separation of the various types of experimental
uncertainties:

Type A errors are point-to-point uncorrelated systematic
uncertainties.

Type B errors are point-to-point varying but correlated
systematic uncertainties, for which the point-to-point corre-

lation is 100 %, as the uncorrelated part is separated and
added to type A errors in quadrature.

Type C systematic errors are point-independent, overall
systematic uncertainties, that scale all the data points up and
down by exactly the same, point-to-point independent factor.

Type D errors are point-to-point varying statistical er-
rors. These type D errors are uncorrelated statistical errors,
hence they can be added to the also uncorrelated, type A
systematic errors in quadrature.

In this paper, where we apply this method to compare
two different H(x) scaling functions, we also consider a fifth
kind of error, type E that corresponds to the theoretical un-
certainty, which we identify with the error of the interpola-
tion of one of the (projected) data sets to the x values that
are compared at some (measured) values of x to a certain
measured data point at a measured x value. This type E error
is identified with the value calculated from the linear inter-
polation, described above, as given for each A, B, C and D
type of errors similarly by Eq. (59). Type D errors are added
in quadrature to type A errors, and in what follows we index
these errors with the index of the data point as well as with
subscripts a, b and c, respectively.

Using this notation, Eq. (A16) of Ref. [75] yields the
following χ2 definition, suitable for the projection of dataset
D2 to D1, or 2→ 1:

χ̃
2(2→ 1) =

f1

∑
j=i1

(d1( j)−d21( j)+ εb,1eb( j)+ εc,1d1( j)ec)
2

ẽ2
a,1( j)

+ε
2
b,1 + ε

2
c,1 , (61)

where ẽa,12( j) is the type A uncertainty of the data point j
of the united data set D12 scaled by a multiplicative factor
such that the fractional uncertainty is unchanged under mul-
tiplication by a point-to-point varying factor:

ẽa,1( j) = ea,1( j)
(

d1( j)+ εb,1eb( j)+ εc,1d1( j)ec

d1( j)

)
. (62)

In these sums, there are NDF1 = f1− i1−1 number of data
points in the overlapping acceptance from dataset D1. A
similar sum describes the one-way projection 1 → 2, but
there are NDF2 = f2 points in the common acceptance. For
the two-way projections, not only the number of degrees of
freedom add up, NDF12 = NDF1 +NDF2, but also the χ2

values are added as χ2(1↔ 2) = χ2(1→ 2)+χ2(2→ 1).
Let us note at this point, that H(x) is a scaling function

that is proportional to the differential cross section normal-
ized by the integrated cross section. In this ratio, the over-
all, type C point-independent normalization errors multiply
both the numerator and the denominator, hence these type
C errors cancel out in H(x). Given that these type C er-
rors are typically rather large, for example, 14.4 % for the
D0 measurement of Ref. [8], it is an important advantage in
the significance computation that we use a normalized scal-
ing function H(x). So in what follows, we set εc,1 = 0 and
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rewrite the equation for the χ2 definition accordingly. This
effect increases the significance of a H(x)-scaling test.

The price we have to pay for this advantage is that we
have to take into account the horizontal errors on x in order
to not overestimate the significance of our χ2 test. In this
step, we follow the propagation of the horizontal error to the
χ2 as utilized by the so-called effective variance method of
the CERN data analysis programme ROOT. This yields the
following χ2 definition that we have utilized in our signifi-
cance analysis for the case of symmetric errors in x:

χ̃
2(2→ 1) =

n12

∑
j=1

(d1( j)−d21( j)+ εb,1eb( j))2

ẽ2
a,1( j)+(δx1( j)d′1( j))2 + ε

2
b,1 , (63)

where δx12( j) is the (symmetric) error of x in the j-th data
point of the data set D1, and d′1( j))2 is the numerically eval-
uated derivative of the extrapolated value of the projected
data point obtained with the help of a linear interpolation
using Eq. (58). Such definition is valid when the type B er-
rors are known and are symmetric for the data set D1 and
the errors on x are also symmetric. When the data set D1
corresponds to the D0 measurement of elastic pp̄ collisions,
Ref. [8], we have to take into account that D0 did not publish
the separated statistical and |t|-dependent systematic errors,
but decided to publish their values added in quadrature. So
we use these errors as type A errors and with this method,
we underestimate the significance of the results as we ne-
glect the correlations among the errors of the data points
in the D0 dataset. The TOTEM published the |t|-dependent
statistical type D errors and the |t|-dependent systematic er-
rors both for the 2.76 TeV and 7 TeV measurements of the
differential cross sections [4, 28, 74], with the note that the
|t|-dependent systematic errors are almost fully correlated.
In these works, TOTEM did not separate the point-to-point
varying uncorrelated part of the |t|-dependent systematic er-
rors. We thus estimate the type A errors by the statistical
errors of these TOTEM measurements, we then slightly un-
derestimate them, hence overestimate the χ2 and the differ-
ence between the compared data sets. Given that they are
almost fully correlated, we estimate the type B errors by the
point-to-point varying almost fully correlated systematic er-
rors published by the TOTEM. We have tested this scheme
by evaluating the χ2 from a full covariance matrix fit and
from the PHENIX method of diagonalizing the covariance
matrix at

√
s = 13 TeV, using the Lévy expansion method of

Ref. [9]. We find that the fit with the full covariance matrix
results in the same minimum within one standard deviation
of the fit parameters, hence the same significance as the fit
with the PHENIX method of Appendix A of Ref. [75].

We have thus validated the PHENIX method of Ref. [75]
for the application of the analysis of differential cross sec-
tion at

√
s = 13 TeV, together with the effective variance

method of the ROOT package. This validation is important
as the full covariance matrix of the

√
s = 2.76 TeV and

7 TeV measurements by TOTEM is not published, but the
PHENIX method appended with the ROOT method of ef-
fective variances can be used to effectively diagonalize the
covariance matrix and to get similar results within the errors
of the analysis. In Section 9, we employ the preliminary χ2

definition of Eq. (63) to estimate the significance of the Odd-
eron signal in comparison of the H(x) scaling functions for
elastic pp and pp̄ collisions. Our final χ2 definition and the
corresponding final results are described in Appendix A.

7 Extrapolation of the differential cross-sections

In this section, we discuss how to extrapolate the data points
to energies where measurements are missing. We empha-
size that this method is not our best method to evaluate the
significance of the Odderon signal, but we include this sec-
tion for the sake of completeness, as other groups follow this
method. The obvious reason for this is that a large, 14.4 %
overall correlated, type C error of the D0 measurement does
not cancel from the differential cross-sections, and their sig-
nificances, while it simply cancels from the H(x) scaling
functions, that are normalized to the integral of the differen-
tial cross-section. A quantitative estimate of the importance
of this effect is shown in Appendix A, and we detail the
results from the comparison of the H(x) scaling functions
starting from the next section. We recommend this section
to those readers, who are motivated to understand how to
extrapolate the differential cross-sections to a new, not mea-
sured energy in a domain of (s, t) where the H(x) scaling is
known to be valid from already performed measurements.

We have found, for example, that in the ISR energy range
of
√

s = 23.5 – 62.5 GeV the H(x) scaling function is ap-
proximately independent of

√
s within errors, and with a

possible exception at a small region around the diffractive
minimum. We show how to extrapolate data points to un-
measured energies, under the condition that in a given en-
ergy range, H(x) is independent of the collision energy, H(x) 6=
H(x,s). In general, such a feature has to be established or
cross-checked experimentally. This case is important, given
that we have shown before, for example in Fig. 5, that H(x)
for pp collisions stays energy-independent within errors be-
tween the LHC energies of 2.76 TeV≤

√
s≤ 7 TeV. Further-

more, we have already shown that for pp collisions, H(x) =
H(x,s) in the energy range of 0.546 ≤

√
s ≤ 1.96 TeV, as

indicated in Fig. 6.
Let us denote two different center-of-mass energies be-

tween which H(x) = const(
√

s) within the experimental er-
rors as

√
s1 and

√
s2. Analogically, we denote various ob-

servables as Bi ≡ B(si), σi ≡ σel,i ≡ σel(si), xi ≡ Bit.
The energy independence of the H(x) scaling function

formally can be written as

H1(x1) = H2(x2) = H(x) if x1 = x2 . (64)
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This simple statement has tremendous experimental impli-
cations. The equality x1 = x2 means that the scaling function
is the same, if at center-of-mass energy

√
s1 it is measured

at t1 and at energy
√

s2 it is measured at t2, so that

t1B1 = t2B2 if x1 = x2 . (65)

The equality H1(x1) = H2(x2) = H(x) is expressed as

1
B1σ1

dσ

dt

∣∣∣∣
t1=x/B1

=
1

B2σ2

dσ

dt

∣∣∣∣
t2=x/B2

. (66)

Putting these equations together, this implies that the exper-
imental data can be scaled to other energies in an energy
range where H(x) is found to be independent of

√
s as fol-

lows:

dσ

dt

∣∣∣∣
t1

=
B1σ1

B2σ2

dσ

dt

∣∣∣∣
t2=t1B1/B2

. (67)

With the help of this equation, the data points on differen-
tial cross sections can be scaled to various different colliding
energies, if in a certain energy region the H(x) scaling holds
within the experimental errors. In other words, the differen-
tial cross section can be rescaled from

√
s1 to

√
s2 by rescal-

ing the |t|-variable using the ratio of B1/B2 = B(s1)/B(s2),
and by multiplying the cross section with the ratio B1σ1

B2σ2
.

8 Results

In this section, we present our results and close the energy
gap, as much as possible without a direct measurement, be-
tween the TOTEM data on elastic pp collisions at

√
s =

2.76 and 7.0 TeV and D0 data on elastic pp̄ collisions at√
s = 1.96 TeV. This section is based on the application of

Eq. (67) in this energy range. After the rescaling procedure,
the resulting data set at the new energy is compared with the
measured data quantitatively with the help of Eq. (60).

We have used the rescaling equation, Eq. (67) first to
test and to cross-check, if the rescaling of the

√
s = 23.5

GeV ISR data to other ISR energies works, or not. The left
panel of Fig. 7 indicates that such a rescaling of the differen-
tial cross sections from the lowest ISR energy of

√
s = 23.5

to the highest ISR energy of 62.5 GeV actually works well.
The level of agreement of the rescaled 23.5 GeV pp data
with the measured 62.5 GeV pp data has been evaluated
with the help of Eq. (60). We found an agreement with a
χ2/NDF = 111/100, corresponding to a CL = 21.3 % and a
difference is at the level of 1.25σ only. This result demon-
strates that our rescaling method can also be used to get the
differential cross sections at other energies, provided that the
nuclear slope and the elastic cross sections are known at the
new energy as well as at the energy from where we start the
rescaling procedure.

Subsequently, one can also rescale the TOTEM data at√
s = 2.76 or 7 TeV to 1.96 TeV, given that H(x) is (within

errors) energy independent in the range of 2.76−7 TeV, cor-
responding to nearly a factor of 2.5 change in

√
s, while the

change in
√

s from 1.96 to 2.76 TeV is only a factor of 1.4.
The right panel of Fig. 7 indicates that rescaling of the dif-
ferential elastic pp cross section from

√
s = 2.76 to 1.96

TeV also gives valuable results. We have evaluated the con-
fidence level of the comparison of the rescaled 2.76 TeV pp
data with the 1.96 TeV pp̄ data with the help of Eq. (60). As
was already mentioned above, we have found a surprising
agreement with a χ2/NDF = 18.1/11, corresponding to a
CL = 7.93 %, and a difference at the level of 1.75 σ only.

Another important result is illustrated in Fig. 8. This
comparison indicates a difference between the rescaled

√
s=

7 TeV elastic pp differential cross-section [28, 74] to the√
s = 1.96 TeV energy and to the corresponding pp̄ data

measured at
√

s = 1.96 TeV [8]. To obtain a first estimate,
this difference is quantified with the help of Eq. (60) yield-
ing a CL of 5.13 ·10−7 %, which corresponds to a difference
at the 5.84 σ level. As this method adds the statistical and
the point-to-point varying systematic errors in quadrature, it
underestimates the actual significance of the difference be-
tween the two data sets. Although this estimate already pro-
vides a significant, greater than 5σ effect for the Odderon
observation, corresponding to a significant, 5.84σ difference
between the pp dataset and the 1.96 TeV pp dataset, how-
ever, the evaluation of this significance does not yet take into
account the rather large overall normalization error of 14.4
% that has been published by the D0 collaboration.

This Fig. 8 indicates that not only the diffractive inter-
ference, the dip and the bump may carry an Odderon signal,
but also the so called swing region, where the pp differential
cross-section bends below the straight exponential diffrac-
tive cone of the pp̄ result. See also Fig. 16 of Appendix A
for more details on how the type C errors reduce the signif-
icance of the Odderon signal to a 3.64σ , if the comparison
is done directly at the level of the differential cross-sections
and if these type C, overall correlated errors are added in
quadrature to the point-to-point correlated, type A errors.
This is only a lower bound of the significance as type C er-
rors are not point-to-point fluctuating, but shift the whole
dataset up or down in a correlated way, see the end of Ap-
pendix A for more details on this lower bound. The point
is that it is advantageous to use the H(x) scaling function
instead of the differential cross-sections, as the rather large
type C errors cancel from H(x) while they may lead to an
important reduction of the significance of the signal when
they are considered on the differential cross-sections.

It can be seen in Fig. 8 that in the swing region, before
the dip, the rescaled pp differential cross section differ sig-
nificantly from that of pp̄ collisions. Looking by eye, the
swing and the diffractive interference (dip and bump) re-



22

gions both seem to provide an important contribution. We
have dedicated Appendix E to evaluate the significanes of
various regions, to determine precisely how much do they
contribute to the significance of this Odderon signal.

The estimates of statistical significances given in the present
Section are based on a χ2 test that includes the |t|-dependent
statistical errors and the |t|-dependent systematic errors added
in quadrature. Thus the values of χ2/NDF and significances
given in this Section can only be considered as estimates. In-
deed, although the |t|-dependent systematic errors on these√

s = 7 TeV data are known to be almost fully correlated,
the covariance matrix is not publicly available at the time
of closing this manuscript from the TOTEM measurement
at
√

s = 7 TeV. It is clear that the χ2 is expected to in-
crease if the covariance matrix is taken into account, and this
effect would increase the disagreement between the mea-
sured pp̄ and the extrapolated pp differential cross sections
at
√

s = 1.96 TeV.
So this indicates that we have to consider the proposed

rescaling method as conservatively as possible, that allows
us to take into account the statistical and |t|-dependent corre-
lated systematic errors, as well as the |t|-independent corre-
lated systematic errors. Such an analysis is presented in the
next section, where we quantify the differences between the
scaling functions H(x) of elastic pp and pp̄ collisions using
the fact that H(x) is free of |t|-independent normalisation
errors, and our final results are summarized in Appendix A.

9 A significant Odderon signal from the pp and pp̄
scaling functions

In this section, we estimate a preliminary, 6.55σ signifi-
cance for the Odderon signal, while Appendix A determines
and summarizes our final Odderon signal of an at least 6.26σ

effect. Both results are obtained by comparing the H(x) scal-
ing functions of pp and pp̄ collisions.

We have found a significant Odderon signal by com-
paring the H(x) scaling functions of the differential cross
section of elastic pp collisions with

√
s = 7 TeV to that of

pp̄ collisions with
√

s = 1.96 TeV, as indicated in Fig. 10.
The comparison is made in both possible ways, by compar-
ing the pp data to the pp̄ data, and vice versa. The differ-
ence between these two datasets corresponds to at least a
χ2/NDF = 84.6/17, giving rise to a CL of 5.8× 10−9 %
and to a preliminary, 6.55σ significance, obtained with the
help of Eq. (63). The overall, |t|-independent normalization
error of 14.4 % on the D0 data set cancels from this H(x),
and does not propagate to our conclusions.

These results are obtained for the σel = 17.6± 1.1 mb
value of the elastic pp̄ cross section at

√
s = 1.96 TeV, and

for the linear-exponential interpolation in (x,H(x)). Using
this method of interpolation, the nearest points were con-
nected with a linear-exponential line, that corresponds to a

straight line on a linear-logarithmic plot in (x,H(x)). We
have used the published values of the differential cross sec-
tions dσ

dt , that of the nuclear slope parameter B and the mea-
sured value of the elastic cross section σel for 7 TeV pp
elastic collisions. For the elastic cross section of pp̄ colli-
sions at

√
s = 1.96 TeV, we have numerically integrated the

differential cross section with an exponential approximation
at very low-|t| that provided us with σel = 20.2±1.4 mb.

We have systematically checked the effect of variations
in our interpolation method by switching from the (linear-
exponential) in (x,H(x)) interpolation to a linear-linear one
and by changing the value of the elastic pp̄ collisions from
the numerically integrated differential cross-section value
of σel = 20.2± 1.4 mb, which is an unusually large value,
but equals within the quoted 14.4% systematic error to the
σel = 17.6±1.1 mb value, that corresponds to the trend pub-
lished by the Particle Data Group, see the Fig. 51.6, bottom
panel, yellow line of Ref. [76]. The input values of the nu-
clear slope parameter B and the elastic cross-section σel are
summarized in Table 1, the corresponding results are shown
in Tables 2, 3, 4 and 5.

Energy σel B Reference
(GeV) (mb) (GeV−2)

1960 17.6 ± 1.1 Fig. 51.6 of Ref. [76]
(pp̄) 20.2 ± 1.4 from low −t fit to data [8]

16.86 ± 0.2 [8]

2760 21.8 ± 1.4 [46]
(pp) 17.1 ± 0.3 [4]

7000 25.43± 1.02 [47]
(pp) 19.89 ± 0.272 [28]

Table 1 Summary table of the elastic cross-sections σel, the nuclear
slope parameters B, and their sources or references.

As part of our systematic studies, we have also changed
the direction of the projection. The results are summarized
in Table 2. They indicate that the improved version of Fig. 8,
shown as the top left panel of Fig. 10 and evaluated with the
help of our improved χ2 definition of Eq. (63) corresponds
to a conservative case of Odderon observation based on the√

s = 7 TeV TOTEM and the
√

s = 1.96 TeV D0 data sets.
This panel indicates that the Odderon signal is observed in
this comparison with a preliminary, at least a 6.55σ signif-
icance, indicating the power of our method of Odderon ob-
servation. In addition to this, our final result includes a sym-
metry requirement and a robustness test described in Ap-
pendix A. These effects decreased the significance of our
Odderon observation, from a preliminary,≥ 6.55 σ effect to
a final and statistically significant, ≥ 6.26 σ effect.

We have checked the robustness of this result for several
possible variations of the χ2 definition. The consideration
that was most successful in decreasing this significance was
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related to the fact that unlike the original PHENIX method
of Ref. [75], that was worked out for a theory to data com-
parison, in this manuscript we compare data to data. So we
have adapted the PHENIX method of Ref. [75], from a sit-
uation where there was a theoretical function without errors
compared to data with errors to a situation where we com-
pare two datasets and both of these datasets have the same
type of errors. This slightly decreased the significance of the
Odderon signal, from the value of a preliminary, at least 6.55
σ to the final value of 6.26 σ , as detailed in Appendix A of
this manuscript. Given that both significances of the prelim-
inary 6.55 σ , detailed in this section, and 6.26 σ , detailed in
Appendix A are clearly and safely above the 5 σ discovery
threshold, this robustness test did not change our conclu-
sions.

The detailed figures, that show the χ2(εb) functions for
each of these cases are summarized in the left and right pan-
els of Fig. 9 for the comparison of the 7 TeV TOTEM data
set with the 1.96 TeV D0 data set. Each plot indicates a clear,
nearly quadratic minimum. The values of χ2 at the minima
are summarized in Table 2, together with other characteris-
tics of significance, like the confidence level and the signif-
icance in terms of standard variations. Similarly, the χ2(εb)

functions for the comparison of the 2.76 TeV TOTEM data
set with the 1.96 TeV D0 data set are summarized in Fig. 11.
The values of χ2 at the minima are given in Table 3, together
with other relevant characteristics.

As summarized in Fig. 10, a significant Odderon signal
is found in the comparison of the H(x) scaling functions of
the differential elastic pp (at

√
s = 7.0 TeV) vs pp̄ (

√
s =

1.96 TeV) cross sections. The horizontal error bars are in-
dicated by a properly scaled horizontal line or “−” at the
data point. The statistical (type A, point-to-point fluctuat-
ing) errors are indicated by the size of the vertical error bars
(|), while shaded boxes indicate the size of the (asymmetric)
type B (point-to-point varying, correlated) systematic errors.
The overall normalization errors (|t|-independent, type C er-
rors) cancel from the H(x) scaling functions since they mul-
tiply both the numerator and the denominator of H(x) in the
same way. The correlation coefficient of the |t|-dependent
systematic errors, εb, is optimized to minimize the χ2 based
on Eq. (63), and the values indicated in Fig. 10 correspond
to the minimum of the χ2(εb). The location of these minima
and the best values of εb depend on the domain in x or x-
range from where the contributions to the χ2(εb) are added
up. The stability of our final results with respect to the vari-
ation of the x-range, together with the correlations between
the best value of the εb and the x-range are detailed in Ap-
pendix E. These χ2 values, as well as the numbers of de-
grees of freedom (NDFs) and the corresponding confidence
levels (CLs) are indicated on both panels of Fig. 10, for both
projections. The χ2(εb) functions are summarized in Fig. 9.
The 7 TeV → 1.96 TeV projection has a preliminary sta-

tistical significance of 6.55σ of an Odderon signal, corre-
sponding to a χ2/NDF = 84.6/17 and CL = 5.78× 10−9

%. Appendix A presents the robustness test of this result,
and summarizes the result of our tests of various possible
modifications of our χ2 definition. It turns out that the sym-
metry requirement discussed in Appendix A slightly re-
duces this significance from a 6.55 σ level to a 6.26 σ level,
safely above the 5.0 σ discovery threshold, corresponding
to a χ2/NDF = 80.1/17 and CL = 3.7×10−8 %. Thus the
probability of Odderon observation in this analysis is at least
P = 1−CL = 0.99999999963.

Fig. 10 illustrates some of the results of our system-
atic studies in four different panels described as follows.
The top-left panel of this figure uses a linear-exponential
interpolation in the (x,H(x)) plane and uses the value of
17.6 ± 1.1 mb for the elastic pp̄ cross section at

√
s = 1.96

TeV. This case gives the lowest (6.55σ ) significance for the
Odderon observation from among the possible cases that
we have considered in Fig. 10. The top-right panel is sim-
ilar but for a linear-linear interpolation in the (x,H(x)). The
bottom-left panel is similar to the top-left panel, but now us-
ing 20.2 ± 1.4 mb for the elastic pp̄ cross section at

√
s =

1.96 TeV and also using a linear-exponential interpolation
in (x,H(x)). The bottom-right panel is similar to the bottom-
left panel, but using a linear-linear interpolation method.

The results of the scaling studies for a comparison of
elastic pp collisions at

√
s = 2.76 TeV, measured by the

TOTEM experiment at the LHC [4] to that of pp̄ collisions
at
√

s = 1.96 TeV, measured by D0 at the Tevatron [8] are
summarized in Figs. 11 and 12. The top-left panel of Fig. 12
uses σel = 17.6± 1.1 mb and a linear-exponential interpo-
lation method in (x,H(x)). The top-right panel is the same
as the top-left panel, but for a linear-linear interpolation in
(x,H(x)). The bottom-left panel is nearly the same as the
top-right panel, but for σel = 20.2± 1.4 mb. The bottom-
right panel is the same as the bottom-left panel, but for a
linear-linear interpolation in (x,H(x)). Neither of these com-
parisions shows a significant difference between the H(x)
scaling function of elastic pp collisions at

√
s = 2.76 TeV as

compared to that of pp̄ collisions at
√

s= 1.96 TeV. It seems
that the main reason for such a lack of significance is the
acceptance limitation of the TOTEM dataset at

√
s = 2.76

TeV, which extends up to x = −tB ≈ 13, in contrast to the
acceptance of the 7 TeV TOTEM measurement that extends
up to x = −tB ≈ 20. We have cross-checked this by limit-
ing the 7 TeV data set also to the same acceptance region of
4.4 < −Bt < 12.7 as that of the 2.76 TeV data set. This ar-
tificial acceptance limitation has resulted in a profound loss
of significance, down a to χ2/NDF = 25.7/11, that corre-
sponds to a CL = 0.71% and to a deviation at the 2.69 σ

level only. This result indicates that if we limit the accep-
tance of the 7 TeV TOTEM measurement to the acceptance
of the 2.76 TeV TOTEM measurement, the significance of
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Fig. 9 Dependence of χ2 on the coefficient of the correlated but point-to-point varying systematic errors, εb, for the comparison of the H(x)
scaling functions of elastic pp̄ collisions at

√
s = 1.96 TeV with that of pp collisions at

√
s = 7.0 TeV. Each of the four cases are shown together

corresponding to the direction of the projection. Upper panel indicates the results of the 1.96 → 7.0 TeV projection. Lower panel indicates the
results of the 7.0→ 1.96 TeV projection. Both cases indicate four χ2(εb) curves corresponding to the choice of linear-linear or linear-exponential
interpolations in (x,H(x)), as well as to the choice of the elastic pp̄ cross section at

√
s = 1.96 TeV (20.2± 1.4 mb vs 17.6± 1.1 mb). A parabolic

structure is seen in each case with a clear minimum, and the fit quality corresponding to these minima in εb is summarized in Table 2.

the Odderon observation decreases well below the 5σ dis-
covery treshold. This result can be understood if we con-
sider, that the diffractive maximum (“bump") is located, if
the H(x) scaling is valid, at x ≈ 13, which is very close but
slightly above the value of the xmax = 12.7 upper limit of the
acceptance in x of the TOTEM data published in Ref. [4].
Fig. 8 of Ref. [4] indicates that indeed the precise location of
the diffractive maximum can not be determined from these

TOTEM data, it may be just close to the upper limit of the
TOTEM acceptance at

√
s = 2.76 TeV.

We have thus dedicated Appendix E to the scrutiny of
the x-range dependence of the Odderon signal. In particu-
lar, we have investigated how important is the contribution
from the large values of x. We developed and tested our
most conservative χ2 definition in Appendix A. We have
investigated the domain of validity of the H(x) scaling with
the help of a model and detailed in Appendix D, that at
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Table 2 Summary table of the significant Odderon signal in the one-way comparison of the H(x) scaling functions of pp collisions at
√

s = 7 TeV
measured by the TOTEM experiment at the LHC, and pp̄ elastic collisions at

√
s = 1.96 TeV measured by the D0 experiment at Tevatron. For the

projection 1.96→ 7.0 TeV, very small confidence levels are obtained with CL < 10−27 %, and due to different rounding errors of the two different
softwares that we utilized (Root vs Excel), tiny and negligible deviations are also seen between this Table and the more precise values indicated
in Fig. 10. This table indicates that the Odderon signal is observed in this comparison with at least a 6.55σ significance. In Appendix A this is
decreased to a significance of at least 6.26 σ . These significances are robustly above the 5 σ discovery treshold, corresponding to a statistically
significant Odderon discovery.

√
s = 2.76 TeV, the H(x) scaling is expected to hold up to

x = 15.1, well above the TOTEM acceptance of x < 12.7. In
Appendix E, we find that it is sufficient to include a small
shift to the investigated x range: already for only 10 data-
points from the D0 acceptance the significance of the Odd-
eron signal is greater than 5 σ in the 5.1 < x≤ 13.1 domain
at
√

s= 1.96 TeV. In Appendix E we also show that the min-
imum size of subsequent D0 datapoints for a greater than 5σ

Odderon signal is actually 8 out of 17, corresponding to the
7.0≤ x≤ 13.5 range.

We have performed several cross-checks: this topic is
detailed in the next section.

10 A summary of cross-checks

In this section, we summarize some of the most important
cross-checks that we performed using our methods and re-
sults.

We have cross-checked what happens if one rescales the
differential cross section of elastic pp scattering form the
lowest ISR energy of

√
s = 23.5 GeV to the top ISR energy

of
√

s = 62.5 GeV. As can be expected based on the approx-
imate equality of all the H(x) scaling functions at the ISR
energies, as indicated on the left panel of Fig. 7, the rescaled
23.5 GeV pp data coincide with the measured 62.5 GeV pp
data. The resulting χ2/NDF= 111/100 corresponds to a CL
= 21.3 %, or a lack of significant difference – a 1.3σ effect.
Within errors, our quantitative analysis thus indicates that
the two data sets at the ISR energies of 23.5 and 62.5 GeV
correspond to the same H(x) scaling function, but with pos-

sible small deviations in a small x-region around the dip po-
sition. This indicates that the method that we applied to ex-
trapolate the 2.76 and 7 TeV data sets to lower energies sat-
isfied the cross-checks at the ISR energies, i.e. our method
works well. As one of the critical cross-checks of these cal-
culations, two different co-authors coded the same formulae
with two different codes using two different programming
languages, and these codes were cross-checked against one
another until both provided the same values of significances.

We have validated the PHENIX method of Ref. [75]
implemented in the form of the χ2 definition of Eq. (63)
for the diagonalization of the covariance matrix on fits to
the
√

s = 13 TeV TOTEM data of Ref. [3]. This PHENIX
method resulted, within one standard deviation, the same
minimum, hence the same significances, as the use of the
full covariance matrix at

√
s = 13 TeV elastic pp collisions.

At the lower LHC energies of
√

s = 2.76 and 7.0 TeV, due to
the lack of publicly available information on the covariance
matrix, only the PHENIX method of Ref. [75] was available
for our final significance analysis.

We have also explored the main reason of the observa-
tion of a significant Odderon signal in the comparision of
the H(x) scaling functions of elastic pp collisions at

√
s = 7

TeV with that of the elastic pp̄ collisions at
√

s = 1.96 TeV.
The question was rather intriguing as we have found no sig-
nificant difference between the H(x) scaling functions of
elastic pp collisions at

√
s = 2.76 TeV and 7 TeV. At the

same time, we also see that the comparison of the 2.76 TeV
pp dataset to the 1.96 TeV pp̄ dataset does not indicate a
significant Odderon effect. We have found that the Odderon
signal vanishes from the comparison of the 7 TeV pp and
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Fig. 10 Odderon signal in the comparison of the H(x) scaling functions of pp collisions at
√

s= 7 TeV, measured by the TOTEM experiment at the
LHC [28, 74], and pp̄ elastic collisions at

√
s = 1.96 TeV measured by the D0 experiment at Tevatron [8]. The results of this preliminary Odderon

observation are indicated on the plots, where the CL is evaluated without the rounding of the χ2 values to the printed level of precision. The
rounded values of χ2 and the corresponding CL values are summarized in Table 2. The final Odderon significance results are given in Appendix
A. Top-left panel: This comparison uses 17.6 ± 1.1 mb for the elastic pp̄ cross section at

√
s = 1.96 TeV, and a linear-exponential interpolation

technique in (x,H(x)). This corresponds to the smallest difference between the two data sets. Top-right panel: Same as the top-left panel but for
linear-linear interpolations in the horizontal and vertical directions. For these interpolations, the nearest data points are connected with lines that
correspond to a straight line on a linear-linear plot. Bottom-left panel: Same as the top-left panel but now using 20.2 ± 1.4 mb for the elastic pp̄
cross section at

√
s = 1.96 TeV. Bottom-right panel: Same as the bottom-left panel but using a linear-linear interpolation method.

the 1.96 TeV pp̄ datasets too, if we limit the acceptance of
the 7 TeV dataset to the acceptance in x = −tB as that of
the 2.76 TeV pp dataset: the significance of the Odderon
observation decreased from an at least 6.26 σ discovery ef-
fect, detailed in Appendix A, to a 2.69σ level agreement.
We may note that a similar observation was made already
in Ref. [10] that pointed out a strong |t| dependence of the
Odderon contribution.

Table 4 summarises the search for an Odderon signal in
the two-way comparison, for the significance of an Odderon
signal in the comparison of the H(x) scaling functions of
pp collisions at

√
s = 7 TeV and pp̄ collisions at

√
s = 1.96

TeV. Applying this method the Odderon signal is observed
with at least a 13σ significance, when both projections are

combined from Table 2, by adding the χ2 and the NDF val-
ues of both directions of the comparisons.

11 Discussion

We have explored the scaling properties of the elastic dif-
ferential cross sections at various energies, from the ISR up
to the highest LHC energy. We have recalled that the ear-
lier proposals for the F(y) and G(z) scaling functions were
useful to explore if elastic scattering of protons in the LHC
energy range is already close to the black-disc limit or not.
After investigating several possible new dimensionless scal-
ing variables and scaling function candidates, we have real-
ized that in order to look for scaling violations in the low



27

Fig. 11 Dependence of χ2 on the coefficient of the correlated but point-to-point varying systematic errors, εb, for the comparison of the H(x)
scaling functions of elastic pp̄ collisions at

√
s = 1.96 TeV, measured by the D0 experiment at Tevatron [8], with that of elastic pp collisions

at
√

s = 2.76 TeV, measured by the TOTEM experiment at the LHC [4]. All the eight cases are shown together corresponding to the choice of
linear-linear or linear-exponential interpolations in H(x), to a different choice of the elastic cross section of pp̄ collisions at

√
s = 1.96 TeV (20.2

± 1.4 mb vs 17.6± 1.1 mb), and to the direction of the projection (1.96→ 2.76 TeV, or 2.76 TeV→ 1.96 TeV). A clear parabolic structure is seen
in each case and the fit quality of the results that belong to these minima in εb is summarized in Table 3.

|t| kinematic range, corresponding to the diffractive cone it
is advisable to scale all the diffractive cones to the same di-
mensionless scaling function, H(x) ≈ exp(−x). This func-
tion can be obtained as the differential cross section normal-
ized to its value at the x = −tB = 0 optical point, which
also for nearly exponential distributions equals to the elastic
cross section σel multiplied by the slope parameter B. Both
are readily measurable in elastic pp and pp̄ collisions, while
other scaling variables that we have investigated may depend
on tdip values – the location of the diffractive minimum. The
latter however is not readily accessible neither in elastic pp̄
collisions (where there is no significant dip) nor in the ac-
ceptance limited elastic pp differential cross section (where
the diffractive minimum or maximum may be located out-
side the acceptance of the experiment for that particular data
set).

The scaling function H(x) of elastic proton-(anti)proton
scattering transforms out the energy dependence of the elas-
tic slope B(s) and the elastic cross section σel(s), and due
to the relation [1+ρ2

0 (s)]σ
2
tot(s) = 16πσel(s) they also scale

out a combination of the total cross sections and the real-to-
imaginary ratio. As was discussed above, for analytic scat-

tering amplitudes and for differential cross-sections starting
with a diffractive cone at low values of x =−tB the scaling
function will have a universal, H(x) ≈ exp(−x) shape. The
price for the removal of these trivial s-dependencies from the
scaling function is paid by an s-depended domain of valid-
ity, xmax(s) which is found to be typically above the position
of the diffractive interference region. Without direct experi-
mental observations, or without theoretical, model-dependent
calculations, it is not possible to determine model-independently
this xmax(s) function, the s-dependent upper limit of the do-
main of validity of this H(x) scaling.

Figs. 8 and 10 clearly indicate a crossing-odd compo-
nent of the elastic scattering amplitude. At the ∼ 2 TeV en-
ergy scale, where the Reggeon contributions to the scattering
amplitude are suppressed by their power-law decays, this is
apparently a clear Odderon effect, a characteristic difference
in the shape of the scaling function of elastic scattering be-
tween pp and pp̄ collisions at the logarithmically similar
energies of 7 and 1.96 TeV, respectively.

The effects due to the energy-induced difference between
TOTEM and D0 data sets can be estimated by the lack of
change of the H(x) scaling function for pp scattering be-
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Fig. 12 Lack of a significant Odderon signal in the comparison of the H(x) scaling functions of the differential cross section of elastic pp collisions
with

√
s = 2.76 TeV, measured by the TOTEM [4], to that of pp̄ collisions with

√
s = 1.96 TeV, measured by D0 [8]. The correlation coefficient

of the |t|-dependent systematic errors, εb, is optimized to minimize the χ2 based on Eq. (63), and the value indicated on the plot corresponds
to the minimum of χ2(εb). The results of our Odderon search are summarized in Table 3. See also Table 5 for a summary of the results of the
two-way comparisions of these H(x) scaling functions. Top-left panel: Using σel = 17.6±1.7 mb and a linear-exponential interpolation method.
Top-right panel: Same as the top-left panel but for a linear-linear interpolation in (x,H(x)). Bottom-left panel: Same as the top-left panel but for
σel = 20.2±1.4 mb. Bottom-right panel: Same as the bottom-left panel but for a linear-linear interpolation in (x,H(x)).

tween 2.76 TeV and 7 TeV, within the statistical errors of
these TOTEM data sets. However, the H(x) scaling function
of elastic pp scattering at

√
s = 7.0 TeV is significantly dif-

ferent from the corresponding result of elastic pp̄ scattering
at
√

s = 1.96 TeV. These qualitative and quantitative differ-
ences, first, show up well below the diffractive minimum
of the pp elastic scattering, namely, the H(x) function for
pp collisions indicates a strong “swing” or faster than ex-
ponential decrease effect, before developing a characteristic
interference pattern consisting of a diffractive minimum and
subsequent maximum. In contrast, the D0 data on pp̄ elastic
scattering features a structureless exponential decrease that
in turn changes to a plateaux or a shoulder-like structure at
higher values of the scaling variable x. No clear indication
of a diffractive maximum is seen in the pp̄ elastic scattering
data [8], while the TOTEM data sets at each LHC energies

of 2.76, 7 and 13 TeV clearly indicate a diffractive minimum
followed by an increasing part of the differential cross sec-
tion before the edge of the TOTEM acceptance is reached,
respectively [3, 4, 74].

These qualitative and quantitative differences between
the H(x) scaling functions of elastic pp and pp̄ scatterings
provide a clear-cut and statistically significant evidence for
a crossing-odd component in the scattering amplitude in the
TeV energy range. This corresponds to the observation of
the Odderon exchange in the t-channel of the elastic scatter-
ing. The Odderon in this context is a crossing-odd compo-
nent of the amplitude of elastic pp and pp̄ scattering, that
remains significant even in the large s limit. In Regge phe-
nomenology, the Odderon is a trajectory that at J = 1 con-
tains a JPC = 1−− vector glueball as well as other glueball
states with higher angular momentum. Hence, one of the im-
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Table 3 Summary table of the search for an Odderon signal in the one-way comparison of the H(x) scaling functions of pp collisions at
√

s= 2.76
TeV measured by the TOTEM experiment at the LHC, and pp̄ elastic collisions at

√
s = 1.96 TeV measured by the D0 experiment at Tevatron.

Table 4 Summary table of the search for an Odderon signal in the two-way comparison, for the significance of an Odderon signal in the comparison
of the H(x) scaling functions of pp collisions at

√
s = 7 TeV, measured by the TOTEM experiment at the LHC, and pp̄ elastic collisions at√

s= 1.96 TeV, measured by the D0 experiment at Tevatron. This table indicates that the Odderon signal is observed with at least a 13σ significance,
when both projections are combined from the previous Table 2, by adding the χ2 and the NDF values of both directions of the comparisons. These
results are remarkably stable with respect to the choice of the unknown integrated elastic cross section at

√
s = 1.96 TeV, and also with respect

to the choice of the linear-exponential or linear-linear interpolations. This effectively indicates that the combined significance of the Odderon
discovery is at least a 13σ effect.

plications of our result is that not only one but several glue-
ball states should exist in Nature [77].

Due to the presence of the faster-than exponentially de-
creasing (swing) region in elastic pp scatterings, high-statistic
pp elastic scattering data at

√
s = 1.96 TeV may be taken as

an additional measurement clearly closing the energy gap.
However, the aperture limitation of the LHC accelerator is
already resulting in a loss of significance of the compari-
son of the H(x) scaling function at 2.76 TeV with that of the
D0 data at 1.96 TeV. Due to this reason, we propose an addi-
tional measurement of the dip and bump region of elastic pp
collisions in the domain where the H(x) scaling was shown
to work, in between 2.76 TeV and 7 TeV, if that can be har-
monized with the LHC running schedule and scenarios.

The current TOTEM acceptance (the upper end of the
last bin of the published TOTEM data) ends at −tB≈ 13 at√

s = 2.76 TeV. This value almost coincides with the bump
position of the H(x) scaling function. It seems that including
at least one D0 point to the comparision of the H(x) scaling
functions of pp and pp̄ data above the x = 13 bump position
is sufficient for reaching an at least 5 σ significance for the
Odderon observation, as detailed in Appendix E.

New elastic pp scattering data around
√

s ≈ 4 – 5 TeV
could be particularly useful to determine more precisely any
possible residual dependence of these Odderon effects as a
function of

√
s.

The current significance of the Odderon observation may
be further increased from the 6.26σ effect, but only by a te-
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Table 5 Summary table of the search for an Odderon signal in the two-way comparison of the H(x) scaling functions of pp collisions at
√

s= 2.76
TeV, measured by the TOTEM experiment at the LHC, and pp̄ elastic collisions at

√
s = 1.96 TeV, measured by the D0 experiment at Tevatron.

The lowest value of significance in this comparison is found to be 0.01σ , which means that the H(x) scaling functions of 1.96 TeV pp̄ and 2.76
TeV pp elastic collisions are nearly the same within errors. The level of maximal difference is much less than a 3σ effect which does not reach the
statistical significance of a discovery effect in this comparison.

dious experimental re-analysis of some of the already pub-
lished data, for example, by separating the point-to-point un-
correlated statistical and systematic errors (type A errors)
from the point-to-point correlated systematic errors in elas-
tic pp̄ collisions by D0, or, by the publication of the covari-
ance matrix of the elastic cross section measurement of pp
collisions at 2.76 and 7 TeV colliding energies by TOTEM.
So taking more TOTEM data in special runs at new ener-
gies between

√
s = 2.76 and 7.0 TeV seems to be a more

enlightening and inspiring scenario, if it can be harmonized
with LHC schedule and other ongoing experimental efforts.

11.1 Discussion of some of our model-dependent results

As noted above, the upper limit of the domain of validity
of the H(x) scaling, the xmax(s) as a function of s cannot
be determined model independently, it has to be taken ei-
ther from extrapolations between different measured points,
or from theoretical, model-dependent and validated calcula-
tions. Such calculations are presented in Appendix A, Ap-
pendix C and Appendix D. One of the most interesting char-
acteristic features of elastic pp scattering at TeV energies is
the presence of a single diffractive minimum and maximum
in the experimental data on the differential cross-section of
elastic pp scattering at TeV energies. In terms of the the-
ory of multiple diffraction a single diffractive minimum is
obtained if the scattering structures have a two-component
internal structure [78]. The model that we have utilized for
the evaluation of xmax(s) is based on Refs. [31, 67, 68],
where the proton is assumed to have a quark-diquark struc-
ture, p = (q,d) and in one variant of this picture, the diquark
is further resolved as a correlated d = (q,q) structure, corre-

sponding to the p = (q,(q,q)) case. As detailed in Ref. [30],
this scenario indeed gives too many diffractive minima in
the experimental acceptance, so it can be excluded. Thus
our model-dependent results actually also reveal the effec-
tive sizes of constituent (dressed) quarks and diquarks inside
the protons.

Concerning the quark and diquark sizes, let us note that
our values are in qualitative agreement with those obtained
first by Bialas and Bzdak in Refs. [31, 67, 68] at the ISR
energies. Already in those papers, the binding energy of the
diquark was found to be negligibly small, corresponding to
the mass ratio of quarks to diquarks as 1:2. In the model, this
mass ratio is reflected in a fixed value for the λ = 1

2 parame-
ter, that determines the location of their center of mass to the
center of the proton. The correlated motion of the quark and
the diquark gives an important contribution to the descrip-
tion of the differential cross-section of elastic pp scattering,
as the p= (q,q,q) model of three uncorrelated quarks inside
the proton is in a disagreement with the experimental data.

However, the size and existence of the diquarks is a well-
known controversy in the literature, related to the interpre-
tation of diquarks. Many scientists theorize that diquarks
should not be considered as particles. Even though they may
contain two correlated quarks, they are not colour neutral,
and therefore cannot exist as isolated bound states. So in-
stead they tend to float freely inside protons as composite
entities; while free-floating they have a size of the order of
1 fm. This also happens to be the same size as the proton
itself. Other theorists analyzing elastic pp scattering in the
energy range of

√
s= 23.5−62.5 GeV suggest [79], that the

size of the diquark is much smaller as compared to the size
of the protons.
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From our Levy studies, published recently in [16], it fol-
lows, that inside the protons the substructure increases in
size, when going from the ISR energies of

√
s = 23.5−62.5

GeV to the LHC energy of 7.0 TeV, see Fig. 3 and Tables 1,
2 of that paper. So part of the difference of the diquark size
in our current manuscript and the sizes obtained in Ref. [79]
might be the difference of the investigated energy range,√

s = 23.5−62.5 GeV versus our results on the TeV energy
scale. Another part of these quantitative differences might be
due to the more precise, quantitative, statistically significant
level of data description as presented in our paper. The com-
parison of the diquark sizes is a quantitative question, and
it is difficult to make a quantitative comparison with models
that were used to describe certain qualitative features of the
experimental data, without aiming at a data description on
statistically acceptable, significant level.

12 Summary and conclusions

We have introduced a new, straightforwardly measurable scal-
ing function H(x) of elastic proton-(anti)proton scattering.
This scaling function transforms out the trival energy-depen-
dent factors, in particular, the effects due to the s-depend-
encies stemming from the elastic slope B(s), from the real-
to-imaginary ratio ρ0(s), as well as from the total and elas-
tic cross sections, σtot(s) and σel(s), respectively. In our nu-
merical re-analysis of already published TOTEM data, the
H(x) scaling is observed from a comparison of the pp elas-
tic scattering data at

√
s = 2.76 and 7 TeV, without theoreti-

cal assumptions. TOTEM preliminary data at
√

s = 8 TeV
are also in the scaling limit, however, published TOTEM
data at

√
s = 13 TeV indicate significant violations of this

new scaling. The theoretical background of this scaling law
is simple and straightforward in the diffraction cone, where
H(x)≈ exp(−x), as detailed in Subsection 4.3. However, the
range of the validity of this scaling extends well beyond the
diffraction cone already at ISR energies, as shown in Fig. 1.
A straightforward theoretical derivation for non-exponential
H(x) scaling functions was presented in Subsection 4.4.

When comparing the H(x) scaling function of the dif-
ferential cross section of elastic pp collisions at

√
s = 2.76

and 7.0 TeV colliding energies, we find no qualitative differ-
ences. At ISR energies, in a limited energy region of 23.5≤√

s ≤ 62.5 GeV, the H(x) scaling curves are approximately
s-independent, with a possible small scaling violation in the
region of the diffractive minimum.

Such a lack of energy evolution of the H(x) scaling func-
tion of the pp collisions, even outside the diffractive cone, is
in a qualitative contrast with the evolution of the H(x) scal-
ing functions of pp̄ collisions at energies of

√
s = 0.546−

1.96 TeV, where a qualitative and significant energy evo-
lution is seen in the x = −tB > 8 kinematic range for all

the investigated energies. This way, we have found a qual-
itative difference between elastic pp and pp̄ collisions in
terms of their H(x,s) scaling functions: these functions are
not s-independent outside the diffractive cone for pp̄ colli-
sions, while they are approximately s-independent in elastic
pp collisions even outside the diffractive cone.

Such a lack of energy evolution of the H(x) scaling func-
tion of the pp collisions, the H(x) scaling as a property of
the data in the few TeV energy range provides a strong con-
straint on model-building. Several simple models, like the
simple eikonal amplitude of one-Pomeron-exchange lead to
the violation of such a H(x) scaling. It follows that in the
few TeV energy range, where the H(x) scaling is found to
be valid, one-Pomeron exchange cannot be the only contri-
bution to the scattering amplitude.

The main part of our manuscript deals with the quantifi-
cation of this qualitative Odderon signal, to determine if it is
statistically significant, or not.

Figs. 8 and 10 clearly illustrate a qualitative and a quan-
titative difference between the scaling properties of the elas-
tic pp and pp̄ collisions, corresponding to a crossing-odd
component of the elastic scattering amplitude at the TeV en-
ergy scale. As in this kinematic region the Reggeon contri-
butions to the scattering amplitude are suppressed by their
power-law decays, a significant characteristic difference be-
tween the H(x) scaling functions of elastic pp and pp̄ col-
lisions at the logarithmically similar energies of 7, 2.76 and
1.96 TeV is a clear-cut Odderon effect, because the trivial
energy dependences of σel(s) and B(s) as well as that of
(1+ρ2

0 (s))σ
2
tot(s) are scaled out from H(x) by definition.

A comparison in Fig. 10 indicates a significant differ-
ence between the rescaled 7 TeV pp data set down to 1.96
TeV with the corresponding pp̄ data measured at

√
s = 1.96

TeV. Thus the re-analyzed D0 and TOTEM data, taken to-
gether with the verified energy independence of the H(x)
scaling function in the

√
s = 2.76− 7.0 TeV energy range

amount to the closing of the energy gap between 2.76 and
1.96 TeV in model-independent way, as much as reason-
ably possible without a direct measurement, provided that
the H(x) scaling is valid for pp scattering in the kinematic
range, where D0 measured the differential cross-section of
elastic pp̄ scattering at

√
s = 1.96 TeV.

We have dedicated Appendix B to relate the crossing-
odd and crossing-even contributions to the elastic pp and
pp̄ scattering to a model independent and unitary frame-
work, formulated in the impact parameter space. We have
specialized the results of Appendix B using the model of
Ref. [42] in Appendix C and demonstrated how the H(x)
scaling and H(x,s), the collision energy dependent viola-
tions of this scaling can be evaluated with the help of this
model [42]. Note that these calculations are based on R.
J. Glauber’s multiple diffraction theory of elastic scatter-
ing, assuming that elastic scattering reveals a quark-diquark
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structure inside the scattered protons. In Appendix D, we
have determined, model dependently, the domain of valid-
ity of the H(x) scaling in x = −tB at

√
s = 1.96 TeV. Ac-

cording to Fig. 27, the upper limit for the domain of va-
lidity of the H(x) scaling at

√
s = 1.96 TeV may include

the whole D0 acceptance, with xmax(s) ≥ 20.2 . This plot
is directly obtained by fitting the H(x) scaling limit of the
ReBB model to D0 data. In this fit, three out of the four
model parameters are constrained by the H(x) scaling, so
only one physical parameter had to be fitted to achieve a
beautiful agreement in a statistically acceptable manner. An-
other estimate for the upper limit for the domain of valid-
ity of the H(x) scaling was obtained by comparing the pre-
dicted 1 standard deviation error bands of the H(x) scaling
limit of the ReBB model with the same error band, obtained
from the full model calculations that included scaling viola-
tions too. This result gave a more conservative upper limit,
xmax(s) = 15.1 at

√
s = 1.96 TeV. Due to these theoretical

uncertainties of the upper limit in x of the domain of validity
of the H(x) scaling at

√
s = 1.96 TeV, the highest colliding

energy, where pp̄ elastic scattering data are available, we
have investigated the stability of the Odderon signal within
the theoretically determined domain of validity of the H(x)
scaling in Appendix E.

Our final significance analysis is presented in Appendix
A, resulting in an at least 6.26σ , discovery level Odderon
effect, if the H(x) scaling is valid in the full kinematic range
of the D0 measurement, 0 < x = −tB ≤ 20.2, correspond-
ing to a χ2/NDF = 80.1/17 and CL = 3.7× 10−8 %. The
probability of this Odderon signal is at least P = 1−CL =

0.99999999963. According to our model dependent calcula-
tions, as presented in Fig. 27, the assumption that the domain
of validity of the H(x) scaling at

√
s= 1.96 TeV includes the

whole D0 acceptance with xmax(s)≥ 20.2, is consistent with
the D0 data at the 2.69 σ level.

We have also performed an x-range stability analysis,
also model independently, in Appendix E. We established,
that the significance of the Odderon is greater than 5 σ , if the
H(x) scaling is valid in the 7 < x = −tB ≤ 13.5 kinematic
domain at

√
s = 1.96 TeV. However, we could not determine

model independently, what is the domain of validity of the
H(x) scaling at this energy, as there are no measured pp data
at
√

s = 1.96 TeV. So we have included a model dependent
estimate of this x-range. Using the model of Refs. [30, 42,
67], that was shown to describe all the experimental data in
elastic pp and pp̄ scattering in the 0.546≤

√
s≤ 8 TeV en-

ergy interval and in the 4.4< x=−tB domain, we found that
the validity in x of the H(x) scaling at

√
s = 1.96 TeV may

extend up to x ≤ 15.1, as detailed in Appendix D. This in-
terval or domain of validity of the H(x) scaling includes the
smaller 7 < x≤ 13.5 domain, where the signal is larger than
5 σ . Thus the model independent and at least 5 σ discovery
level Odderon signal is remarkably stable for the variations

of the domain of validity of the H(x) scaling at
√

s = 1.96
TeV: 9 out of the 17 D0 datapoints can be discarded, 5 at
large x and 4 points at low x, and the signal still remains
significant enough for a discovery. When we have fitted the
H(x) scaling limit of the same model to pp̄ experimental
data, as presented in Fig. 27, we found that xmax(s)≥ 20.2 is
also consistent with the description of the D0 data at the 2.69
σ level. In general, the H(x) scaling is not valid for pp̄, but
in the Real Extended Bialas-Bzdak model, the H(x) scaling
of elastic pp collisions induces a one parameter fit to elastic
pp̄ collisions, as three out of four physical model parameters
are the same in this model for pp and pp̄ collisions.

Our x-range stability analysis, detailed in Appendix E,
indicates that part of the statistically significant contribution
to this Odderon signal is coming from the kinematic range
of x < 10: excluding this region decreases the significance
of the crossing-odd signal below the discovery level. It is
thus important to measure elastic scattering cross-sections
at LHC at large−t, well beyond the diffractive cone. Elastic
pp scattering data in a vicinity of

√
s≈ 2 TeV as well as in

between 2.76 and 7 TeV would be most useful for further de-
tailing the Odderon properties. Similarly, part of the signal
is coming from large x region, as excluding the kinematic
range x > 12.1 also results in a loss of significance.

In order to determine where the important contributions
to this signal are originating from, we have divided the 0 <

x ≤ 20.2 kinematic range of acceptance to four regions, the
diffractive cone, the swing, the diffractive interference and
the tail regions, corresponding to 0 < x ≤ 5.1, 5.1 < x ≤
8.4, 8.4 < x ≤ 13.5 and 13.5 < x ≤ 20.2, respectively, with
2 D0 points associated with the diffractive cone, and 5-5
D0 points in each of the remaining three regions. We have
shown that the type B, point dependent but overall corre-
lated errors and their correlation coefficient plays an impor-
tant role in this analysis and that the best value of the corre-
lation coefficient is x-range dependent. This means that lo-
cally shifting the datapoints up or down in a specific interval
the agreement between the pp and pp̄ measurements can be
improved in that particular interval. We have performed the
interval dependent optimizations and found that the locally
optimized contributions from the swing and from the tail
are not as important as the contributions from the diffrac-
tive interference region, that includes the diffractive mini-
mum and the maximum. The second most important contri-
bution comes from the swing region, where the H(x) scaling
function for elastic pp collisions bends below the exponen-
tial. The combination of the swing and the diffractive in-
terference region already provided a more than 5 σ effect,
as detailed in Appendix E. If we consider that the interpo-
lations needed to compare the H(x) scaling functions in a
model-independent manner at different energies behave as
theoretical curves (i.e. have only one kind of error) then we
obtain the significance of at least 6.55σ as discussed in the
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body of this manuscript. This significance further decreases
to 6.26σ if we consider that these interpolation lines do not
have theoretical type of errors but both type A and type B,
point-to-point fluctuating and point-to-point correlated sys-
tematic experimental errors as well. The only way to further
decrease the significance of the Odderon signal is to limit
the kinematic range of the comparison to narrower and nar-
rower ranges in x =−tB.

Our final significance for an Odderon signal of 6.26σ

is presented from the model-independent analysis in Ap-
pendix A, which relies on the validity of the H(x) scaling
in the 0 < x ≤ 20.2 kinematic range at

√
s = 1.96 TeV. The

self-consistency of this assumption is shown in Fig. 27.

Let us emphasize, for the sake of completeness, that we
find an interesting hierarchy of significances.

Based on model dependent considerations, the x-range
of the pp̄ data of the D0 experiment might be narrowed and
correspondingly, the significances may decrease, as more
and more datapoints are removed. Model dependently, we
estimate, that the H(x) scaling may be valid at the D0 en-
ergy of

√
s = 1.96 TeV up to xmax = 15.1. In the 0 < x ≤

14.8, theoretically limited x-range the Odderon signal re-
mains greater than 5.3 σ , according to Appendix E. We have
investigated how far this domain can be narrowed down un-
der the condition that the Odderon signal remains greater
than a 5 σ effect? We found that in the very much narrowed
from below and from above domain, corresponding to the
7.0 < x ≤ 13.5 interval that includes only 8 out of the 17
D0 points, the Odderon signal that we analyzed has a signif-
icance that is greater than a 5 σ , discovery level effect. This
range is well below the theoretically estimated xmax = 15.1
limit.

In Appendix B, we discuss the model-independent prop-
erties of the Pomeron and Odderon exchange at the TeV
energy scale, under the condition that this energy is large
enough that the Pomeron and Odderon exchange can be iden-
tified with the crossing-even and the crossing-odd contribu-
tions to the elastic scattering, respectively. We demonstrated
here that S-matrix unitarity strongly constrains the possible
form of the impact parameter dependence of the Pomeron
and Odderon amplitudes.

In Appendix C, we demonstrated how the H(x) scal-
ing emerges within a specific model, defined in Ref. [30].
This model is one of the possible models in the class dis-
cussed in Appendix B. We have demonstrated that four con-
ditions must be satisfied simultaneously. One of the condi-
tions for the validity of the H(x) scaling is found to be the
s-independence of the experimentally measured ρ(s) param-
eter. The decrease of ρ(s) at the currently maximal LHC
energy of

√
s = 13 TeV as measured by the TOTEM Col-

laboration in Ref. [2] thus provides a natural explanation for
the violation of the H(x) scaling at these energies.

In Appendix D we estimate the domain of validity of the
H(x) scaling also in a model-dependent manner, using the
same model of Ref. [30]. Surprisingly, we found that after
carefully taking into account the possible quadratic in ln(s)
energy dependencies of the scale parameters of the model
of Ref. [30] and after taking into account the correlations
between these model parameters, the kinematic range for the
domain of validity of this new H(x) scaling may extend to a
very broad range of 200 GeV≤

√
s≤ 8 TeV, however, with a

range that gradually narrows in−t = x/B(s) with decreasing
energies.

Another key point to recognize is that if we allow for a
model-dependent analysis, the significance goes further up
to 7.08σ as detailed in Ref. [42] and summarized in Ap-
pendix E. There is a trade-off effect in the background of
this. Model dependent calculations lead to a reduction of
significance at 1.96 TeV, as the extrapolation of pp differ-
ential cross-section becomes more uncertain, as compared
to the extrapolation with the help of the H(x) scaling. How-
ever, this loss in significance is overcompensated by the gain
in the possibility to extrapolate the pp̄ differential cross-
sections up in energy. If we utilize only the H(x) scaling,
it allows only to compare pp data with pp̄ data at decreas-
ing energies, but pp̄ data do not obey a H(x) scaling law,
so it cannot be used to compare them with pp data at 2.76
TeV. But this extrapolation becomes possible with the help
of a model calculation and it results in a huge increase in
the Odderon significance, as detailed in Appendix E and in
ref. [42].

TOTEM data on an approximately energy independent
ratio of the differential cross-section at the diffractive max-
imum and minimum [80] indicate, that the expected upper
limit for the domain of validity of the H(x) scaling is at least
13.5 at

√
s = 1.96 TeV, as detailed at the end of Appendix

A. This experimental insight also suggests, that the domain
of validity of H(x) scaling at

√
s = 1.96 TeV includes the

7.0 < x ≤ 13.5 domain. These observations combined with
our model independent x-range stability studies in Appendix
E indicate, that in this 7.0 < x ≤ 13.5 domain, the signifi-
cance of the Odderon observation is at least 5.0 σ .

This 7.0 < x ≤ 13.5 interval physically begins with the
“swing", where the differential cross-section of pp elastic
scattering starts to bend below the exponential shape and
ends just after the diffractive maximum or “bump", located
at xbump ≈ 13.0 . For the theoretically expected domain of
validity, the limited 0 < x ≤ 15.1 range, we find that our
method provides an Odderon significance of at least 5.3 σ ,
as detailed in Appendix E.

Recently, the STAR collaboration measured the differen-
tial cross-section of elastic pp collisions at

√
s= 200 GeV [81].

This measurement resulted in a straight exponential differ-
ential cross-section in the range of 0.045≤−t ≤ 0.135 GeV2.
This range is the range where H(x) = exp(−x) and the con-
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ditions of the validity of the H(x) scaling are indeed satis-
fied by this dataset, that is however limited to a rather low
−t range. It is thus a very interesting and most important
experimental cross-check for the validity of the H(x) scal-
ing to push forward the experimental data analysis of elas-
tic pp collisions at the top RHIC energy of

√
s = 510 GeV

including if possible a larger −t range extending to the non-
exponential domain of dσ

dt as well.

In conclusion, we find from a model-independent re-
analysis of the scaling properties of the differential cross
sections of already published D0 and TOTEM data sets a
statistically significant, more than a 6.26σ Odderon effect,
based on the assumption of the validity of the H(x) scaling at√

s = 1.96 TeV in the 0 < x ≤ 20.2 kinematic range. Based
on theoretical considerations we estimated that the domain
of validity of the H(x) scaling at this particular energy might
be actually smaller, 0 < x ≤ 15.1. So we have also deter-
mined what is the minimum size of the domain of validity of
the H(x) scaling that corresponds to the 5σ level Odderon
significance. As detailed in Appendix E, any interval that
fully includes the 7.0 < x ≤ 13.5 range results in a greater
than 5 σ , discovery level Odderon signal. The experimen-
tally observed [4, 43] energy independence of the diffrac-
tive maximum - to - minimum ratio R(s) also supports that
the domain of the H(x) scaling at

√
s = 1.96 TeV extends

above the diffractive maximum, which is at xbump = 13 in
this scaling limit.

We thus find a statistically significant, greater than 5σ

signal of t-channel Odderon exchange, that is robust for vari-
ation of the lower or upper limit of the domain of validity of
the H(x) scaling at

√
s = 1.96 TeV. We have highlighted a

hierachy of significances, including experimental and theo-
retical, model dependent results too. If theoretical modelling
is also taken into account, the combined significance of Odd-
eron observation increases to at least 7.08σ , as shown in
Appendix E.

Whatever we tried the significance of the Odderon ob-
servation remained safely above the 5σ discovery thresh-
old, with the most conservative significance estimate de-
tailed in Appendix A. An x-range stability analysis, summa-
rized in Appendix E indicates, that the only way to decrease
this signal is to decrease the −t = x/B(s) range of the com-
parison i.e. deleting data from the signal region.

We have validated the surprisingly large domain of H(x)
scaling with already published data both in elastic proton-
proton and in proton-antiproton collisions and are eagerly
waiting for upcoming results from the STAR collaboration
to test our new scaling in elastic proton-proton collisions at
the top RHIC energy of

√
s = 510 GeV.

Appendix A: Cross-checking the χ2 definition:
symmetric treatment

This Appendix summarizes our final, conservative and ro-
bust estimate of the significance of the Odderon observation
in the compared D0 [8] and TOTEM [4, 28, 74] datasets,
at
√

s = 1.96 TeV for pp̄ and at
√

s = 2.76 and 7 TeV for
pp elastic scattering. Here we compare the considered data
sets in a symmetric manner, and also mention some of the
several robustness and quality tests that we have performed.

As a cross-check and a robustness test, we have validated
the method with the help of a Levy-fit of Ref. [9], confirming
that both methods (the fit with the full covariance matrix and
the method described below) gave within one standard de-
viation the same minima with MINOS errors, error matrix
accurate, fit in converged status and a statistically accept-
able confidence level of CL ≥ 0.1 % . As a robustness test,
the same analysis was repeated by two different co-authors
of this manuscript using two different programming codes
written in two different programming languages, providing
the same results. In order to test the robustness of the re-
sults, we have tried different possible definitions of χ2 and
the values reported in this Appendix correspond to the low-
est possible significances, that we obtained when we used
all the measured data in the signal region. Further reduction
seems to be possible only by removing data from the Odd-
eron signal region.

Let us also stress that our investigations were model-
independent, as they were based on the direct comparison of
the H(x) scaling functions of various experimentally mea-
sured data sets. However, we could not determine the do-
main of validity of the H(x) scaling, as a function of s. We
have shown in the beginning of Section 4, that at low values
of x, in the diffractive cone, for an analytic scattering am-
plitude H(x) ≈ exp(−x), and in these cases, the lower limit
of validity of the H(x) scaling corresponds to xmin(s) ≡ 0.
However, xmax, the upper limit of the domain of validity of
the H(x) scaling at a given value of s is an s-dependent func-
tion, xmax ≡ xmax(s), that can be determined only in a model
dependent manner. We have evaluated xmax(s) at

√
s = 1.96

and 0.546 TeV, where pp̄ data are available, based on the
evaluation of the pp differential cross-sections from the model
of Ref. [42] and the H(x) scaling limit of the same model.

As the measurements were performed at different val-
ues of the horizontal axis x =−Bt, some interpolations were
however inevitable. The technical aspects of these interpola-
tions were detailed in section 6. Let us illustrate these inter-
polations by the two panels of Fig. 14. We hope, that these
pictures illustrate the model independent nature of our anal-
ysis more clearly than the technical description of these in-
terpolations.

Our final quantification of the Odderon significance is
based on a method developed by the PHENIX collaboration
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Fig. 13 The calculated upper limit of the s-dependent domain of validity of the H(x) scaling, xmax(s), is indicated by the dots and their corre-
sponding error bars. Their s-dependent extrapolation, linear in ln(s) is also shown, while the points are determined assuming that H(x,s) =H(x,s0)
with

√
s0 = 7 TeV, and comparing the resulting differential cross-sections from the H(x) scaling limit of the ReBB model of Ref. [42] with the

validated s-dependent calculations that include scaling violations, too. If the H(x) scaling is valid, the dip position xdip ≈ 10 and the position of
the diffractive maximum or bump, xbump ≈ 13 are independent of s, as indicated on the same plot.

in Ref. [75] using a specific χ2 definition that effectively di-
agonalizes the covariance matrix. We utilized the measured
differential cross-section of elastic pp scattering and its pub-
lished covariance matrix at

√
s = 13 TeV, as measured by

TOTEM in Ref. [3], for a validation of this method. We have
adopted the PHENIX method of the diagonalization of the
covariance matrix using type A, B and C errors [75].

In its original form, the experimental data that have sta-
tistical and systematic errors are compared to a theoretical
calculation that is assumed to be a function of the fit pa-
rameters. In our final analysis, presented in this Appendix,
we adapted the PHENIX method for comparison of a dataset
that contains data with errors directly to another dataset, that
also contains central data values with errors. So our method
is defined without referring to any theoretical model or pa-
rameter dependent function. Due to this reason, the most
conservative definition described in this Appendix is defined
to be symmetric for the exchange of the two datasets.

We classify the experimental errors of a given data set
into three different types: (i) type A, point-to-point fluctuat-
ing (uncorrelated) systematic and statistical errors, (ii) type
B errors that are point-to-point dependent, but 100% cor-
related systematic errors, and (iii) type C errors, that are
point-to-point independent, but fully correlated systematic
errors [75] to evaluate the significance of correlated data,
when the covariance matrix is not publicly available.

Suitably generalizing the method of Ref. [75], that was
developed originally for a comparison of a dataset with a
theoretical, parametric fit curve, for a comparison of two
data sets in this case, where the datasets have type A, B and

cancelling type C errors, we obtain the significance of a pro-
jection of the data set D2 to data set D1 determined by the
following χ2 definition:

χ̃
2
21 =

n21

∑
j=1

(d1( j)+ εb,1eB,1( j)−d21( j)− εb,21eB,21( j))2

ẽ2
A,1( j)+ ẽ2

A,21( j)

+ ε
2
b,1 + ε

2
b,21 . (A.1)

In this equation, ẽA,1( j) is the type A uncertainty of the data
point j of the data set D1 in the united acceptance, while
ẽA,21( j) is the same for the D21 data set obtained from the
D2 dataset by interpolation to point j of dataset D1. Both
uncertainties are scaled by a multiplicative factor such that
the fractional uncertainty is unchanged under multiplication
by a point-to-point varying factor:

ẽA,1( j) = eA,1( j)
(

d1( j)+ εb,1eB,1( j)
d1( j)

)
, (A.2)

ẽA,21( j) = eA,21( j)
(

d21( j)+ εb,21eB,21( j)
d21( j)

)
. (A.3)

In these equations, εb,1 and εb,21 stand for the overall cor-
relation coefficient of the j-dependent, point-to-point cor-
related type B D2 to the measured values in data set D1,
eB,21( j) of the projected data set D21. Note that εb,1 and εb,21
are independent of the point j, while the B-type errors have
a point-to-point changing values eB,1( j) and eB,21( j) in both
D1 and in the projected dataset in D21. For our comparison
of H(x) scaling functions, where the absolute normalization
and type C errors cancel, we have εc,1 = εc,2 = 0, so have
not indicated these terms for the sake of simplicity. For the
sake of clarity and to demonstrate the importance of scal-
ing out these type C errors, we have also included Fig. 16.



36

Fig. 14 Left panel indicates the interpolations that are needed for the 7→ 1.96 TeV projection of the TOTEM H(x) scaling function of elastic
pp collisions from

√
s = 7.0 TeV to that of elastic pp̄ collisions of D0 at

√
s = 1.96 TeV, taking only one particular point of D0 and shown on

a linear, linear horizontal and vertical scale. This D0 point is in between two nearby TOTEM points, that are interpolated to the same value of x,
including both type A, point-to-point fluctuating vertical and horizontal errors (indicated by vertical and horizontal lines, respectively) and type
B, point-to-point 100 % correlated vertical and horizontal errors, indicated by the horizontal and vertical size of the shaded boxes around the
central values of the data. The plot illustrates the lines of interpolations for these central values and the vertical type A errors only, but the vertical
type B errors and the horizontal type A and B errors are interpolated similarly, using straight line segments, for a linear horizontal and a linear
vertical scale. As part of the systematic checks, the linear interpolation is repeated also for a linear horizontal and a logarithmic vertical scale,
as the low x part of the H(x) distribution is nearly exponential, that looks like a straight line on such a linear-logarithmic scale. The right panel
indicates the projection in the reversed direction: the interpolations during the 1.96→ 7 TeV projection. In this case, the D0 data do not have type
B uncertainties, hence the shaded boxes are not shown, neither around the D0 points, nor around their interpolated values. However, between two
D0 datapoints, more than one TOTEM datapoints are measured, so the linear interpolation is utilized to evaluate the value of the D0 measurement
at more than one values of x. Due to the larger linear segments in x, this method yields larger deviations hence more significant differences between
the datasets. To estimate the final significances, we have utilized the smallest possible differences, namely linear extrapolations in the 7→ 1.96
TeV on a linear horizontal and logaritmic vertical scales. The partial contribution to the change of χ2 and NDF is illustrated on both panels.

That plot indicates that if the overall correlated, type C errors
are added (incorrectly) in quadrature with the point-to-point
fluctuating type A errors, the significance of the Odderon
signal is decreased from 6.26 σ to 3.64 σ .

We have utilized the scaled variance method of ROOT
to include the horizontal errors, adding in quadrature to the
type A errors also the type A error coming form the type A
uncertainty of x, denoted as δAx. Similarly, we have added
in quadrature to the type B error of the type B uncertainty of
x, denoted by δBx. Using a notation where M may stand for
any of A or B, the errors are given as

e2
M,1( j) = σ

2
M,1( j)+ [d′1( j)δM,1x( j)]2 , (A.4)

e2
M,21( j) = σ

2
M,21( j)+ [d′21( j)δM,21x( j)]2 , (A.5)

where σM( j) indicates the type M ∈{A,B} error of the value
of the vertical error on data point j, and it is added in quadra-
ture to d′( j)δMx( j), the corresponding vertical error that is
associated with the same uncertainty of type M originat-
ing from the measurement error on the horizontal axis x in
Eq. (A.4). The notations d′1( j) and d′21( j) stand for the nu-
merical derivative of the data points at point j in the datasets
D1 and D21, respectively.

The errors on the projected data set (D21) are also ob-
tained by a linear-exponential interpolation between the pro-
jections of data set 2 (D2) to data set 1 (D1). Their type A
and type B errors, indicated by eA,21( j) and eB,21( j) are also

added in quadrature with the other A or B type of errors.
These errors on the interpolated and on the measured values
of (x,H(x)) through equations (A.4) and (A.5) provided our
most stringent significance estimate for the Odderon effects.
We have cross-checked that several variations on the χ2 def-
inition, for example the frequently adopted negligence of the
horizontal errors and their contribution to the vertical errors
through the scaled variance method, or perturbing the cen-
tral values or the errors of the elastic cross-sections within
the allowed limits, may only increase the significance re-
ported in this Appendix.

We have evaluated Eq. (63) as a function of εb,1 and
εb,21. However, for the critical test of the projection of the√

s = 7.0 TeV TOTEM data on H(x) to that of D0 at
√

s =
1.96 TeV, we found that D0 did not publish any error on
−t and cross-checked that the D0 value on B contains only
type A, uncorrelated statistical and systematic errors only.
We also noticed that there are no published type-B errors
on the published differential cross-section data of D0 [8].
Hence for the D0 dataset, all the type B errors are zero and
as a consequence, we have fixed the correlation coefficient
of type B errors to zero for the

√
s = 1.96 TeV D0 dataset.

Let us now denote by subscript 21 the projection of the
H(x) scaling function at

√
s = 7 TeV measured by TOTEM

for pp reaction to the D0 dataset on pp̄ elastic scattering



37

√
s (GeV) σel (mb) B (GeV−2)

1960 (pp̄) 20.2 ± 1.7A ± 14.4%C [*] 16.86 ± 0.1A ± 0.2A [8]
2760 (pp) 21.8 ± 1.4A ± 6.0%C [4, 46] 17.1 ± 0.3A [4]
7000 (pp) 25.43 ± 0.03A ± 0.1B ± 0.31C ± 1.02C [28] 19.89 ± 0.03A ± 0.27B [28]

Table 6 Summary table of the elastic cross-sections σel, the nuclear slope parameters B, with references. We have indexed with superscript A the
type A, point-to-point fluctuating systematic and statistical errors, that can be added in quadrature, while type B errors (point-to-point changing,
fully correlated systematic errors) are indicated with superscript B and type C errors (overall correlated, but −t independent errors) are indicated
with superscript C. Note that the value and the type A error of the elastic cross-section σel at

√
s = 1.96 TeV [*] is obtained from a low −t

exponential fit to data of Ref. [8], while the type C error is directly taken from the publication [8].

σel (mb) interpolation direction of projection χ2 NDF CL (% ) Significance [σ ]

20.2 ± 1.7 lin-exp 7→ 1.96 TeV 80.1 17 3.7×10−8 6.26

Table 7 Summary table of the significant Odderon signal in the one-way comparison of the H(x) scaling functions of proton-proton collisions
at
√

s = 7 TeV, as measured by the TOTEM experiment at CERN LHC [28, 74], and proton - antiproton elastic collisions at
√

s = 1.96 TeV as
measured by the D0 experiment at Tevatron [8]. This table indicates that the Odderon signal is observed in this comparison with at least a 6.26 σ

significance, corresponding to an Odderon discovery.

at
√

s = 1.96 TeV. We found a minimum for εb,21 ≡ εb, 7 TeV

within the −1 ≤ εb,21 ≤ 1 domain, with the best value of
εb, 7 TeV and the lowest value of χ2 ≡ χ̃2

21 of Eq. (A.1) indi-
cated in Fig. 15. Table 6 summarizes the input values and the
appropriate references to the utilized elastic cross-section
σel and the nuclear slope B(s). The final and most strin-
gent result of this cross check, corresponding to the lowest
values of significance for the Odderon observation is sum-
marized in Table 7. We found that the significance of the
Odderon observation in the 7 TeV→ 1.96 TeV projection is
at least 6.26σ , corresponding to a χ2/NDF = 80.1/17 and
CL of not larger than 3.7×10−8 %. We notice that all vari-
ations of the procedure may only increase this significance.
We conclude, that the probability of the Odderon observa-
tion in this t-channel mode is statistically significant, at least
P = 1−CL = 0.99999999963, if the H(x) scaling is valid at√

s = 1.96 TeV in the range of 0 < x≤ 20.2 . As Fig. 13 in-
dicates that model dependently this range might be smaller,
only 0 < x ≤ 15.1 = xmax(s1) for

√
s1 = 1.96 TeV, we have

also performed several x-range stability studies in Appendix
E.

From the experimental side, a very strong argument to
support for the domain of validity of the H(x) scaling can
be obtained from the observation that the bump/dip ratio is
s-independent, if the H(x) scaling holds up to the bump posi-
tion, xbump. If the H(x) scaling is valid for xmax(s)≥ xbump =

13, we find that
dσ(s)

dt |bump
dσ(s)

dt |dip

=
H(xbump)

H(xdip)
= const(s). (A.6)

Recent TOTEM data indicate that this ratio is, within the
energy range available for TOTEM, and within experimen-
tal errors, is indeed independent of s [80] and a diffractive
minimum-maximum with an approximately s-dependent ra-
tio of R = 1.7± 0.2, 1.7± 0.1 at

√
s = 2.76 and 7.0 TeV,

respectively. Apparently, an s-independent R(s) is within er-
rors a permanent feature of elastic pp scattering at these en-
ergies [80]. This experimental result supports, that the H(x)
scaling holds up to at least x = xbump = 13 at energies close
to the 2.76 ≤

√
s ≤ 7 TeV range. Indeed, at 13 TeV, R =

1.77± 0.01 [80], so we expect a similar value of R(s) at√
s = 1.96 TeV, too, as this scale is logarithmically close to

2.76 TeV. Due to the observation of a diffractive cone in pp
collisions both at 2.76 and 7.0 TeV [80], we expect a sim-
ilar diffractive cone in pp elastic scattering at

√
s = 1.96

TeV, too, which correspods to H(x) ' exp(−x). Thus the
available experimental data also suggests that the expected
domain of validity of H(x) scaling at

√
s = 1.96 TeV in-

cludes the 7.0 < x ≤ 13.5 domain. These experimental ob-
servations combined with our model independent x-range
stability studies in Appendix E indicate, that in this domain
the significance of the Odderon observation is at least 5.0
σ . This 7.0 < x ≤ 13.5 interval physically begins with the
“swing", where the differential cross-section of pp elastic
scattering starts to bend below the exponential shape and
ends just after the diffractive maximum or “bump", located
at xbump ≈ 13.0 . For one of the theoretically expected do-
mains of validity, the limited 0 < x ≤ 15.1 range, we find
that our method provides an Odderon significance of at least
5.3 σ , as detailed in Appendix E. Another theoretical argu-
ment is shown in Fig. 27, where the H(x) scaling limit of
the ReBB model of Ref. [42] is shown to describe the exper-
imental data in the whole D0 acceptance, corresponding to
the domain of validity of 0 < x ≤ 20.2 range and a 6.25 σ

Odderon effect. This is one of the indications of the robust-
ness of our results.

For the sake of completeness, we also evaluate the asym-
metry parameter from the H(x) scaling functions to demon-
strate the level of agreement between the experimental data
and our full model calculations and also to have a better in-
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sight on the magnitude of the scaling violations. In order
to measure the size of the Odderon effect, let us define the
following asymmetry measure or asymmetry parameter:

A(x|pp̄,s1|pp,s2) =
H(x|pp̄,s1)−H(x|pp,s2)

H(x|pp̄,s1)+H(x|pp,s2)
, (A.7)

A(x|pp,s1|pp,s2) =
H(x|pp,s1)−H(x|pp,s2)

H(x|pp,s1)+H(x|pp,s2)
. (A.8)

If the crossing-odd component of elastic scattering am-
plitude vanishes at high energies, it implies that H(x|pp̄,s1)

= H(x|pp,s1). In this case, we find that A(x|pp̄,s1|pp,s1)

≡0 for
√

s1 ≥ 1 TeV. Additionally, if H(x) scaling holds for
elastic pp scattering at high energies, then H(x|pp,s1) =

H(x|pp,s2), hence A(x|pp,s1|pp,s2) = 0. Indeed, as Fig. 17
indicates, this asymmetry parameter vanishes within exper-
imental errors. There are small systematic deviations that
are well described by theoretical model calculations based
on the Real Extended Bialas-Bzdak model of Ref. [42]. The
agreement between the small asymmetries and the theoreti-
cal calculations indicates that the scaling violations are un-
der precise theoretical control.

On the other hand, if the H(x) scaling holds for elas-
tic pp scattering and the crossing-odd component of elastic
scattering amplitude is not vanishing at high energies, then
H(x|pp̄,s1) 6= H(x|pp,s1), hence A(x|pp̄,s1|pp,s2) 6= 0 for√

s1,
√

s2 ≥ 1 TeV. Indeed, as shown in Fig. 18, this asym-
metry parameter is significantly different from zero. Simi-
larly to Fig. 17, the solid line in Fig. 18 is the result of a
model calculation based on the full version of the Real Ex-
tended Bialas-Bzdak model of Ref. [42]. The solid line de-
scribes the experimental data well, within errors, which in-
dicates that the scaling violations are well under theoretical
control in this calculation.

Appendix B: Pomeron and Odderon at the TeV energy
scale: model independent properties

In this Appendix we discuss some model independent prop-
erties of the Pomeron and Odderon that utilize their corre-
spondence with the crossing-even and crossing-odd compo-
nents of the elastic scattering amplitude at the TeV energies.
In the TeV energy range, we identify the crossing-even and
crossing-odd components with the Pomeron and the Odd-
eron amplitude, given that the Reggeon contributions in this
energy range are generally expected to be negligibly small,
as confirmed also by explicit calculations for example in
Ref. [29]. These results are obtained by a straightforward
generalization, from a model dependent to a model indepen-
dent class, of the Pomeron and Odderon properties obtained
in Ref. [42] for the Real Extended Bialas-Bzdak model of
Ref. [30].

The proton-proton (pp) as well as the proton-antiproton
(pp̄) elastic scattering amplitudes can always be written as
the difference as well as the sum of the the C-even and C-
odd amplitudes, as detailed in Eqs. (14,15). These ampli-
tudes depend on Mandelstam variables s = (p1 + p2)

2 and
t = (p1− p3)

2, but we suppress these dependencies in our
notation throughout this Appendix B.

With the help of the pp and the pp̄ scattering amplitudes,
the crossing even and the crossing odd components of the
elastic scattering amplitude can be expressed as Eqs. (18,19).
The pp and the pp̄ scattering amplitudes can be evaluated
based for example on R. J. Glauber’s theory of multiple
diffractive scattering [82–84], and various models of the struc-
tures inside the protons. However, in this Appendix we focus
on the model-independent properties so we do not specify a
model yet. Model dependent calculations are subject of Ap-
pendix C and Appendix D.

The differential elastic cross section is defined by Eq. (2).
The elastic, the total and the inelastic cross sections are given
by Eqs. (1,5) and Eq. (6), respectively. The real to imaginary
ratio is given by Eq. (8), and the nuclear slope parameter is
given by the model independent relation of Eq. (4).

These measurable quantities are utilized to characterize
experimentally the (s, t)-dependent elastic scattering ampli-
tudes, Tel(s, t) discussed above. These quantities can be eval-
uated for a specific process like elastic pp or elastic pp̄
collisions. If we can evaluate the elastic scattering ampli-
tude for both pp and pp̄ scattering in the TeV energy range,
that straightforwardly yields also the (s, t)-dependent elastic
scattering amplitude also for the Pomeron and the Odderon
exchange.

Let us focus on the model independent properties of the
crossing-even Pomeron (P) and for the crossing-odd Odd-
eron (O) exchange.

The scattering amplitude Tel(s, t), for spin independent
processes, is related to a Fourier-Bessel transform of the im-
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pact parameter dependent elastic scattering amplitudes tel(s,b):

T (s, t) = 2π

∞∫
0

J0 (∆ ·b) tel(s,b)bdb . (B.9)

Here, b = |~b| is the modulus of the impact parameter vector
~b, ∆ stands for the modulus of the transverse momentum
vector and J0 is the is the zeroth order Bessel-function of
the first kind. In the considered high energy limit,

√
s� mp

and in this case the modulus of the transverse momentum
transfer is calculated as ∆(t)'

√
−t.

This impact parameter dependent amplitude is constrained
by the unitarity of the scattering matrix S,

SS† = I , (B.10)

where I is the identity matrix. Its decomposition is S = I +
iT , where the matrix T is the transition matrix. In terms of
T , unitarity leads to the relation

T −T † = iT T † , (B.11)

which can be rewritten in terms of the impact parameter or
b dependent amplitude tel(s,b) as

2I mtel(s,b) = |tel(s,b)|2 + σ̃inel(s,b) , (B.12)

where σ̃inel(s,b) is a non-negative contribution. If the pro-
cess is completely elastic, this quantity is zero, and the elas-
tic amplitude lies on the Argand circle, while in case there
are also inelastic collisions present, the elastic amplitude
lies within the Argand circe [44]. It can be equivalently ex-
pressed from the above unitarity relation as

σ̃inel(s,b) = 1−(Retel(s,b))2−(I mtel(s,b)−1)2 . (B.13)

It follows that

0≤ σ̃inel(s,b) ≤ 1 0≤ |1+ itel(s,b)|2 ≤ 1 (B.14)

as a consequence of unitarity. Thus probabilistic interpreta-
tion can be given only to the inelastic scattering and to the
sum of the elastic scattering amplitude and the amplitude for
propagation without interaction. This is why elastic scatter-
ing is a genuine quantum or wave-like process, and this is
also the reason why elastic scattering, in contrast to inelastic
scattering, has no classical interpretation. Thus σ̃inel(s,b) is
interpreted as the impact parameter and s-dependent proba-
bility of inelastic scattering.

The elastic scattering amplitude has the unitary form of
Eq. (12) as the function of the center-of-mass energy squared
s and impact parameter b. This form is expressed with the
help of the opacity (or, eikonal) function, denoted by Ω(s,b),
which in the general case is a complex valued function.

The imaginary part of Ω(s,b) determines the real part
of the scattering amplitude, while the real part of Ω(s,b)

determines the dominant, imaginary part of the scattering
amplitude. Let us introduce σ̃inel(s,b) with the help of the
real part of the complex opacity function as follows:√

1− σ̃inel(s,b) = exp(−ReΩ(s,b)) . (B.15)

This leads to Eq. (41).
The shadow profile function is defined with the help of

the opacity function, which yields

P(s,b) = 1−|exp(−Ω)|2 = σ̃inel(s,b) . (B.16)

This relation indicates that σ̃inel(s,b) is interpreted as the
probability of inelastic collisions at a given value of the squared
center of mass energy s and impact parameter b. The in-
elastic profile function can in general be evaluated with the
help of Glauber’s multiple diffraction theory [83], using var-
ious model assumptions, for example the assumptions of
Ref. [30].

The impact parameter dependent elastic scattering am-
plitudes for elastic pp and pp̄ scatterings are given in terms
of the complex opacity or eikonal functions Ω(s,b). The
defining relations are

t pp
el (s,b) = i(1− exp(−Ω

pp(s,b)) , (B.17)

t pp̄
el (s,b) = i(1− exp

(
−Ω

pp̄(s,b)
)
. (B.18)

The explicit expressions for the C-even and the C-odd
components of the impact parameter dependent elastic scat-
tering amplitude are detailed below. These relations are ex-
plicit consequences of unitarity and do not depend on model
details. However, it is important to note that at the TeV en-
ergy range in

√
s, the C-even exchange corresponds to the

Pomeron exchange while the C-odd amplitude corresponds
to the Odderon exchange, while the corrections due to the
exchange of Reggeons or hadronic resonances is smaller
than the experimental errors as detailed recently in Ref. [29].
Thus, in the TeV energy range, the S-matrix unitarity and the
dominance of the Pomeron and Odderon amplitudes con-
strains their form as follows:

tPel(s,b) = i
(

1− 1
2
(
exp(−Ω

pp(s,b))+ exp
(
−Ω

pp̄(s,b)
)))

,

tOel (s,b) = i
1
2
(
exp(−Ω

pp(s,b))− exp
(
−Ω

pp̄(s,b)
))

.

It is obvious to note that the Pomeron amplitude given above
is crossing-even, while the Odderon amplitude is crossing-
odd: CtPel(s,b) = tPel(s,b) and CtOel (s,b) =−tOel (s,b) .

Under two assumptions, these relations can be further
simplified for a broad class of models as follows.

– i) If the imaginary part of the complex opacity function
in elastic pp and pp̄ collisions has the same b-dependent
factor, denoted here in general by Σ(s,b), and

– ii) if these imaginary parts of the complex opacity func-
tion also include an s-dependent but b independent pref-
actor that is a different function in elastic pp and in pp̄
collisions,
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then these assumptions correspond mathematically to the
following relations:
I mΩ

pp(s,b) = −α
pp(s)Σ(s,b) , (B.19)

I mΩ
pp̄(s,b) = −α

pp̄(s)Σ(s,b) . (B.20)
yielding the following simple expressions for the impact pa-
rameter dependent elastic pp and pp̄ scattering amplitudes

t pp
el (s,b) = i

(
1− eiα pp(s)Σ(s,b)

√
1− σ̃in(s,b)

)
, (B.21)

t pp̄
el (s,b) = i

(
1− eiα pp̄(s)Σ(s,b)

√
1− σ̃in(s,b)

)
. (B.22)

These relations can be equivalently rewritten for the Po-
meron amplitude, using σ̃in ≡ σ̃inel(s,b) and Σ ≡ Σ(s,b) as
shorthand notations while also suppressing the s-dependence
of α pp(s) and α pp̄(s):
I mtPel(s,b) = 1−

√
1− σ̃in×

× cos
(

α pp +α pp̄

2
Σ

)
cos
(

α pp̄−α pp

2
Σ

)
,

RetPel(s,b) =
√

1− σ̃in ×

× sin
(

α pp +α pp̄

2
Σ

)
cos
(

α pp̄−α pp

2
Σ

)
.

This form of the Pomeron amplitude is explicitly C-even,
and satisfies unitarity. Thus, if the difference between the
opacity parameters α for pp and pp̄ elastic collisions is
small, the Pomeron is predominantly imaginary, with a small
real part that is proportional to sin

(
α pp+α pp̄

2 Σ̃

)
. Similarly,

for the Odderon we have, under the conditions i) and ii), real
and imaginary parts of the following amplitude
RetOel (s,b) =

√
1− σ̃in× (B.23)

× sin
(

α pp̄−α pp

2
Σ

)
cos
(

α pp̄ +α pp

2
Σ

)
,

I mtOel (s,b) =
√

1− σ̃in× (B.24)

× sin
(

α pp̄−α pp

2
Σ

)
sin
(

α pp +α pp̄

2
Σ

)
.

This form of the Odderon amplitude is explicitly C-odd and
satisfies unitarity, if the above two assumptions i) and ii) are
satisfied, without any further reference to the details of the
model. In this class of models, if the difference between the
opacity parameters α for pp and pp̄ elastic collisions be-
comes vanishingly small, both the real and the imaginary
parts of the Odderon amplitude vanish, as they are both pro-
portional to sin

(
α pp̄−α pp

2 Σ

)
. If this term is non-vanishing,

but (α pp̄ +α pp)Σ remains small, the above Odderon am-
plitude remains predominantly real, with a small, linear in
(α pp̄ +α pp)Σ at the leading order, imaginary part.

Appendix C: Emergence of the H(x) scaling from the
Real Extended Bialas-Bzdak model

With the help of the ReBB model of Ref. [30], we have re-
cently described the pp and pp̄ differential cross-sections

in a limited kinematic range of 0.546 ≤
√

s ≤ 8 TeV and
0.372≤−t ≤ 1.2 GeV2, in a statistically acceptable manner
with CL ≥ 0.1 %, as detailed in Ref. [42].

It is important to realize that within the ReBB model, the
pp elastic scattering dependence on s comes only through
four energy-dependent quantities, as specified recently in
Ref. [42]. Let us recapitulate the general formulation, for
the sake of clarity, denoting the s-dependent quantities as
Rpp

q (s), Rpp
d (s), Rpp

qd (s) and α pp(s):

T pp
el (s, t) = F(Rpp

q (s),Rpp
d (s),Rpp

qd (s),α
pp(s); t) . (C.25)

Similarly, the scattering amplitude of the elastic pp̄ scat-
tering is found in terms of four energy-dependent quantities,
that we denote here for the sake of clarity as Rpp̄

q (s), Rpp̄
d (s),

Rpp̄
qd (s) and α pp̄(s):

T pp̄
el (s, t) = F(Rpp̄

q (s),Rpp̄
d (s),Rpp̄

qd (s),α
pp̄(s); t) . (C.26)

Here, F stands for a symbolic short-hand notation for a func-
tion, that indicates how the left hand side of the pp and pp̄
scattering amplitude depends on s through their s-dependent
quantities. Among those, Rq, Rd , and Rqd correspond to the
Gaussian sizes of the constituent quarks, diquarks and their
separation in the scattering (anti)protons. These scales are
physically expected to be the same in pp and in pp̄ elastic
collisions.

Indeed, the trends of Rq(s), Rd(s) and Rqd(s) follow,
within errors, the same excitation functions in both pp and
pp̄ collisions, as indicated on panels a, b and c of Fig. 6 of
Ref. [42]. Due to this reason, let us denoted these – in prin-
ciple, different – scale parameters with the same symbols in
the body of the manuscript, as they are found to be indepen-
dent of the type of the collision, i.e.

Rq(s) ≡ Rpp
q (s) = Rpp̄

q (s) , (C.27)

Rd(s) ≡ Rpp
d (s) = Rpp̄

d (s) , (C.28)

Rqd(s) ≡ Rpp
qd (s) = Rpp̄

qd (s) . (C.29)

On the other hand, the opacity or dip parameter α(s) is dif-
ferent for elastic pp and pp̄ reactions: if they were the same
too, then the scattering amplitude for pp and pp̄ reactions
were the same, and correspondingly the differential cross-
sections were the same in these reactions, while the exper-
imental results indicate that they are qualitatively different
[42]. Hence,

α
pp(s) 6= α

pp̄(s) . (C.30)

The ReBB model [30] provides a statistically acceptable
description of the elastic scattering amplitude, both for pp
and pp̄ elastic scattering, in the kinematic range that extends
to at least 0.372≤−t ≤ 1.2 GeV2 and 0.546≤

√
s≤ 8 TeV.

For the sake of clarity, let us also note that the s-dependence
of the Pomeron and Odderon components of the scattering
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amplitude thus happens through the s-dependence of five pa-
rameters only. Based on Ref. [42], we write

TP
el (s, t) = G(Rq(s),Rd(s),Rqd(s),α pp(s),α pp̄(s); t) ,

(C.31)

TO
el (s, t) = H(Rq(s),Rd(s),Rqd(s),α pp(s),α pp̄(s); t) .

(C.32)

Here, G and H are just symbolic short-hand notations that
summarize how the left hand sides of the above equations
depend on s through their s-dependent parameters.

As detailed in Ref. [42], within the ReBB model there
is a deep connection between the t = 0 and the dip region.
This supports the findings that the recently observed de-
crease in ρ0(s) around

√
s =13 TeV, the dip-bump struc-

ture in pp scattering and its absence in pp̄ scattering are
both the consequences of the Odderon contribution. In the
ReBB model, this Odderon contribution is encoded in the
difference between α pp(s) and α pp̄(s). This conclusion is
supported also by the detailed calculations of the ratio of
the modulus-squared Odderon to Pomeron scattering ampli-
tudes. Thus, if ρ

pp
0 (s) 6= ρ

pp̄
0 (s), within the ReBB model it

follows that α pp(s) 6= α pp̄(s) or, equivalently, tOel (s,b) 6= 0
in the TeV region.

Within the framework of the ReBB model, we have proved
in Ref. [42] an interesting Odderon theorem. The weaker,
original form of this theorem was formulated above in Sec. 3
as follows:
Theorem 1 If the pp differential cross sections differ from
that of pp̄ scattering at the same value of s in a TeV energy
domain, then the Odderon contribution to the scattering am-
plitude cannot be equal to zero, i.e.

dσ pp

dt
6= dσ pp̄

dt
for
√

s≥ 1 TeV =⇒ T O
el (s, t) 6= 0 . (C.33)

This theorem is model-independently true as it depends only
on the general structure of the theory of elastic scattering.
Within the ReBB model, this theorem has been sharpened
in Ref. [42] as follows:
Theorem 2: In the framework of the unitary ReBB model,
the elastic pp differential cross sections differ from that of
elastic pp̄ scattering at the same value of s in a TeV energy
domain, if and only if the Odderon contribution to the scat-
tering amplitude is not equal to zero. This happens if and
only if α pp(s) 6= α pp̄(s) and as a consequence, if and only
if ρ

pp
0 6= ρ

pp̄
0 :

dσ pp

dt
6= dσ pp̄

dt
⇐⇒ T O

el (s, t) 6= 0

⇐⇒ ρ
pp
0 (s) 6= ρ

pp̄
0 (s)

⇐⇒ α
pp(s) 6= α

pp̄(s)

for
√

s≥ 1 TeV .

In this work, we extend these theorems to the emergence
of H(x) scaling within the ReBB model, as follows:

Theorem 3: In the framework of the unitary ReBB model,
the elastic pp differential cross sections obey a H(x) scaling
in a certain kinematic region, if and only if in that region
the opacity parameter is approximately energy independent,
α pp(s)≈ const and the geometrical scale parameters evolve
with the same s-dependent, but radius parameter indepen-
dent factor b(s). Thus, the conditions of validity of H(x)
scaling in elastic pp collisions, within the framework of the
ReBB model are the simultaneous validity of the following
four equations:

Rq(s) = b(s)Rq(s0) , (C.34)

Rd(s) = b(s)Rd(s0) , (C.35)

Rqd(s) = b(s)Rqd(s0) , (C.36)

α
pp(s) = α

pp(s0) , (C.37)

where b(s) is the same function of s for each of Rq, Rd and
Rqd .

The key point of the proof of Theorem 3 is that B(s)
is related, for an analytic amplitude, to the variance of the
scattering amplitude in the impact parameter space. If this
variance depends on the evolution of the scale parameters
Rq(s), Rd(s) and Rqd(s) only, as α(s) is within the exper-
imental errors a constant, and if these scale parameters all
evolve with the same s-dependent factor, then the nuclear
slope parameter must also scale as

B(s) = b2(s)B(s0) . (C.38)

At the same time, the elastic and the differential cross-sections
must also scale as

σel(s) = b2(s)σel(s0) , (C.39)
dσ

dt
(s, t) = b2(s)

dσ

dt
(s0, t0 =

t
b(s)2 ) . (C.40)

Hence, in such an s and x = −tB, range the H(x) scaling,
defined by Eq. (54) must hold: H(x,s) = H(x,s0) and vice
versa.

We have cross-checked the scaling properties of the ReBB
model at both ISR and LHC energies. At the ISR energies of
23.5 ≤

√
s ≤ 62.5 GeV, ρ0 ≡ ρ0(s) is not a constant as re-

viewed recently in [2], so our Theorem 3 suggests, that the
H(x,s) ≡ H(x,s0) scaling cannot be interpreted in terms of
the ReBB model, and in particular we expect that R(s), the
bump-to-dip ratio decreases with increasing values of s as
ref. [2] suggests that ρ0(s) is an increasing function of s at
ISR energies. Thus, the approximate H(x) scaling, indicated
in Fig. 1 actually is expected to be violated in the dip regions
and also perhaps also in the tail region at ISR energies. A
more detailed investigation of the scaling violations at ISR
energies goes well beyond the scope of this manuscript.

At LHC energies, let us summarize the main results of
the ReBB model studies, as given in Ref. [42] in greater de-
tails. If we do not utilize the validity of the H(x) scaling at
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the LHC energies, we obtain Figs. 16, 17 and 18 of Ref. [42].
In these figures a yellow band indicates the uncertainty of
the model prediction, without the assumption of the validity
of the H(x) scaling. Fig. 16 of Ref. [42] indicates that the ex-
trapolation without the H(x) scaling is rather uncertain in the
region of the diffractive shoulder as compared to

√
s = 1.96

TeV pp̄ elastic scattering data and correspondingly, no sig-
nificant difference is observed in this model comparison at
this energy. However, the model allows for the investigation
of H(x) scaling violations and the extrapolation of pp̄ data
to the LHC energies. As the pp̄ data do not obey a H(x) scal-
ing, their extrapolation to the LHC energies without such a
model is not possible: the H(x) scaling works only for pp
but not for pp̄ collisions. Comparing the ReBB model ex-
trapolations of pp̄ differential cross-sections with TOTEM
data on pp differential cross-sections at

√
s = 2.76 TeV, we

obtained in Ref. [42] an Odderon effect with a significance
of 7.12σ , as indicated on Fig. 17 of Ref. [42]. Combining
this value with the model dependent results at

√
s = 1.96

TeV, the combined significance is hardly reduced, changes
only to 7.08 σ . On the other hand, if we extrapolate pp̄ data
also up to

√
s = 7 TeV, the significance increases further, to

values greater than 10σ . In practical terms, extrapolating pp̄
data theoretically up to 7 TeV, we obtain a certainty for the
Odderon contribution. The quoted 6.26 σ model indepen-
dent significance is thus a safe, model independent lower
limit for the observation of a crossing-odd component of
elastic pp and pp̄ scattering in the TeV energy range.

Appendix D: Model-dependent estimation of the range
of validity and violations of H(x) scaling

In this Appendix, we summarize our model-dependent re-
sults on the estimated range of validity of H(x) scaling in
elastic pp collisions. We find that this scaling might be ex-
tended in

√
s from 7 and 8 TeV at LHC down to

√
s = 200

GeV at RHIC, as detailed below.
The Rq(s), Rd(s) and Rqd(s) parameters of the ReBB

model were determined in Ref. [42] using both an affine
linear and a quadratic dependence on ln(s). This allowed
us to test if the scale parameters of the ReBB model obey,
within one standard deviation, the same energy dependence
or not. For the reference point, we have chosen

√
s0 = 7 TeV.

Fig. 19 indicates that such an affine linear scaled energy de-
pendence of the ReBB model parameters Rq(s), Rd(s) and
Rqd(s) by the values of the same parameters at 7 TeV sug-
gests that the one σ systematic error-bands overlap down to√

s = 2436 GeV. However, this result does not yet take into
account the possible quadratic dependence of these param-
eters on ln(s) and it also neglects the correlations between
the model parameters. However, the validation of this linear
in ln(s) energy dependence of the b(s) factor of the H(x)

scaling by an explicit calculation failed, indicating that a
quadratic extrapolation in ln(s) is apparently necessary.

Taking into account the possible quadratic in ln(s) de-
pendence of the excitation function of the ReBB model pa-
rameters Rq(s), Rd(s) and Rqd(s) pushes this limit further
down to

√
s = 500 GeV, as demonstrated in Fig. 20. This

plot utilizes the parameters of quadratic dependence in ln(s)
as indicated in Fig. 23 of Ref. [42], and collected in Table 3
of that manuscript, but without taking into account the cor-
relations between these model parameters. When we tried
to validate such a quadratic in ln(s) but uncorrelated depen-
dence of the b(s) parameter of the H(x) scaling, the valida-
tion plots did not result in acceptable confidence levels with
CL ≥ 0.1 % for

√
s = 2.76, 1.96 and 0.546 TeV. Hence we

had to take into account the correlations between Rq, Rd and
Rqd together with their quadratic in ln(s) behaviour as de-
tailed below.

Our final estimate for the range of the validity of the
H(x) scaling, in particular, the possible lowest value for the
validity of this scaling is based on the quadratic in ln(s) de-
pendence of the model parameters Rq(s), Rd(s) and Rqd(s),
taking also into account their correlations. This we have stud-
ied so that we determined these parameters at 5 different en-
ergies, at

√
s = 23 GeV, as well as at 0.546, 1.96, 2.76 and

7 TeV, and fitted the resulting 5 points with a 3-parameter
quadratic formula of Ri(s) = p0+ p1 ln(s/s0)+ p2 ln2(s/s0).
This line is our best estimate for the quadratic energy de-
pendence for these parameters. However, the parameters are
correlated so we have repeated these fits by shifting up (or
down) by one standard deviation each of these model param-
eters at each energy and fixed their values, while re-fitting all
the other parameters of the ReBB model at the same energy
to find their best estimate. This way we perturbed in two
different directions four model parameters at five different
energies and re-fitted each set with the quadratic in ln(s/s0)

evolution, resulting in 2x4x5 = 40 curves around the central
line. The area between these curves is our best estimate for
the systematic error band of the energy evolution, that takes
into account not only the errors of the ReBB model param-
eters but also the correlations between the ReBB model pa-
rameters at each energy.

The one σ systematic error band on the Rq(s) parameter,
that takes into account both the quadratic in ln(s) evolution
and the correlations between the model parameters is pre-
sented as an orange band in Fig. 21. Similarly, the one σ

systematic error band on the Rd(s) parameter, that takes into
account both the quadratic in ln(s) evolution and the correla-
tions between the model parameters is presented as a darker
orange band in Fig. 22. The same error band is shown for
the Rqd(s) parameter in yellow band in Fig. 23. These error
bands are actually overlapping and the region of their over-
lap determines the domain of validity of the H(x) scaling.
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The overlaid one σ systematic error-bands of the scale
parameters of the ReBB model are shown in Fig. 24. This
figure indicates that from

√
s = 7 TeV down to

√
s = 200

GeV these one standard deviation error-bands overlap within
one standard deviation. This implies, that one of the neces-
sary conditions for the validity of the H(x) scaling in elas-
tic pp collisions is satisfied in the kinematic range of 0.2≤√

s ≤ 7.0 TeV. The domain of validity of the ReBB model
was limited in −t as well, to 0.375≤−t ≤ 1.2 GeV2 as de-
tailed in Ref. [42]. Thus, this model-dependent study cannot
be applied at very low or very high values of −t and the
additional condition for the domain of validity of the H(x)
scaling, the constancy of the parameter α pp(s) can be cross-
checked if experimental data on elastic pp collisions are be-
coming available in the lower end of this energy range.

Let us first cross-check if indeed the H(x) scaling can be
valid in elastic pp or pp̄ collisions in such a broad energy
range, or not. We have demonstrated that this H(x) scaling
is violated if we go with energy up to

√
s = 13 TeV. This is

easily understood within the framework of the ReBB model.
Condition ii) indicates that one of the necessary condition
for the H(x) scaling is the constancy, the approximately en-
ergy independence of the parameter α pp(s). In Ref. [42] we
have shown that within the ReBB model this corresponds
to the energy independence of the real to imaginary ratio at
t = 0, the parameter ρ0(s). The TOTEM Collaboration re-
cently demonstrated that at the top LHC energy of

√
s = 13

TeV, the ρ0 parameter starts to decrease significantly [2].
This decrease increases the dip at these energies correspond-
ing to Theorem 2 of Ref. [42] and thus the decrease of ρ0(s)
leads also to a violation of the H(x) scaling at the top LHC
energies.

At the lower energies, the H(x) scaling of elastic pp
collisions imposes a condition also on the differential cross-
sections of elastic pp̄ collisions. Although the value of α pp̄(s)
is not constrained, the scale parameters in pp and in pp̄ elas-
tic collisions were found to follow the same trends. Hence, if
H(x) scaling is valid down to

√
s = 200 GeV, then the scale

parameters of elastic pp̄ collisions at
√

s = 0.546 and 1.96
TeV have also to follow the common energy dependencies
as specified by Eqs. (C.34,C.35,C.36). So the validity of the
H(x) scaling in elastic pp collisions constrains the possible
shape of elastic pp̄ collisions as well within the framework
of the ReBB model and these constraints can be tested both
theoretically and experimentally.

Let us present the tests of the upper limit of the domain
of validity in x of the H(x) scaling on experimental data first.

The test of the validity of the H(x) scaling, using elastic
pp data at

√
s = 2.76 TeV LHC energy is shown in Fig. 25.

The agreement at 2.76 TeV is excellent and needs no com-
ments or explanations. The upper limit of the validity of the
H(x) scaling, xmax at this

√
s = 2.76 TeV can not be deter-

mined from this plot, as apparently xmax(2.76)� 12.7 that

is this upper limit is clearly larger, than the upper end of the
acceptance in x of the TOTEM experiment at this energy.

At
√

s = 0.546 TeV, xmax(s), the upper limit of the do-
main of the validity of the H(x) scaling is investigated in
Fig. 26. For pp̄ collisions, α pp̄ remains the only free fit
parameter, except the overall normalization parameters. In
this case, the pp̄ differential cross-sections are constrained,
because of the requirement Rq(s)/Rq(s0) = Rd(s)/Rd(s0) =

Rqd(s)/Rqd(s0) = b(s) is a prescribed function of s and the
parameters at

√
s0 = 7 TeV are already determined at

√
s =

7 TeV. As indicated in Fig. 26, these constraints are satisfied
with a CL = 0.2 % > 0.1 % for the measured pp̄ data, but
only in a rather narrow kinematic region of 0.375 ≤ −t ≤
0.56 GeV2.

An important test of the validity of the H(x) scaling pp̄
collisions at the Tevatron energy of

√
s = 1.96 TeV is indi-

cated in Fig. 27. In this plot, the model parameters Rq(s),
Rd(s) and Rqd(s) are constrained by the H(x) scaling. Solid
line indicates that one parameter, α pp̄(s) can be fitted to de-
scribe the D0 differential cross-section in the whole accep-
tance of the D0 experiment in −t. According to this plot,
at the D0 energy of

√
s = 1.96, the domain of the H(x)

scaling extends to the −t ≤ 1.2 GeV2 domain, which cor-
responds to xmax(s) = 20.2 at

√
s = 1.96 TeV. In pp colli-

sions, the other condition of validity of the H(x) scaling is
that α pp is independent of the energy of the collision in the√

s = 1.96−7.0 TeV range, however, for pp̄ collisions, α pp̄

is a free fit parameter. For pp̄ collisions, the H(x) scaling
limit of the ReBB model of Ref. [42] describes the D0 data
in a statistically acceptable manner, with a CL = 0.7 % , cor-
responding to an agreement with a χ2/NDF = 25.7/11, and
no significant deviation, an agreement at the 2.69 σ level.

As the diffractive minimum in pp is deeper than in pp̄
if the H(x) scaling is valid, the plot also indicates that a sig-
nal of Odderon exchange is also present in the ReBB model
if extrapolated with the H(x) scaling for pp collisions to√

s = 1.96 TeV. However, some significances are lost, due
to two reasons: i) the ReBB model-dependent extrapolations
are limited to the−t ≥ 0.375 GeV2 region, while the model-
independent comparisons can be utilized in the whole −t
region; and ii) the comparison is done on the level of the
differential cross-sections so the overall correlated, type C
errors do not cancel. In this case, for the Odderon signal we
find a χ2/NDF = 40.57/12, corresponding to a statistical
significance of 4.02 σ .

In addition to these experimental tests, that are obtained
from fitting measured pp̄ data with the help of one free pa-
rameter, α pp̄(s) and using the results for the s-dependence of
the other 3 physical parameters of the ReBB model, Rq(s),
Rd(s) and Rqd(s), we can have a theoretical test as well.
This corresponds to the evaluation of the differential cross-
section of elastic pp collisions from both the H(x) scaling
limit of the ReBB model of refs. [30, 42] and from the fully
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fledged version of the same model, that includes also terms
that result in scaling violations, and makes the full H(x,s)
functions weakly s-dependent. Evaluating the error bands
from the uncertainty of the model parameters, we can eval-
uate xmax(s) at a given s by determining the domain in x,
where the two calculations agree within 1 standard devia-
tions of the model parameters. Such a calculation is per-
formed in Fig. 28. This calculation does not allow for a
compensation of the modification of the shape by a possi-
ble overall normalization factor and so it results in a more
stringent upper limit for the domain of the validity of the
H(x) scaling, xmax(s) = 15.1 at

√
s = 1.96 TeV.

Recently, the STAR collaboration measured the differ-
ential cross-section of elastic pp collisions at the center-of-
mass energy of 200 GeV [81]. This measurement has re-
sulted in a straight exponential differential cross-section in
the range of 0.045 ≤ −t ≤ 0.135 GeV2. This range is the
range where H(x) = exp(−x) and the conditions of the va-
lidity of the H(x) scaling are indeed satisfied by this dataset,
that is, however, limited to a rather low −t range. It is thus
a very interesting and most important experimental cross-
check for the validity of the H(x) scaling to push forward
the experimental data analysis of elastic pp collisions at the
top RHIC energy of

√
s = 510 GeV including if possible a

larger −t range extending to the non-exponential domain of
dσ

dt as well.
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Fig. 15 Top panel indicates that as a function of εb,7 TeV, the χ2 ≡ χ̃2
21 distribution has a unique nearly quadratic minimum. The minimum value

is χ2/NDF = 80.1/17, corresponding to a statistically significant difference between the pp and pp̄ H(x) scaling functions at the level of 6.26σ .
The bottom panel shows the comparison of the H(x) data using the values of εb,7 TeV corresponding to such a minimum, both for the case of the 7
→ 1.96 TeV and for the case of 1.96→ 7 TeV projections.
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Fig. 16 The artificially reduced Odderon significance, when type C errors are included to the uncertainty of the vertical scale of the differential
cross-sections and are added, as a test, quadratically to the type A, point-to-point fluctuating errors, just to estimate the magnitude and the
importance of their effect. Due to the large, 14.4 % type C errors of the D0 measurement, the vertical scale becomes rather uncertain and the
significance of the Odderon signal is reduced substantially. This demonstrates the power of the study of the H(x) scaling function: type C errors
cancel from H(x) and the Odderon signal has a significance of at least 6.26 σ , as compared to the extrapolation of the differential cross-sections,
where type C errors do not cancel. If we were allowed to add, incorrectly, the type C and type A errors quadratically, the significance of the
Odderon signal would be reduced to 3.64 σ , corresponding to the χ2/NDF = 44.7/17 shown above.
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Fig. 17 Within experimental errors, the asymmetry parameter of elastic pp scattering vanishes for
√

s = 2.76 and 7 TeV, indicating, that H(x)
scaling is valid within the experimental errors. The solid line is the result of a model calculation based on the full version of the Real Extended
Bialas-Bzdak model of Ref. [42], it indicates that the scaling violations are well under theoretical control in this calculation.
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Fig. 18 Within experimental errors, the asymmetry parameter of elastic pp̄ versus pp scattering does not vanishe for
√

s1 = 1.96 and 7 TeV,
indicating, that the Odderon contribution is significant, larger than the experimental errors. The solid line is the result of a model calculation based
on the full version of the Real Extended Bialas-Bzdak model of Ref. [42], it indicates that the H(x) scaling violations are well under theoretical
control in this calculation, not only for the pp case, demonstrated in Fig. 17, but also for the pp̄ case, demonstrated on this plot.
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Fig. 19 The scaled energy dependence of the ReBB model parameters
by the parameter values at 7 TeV. The original logarithmic excitation
functions of the parameters are presented in Ref. [42]. The lower limit
of the H(x) scaling from the linear logarithmic dependence is obtained
at
√

s = 2436 GeV.
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Fig. 20 The scaled energy dependence of the ReBB model parameters
by the parameter values at 7 TeV. The original squared logarithmic
excitation functions of the parameters are presented in Ref. [42]. The
lower limit of the H(x) scaling is pushed further down to about

√
s =

500 GeV, if the correlations between the parameters Rq(s), Rd(s) and
Rqd(s) are neglected.
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Fig. 21 Systematic error band on the Rq(s) parameter as obtained by
systematically shifting and fixing the best Rq values up and down by
one standard deviation at each energy where they are determined and
then re-fitting all the other parameters, to account for the correlations
between the parameters of the ReBB model. The central line indicates
the best estimate for the quadratic in ln(s) polynomial for Rq(s).

210 310 410
 [GeV]s

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 [
fm

]
d

R

(s) fit2ln

 0.017 [fm]± = 0.651 
0

p

 0.003 [fm]± = 0.010 
1

p

 0.0001 [fm]± = 0.0003 
2

p

/NDF = 0.273 / 2 = 0.1372χ

CL = 87.23 %

Fig. 22 Systematic error band on the Rd(s) parameter as obtained by
systematically shifting and fixing the best Rd values up and down by
one standard deviation at each energy where they are determined (

√
s=

7.0, 2.76, 1.96, 0.546 TeV and 23.5 GeV) and then re-fitting all the
other parameters to account for the correlations between the parameters
of the ReBB model. The central line indicates the best estimate for the
quadratic in ln(s) polynomial for Rd(s).
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Fig. 23 Systematic error band on the Rqd(s) parameter as obtained by
systematically shifting and fixing the best Rqd values up and down by
one standard deviation at each energy where they are determined (

√
s=

7.0, 2.76, 1.96, 0.546 TeV and 23.5 GeV) and then re-fitting all the
other parameters to account for the correlations between the parameters
of the ReBB model. The central line indicates the best estimate for the
quadratic in ln(s) polynomial for Rqd(s).
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Fig. 24 Overlaying the systematic error bands on the Rq(s), Rd(s) and
Rqd(s) parameter as obtained by the previous three figures indicates
that from

√
s= 7 TeV down to 200 GeV these bands overlap within one

standard deviation. This indicates that taking into account the quadratic
dependence on ln(s) and the correlations between the model parame-
ters allows for an estimation of the lower limit of

√
s = 200 GeV for

the domain of the validity of the H(x) scaling, which turns out to be
experimentally testable in elastic pp collisions at the RHIC acccelera-
tor.
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Fig. 25 Validation plot of the H(x) scaling at
√

s = 2.76 TeV within
the framework of the ReBB model. As indicated on this plot such a
constraint is satisfied with a CL = 21.9 %� 0.1 % for the pp data, in
the −t range of the measurement, 0.372≤−t due to the limited valid-
ity of the ReBB model at low values of |t|. At large values of −t, the
dominant limitation is the experimental acceptance – it is less than the
limitation of the ReBB model. The good quality of the agreement be-
tween the TOTEM data and the H(x) scaling limit of the ReBB model
of Ref. [30] is also indicated on the lower panels of this plot.
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Fig. 26 Validation plot of the H(x) scaling at
√

s = 0.546 TeV within
the framework of the ReBB model. As indicated on this plot this con-
straint is satisfied with a CL ≥ 0.1 % for the measured pp̄ data, but
only in a rather limited −t range of 0.375≤−t ≤ 0.56 GeV2, which is
less than the domain of validity of the ReBB model.
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Fig. 27 Validation plot of the H(x) scaling at
√

s = 1.96 TeV within the framework of the ReBB model. As indicated on this plot this constraint
is satisfied with a CL ≥ 0.1 % for the measured pp̄ data, in the limited −t range of validity of the ReBB model. Note that the rescaling (type
C) coefficients for this comparison are rather large, outside their usual range of (−1,1). This is why the data points are visibly below the best
fitted curve, as in the upper panel of this plot, the datapoints were not rescaled/shifted by the rescaling coefficients of εC . However, the good
quality agreement between the rescaled data and the solid red line is indicated on the two lower panels, by the low values of the pull plots on
the (data-fit)/error and on the (data-fit)/fit distributions. The agreement is statistically acceptable, as reflected also by the value of CL = 0.7 %.
The corresponding solid red line has only two free physical fit parameters, indicated by α(pp̄) and b(s), that are shown with their errors. A type
C, overall normalization parameter is also allowed in this fit, that shifts all the datapoints up or down. The other three physical parameters are
constrained by the H(x) scaling: Ri(s) = b(s)Ri(s0), with i = (q,d,qd) and

√
s0 = 7 TeV. The difference between the solid red line and the dashed

red line corresponds to the Odderon signal at this energy as for the pp case, this parameter is also constrained, α pp(s) = α pp(s0) = 0.125 is a
constant of s. This plot thus indicates, that the H(x) scaling at

√
s = 1.96 TeV may extend up to the full D0 acceptance with xmax(s) = 20.2 at√

s = 1.96 TeV.
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Fig. 28 A theoretical determination of the domain of validity of the H(x) scaling at
√

s = 1.96 TeV within the framework of the ReBB model.
As indicated on this plot, the differential cross-sections of elastic pp collisions can be evaluated from the full model including the 1σ theoretical
uncertainties of these calculations. The corresponding yellow band can be compared with a similar calculation when the H(x) scaling as a constraint
is also implemented within the same model. This calculation does not include the possible compensation of the deviations by an overall vertical
rescaling factor, so it gives a conservative estimate for the domain of validity of the H(x) scaling as xmax(s) = 15.1 at

√
s = 1.96 TeV.
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Appendix E: Study of the stability of the Odderon
signal for the variation of x-range

In this Appendix, we summarize our x =−tB range stability
results. The central topic of this Appendix is the clarification
of the role of the correlation between the correlation coeffi-
cient εb,21 and the domain of x, over which the χ2 or the sta-
tistical significance σ is optimized. This correlation coeffi-
cient shifts all the projected datapoints together, up or down,
and its best value for all the datapoints is εb,21 =−0.56 if the
H(x) scaling function of the densest pp dataset of

√
s = 7

TeV is projected to the
√

s = 1.96 TeV pp̄ data. If we fixed
this value, and started to limit the x-range of comparison by
removing 1, 2, 3, 4, 5 and 6 D0 datapoints with the largest
values of x, we obtain the results summarized in Table 8.

In this case of a constant, x-range independent εb,21 =

−0.56 , the χ2 for all the points and the 6.26 σ overall sig-
nificance are both constants, but the partial contributions to
the χ2 and NDF are x-range dependent. Note, that even for
the x ≤ 10.8 region (left from the dip) we obtain a signif-
icant contribution, with a statistical significance of 5.46 σ .
This is seen visually in Fig. 8 as well as on our final H(x)
comparison plots, Fig. 15 in Appendix A.

However, if we applied a more conservative approach,
and re-optimized the correlation coefficent to obtain an x-
range dependent εb,21, that minimizes the partial contribu-
tions to the χ2 in the investigated x-range, we obtain the
results summarized in Table 9.

As shown in Table 9, the correlation coefficient εB21 turns
out to be strongly x-range dependent. The importance of
the contribution from large values of x can be formulated
as follows: if we optimize the correlation coefficient εB21
for the range of investigation, the Odderon signal is stable
for the removal of the top 1, 2, 3 and 4 D0 datapoints with
x ≥ 14.8, as even with the x-range dependent minimization
of the χ2, the statistical significance of the Odderon obser-
vation remains at least 5.33 σ . However, if we remove 5
or more of the D0 datapoints at large values of x = −tB,
then the remaining D0 pp̄ data and the H(x) scaling func-
tion of pp at

√
s = 7 TeV can be renormalized to the top of

each other. TOTEM data at
√

s = 2.76 TeV extend only to
the x ≤ 12.1 region, where even a 2.5 σ level, statistically
not significant apparent agreement can be reached by totally
distorting the value of the correlation coefficient εB21, even
if using only the more dense and more precise TOTEM 7
TeV pp data. Orange colored fields indicate that if we apply
a local optimalization to the correlation coefficient εB21, this
increases the overall significance of the Odderon, if all the
datapoints are used. As indicated by the last column of Table
9, these values of the correlation coefficient εB21 are gradu-
ally becoming rather unreasonable, when all the datapoints
are considered. As more and more D0 data points are re-
moved at high x, the global statistical significance increases

drastically, even above the model-dependent limit of 7.08 σ ,
as indicated by the red-colored fields in the rightmost col-
umn of the above table. This 7.08 σ limit corresponds to
the combined significance of pp vs pp̄ comparisons at both√

s = 1.96 and 2.76 TeV, as summarized in Table 4 below,
and detailed in Ref [42].

If we fully utilize the results of the model dependent
analysis of Ref. [42], we find a larger, combined significance
of 7.08 σ as shown in Table 10. This result is obtained by
comparing simultaneously the pp and pp̄ differential cross-
sections at

√
s = 1.96 and 2.76 TeV with the help of the

ReBB model. The increased significance is due to the fact
that with the help of the same model, the pp̄ data can also
be extrapolated to 2.76 TeV and result in an overwhelming
Odderon signal. Let us stress, that this model dependent sig-
nificance is obtained even without using the 7 TeV TOTEM
dataset, to evaluate the χ2 and the Odderon significance and
to bridge the energy gap between 2.76 and 1.96 TeV. If the
pp̄ differential cross-section is evaluated and extrapolated
also up to 7 TeV with the help of the same ReBB model,
the probability of Odderon observation becomes very much
larger than a 7.08 σ effect [42], practically it becomes a cer-
tainty.

We have made another cross-check and divided the fi-
nal result of our calculations to four different regions: We
have 2 D0 datapoint in Region 0, the diffractive cone with
0 < x =−tB≤ 5.1 . The remaining 15 D0 datapoints can be
divided into 3 regions with 5-5 D0 data points as follows.
Region I corresponds to the “swing” region, just to the left
of the dip, corresponding to 5.1 < x ≤ 8.4; Region II, in-
cluding the dip and the bump, to 8.4 < x≤ 13.5; and Region
III, the tail corresponds to 13.5 < x ≤ 20.2. We evaluated
their partial contributions to our final Odderon significance
of 6.26 σ . For a cross-check we have also evaluated their
combined significance and also the contribution of the first
two D0 datapoint from the diffractive cone.

The results for a fixed εB21 = −0.56 - optimized on all
the 17 D0 datapoints - are shown in Table 11. In this case,
the greatest partial contribution to the Odderon significance
comes from the swing region, 5.1 < x≤ 8.4 the second most
important contribution comes from the diffractive interfer-
ence (dip and bump) region with 8.4 < x ≤ 13.5, and for
this value of the correlation coefficient, the tail with 13.5 <

x≤ 20.2 has a relatively small contribution.
In contrast, similar results for a regionally optimized cor-

relation coefficient, an x-range dependent εB21 is shown on
Table 12. In this case, the greatest partial contribution to the
Odderon significance comes from the diffractive interfer-
ence (dip and bump) region with 8.4 < x≤ 13.5, the second
most important contribution comes from the swing region,
5.1 < x ≤ 8.4, while the relatively least important contribu-
tion comes from the tail with 13.5 < x ≤ 20.2. It is impor-
tant to recognise, that the 10 D0 datapoints in the swing and
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Table 8 Stability of the Odderon signal on the variation xmax, the upper limit of the domain of validity of the H(x) scaling using
√

s = 7 TeV
TOTEM pp data projected to

√
s = 1.96 TeV D0 pp̄ data in x =−tB . If the correlation coefficient kept its value of εb,21 =−0.56, corresponding

to the “global” minimum of χ2, the Odderon signal would remain at least 5.4 σ , even if the last 1,2, ... 5 and 6 D0 points were discarded (by hand)
in the x-range stability analysis.

Table 9 Stability of the Odderon signal on the variation xmax, the upper limit of the domain of validity of the H(x) scaling using
√

s = 7
TeV TOTEM pp data projected to

√
s = 1.96 TeV D0 pp̄ data in x = −tB, for a fit range dependent, minimized correlation coefficient εb,21,

corresponding to the minimum of χ2 in the considered x-range. The Odderon signal remains at least 5.3 σ , if the last 1,2, 3 and 4 D0 points were
discarded (by hand) in this x-range stability analysis. In this sense, the Odderon signal remains significant, if the H(x) scaling is valid at last up to
x = 14.8. The last column indicates that these locally optimized εb,21 coefficients globally increase the Odderon significance.

Table 10 The trade-off effect of using model dependent results: If we utilize the ReBB model instead of H(x) scaling, it decreases the significance
of the pp prediction vs pp̄ data at

√
s = 1.96 TeV, from 6.26 down to 2.19 σ . However, as a trade-off, the same model allows for an extrapolation of

the pp̄ data to
√

s = 2.76 TeV, which was not possible with the help of the H(x) scaling. This pp̄ differential cross-section vs pp data at
√

s = 2.76
TeV results in a 7.12 σ effect. The combined significance of the ReBB model on both the 1.96 TeV D0 and 2.76 TeV TOTEM data is found to be
7.08 σ . Thus the lower limit of significance from the ReBB model to data comparision, 7.08 is larger than the model independent estimate of 6.26
σ , that was obtained using the full x-range of D0 and the assumption of the validity of the H(x) scaling in this range.

diffractive interference region already provide a statistically
significant, more than 5 σ Odderon effect. The interference
and the tail together also indicate an Odderon effect, with a
significance that is between a 3 and a 5 σ effect. When all
these three regions are combined together, they dominate the
final Odderon significance, providing 6.23 out of the 6.26 σ

Odderon effect for all x.

It is an intriquing problem if one can determine model
independently the region, from where the dominant contri-

bution to the Odderon signal is coming. To reach that goal,
we have developed a so called sliding window technique,
and determined the minumum size of this sliding window
that still provides an Odderon signal on the discovery level
of at least 5.0 σ . Namely, D0 published 17 datapoints. We
have taken the first n of these datapoints, with n varied from
2 to 17, and then locally optimized the correlation coeffi-
cients εB for both projections of 7 → 1.96 TeV and 1.96
→ 7 TeV, and determined where the minimum sized sliding
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window is, wherein the observation of the Odderon is an at
least 5 σ effect. As one picture is worth ten thousand words
according to a Chinese word of wisdom, we have summa-
rized our results in Fig. 29. For the sake of clarity, and only
on this plot, we have shifted the TOTEM 7 TeV datapoints
by their type B errors (properly multiplied by the correlation
coefficient εB,7TeV that minimalized χ2 for that given slid-
ing acceptance window) and show only the type A vertical
and horizontal errors. Fig. 29 indicates that there are 8 D0
datapoints in the minimal sized sliding acceptance window,
where an at least 5 σ , statistically significant Odderon signal
is observed. Thus 9 out of the 17 datapoints can be removed
(5 from the tail and 4 points from the diffractive cone re-
gion), without destroying the greater than 5 σ level of the
Odderon significance.

If we take into account the evolution of H(x,s) as a
function of s, this evolution becomes model dependent, but
allows for the estimation of the domain of validity of the
H(x,s) = H(x,s0) scaling law, as detailed in Appendix D.

We obtained our model-dependent results within the frame-
work a Glauber-type calculation using the ReBB model of
refs. [30, 42]. This model is validated at

√
s = 1.96 TeV in

the xmin = 4.4 < x region [42]. According to the calculations
of Appendix D, the H(x) scaling at this 1.96 TeV energy is
expected to be valid at least in the 9.0 < x = −tB ≤ 15.1
kinematic domain. As we cannot estimate reliably the valid-
ity of the lower limit of the H(x) scaling at low values of
x with this model and in addition, in the diffractive cone,
H(x) ≈ exp(−x) and the scaling is expected to hold, the
9.0 < x = −tB ≤ 15.1 kinematic domain seems to give the
worst possible, model dependent limit for the domain of va-
lidity of the H(x) scaling at 1.96 TeV. As shown on Table
13, this interval corresponds to a significance of at least 3.82
σ . In this very limited x range, the corresponding best cor-
relation coefficient, - 0.62, is rather close to the best corre-
lation coefficient, -0.56, that minimizes significance for the
case of the complete, 0 < x = −tB ≤ 20.2 kinematic do-
main of all the D0 data, thus for this correlation coefficient,
the significance for the 0 < x = −tB ≤ 20.2 kinematic do-
main is nearly unchanged from 6.27 to 6.28 σ . If we assume
that the lower limit xmin corresponds to the lower limit of
the validation of the ReBB model [42], then we find that in
the 4.4 < x≤ 15.1 kinematic domain the significance of the
Odderon signal is at least 5.3 σ , as detailed on Table 13.
However, we know that in the low x =−tB region, there is a
diffractive cone, where H(x) ≈ exp(−x) for scattering am-
plitudes that are analytic at t = 0, and for experimental data
that are not indicating a non-exponential behaviour at low
values of |t|. This is the case for the

√
s = 1.96 TeV D0 pp̄

and for the
√

s = 2.76 TeV TOTEM pp data, so for closing
the energy gap between 1.96 and 2.76 TeV, the lower limit
of the applicability of the H(x) scaling is actually xmin = 0.

If we fully utilize the results of this model dependent
analysis we find that the model dependent, combined Odd-
eron significance on pp prediction versus pp̄ data at

√
s =

1.96 TeV data and pp̄ prediction versus pp data at
√

s= 2.76
TeV is 7.08 σ , as shown on Table 10. This increased signif-
icance is due to the fact that with the help of the same ReBB
model [42], the pp̄ data can also be extrapolated to the low-
est TOTEM energy of

√
s = 2.76 TeV and they result in a

dominant Odderon signal, as detailed also in Table 10.
In this Appendix, we thus find a hierarchy of the Odd-

eron significances. When we take theoretical modelling into
account, we find that the significance of an Odderon ob-
servation on elastic pp collisions at

√
s = 2.76 TeV versus

elastic pp̄ collisions at
√

s = 1.96 TeV, in the corresponding
TOTEM and D0 acceptances, is at least 7.08 σ . If we do
not utilize fully the model dependent information, but use
only the theoretical limits for the validity of the H(x) scal-
ing at

√
s = 1.96 TeV, we find that the Odderon signal is

greater than 5 σ if the H(x) scaling is valid in the range of
5.1 < x≤ 13.1 . We cannot reliably estimate the lower limit
of the H(x) scaling, but demonstrated on available data that
in the diffraction cone, H(x)≈ exp(−x) is satisfied. We have
validated the model of Ref. [42] in the range of 4.4 < x at
1.96 TeV, and find that this model dependent domain of va-
lidity of the H(x) scaling extends up to xmax = 15.1 .

The theoretically and model dependently validated range
of H(x) scaling at

√
s = 1.96 TeV, 4.4 < x ≤ 15.1 includes

the interval 7.0 < x≤ 13.5, where we find that the Odderon
signal is greater than a 5 σ effect.

We conclude this x-range stability investigations as fol-
lows:

– Model independently, we find that the significance of the
Odderon is greater than 5 σ in the 7 < x≤ 13.5 domain
at
√

s = 1.96 TeV.
– In our model independent analysis, we relied only on

already published D0 and TOTEM datapoints, without
relying on preliminary data. We have evaluated the χ2

of the Odderon signal using arithmetic operations only
(addition, substraction, multiplication, division) but we
did not impose any model dependent fits.

– In our model independent analysis, we utilized a newly
introduced H(x) scaling function, that is not sensitive to
the dominant, and overall correlated normalization er-
rors of the differential cross-sections. As a trade-off, the
domain of validity of this H(x) scaling became an en-
ergy dependent (0,xmax(s)) interval.

– This H(x) scaling function scales out the trivial energy
dependencies that appear due to the energy dependence
of the elastic cross-section σel(s) and the nuclear slope
parameter B(s).

– Using a model, validated in the 4.4 < x domain, we find
that the validity in x of the H(x) scaling at

√
s = 1.96

TeV is extending up to x ≤ 15.1. Using published D0



55

Table 11 Stability of the Odderon signal in various regions of xmin and xmax, for a constant value of the correlation coefficient εb,21, minimized
on all the 17 available D0 data points. In this case, the greatest partial contribution to the Odderon significance comes from the swing region,
5.1 < x≤ 8.4 the second most important contribution comes from the diffractive interference (dip and bump) region with 8.4 < x≤ 13.5, and for
this value of the correlation coefficient, the tail with 13.5 < x≤ 20.2 has a relatively small contribution.

Table 12 Stability of the Odderon signal in various regions of xmin and xmax, in the case, when the value of the correlation coefficient εb,21 is
locally minimized for the data in the xmin < x ≤ xmax range. In this case, the greatest partial contribution to the Odderon significance comes from
the diffractive interference (dip and bump) region with 8.4 < x ≤ 13.5, the second most important contribution comes from the swing region,
5.1 < x ≤ 8.4, while the relatively least important contribution comes from the tail with 13.5 < x ≤ 20.2. It is important to recognise, that the
10 D0 datapoints in the swing and diffractive interference region already provide a statistically significant, more than 5 σ Odderon effect. The
interference and the tail, taken together, also indicate an Odderon signal, as a 3.91 σ , indicative but statistically not yet sufficient effect. When all
these three regions are combined together, they dominate the final Odderon significance, providing 6.23 out of the 6.26 σ Odderon effect for all x.

data, and the same model, we validated in Fig. 27 that
the H(x) scaling at

√
s = 1.96 is extending even up to

the end of D0 acceptance, to x≤ 20.2 .
– In the very limited interval 7.0 < x = −Bt ≤ 13.5, we

find that the Odderon signal is greater than a 5 σ effect
at
√

s = 1.96 TeV.
– Thus the model independent and at least 5 σ , discovery

level Odderon signal is remarkably stable for the vari-
ations of the domain of validity of the H(x) scaling at√

s = 1.96 TeV.
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Table 13 In the 9.0 < x =−tB≤ 15.1 kinematic domain we obtain a lower, model dependent limit of significance of 3.82 σ . Note, that the ReBB
model is not validated in the −t ≤ 0.372 kinematic range [42], corresponding to low values of x. At

√
s = 1.96 TeV, this lower limit of validity of

the ReBB model is xmin = 4.4. In the corresponding 4.4 < x ≤ 15.1 domain, the lowest limit of Odderon significance is an 5.37 σ effect. Within
this domain, in the range of 7.0 < x≤ 13.5, the Odderon signal is still above the 5 σ , discovery level, even when 9 out of the 17 D0 datapoints are
removed from the analysis.

Type A errors,
both vertically
& horizontally

7.0 < -Bt ≤ 13.5, with 8 D0 points
Minimal size of sliding window for

Observation of Odderon
with a significance of at least 5s

7 TeV points
of TOTEM 
shifted by

type B errors

Fig. 29 Model independent determination of the dominant source of the Odderon signal, using the minimal sized sliding window technique. We
varied the number of subsequent D0 datapoints and also their locations in the D0 acceptance in all possible manner. This way we determined the
location of the smallest number of subsequent D0 datapoints, that provide a statistically significant Odderon signal, that remains above the 5σ

discovery threshold, even after locally minimizing χ2 and obtaining an interval dependent, local value for εB,7TeV for that particular interval. The
above plot indicates that the minimum number of subsequent D0 datapoints is 8, and that they come from the 7.0 < x = −Bt ≤ 13.5 kinematic
domain. The result is consistent with Table 13.



57

References

1. TOTEM Collaboration, G. Antchev et al., “First
measurement of elastic, inelastic and total cross-section
at
√

s = 13 TeV by TOTEM and overview of
cross-section data at LHC energies,” Eur. Phys. J. C79
no. 2, (2019) 103, arXiv:1712.06153 [hep-ex].

2. TOTEM Collaboration, G. Antchev et al., “First
determination of the ρ parameter at

√
s = 13 TeV –

probing the existence of a colourless three-gluon
bound state,” arXiv:1812.04732 [hep-ex].

3. TOTEM Collaboration, G. Antchev et al., “Elastic
differential cross-section measurement at

√
s = 13 TeV

by TOTEM,” Eur. Phys. J. C 79 no. 10, (2019) 861,
arXiv:1812.08283 [hep-ex].

4. TOTEM Collaboration, G. Antchev et al., “Elastic
differential cross-section dσ/dt at

√
s = 2.76 TeV and

implications on the existence of a colourless C-odd
three-gluon compound state,” Eur. Phys. J. C 80 no. 2,
(2020) 91, arXiv:1812.08610 [hep-ex].

5. A. P. Samokhin and V. A. Petrov, “The Stationary
Points and Structure of High-Energy Scattering
Amplitude,” Nucl. Phys. A974 (2018) 45–55,
arXiv:1708.02879 [hep-ph].

6. V. A. Khoze, A. D. Martin, and M. G. Ryskin, “Elastic
and diffractive scattering at the LHC,” Phys. Lett. B784
(2018) 192–198, arXiv:1806.05970 [hep-ph].

7. L. Lukaszuk and B. Nicolescu, “A Possible
interpretation of p p rising total cross-sections,” Lett.
Nuovo Cim. 8 (1973) 405–413.

8. D0 Collaboration, V. M. Abazov et al., “Measurement
of the differential cross section dσ/dt in elastic pp̄
scattering at

√
s = 1.96 TeV,” Phys. Rev. D86 (2012)

012009, arXiv:1206.0687 [hep-ex].
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