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Abstract
This contribution introduces and discusses a formulation of poro-hyperelasticity at finite strains. The prediction of the time-
dependent response of such media requires consideration of their characteristic multi-scale and multi-physics parameters. In
the present work this is achieved by formulating a non-dimensionalised fluid–solid interaction problem (FSI) at the pore level
using an arbitrary Lagrange–Euler description (ALE). The resulting coupled systems of PDEs on the reference configuration
are expanded and analysed using the asymptotic homogenisation technique. This approach yields three partially novel systems
of PDEs: the macroscopic/effective problem and two supplementary microscale problems (fluid and solid). The latter two
provide the microscopic response fields whose average value is required in real-time/online form to determine the macroscale
response (a concurrent multi-scale approach). In order to overcome the computational challenges related to the above multi-
scale closure, this work introduces a surrogate approach for replacing the direct numerical simulation with an artificial neural
network. This methodology allows for solving finite strain (multi-scale) porohyperelastic problems accurately using direct
automated differentiation through the strain energy. Optimal and reliable training data sets are produced from direct numerical
simulations of the fully-resolved problem by including a simple real-time output density check for adaptive sampling step
refinement. The data-driven approach is complemented by a sensitivity analysis of the RVE response. The significance of the
presented approach for finite strain poro-elasticity/poro-hyperelasticity is shown in the numerical benchmark of a multi-scale
confined consolidation problem. Finally, to show the robustness of the method, the system response is dimensionalised using
characteristic values of soil and brain mechanics scenarios.

Keywords Finite strain porohyperelasticity · Arbitrary Lagrangian–Eulerian · Poroelasticity · Fluid–solid interaction ·
Multiscale multiphysics · Porous media · Asymptotic homogenisation · Adaptive sampling

1 Introduction

Porohyperelasticmaterials presentmulti-scale biphasic prob-
lems in which a hyperelastic porous medium interacts with
viscous fluid filling and percolating through its pores.

For decades, the nonlinear multi-scale phenomena includ-
ingheterogeneous elasticity andporoelastic/porohyperelastic
problems have been under investigation (especially, from
the theoretical point of view) [1–5]. However, a robust
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multi-scale multi-physics methodology for solving finite
strain poro-hyperelasticity (from theory to general computa-
tional mechanics solutions at both scales) was missing since
the algorithms are multiplex requiring multiple domains of
knowledge/expertise and great computational power. In [6]
the ALE description is used to achieve a linear poroelastic
modelwith infinitesimal pore-scale deformation assumption.
This was not solved at the homogenised level although it was
simplified by neglecting the effects of macroscopic defor-
mation on RVE mechanical response. In [7] this problem is
approached theoretically using asymptotic homogenisation
of the Lagrangian description of the fluid–solid interac-
tion (FSI) at the microscale. However, since the fluid phase
can introduce extremely large “deformations”, this approach
might be suffering from inaccuracy and numerical instabil-
ity. Although the FSI problems in the Lagrangian setting
have been addressed using advanced techniques (including
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Fig. 1 Schematic representation of different configurations and
descriptions in the fluid domain. The ALE computational mesh fol-
lows the motion of solid material points and fluid–solid interface
(Lagrangian), while it is fixed (Eulerian) inside the fluid domain. We

use Description 5. to reduce the computational cost, since it does not
require solving a fluid problem at every quadrature point and increment
of the homogenised problem

mesh-moving andmixed-hybrid velocity-based formulations
[8–10]) the complexity imposed by the multi-scale nature
of porohyperelastic problems does not allow for embracing
Lagrangian techniques.

In general, the structure of the multi-scale ALE-FSI
approach includes the formulation of the FSI problem at
the physical scale (before scales decoupling) using the ALE
description shown, schematically, in Fig. 1. This is fol-
lowed by the multi-scale analysis of the achieved equations
(ALE-FSI) using asymptotic (two-scales) homogenisation
which results in three systems of PDEs for the homogenised
(macroscale) problem, solid cell (RVE) problem, and fluid
cell problem. The microscale solid response is required
at every quadrature point and increment to determine the
macroscale response, which is very time-consuming. Thus,
we construct an Artificial Neural Network (ANN) as a surro-
gate for microscale problems delivering the required results
in real-time. The mentioned techniques are explained further
in the corresponding sections.

In this study, we employ the ALE method, which is
widely embraced for fluid flow with moving boundaries
[11,12], multidimensional fluid dynamics problems [13],
FSI problems [14], etc. The ALE method uses an arbitrary
computational mesh that could be moved in any prescribed
manner (including Lagrangian) or could be held fixed (Eule-

rian). We employ this approach since the fluid is flowing
within a domain that is deforming/moving due to solid
deformation. The arbitrary mesh is chosen to move with
material (Lagrangian) in the solid skeleton and on the inter-
face while it is held fixed within the fluid domain (except for
the fluid–solid interface). The balance of mass and momen-
tum equations of the fluid are also mapped to the reference
domain (e.g. the fluid domain with undeformed solid phase)
using the stress continuity on the interface (using Piola
transformation), which is employed to establish the effec-
tive balance of linear momentum. This approach provides
an economical, accurate, and numerically stable approxima-
tion of the model response as it does not directly include
fluid displacement or fluid deformation. Since the problem
has multiple length scales the ALE formulation of the FSI
problem is non-dimensionalised to avoid dimension-related
ambiguities. Furthermore, for the first time,we formulate this
type of mathematical multi-scale problem directly using the
first-order derivative of a hyperelastic strain energy density
function (neo-Hookean) with respect to the deformation gra-
dient tensor (no explicit linearisation of the system) which
again results in higher accuracy and numerical stability.

Assuming a sharp length scale separation (between micro
and macro scales) and initial local periodicity, the problem
canbe regularised, thus standardhomogenisation approaches
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can be adopted [15]. Here, the resulting dimensionless ALE-
FSI formulation is analysed using two-scale asymptotic
homogenisation techniques [6,7,16,17]. This includes differ-
ential operator decoupling and power series representation
of the relevant fields which leads to the expanded form of
the equations. Analysing the latter, for the macroscale, the
effective stress, balance of linearmomentum,mass conserva-
tion, and transformed form of Darcy’s law are accompanied
by the corresponding microscale hyperelastic solid and fluid
RVE/cell systems of PDEs. This is followed by developing
the weak formulation and the incremental analysis of the
problem via the Finite Element (FE) method.

The general numerical strategy for solving the problem is
similar to the FE2method for composites (see e.g. [18,19]) in
the sense that for each time increment and each macroscale
numerical quadrature the responses of microscopic problems
are required. In FE2, the volume average of stress is deter-
mined at the microscale (without any constitutive law at the
macro level) while, here, we calculate the averagemicroscale
displacement gradient tensor using RVE problems at the
microscale. The latter is supplied to the macroscale con-
stitutive law to determine the effective stress. This has the
advantage of constructing the deformation gradient and Piola
transformation tensors directly at the macroscale, allowing
us to solve the mass conservation equation and calculate
the transformed pore pressure for the determination of the
effective stress. This type of online calculation could be com-
putationally very expensive and, in case of larger problems,
infeasible. However, if we can obtain the average displace-
ment tensor differently there is no need for solving for the
full displacement field as part of the effective system of
PDEs. This can be achieved with considerable speed-up by
exploiting the predictive power of ANNs in the context of
computational mechanics [20–23].

When constructing a suitable ANN to serve as a surrogate
for the microscale system of PDEs (a continuous function
which is relatively time-consuming to be solved) we consider
the macroscale displacement gradient and pore pressure as
the inputs while the average microscale displacement gra-
dient tensor is the output. The ANN needs to be trained
to deliver accurate and reliable outputs. The training pro-
cedure consists of tuning the ANNs parameters (weights and
biases) by minimising a cost function. The latter represents
the distance between the ANN outputs and the “exact” val-
ues of a sufficient number of samples that are provided in
the training dataset. In fact, the final value of the minimised
cost function (here, obtained using Adam optimiser [24]),
shows how accurate the ANN represents the features intro-
duced by the training dataset. However, in order to reach the
desired fidelity, one should ensure that the training dataset
also reflects the features of the original function. To this end,
in this study, a simple real-time output density check algo-
rithm is presented providing an optimal reliable density of the

training dataset. Furthermore, to demonstrate the microscale
response under a variety of possible macroscale displace-
ment gradient components and pore pressure, we perform
a sensitivity analysis on RVE problems and study the local
phenomena (local concentration of strain energy density) in
detail.

The above approach is implemented using the open-
source package FEniCS [25] and the open-source Machine
Learning package Pytorch [26] for ANNs. A confined con-
solidation/compression test is used to verify the numerical
implementation and to gain a deeper understanding of the
importance and robustness of the present method for finite
strain porohyperelastic problems. The results of the numeri-
cal examples show that the maximum strain energy density
and deformation are observed at the intersection of the pores
with values considerably above the average. The deforma-
tion predicted by the present method is smaller than the
one obtained using the linear poroelastic method (due to
the strain stiffening feature of the neo-Hookean model). The
steady-state is achieved in a considerably shorter time, and
considerable variations in tangent properties in time and
space can be observed. Finally, the non-dimensional vari-
ables are dimensionalised using the characteristic values
of two scenarios of interest, namely, brain tissue and soil
mechanics.

The ALE formulation together with asymptotic/two-scale
homogenisation and the final macroscale and microscale
governing PDEs are provided in Sect. 2. The weak formula-
tion, incremental analysis and data-driven approach together
with sensitivity analysis of the RVE response are carried out
in Sect. 3. Section 4 presents a benchmark finite strain poro-
hyperelastic problem (a consolidation test) using the present
method. Finally, Sect. 5 provides the concluding remarks of
the present work followed by some potential future direc-
tions.

2 Mathematical description

Let us assume a poroelastic body in physical (single) scale
(domain �) which consists of a subdomain of hyperelastic
porous skeleton�s (reference solid domain) and the comple-
mentary viscous fluid� f (reference fluid domain) filling and
percolating the pores such that� = �s ∪� f . In this section,
the mathematical description of the ALE-FSI problem at the
pore level is followed by asymptotic homogenisation/multi-
scale analysis resulting in the effective governing system of
PDEs and the corresponding solid and fluid RVE/cell prob-
lems.
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2.1 ALE-FSI governing equations

The Finite strain solid problem is described using the
Lagrangian method in which the observer follows the mate-
rial movement. The first Piola-Kirchhoff stress (PK1) is
employed which is a two-point tensor consistent with the
Lagrangian displacement gradient. Furthermore, PK1 is cal-
culated using the deformation gradient tensor which does not
involve higher order displacement gradients. This renders it
ideal for asymptotic homogenisation.

Since the fluid domain obeys the solid deformation (mov-
ing boundary/domain problem) the Eulerian method with the
stationary coordinate system (which is usually employed in
fluid mechanics) leads to inaccuracies. Due to the latter con-
dition, (fluid flow with moving boundaries) we employ the
ALE method which includes a mesh that follows the moving
boundaries [11]. The ALE description is chosen to follow the
material/Lagrangian description on the interface and within
the solid domain while it uses the Eulerian/spatial descrip-
tion elsewhere in the fluid domain. Thus, one can formulate
the fluid problem in the current configuration but within the
reference fluid domain by pulling back the interface from the
deformed configuration to the reference one using the ALE
method. The fluid–solid coupling is provided by the inter-
face transformation from the deformed configuration to the
reference one using Nanson’s formula.

2.1.1 Solid

The spatial variables X̄ and x̄ refer to reference/undeformed
andcurrent/deformedconfigurations in physical scale (before
multi-scale considerations), respectively. The solid problem
is described using the balance of linear momentum

0 = ∇X̄ · P in �s (1)

where

P = ∂�

∂F
in �s (2)

and

F = ∇X̄ u + I in �s (3)

are the first Piola-Kirchhoff (PK1) stress and the deformation
gradient tensor, respectively. Furthermore, � and u indicate
solid strain energy density function and displacement vector,
respectively.

2.1.2 Interface and fluid

Neglecting the inertial forces and convective term due to the
standard fluid velocity scaling (explained in Sect. 2.2) the

ALE form of the fluid problem description reads [11,12]

0 = ∇x̄ · σ in � f (4)

0 = ∇x̄ · v in � f . (5)

The Cauchy fluid stress σ is defined as

σ = −p I + μ f
(
∇x̄v + (∇x̄v)T

)
in � f , (6)

where μ f , v, and p are the fluid dynamic viscosity, velocity
and pressure.

In order to provide accurate interface conditions, the
transformation of the interface area from deformed/current
configuration to reference configuration is necessary. The
latter is possible using Nanson’s formula as follows

nda = GT · Nd A, (7)

where n and N indicate the normal vectors to the interface
surface in deformed and reference configurations, respec-
tively. The second order Piola transformation tensor G is

G = J F−1. (8)

Thus, the stress continuity on the interface is established as

σGT · N = P · N on �. (9)

Furthermore, Nanson’s formula together with divergence
theorem provide a coordinate transformation for arbitrary
vector V and tensor T

∇x̄ · V = 1

J
∇X̄ · (J F−1V ) (10)

∇x̄ · (T ) = 1

J
∇X̄ · (JT F−T ) (11)

∇x̄(
�) = ∇X̄ ( �)F−1. (12)

Thus, Eqs. (4) and (5) can be pulled back to a fixed reference
fluid domain as

0 = ∇X̄ · (σGT ) in � f (13)

0 = ∇X̄ · (vGT ) in � f , (14)

to be used in establishing the effective balance of linear
momentum.

2.2 Non-dimensionalisation

The problem at hand involves two or more length scales that
vary in an application-specific range (e.g. biomechanics, soil
and rock mechanics). Moreover, due to the multi-physics
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nature of the matter, there is a complex interdependency
between the units of measurement. Thus, the dimensions can
become a potential source of ambiguity leading to a misun-
derstanding of the model parameters and response [27]. To
address this issue, we consider the non-dimensionalisation
procedure before proceeding to the multi-scale formula-
tion. The non-dimensionalisation is similar to the ones in
[22,28,29] but extended for ALE formulation and provided
here for clarification and the reader’s convenience. Let us
define X and Y denoting, respectively, the formally indepen-
dent macroscale and microscale reference spatial variables,
defined as

Y : = X
ε

, (15)

and x and y being the current counterparts. 0 < ε = d
L � 1

is the scale separation factor and d and L are, respectively,
microscale (RVE) andmacroscale representative lengths.We
define two formally independent representative values for
fluid dynamic viscosity μ

f
c and force fc such that

X = LX ′, Y = dY ′, x = Lx′,

y = d y′, f = fc f ′, μ f = μ
f
c μ′ f , (16)

where f is (any) force, and μ f is the interstitial fluid
dynamic viscosity. All other parameters in this study are non-
dimensionalised with respect to the mentioned independent
characteristic values e.g.

u = Lu′, v = fcd2

L3μ
f
c

v′, P = fc
L2 P

′,

t = L4μ
f
c

fcd2
t ′, σ = fc

L2 σ ′

μs = fc
2L2(1 + ν)

μ′s, λs = fcν

L2(1 + ν)(1 − 2ν)
λ′s (17)

where μs and λs are the solid Lamé constants (to be used in
the solid constitutive law), ν is the solid Poisson’s ratio, and
�′ indicates the non-dimensional parameter.

Substituting the non-dimensional fields in the governing
equations and dropping the prime symbol, which indicates
non-dimensionalised variables (for the sake of simplicity),
all the equations will have the same form except for Eq. (6)
which, factorising and removing fc

L2 , takes the form [16,28]

σ = −p I + ε2μ f
(
∇x̄v + (∇x̄v)T

)
in � f . (18)

The fluid convective term and inertial effects are also scaled
by ≈ ε4 (i.e. (v − u̇) · ∇x̄v = fcd4

L5(μ
f
c )2

(v′ − u̇′) · ∇x̄′v′ and
dv
dt = fcd4

L5(μ
f
c )2

dv′
dt ′ ) (O(ε4)) and neglected from the governing

equations.

2.3 Multi-scale expansion

Having achieved the dimensionless ALE-FSI governing
equations, we can now apply asymptotic two-scale analysis
which starts from the multi-scale expansion of the relevant
fields using the following steps. The differential operator is
decoupled via

∇ → ∇X + 1

ε
∇Y (19)

and the fields (ψ) are represented via power series

ψε(X,Y) =
n∑

l=0

ψ(l)(X,Y)εl . (20)

We use Eqs. (19) and (20) to achieve the expanded form of
all relevant fields, which is provided in Appendix A. The
integral average is defined as

〈ψ〉k = 1

|�|
∫

�k

ψ(X,Y) dY , (21)

while the average can be obtained via

ψ̄k = 〈ψ〉k |�|
|�k | k = f , s. (22)

The integral average and average are applied to the param-
eters and fields with y-dependency to be employed at the
homogenised level. We carry out the multi-scale expansion
of the governing equations in the following.

2.3.1 Expansion of governing equations

Multi-scale expansion of the governing equations is provided
here and will be served as the basis for upscaling and to
achieve the RVE problems. Equation (1) could be written as

0 = (∇X + 1

ε
∇Y ) · (P (0) + εP (1)) in �s . (23)

Throughout this study, the coefficients of ε−1, ε0, and ε1 are
referred to as C(ε−1), C(1), and C(ε1), respectively. Equation
(23) in C(1), C(ε) and C(ε−1) reads, respectively,

0 = ∇X · P (0) + ∇Y · P (1) in �s (24)

0 = ∇X · P (1) in �s (25)

0 = ∇Y · P (0) in �s . (26)

Expanding Eq. (18) results in

σ (0) = −p(0) I in � f (27)
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σ (1) = −p(1) I + μ f
(
∇ yv

(0) + (∇ yv
(0))T

)
. (28)

The expansion of Eq. (4) renders

0 = ∇x · σ (0) + ∇ y · σ (1) in � f (29)

0 = ∇ y · σ (0) in � f (30)

0 = ∇x · σ (1) in � f . (31)

Similarly, the mass conservation Eq. (5) takes the form

0 = ∇x · v(0) + ∇ y · v(1) in � f (32)

0 = ∇ y · v(0) in � f (33)

0 = ∇x · v(1) in � f . (34)

Substituting Eq. (27) into (30) highlights that the pore pres-
sure is constant with respect to the microscale space (p(0) =
p(0)(X, t)) since ∇ y p(0) = 0.

From multi-scale expansion of Eq. (9) in C(1), C(ε) we
reach

P (0) · N = −p(0)G(0)T · N on � (35)

P (1) · N = (σ (1)G(0)T − p(0)G(1)T ) · N on �. (36)

Having the expanded form of the governing equations, we
can proceed to the upscaling process.

2.4 Upscaling

In this section, the PDEs governing the homogenised domain
(�h) are derived from the expanded governing equations.
This is followed by establishing suitable cell problems
whose solutions provide the required parameters of the
homogenised system of PDEs.

2.4.1 Balance of linear momentum

From the sum of Eqs. (1) and (13) we have

0 =
∫

�s

∇X̄ · PdVs +
∫

� f

∇X̄ · σGT dV f (37)

which, after the expansion, takes the form

0 =
∫

�s

(∇X · P (0) + ∇Y · P (1))dVs

+
∫

� f

(∇X · σ (0)G(0)T

+ ∇Y · (σ (1)G(0)T + σ (0)G(1)T )
)
dV f . (38)

Applying the divergence theorem (considering the direction
of the normal vector) we reach

0 =
∫

�s

∇X · P (0)dVs +
∫

�

P (1) · NdS�

+
∫

� f

∇X · σ (0)G(0)T dV f

−
∫

�

(σ (1)G(0)T + σ (0)G(1)T ) · NdS�. (39)

Considering Eqs. (27) and (36) we conclude (σ (1)G(0)T +
σ (0)G(1)T ) · N = P (1) · N , thus

0 =
∫

�s

∇X · P (0)dVs +
∫

� f

∇X · σ (0)G(0)T dV f (40)

where Vs and V f indicate, respectively, volume of solid and
fluid phases (|�s | and |� f |) in the reference configuration.

Considering that p(0) and ∇Xu(0) are spatially constant
in microscale space ( y) and averaging the micro-dependent
parts of the equations i.e.

∫

� f

∇X · (σ (0)G(0)T )dV f = ∇X · (p(0)〈Ḡ(0)T 〉 f ) (41)

∫

�s

∇X · P (0)dVs = ∇X ·
〈
P̄

(0)
〉
s
, (42)

the macroscale balance of linear momentum is

0 = −∇X · P E in �h (43)

where �h indicates the homogenised domain and

P E =
〈
P̄

(0)
〉
s
− p(0)

〈
Ḡ

(0)T
〉
f

in �h . (44)

We take the same approach as in [7], where the zeroth order
of expansion of Eq. (1) takes the form

P (0) = ∂�(0)

∂F(0)
, (45)

thus the constitutive law for solid stress reads

〈
P̄

(0)
〉
s

= Vs
∂�(0)

∂ F̄
(0)

in �h, (46)

where, using Eqs. (21) and (22),

F̄
(0) = ∇Xu(0) + ∇Y u

(1) + I . (47)

and

Ḡ
(0) = det F̄

(0)
(F̄

(0)
)−1 (48)
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2.4.2 Mass conservation and Darcy’s law

Expanding Eq. (14) reads

0 =
∫

� f

(
∇X · (G(0)v(0))

+ ∇Y · (G(0)v(1) + G(1)v(0))
)
dV f , (49)

which, applying the divergence theorem and considering
local periodicity in the reference configuration, could be
rewritten as

0 =
∫

� f

∇X · (G(0)v(0))dV f

−
∫

�

(G(0)v(1) + G(1)v(0)) · Nd�, (50)

Considering the compatibility condition on the interface and
assuming no-slip interface condition (v = u̇ on �) we can
rewrite Eq. (49) as

0 =
∫

� f

∇X · (G(0)v(0))dV f

−
∫

�

(G(0)u̇(1) + G(1)u̇(0)) · Nd�, (51)

which, again, using the divergence theorem takes the form

0 =
∫

� f

∇X · G(0)v(0)dV f

−
∫

�s

∇Y · (G(0)u̇(1) + G(1)u̇(0))dVs . (52)

Using Eqs. (21), (52) can be written as

0 = ∇X · 〈G(0)v(0)〉 f − 〈∇Y · (G(0)u̇(1))〉s
− 〈∇Y · (G(1)u̇(0))〉s, (53)

which can be rewritten as

0 = ∇X · 〈G(0)w〉 f + 〈∇X · G(0)u̇(0)〉 f
− 〈∇Y · (G(0)u̇(1))〉s − 〈∇Y · (G(1)u̇(0))〉s, (54)

where

〈G(0)w〉 f = 〈G(0)v(0)〉 f − 〈G(0)u̇(0)〉 f , (55)

yet, this equation should be further processed to be employed
in the macroscale system of equations.

Using the divergence identity ∇ · (Av) = v · ∇ · AT +
AT :∇v for arbitrary tensor A and vector v, the last two terms

of Eq. (54) can be written as

〈∇Y · (G(0)u̇(1))〉s + 〈∇Y · (G(1)u̇(0))〉s
= 〈u̇(1) · ∇Y · G(0)T 〉s + 〈G(0)T :∇Y u̇(1)〉s
+ 〈u̇(0) · ∇Y · G(1)T 〉s + 〈G(1)T :∇Y u̇(0)〉s (56)

considering ∇Y u̇(0) = 0 and Eq. (109), the first and the last
terms of the right hand side are zero. Furthermore, applying
the divergence theorem twice, we have u̇(0) · 〈∇Y ·G(1)T 〉s =
−u̇(0) · 〈∇Y · G(1)T 〉 f thus, using Eq. (107), u̇(0) · 〈∇Y ·
G(1)T 〉s = u̇(0) · 〈∇X · G(0)T 〉 f . Consequently,

〈∇Y · (G(0)u̇(1))〉s + 〈∇Y · (G(1)u̇(0))〉s
= 〈G(0)T :∇Y u̇(1)〉s + 〈∇X · G(0)u̇(0)〉 f
− 〈G(0)T :∇X u̇(0)〉 f (57)

Finally, substituting Eq. (57) into Eq. (54) and using the
averaged y-dependent quantities, the effective mass conser-
vation takes the form

0 = −∇X · 〈Ḡ(0)
w〉 f − 〈Ḡ(0)T :∇X u̇(0)〉 f

+ 〈Ḡ(0)T :∇Y u̇
(1)〉s, (58)

which, at infinitesimal strains, holds the analogy with the
infinitesimal poroelasticity in [30]. Darcy’s law [31] is
adopted as the standard Ansatz/constitutive law for the effec-
tive relative fluid velocity

〈w〉 f = −K∇x p
(0). (59)

Thus,

〈Ḡ(0)
w〉 f = −Ḡ

(0)
K (F̄

(0)
)−T∇X p(0). (60)

The term ∇Y u̇(1) and hydraulic conductivity K are to be
determined, respectively, using the RVE problems in solid
and fluid domains (solid cell problem and fluid cell problem),
which are provided in Sect. 2.5. We highlight that the term
∇Y u̇(1), implicitly, provides the fluid–solid coupling term.

2.5 RVE problems

In this section, the systems of PDEs to be solved in RVE
domains to determine the micro-driven parameters (i.e.
∇Y u(1) and hydraulic conductivity K ) are provided.

2.5.1 Fluid phase

Since the fluid is assumed to be incompressible and New-
tonian flowing at sufficiently small velocities making the
inertial convective effects negligible, it is a linear problem.
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Thus, instead of solving the fluid problem at each pres-
sure gradient, we calculate its tangent which provides the
hydraulic conductivity for Darcy’s law as in [16,28,30,32].
Substituting Eqs. (27) and (28) into (29)

0 = −∇x · (p(0) I) − ∇ y · (p(1) I)

+ μ f ∇ y · (∇ yv
(0) + (∇ yv

(0))T ). (61)

Considering the RVE geometry, local periodicity, no-slip
interface condition, Eqs. (33) and (55)

0 = μ f ∇2
yw − ∇ y p

(1) − ∇x p
(0) in � f (62)

0 = ∇ y · w in � f (63)

0 = w on �. (64)

We consider the following Ansatz to determine the hydraulic
conductivity

p(1) = −Ph∇x p
(0) (65)

w = −K̃
T∇x p

(0) (66)

which results in

0 = μ f ∇2
y K̃ − ∇ y Ph + I in � f (67)

0 = ∇ y · K̃ in � f (68)

0 = K̃ on �, (69)

where the hydraulic conductivity of Darcy’s law could be
calculated via

〈K̃ 〉 f = K (70)

with the uniqueness conditions

0 = 〈Ph〉 f . (71)

The solution of the fluid RVE problem can be obtained by
concatenating the results of a componentwise analysis as in
[30].

2.5.2 Solid phase

Equations (26) and (35), together with periodic boundary
condition, construct a solid RVE problem as follows

0 = ∇Y · P (0) in �s (72)

0 =
(
P (0) + p(0)G(0)T

)
· N, on � (73)

with the constitutive law Eq. (45), repeated here for the
reader’s convenience,

P (0) = ∂�(0)

∂F(0)
, (74)

and

F(0) = ∇Xu(0) + ∇Y u(1) + I . (75)

At the microscale level (RVE problems), the macroscopic
variables p(0) and ∇Xu(0) are knowns to impose a condi-
tion under which the microscopic response ∇Y u(1) is to be
determined by solving the RVE problem in the solid phase.

3 Incremental weak form supported by ANNs

In this section, we provide the formulation and details
required for solving the sets of governing equations numer-
ically. Basically, the macroscale problem is solved numer-
ically via FEM which requires the weak form of the cor-
responding equations. Furthermore, due to fluid-structure
interactions (multi-physics), the response is path-dependent
which should be solved incrementally. The microscopic
response is required to solve the macroscopic equations due
to the multi-scale nature of the problem. This is included via
the term ∇Y u(1) and hydraulic conductivity in the effective
governing equations (see Eqs. (47), (58) and (60)). The latter
is a one-time calculation per initial properties (since the fluid
model is linear) while the former (∇Y u(1)) is to be deter-
mined per initial properties and within each increment for
each finite element since the response is nonlinearly corre-
lated to the macroscopic inputs (∇Xu(0) and p(0)).

Such a high number of direct numerical simulations
(DNS) of the microscopic RVE problems for one macro-
scopic problem renders it computationally unaffordable. This
is compounded by the need for input–output tangents in the
macroscopic iterative solver (e.g. Newton-Raphson). This
problem is addressed by employing ANNs trained with
numerical results of microscopic RVE problems in fluid and
solid phases via DNS.

In this section, firstly, the procedures of solvingRVEprob-
lems via FEM are explained and some RVE numerical tests
are provided, secondly, the data-driven approach (as a sur-
rogate for the RVE problems) is introduced and, finally, the
solving strategy for the macroscale problem is presented.

3.1 RVE fluid problems

Following the componentwise analysis of the system of Eqs.
(67)–(69), the final system of equations to be solved in the
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fluid domain reads

μ f ∇2
y K̃ i − ∇ y p̃i + ei = 0 in � f (76)

∇ y · K̃ i = 0 in � f (77)

K̃ i = 0 on �, (78)

for every i = 1, 2, 3, constructing three Stoke’s problems
each with a unit body force in the direction of i-th unit vector
of the chosen system of coordinates (i.e. ei ). Consequently,
the tensor K = 〈K ji 〉 f can be constructed by concatenating
the vectors 〈K̃ i 〉 f .

Finally, the weak form of Eqs. (76)–(78) reads

∫

� f

μ f ∇ K̃ i :∇δvdV f −
∫

� f

p̃i (∇ · δv)dV f

+
∫

� f

ei · δvdV f = 0 (79)

∫

� f

(∇ · v)δqdV f = 0 (80)

where, δv and δq are arbitrary test functions. We highlight
that, since theRVEfluid problem is linear, incremental analy-
sis is not required. To accurately solve the fluid problems, the
corresponding domain is discretised using 57273 tetrahedral
elements.

3.2 RVE solid problem

The RVE solid problem described by Eq. (72) is a non-
symmetric problem with a relatively complex geometry of
RVE. Solving the problem incrementally (applying BCs in
small increments) improves the numerical stability, allowing
us to consider larger macroscale deformations and porepres-
sure and providing a dense dataset for ANN training. The
incremental weak formulation reads

0 =
∫

�s

(
(

∂�(0)

∂((∇Xu(0))t+�t + ∇Y u
(1)
t+�t + I)

)

− (
∂�(0)

∂((∇Xu(0))t + ∇Y u
(1)
t + I)

)
)
:∇Y δu(1)dVs

+
∫

�

(p(0)
t+�tG

(0)
t+�t − p(0)

t G(0)
t ) · Nδu(1)dS� (81)

Note that∇Xu(0) and p(0) are y-constants givenbymacroscale
problem that are imposed incrementally. δu(1) and u(1) are,
respectively, the test function and the function (solution) of
this problem. The output to be provided for macroscale prob-
lem is 〈∇Y u(1)〉s . Furthermore, we assume the compressible
neo-Hookean model as the leading order strain energy den-

sity function as follows

�(0) = μs

2
(I (0)

1 − 3) − μs ln(J (0)) + λs

2
ln(J (0))2, (82)

where J (0) is definedviaEq. (103) and I (0)
1 = Tr(F̄

(0)T
F̄

(0)
).

The constants μs and λs are the material parameters (the
Lamé constants). The leading order strain energy density
function (Eq. (82)) can be non-dimensionalised using fields
in (17) as

fc
L2� ′(0) = fc

4L2(1 + ν)
(I (0)

1 − 3)

− fc
2L2(1 + ν)

ln(J (0))

+ fcν

2L2(1 + ν)(1 − 2ν)
ln(J (0))2 (83)

which, dropping the prime of variables (for simplicity and
consistency with the rest of the formulation), takes the form

�(0) = (I (0)
1 − 3)

4(1 + ν)
− ln(J (0))

2(1 + ν)
+ ν ln(J (0))2

2(1 + ν)(1 − 2ν)
(84)

We highlight that although the unit of strain energy is fcL
the strain energy density (strain energy per unit volume) has
the same unit of stress ( fc

L2 ).
Local periodicity Local periodicity is required within each
finite element of the macroscale model at the Reference
Lagrangian configuration. It allows us to exploit the poten-
tial of asymptotic homogenisation at each element. Since the
RVEs in a neighbourhood within each finite element receive
the same y-constant macroscale inputs (∇Xu(0) and p(0)) the
initial local periodicity ismaintained throughout the problem.

3.3 RVE numerical tests

Localisation, which is one of the important points pro-
vided by the present methodology, allows us to compute the
mechanical response field of the microstructure under arbi-
trary macroscopic deformation and porepressure. This can
be served to study phenomena such as local strain energy
density (or deformation/stress) distribution and concentra-
tion (e.g. in the context of local fracture/damagemechanism).
Here, we consider a unit cube as microstructure RVE. The
solid phase is the cube from which three cylinders (the
pores or fluid channels) with radius r f = 0.2 are sub-
tracted resulting in a porosity of φ = 0.29 (for graphical
representation of the RVE geometry see Fig. 2b). The mate-
rial model is the compressible neo-Hookean as in Eq. (84).
Based on sensitivity analyses (minimising the dependency
of the results on domain discretisation), the solid domain
is discretised by 147,043 tetrahedral elements with 25,440
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Fig. 2 In this figure and Figs. 3 and 4, the displacement field is pro-
jected in the deformed Lagrangian configuration while the strain energy
density field is projected in the reference Lagrangian configuration. The
colour maps from blue to red show the magnitude variations from small
to large values. aDisplacement (magnitude of u(1)) field of the RVE due
to the pore pressure (p(0)) in the absence of any macroscopic deforma-

tion (∇Xu(0)). The higher displacement magnitude at the intersection
of the three cylinders is notable. b The strain energy density field of the
RVE corresponds to the same BCs as in (a). The energy concentration
at the intersection of the fluid channels is of utmost importance, partic-
ularly, in the context of fracture/damage analysis. (Color figure online)

nodes. At this spatial resolution, solving a single solid prob-
lem (which takes 6.514 [s]) plus post-processing (which takes
14 [s]) of the response (projection of ∇Y u(1) in solid domain
and calculation of its volumetric average) takes 20.51 [s]
(wall time) using MacBook Pro with 2.4 GHz processor
(with no parallel computing). We compute the microscale
response of the y-periodic RVE under different macroscale
conditions, namely, uniaxial (∇Xu

(0)
11 ), volumetric (∇Xu

(0)
11 =

∇Xu
(0)
22 = ∇Xu

(0)
33 ), and shear (∇Xu

(0)
12 ) macroscopic dis-

placement gradients, aswell as pore pressure (p(0)). Since the
latter conditions have strong interdependencies, we embrace
the one-factor-at-a-time (OAT) sensitivity analysis method
(varying only one macroscopic condition while the others
are absent/zero) to study the role of each case.

As expected, the microscopic response is spatially hetero-
geneous with regions of high concentration. The colormaps
of displacement magnitude and strain energy density shown
in Figs. 2, 3 and 4 visualises the local concentration zones of
each field. In general, there are nine displacement gradient
elements yet we only provide the profile of the oneswith con-
siderable effects on the overall response of the medium. The
latter is divided into “Corresponding elements” and “Non-
corresponding elements”which are shown in Fig. 5 (compare
the indices of I withO). Figures 5 and 6 show, respectively,
the variations of the average andmaximumdisplacement gra-
dient elements. Figure 7 provides the average and maximum
strain energy density under different macroscopic conditions
with further explanations provided in close captions.

Hydraulic conductivity is a critical parameter in determin-
ing the hydraulic response of a poroelastic medium which
varies in cases under large porepressure/deformation. In the
present methodology, this variation is taken into considera-
tion using a transformation from the deformed configuration
to the reference configuration. Considering the term 1

J in
Eq. (10), which is factorised and removed frommass conser-
vation (in Eq. (49) to simplify the mathematical procedure),
and neglecting the effects of ε J (1) in the expanded term

1
J (0)+ε J (1) , the full form of the transformed hydraulic con-
ductivity takes the form

K t = 1

J (0)
Ḡ

(0)
K (F̄

(0)
)−T . (85)

The variations of the main elements of the transformed
hydraulic conductivity (normalised with respect to its initial
value) due to the prescribed macroscale conditions and the
resultantmicroscale effects are provided in Fig. 8. Finally, for
the sake of comparison with linear poroelasticity, the profiles
of the forth order tensor M, the second order tensor Q, and
Biot modulus (which are constants in linear poroelasticity)
under ∇Xu(0) and p(0) are provided in Fig. 9.

3.4 Data-driven approach using ANNs

In this section, we introduce ANNs as a surrogate for the
solid cell problems that provide micro-macro scales link.
We choose ANNs for this task because of the complexities
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Fig. 3 Themicroscale response fields of the poroelastic medium can be
computed given themacroscale response of thematter. aThemicroscale
magnitude field of u(1) projected in the deformedLagrangian configura-
tion showing an elongation along theX-axis which takes place under the

macroscopic uniaxial displacement gradient (∇Xu
(0)
11 ) in the absence of

any other components. b The concentration of the strain energy density
in the middle of the RVE length in the X-axis under ∇Xu

(0)
11

Fig. 4 Themicroscale response under∇Xu
(0)
12 . aThe peculiar deformed

configuration of the RVE under shear macroscale displacement gradi-
ent (more explicitly, ∇Xu

(0)
12 ) is due to the assumed periodicity (equal

inlet and outlet displacements) of the RVEswithin onemacroscale finite
element. b The deformation illustrated in (a) results in the shown strain
energy density field with a considerable concentration

enforced by the strong interrelation between the pore pres-
sure and macroscale deformation gradient. This interrelation
is due to, firstly, the pore pressure Neumann B.C. (intro-
duced via Eq. (73)) which depends on the leading order Piola
transformation, secondly, the macroscale displacement gra-
dient which results in a body force-type load and, thirdly, a
neo-Hookean hyperelastic model which is nonlinear. Thus,
a simple superposition of the effects is not valid.

TheRVEproblems solvedviaDNSare too time-consuming
to be included directly in the calculations of the provided con-
current multi-scale multi-physics approach. However, they
are useful to provide dataset for training ANNs. Basically,
the aim is to replace a continuous problem represented by
a system of PDEs (RVE problem to be solved via DNS
with a geometry described in Sect. 3.3) with a surrogate
model (here, ANNs) that provides the response faster than
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Fig. 5 The profile of average microscale deformations under different
components of the macroscale displacement gradient tensor ∇Xu(0).

The output (∇Y u
(1)

) will be used as a part of the macroscale system of
PDEs.Apart from the nonlinear profiles of differentmicroscale response
components, the considerable amount of diagonal components of RVE
displacement gradient tensor (O = ∇Y u

(1)
i i ) under shear macroscale

deformation (I = ∇Xu
(1)
12 ) show one of the major benefits of using the

introduced methodology (robustness and accuracy). We highlight that
the latter is neglected using Eulerian/linear poroelastic formulations
(e.g. by enforcing zeroMii12 in the calculation of effective stiffness ten-
sor). . a “Corresponding elements” of average microscale displacement
gradient tensor. b “Non-corresponding elements” of averagemicroscale
displacement gradient tensor

Fig. 6 Maximummicroscale displacement gradient components show-
ing the local deformation concentration. The significant difference
between the average values shown in Fig. 5a and the maximum ones
indicates the remarkable importance of computing the RVE’s response
field which is available in the present methodology. Furthermore, it is

shown that, although the average values of several components in Fig.
5b are zero/negligible themaximumvalues are considerablewith poten-
tial local effects. a “Corresponding elements” of maximum microscale
displacement gradient tensor. b “Non-corresponding elements” of max-
imum microscale displacement gradient tensor

the original approach. In general, the inputs of the ANN are
the parameters affecting the microscopic response ∇Y u(1)

including geometrical features, material parameters, and
macroscale inputs (∇Xu(0) and p(0)). However, since pro-
viding a dataset for the general case is computationally
expensive we adopt a case-specific approach in which only
the varying parameters are introduced as the inputs of ANNs

(see Fig. 10 for a schematic graphical representation of the
ANN). In this study, for verification/benchmark and com-
parison purposes, we adopt the relevant varying inputs of
a confined consolidation test (e.g. Terzaghi’s test), namely,
∂u(0)

2
∂X2

and p(0) with the outputs being
∂u(1)

1
∂Y1

,
∂u(1)

2
∂Y2

, and
∂u(1)

3
∂Y3

≈
∂u(1)

1
∂Y1

. More complex examples will be considered in future
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Fig. 7 Strain energy density is a crucial parameter in damage/fracture
analysis. The difference between average and maximum strain energy
density (maximums are approximately 10 times greater than averages)
shows that the local phenomena such as damage, fracture, etc. are

probable although the macroscale analyses are far from the relevant
thresholds. a Average strain energy density. b Maximum strain energy
density

Fig. 8 Hydraulic conductivity is transformed using the leading order
deformation gradient tensor composed of macroscale and macroscale
displacement gradient tensors. a Normalised transformed hydraulic

conductivity ((Kt )11 w.r.t the initial one). b Normalised transformed
hydraulic conductivity ((Kt )22 w.r.t the initial one)

studies. The suitable complexity of the model is chosen via
ANN Hyperparameters tuning (so-called, Grid Search). In
fact, we choose the smallest possible ANN architecture that
delivers accurate results to 1- calculate the outputs efficiently
and 2- to avoid overfitting due to unnecessarily large ANN
capacity. The chosen ANN architecture has three hidden lay-
ers with 40 Neurones with Sigmoid activation functions in
each layer. Furthermore, it is trained using Adam optimiser
and MSE loss function.

Despite their efficiency, the accuracy/fidelity of deep
learning approaches as the surrogate models are directly
linked to the density (or sample rate) of the discrete sequence
(training dataset) so that it reflects the features of the origi-
nal function. This is provided by solving a sufficient number
of cell problems described via Eqs. (72) and (73). The “suf-
ficient” number of the problems to be solved (samples of
training dataset) to provide the required density of the train-
ing dataset largely depends on the original problem. In case
the latter shows a varying polynomial degree of nonlinear-
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Fig. 9 Plots of poroelastic parameters 〈M〉s , 〈Q〉s , and M showing that
the problem with ALE formulation results in less variations in FEM

Jacobian matrix. a The fourth order tensor 〈M〉s = ∂〈∇Y u(1)〉s
∂∇X u(0) provides

a part of FEM Jacobian matrix of the macroscale problem. In linear
infinitesimal and remodelling-based finite strain poroelasticity (see e.g.
[22,30], respectively), this tensor determines the poroelastic parameters
including effective elasticity tensor and Biot coefficient. b The integral
average in the deformed configuration is calculated by multiplying the
RVE volumetric strain ( Ĵ = det(∇Y u(1) + I)) to the integral average
of M. The larger variations in this plot show that solving a poroelas-

tic problem in reference configuration results in considerably smaller
changes in the Jacobianmatrix rendering the problem numericallymore

stable. c The second order tensor Q = ∂〈∇Y u(1)〉s
∂ p(0) also provides a part

of FEM Jacobian matrix of the macroscale problem. In this plot, sim-
ilar to (a, b), it is shown that using ALE formulation the problem will
be numerically more stable. d Biot modulus M = −1

Tr〈Q〉s (and trans-

formed in Lagrangian deformed configuration M̃ = −1
Ĵ Tr〈Q〉s ) is one of

the poroelastic parameters that could be compared with the results in
[30]

ity (which is the case, here) the optimum density will be
heterogeneous. Furthermore, covering the space of the high
number of input elements at a given interval requires tak-
ing all the possible combinations into account. This renders
an extreme computational cost if blind sampling techniques
(such as equidistant discretisation at the finest required steps)
are adopted.

Here, we develop a simple real-time output density check
to adaptively refine the output density (adaptive sampling-
step refinement). This ensures that the provided dataset

reflects the features of the continuous problem at an opti-
mum density so that the well-trained ANN will deliver the
desired accuracy. Although the latter is not the focus of this
study we briefly explain it. Let us adopt a simple equidis-
tantly sequenced sampling through incremental analysis of
the RVE solid problem with one moving input element at
a time (so-called one-factor-at-a-time OAT). With a default
step/increment size of �d

i ∇Xu(0) and �
p
i p

(0) we define the
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residual of sample n as

Resnmax = max(|(∇Y u(1))n − (∇Y u(1))nL |)
||∇Y u(1)||F , (86)

where || �||F = [∑i, j
�2
i, j ]1/2 indicates the Frobenius norm.

The term (∇Y u(1))nL is the result of a linear extrapolation
which can be described by

(∇Y u(1))nL = Jn−1�In + (∇Y u(1))n−1
L , (87)

where �In is the variation in the moving element of input
array (�In = In − In−1) and Jn−1 is the tangent acquired
based on the results of increments n − 2 and n − 1 using

((∇Y u(1))n−1
L − (∇Y u(1))n−2

L )/�In−1. (88)

Finally, if the residual is more than a pre-defined tolerance
the moving input element will adopt the value

In′ = In + In−1

2
.

A training dataset suitable for the numerical reconstruc-
tion of a consolidation test (introduced in the following
section) with two input variables is to be provided. To this
end, we choose relatively coarse initial sampling steps (0.03

for − 0.4 ≤ ∂u(0)
2

∂X2
≤ 0.4 and 0.1 for −1 ≤ p(0) ≤ 1 (non-

dimensional), which are adaptively refined by the described
real-time output density check, wherever required. The num-
ber of solved solid problems (described by Eq. (81)) sums
to a total of 1189, which, given the required time for each
problem in Sect. 3.3, takes 406.44 min. The required time to
train the ANN can vary, but it is usually around 10 min.

The results of the provided ANN is valid for many
cases including any characteristic RVE size, solid mate-
rial constant, and fluid viscosity (since they are non-
dimensionalised). However, in cases with different param-
eters whose variations are not considered in this model (e.g.
porosity in [21]) a more comprehensive dataset and network
architecture is required (Fig. 11).
On the computational speed-up Solving a solid problem
to achieve the required results for homogenised model
〈∇Y u

(1)
t 〉s usingDNS (as described in Sect. 3.3) takes around

20.5 [s] while, employing the provided ANN, it takes around
0.0002 [s]. For comparison purposes, in the simple con-
solidation problem described in Sect. 4, the ANN is called
2250 times per each time increment (≈ 0.45 [s] per incre-
ment). Solving one increment of this problem without ANN
(using DNS) could take nearly 13 hours in our MacBook
Pro with 2.4 GHz Processors. It is noteworthy that, depend-
ing on the problem, achieving the steady-state solution of

Fig. 10 Schematic representation of 〈∇Y u(1)〉s = ANN(∇Xu(0), p(0))

as a surrogate model for microscale solid RVE problem. We highlight
that this ANN is only valid for a specific geometry of RVE, material
model, and material parameters

Fig. 11 ANN test

a poroelastic problem requires fine time discretisation (e.g.
200 time-increments).

3.5 Macroscale problem

Equations (43), (44), (46), (58), and (60) construct a system
of PDEs describing the macroscopic/effective problem. The
weak formulation of the latter reads

0 = +
∫

�h

P E :∇Xδu(0)dV −
∫

∂�h

t · δu(0)dS

+
∫

�h

〈Ḡ(0)
w〉 f · ∇Xδ p(0)dV

−
∫

∂�h

〈Ḡ(0)
w〉 f · Nhδ p

(0)dS
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+
∫

�h

〈Ḡ(0)T :∇Y u̇(1)〉sδ p(0)dV

−
∫

�h

〈
Ḡ

(0)T :∇X u̇(0)
〉
f
δ p(0)dV , (89)

where δu(0) and δ p(0) are the required test functions. Since
the problem is history and time-dependent we need to per-
form an incremental analysis which reads

0 = +
∫

�h

�P E :∇Xδu(0)dV −
∫

∂�h

�t · δu(0)dS

+
∫

�h

�〈Ḡ(0)
w〉 f · ∇Xδ p(0)dV

−
∫

∂�h

�〈Ḡ(0)
w〉 f · Nhδ p

(0)dS

+
∫

�h

�〈Ḡ(0)T :∇Y u̇(1)〉sδ p(0)dV

−
∫

�h

�〈Ḡ(0)T 〉 f :∇X u̇(0)δ p(0)dV (90)

where Nh is the normal vector to the surface of interest at
macroscopic level in reference Lagrangian configuration. In
fact, the problem reduces to finding p(0)

t+�t and u(0)
t+�t such

that Eq. (90) is fulfilled.
At this stage, it is necessary to calculate the increments of

each field (stress, fluid velocity etc.) based on the increments
of u(0) and p(0), where u(0)

t+�t = u(0)
t + �u(0) and p(0)

t+�t =
p(0)
t + �p(0)

�P E = Vs

(
∂�(0)

∂ F̄
(0)
t+�t

− ∂�(0)

∂ F̄
(0)
t

)

− V f

(
p(0)
t+�t Ḡ

(0)T
t+�t − p(0)

t Ḡ
(0)T
t

)
. (91)

Furthermore, 〈∇Y u
(1)
t 〉s could be calculated at the inter-

mediate configuration ( 〈∇Y u
(1)
t 〉s = ANN(∇Xu

(0)
t , p(0)

t ))
employing the trained ANN as described in Sect. 3.4. As the
ANN input–output tangent is required for the macroscopic
iterative solver (Newton-Raphson)we consider the following
transformation for a small increment of microscopic defor-
mation

�〈∇Y u(1)〉s = M:�∇Xu(0) + Q�p(0), (92)

where the fourth rank tensor M and the second rank one Q
could be estimated numerically at the end of the last incre-
ment using

M = ANN(∇Xu
(0)
t + δ∇Xu(0), p(0)

t ) − 〈∇Y u
(1)
t 〉s

(∇Xu
(0)
t + δ∇Xu(0)) − ∇Xu

(0)
t

(93)

Q = ANN(∇Xu
(0)
t , p(0)

t + δ p(0)) − 〈∇Y u
(1)
t 〉s

(p(0)
t + δ p(0)) − p(0)

t

, (94)

where δ � (except for the test functions) in Eqs. (93) and (94)
indicate a very small variation in � so that taking the partial

derivatives in a numerical way. Finally, the term �〈Ḡ(0)
w〉 f

could be calculated via

�〈Ḡ(0)
w〉 f = −Ḡ

(0)
t+�t K (F̄

(0)
t+�t )

−T∇X p(0)
t+�t

+ Ḡ
(0)
t K (F̄

(0)
t )−T∇X p(0)

t (95)

4 Numerical example

We perform a confined compression (consolidation) test
to, firstly, verify the implementation of the methodology
and, secondly, to demonstrate to what extent employing the
present model will improve the accuracy of the results when
dealing with poroelastic/porohyperelastic problems under
finite strain. Throughout this section, for the sake of abbrevi-
ation, we call the present method and the linear poroelastic
equations the ALE and linear cases, respectively. We solve
the problem in a non-dimensional form and, at the end of this
study, we dimensionalise the variables using the representa-
tive/unit values corresponding to soil mechanics and brain
tissue applications.

Let us assume that the column of poroelastic/poro-
hyperelastic material shown in Fig. 12 is under mechanical
pressure P = PN on�top (the external load) where the fluid
drainage is allowed. The column is impermeable on all other
surfaces (namely, �bottom and �sides) with zero displace-
ment B.C. on�bottom and zero displacement in abscissa and
applicate coordinate axes but free displacement inordinate
axis.

We solve the mentioned problems using the present
method with the neo-Hookean material model.We also solve
the same problem using the linear poroelastic approach with
the effective elasticity tensor C̃, Biot modulus M , Biot coef-
ficient α, and hydraulic conductivity K identified using the
same RVE properties as the ALE model (for more details on
multi-scale linear poroelasticity see e.g. [33]). We expect the
mechanical responses under smaller deformations to be close
while theydiverge at higher deformations. Thedimensionless
fluid dynamic viscosity μ f = 1e−3 is adopted resulting in
initial hydraulic conductivity (Ki ) j j = 1.943 j = 1, 2, 3.
We discretise the homogenised domain with 106 elements
(chosen through sensitivity analysis) in the longitudinal
direction and one element in the other direction (with 3
nodal degrees of freedom) since the microscopic response
〈∇Y u(1)〉s is 3D although the homogenised response∇Xu(0)

is 1D (see Fig. 5b).
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Fig. 13 Maximum settlement takes place on �top . a As expected, the
ALE case with neo-Hookean strain energy density function under finite
strain exhibits stiffening behaviour resulting in the smaller final settle-
ment. The settlement is around 30% of the initial length of the column,
thus transformation between deformed and undeformed configurations

becomes of utmost importance. b The response of the ALE problem
under small deformation (close to infinitesimal strain (around 2%)) is
very close to the linear poroelastic case, which is a source of verifica-
tion. Although the final settlements are almost equal the ALE reaches
the final settlement slightly earlier

Fig. 12 Schematic representation of confined compression test with
h = 7.5 and b = 0.1. We use abscissa, ordinate, and applicate (cor-
responding indices, respectively, are 1, 2, and 3) to avoid confusion of
coordinate axes with macroscale and microscale spatial variables

We define settlement as the negative displacement in ordi-
nate direction (−u(0)

2 ). In order to ensure that the linearisation
of theANN (Eq. (92)) is valid/accurate, we apply the external
load in 10 increments at the beginning of the consolidation
process with very small changes in time (one-tenth of the
usual time increments) which results in a sheer (but incre-
mental) increase in settlement and porepressure (see Figs.
13, 14).

We highlight that the difference between the final/steady-
state deformation of the ALE and the linear case reflects the
deviation of the neo-Hookean hyperelastic material model
from the linear elastic case while the Piola transformation
seems to have a strong role in determining the quality of
reaching there (with respect to time). Since at small defor-

mations the Piola transformation tensor Ḡ
(0)

approaches
the identity tensor and the neo-Hookean constitutive equa-
tion is approximately the same as the linear elastic one, the
solid mechanical response of the ALE and linear cases are
expected to be very close which is shown in Fig. 13b. The
solid deformation is represented via maximum settlement
on �top. On the other hand, the ALE case in the test with
P = −0.2 reaches a smaller settlement in a shorter time
reflecting the effects of strain stiffening of the neo-Hookean
material model under compression and the effects of Piola
transformation.

According to Eqs. (58) and (60), the effect of Piola trans-
formation and the leading order deformation gradient tensor

F̄
(0)

on fluid flow and pore pressure profiles are of higher
orders. Consequently, the deviation of pore pressure and
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Fig. 14 Maximum pore pressure takes place on �bottom where it is the
farthest place to the free drainage surface (�top). a The pore pressure
in the ALE case vanishes faster than the linear one indicating a faster
transition from the transient state to the steady-state, which could also

be concluded from Fig. 13 where the ALE steady-state maximum set-
tlement is reached quicker. b The profile of pore pressure versus time
of the ALE and linear cases are closer under smaller deformations

Fig. 15 The fluid drainage is allowed only on �top where the mechani-
cal BC (P) is applied.We calculate the drained fluid volume ofALE and

linear cases, respectively, using the integrals
∫
�h

1
J (0) ∇X · (Ḡ

(0)
w)dV

and
∫
�h

∇X · wLdV , where wL is the relative fluid velocity of the lin-

ear case. a Fluid drainage when the medium undergoes finite strain.
In the ALE case the drainage takes place faster and the final drained
fluid volume is considerably less than in the linear case. b The fluid
drainage profile of ALE and linear cases under smaller deformation is
closer compared to (a)

drained fluid volume of ALE case from the linear one is dis-
tinguishable at even smaller settlements (at time 1.7e5 where
the settlement is around 0.1) as shown in Figs. 14b and 15b.
This strongdependency ismore evident in the profile ofmaxi-
mum pore pressure under the larger B.C. (P = −0.2) shown
in Fig. 14a where the pore pressure vanishes considerably
faster than the linear case.

Concluding from Figs. 13, 14 and 15, although the non-
linear material law has a considerable effect in determining

the final solid deformation, the effects of the microscale and
macroscale solid deformation (which constitute Ḡ

(0)
and

F̄
(0)

) on the fluid part is even more critical. This is also
reflected in the spatial profile of hydraulic conductivity at
different times, shown in Fig. 16, where the transformed
hydraulic conductivity varies according to the microscale
and macroscale deformations with the initial value being
(Ki ) j j = 1.943 j = 1, 2, 3.
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Fig. 16 The profile of the main elements of hydraulic conductivity. a
The element K22 increases during the consolidation process due to the
transformation (dominated by ∇Xu

(0)
22 ) in the reference configuration.

b The element K11 increases at the bottom at shorter times (when the
effects of pore pressure are dominant) while it decreases approaching
the top of the column and at longer times

Fig. 17 The variations of pore pressure along the ordinate direction
(Y-axis) at three different times, one shortly after the application of the
load, one close to the steady-state, and one in between showing the tran-
sition from application of the BC until the final condition. We highlight
that at the steady-state of this problem the pore pressure approaches
zero everywhere in the space. a Although shortly after the application

of the Neumann BC the pore pressure spatial profile of ALE and linear
cases are relatively close to each other they diverge at longer times,
mainly due to the faster drainage in the ALE case. b The spatial pore
pressure profiles of ALE and linear cases are closer when the applied
Neumann BC is small

The spatial profiles of the pore pressure, settlement,
macroscopic and microscopic displacement gradients at dif-
ferent times are shown, respectively, in Figs. 17, 18, 19 and
20b. Comparing Figs. 17, 18b and 19 indicates that the pore
pressure results in an increase in hydraulic conductivity in
all directions (since it is a hydrostatic pressure) while the
macroscopic displacement gradient ∇Xu

(0)
22 (which is nega-

tive) increases K22 but decreases K11.

The macroscale deformation and pore pressure result in

the microscale deformation (represented by ∇Y u
(1)
) whose

spatial profiles at different times are provided in Fig. 20. The
macroscale andmicroscale displacement gradients constitute
the leading order deformation gradient which can be studied
via Fig. 21.

Furthermore, the overall hydraulic responseof themedium,
namely, the relative fluid velocity of the ALE case is com-
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Fig. 18 Settlement profile in ordinate direction. The final settlement
profile at steady-state can indicate how the solid deformation is affected
by the nonlinear material law while the time at which the settlement
reaches the final state is more related to the fluid flow which is cor-
rected using the leading order deformation gradient tensor. a Agreeing
with Fig. 13, the settlement profile of ALE diverges from the linear

case. It reaches steady-state considerably sooner (at t = 38) than the
linear case. Furthermore, the final settlement of the ALE case is around
20% smaller. bAlthough the final settlements of both cases under small
deformation are, more or less, the same, the settlement of the ALE case,
during the transient state, is slightly more which is due to faster fluid
drainage

Fig. 19 Since the compression test is confined, the main element of
the macroscale displacement gradient is ∇Xu

(0)
22 . We highlight that the

other elements are negligible compared to this one

pared with the linear one in Fig. 22a showing faster drainage
and transient to steady-state transformation. An equivalent
hydraulic response in reference configuration can be envis-
aged using the transformed relative fluid velocity shown in
Fig. 22b.

Finally, for completeness of the ALE-linear comparison,
we plot the micro-macro tangents, namely, the tensorsM and
Q which are also used in the calculation of the linear poroe-
lastic model parameters. The initial values of these tensors
(M2222 = −0.23, M2211 = −0.076, and Qii = −0.113)
are used in the linear case. The significant variations in the

latter components show the importance of considering differ-
ent sources of nonlinearity including the nonlinear material
model, the large deformation, and how their negligence could
be misleading (Fig. 23).
Dimensional variables using the independent characteristic
values of different scenarios of interest The dimensional vari-
ables can be obtained by specifying the characteristic values
of Equation (2.2) and calculating the characterising values
in Eq. (17) for every relevant field. For example, adopting
the characteristic values of the brain tissue ( fc = 10−3 [N],
d = 2 × 10−6 [m], μc = 1 [Pa s], and L = 10−3 [m])
[34–37] and of soil ( fc = 1.5× 106 [N], d = 2× 10−4 [m],
μc = 1 [Pa s], and L = 1 [m]) (see also [22] and references
therein) the dimensional variables can be obtained resem-
bling the brain tissue via

udim [m] = 10−3u, wdim [mm/s] ≈ 4 × 10−3w,

Pdim [Pa] = 103P, tdim [s] = 250t,

p(0)
dim [Pa] = 103 p(0) (96)

and applied into soil mechanics

udim [m] = u, wdim [m/s] = 6 × 10−2w,

Pdim [Pa] = 1.5 × 106P, tdim [s] = 16.6t,

p(0)
dim [Pa] = 1.5 × 106 p(0). (97)
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Fig. 20 The considerable elements of ∇Y u
(1)

(∇Y u
(1)
33 is similar to

∇Y u
(1)
11 ) showing the combined effects of macroscale displacement gra-

dient and pore pressure on microscale displacement gradient tensor. a

∇Y u
(1)
22 is the main component of the averagemicroscopic displacement

gradient tensor. Although according to Fig. 5, the positive pore pressure
should result in a negative average microscopic displacement gradient,

it is opposed by the effects of the negative values of ∇Xu
(0)
22 enforcing

positive average microscopic displacement gradient. b ∇Y u
(1)
11 is also

a considerable element in determining the leading order deformation
gradient tensor. The negative values at shorter times are due to the pore
pressure while the positive values stem from the negative∇Xu

(0)
22 which

is in agreement with Figs. 5a, b

Fig. 21 The existence of F̄ (0)
11 and the difference between F̄ (0)

22 and

∇Xu
(0)
22 + 1 shows the utmost importance of employing the provided

real-time multi-scale methodology when dealing with finite strain
poroelastic problems. a Although, as shown in Fig. 19, the maximum

of ∇Xu
(0)
22 is around −0.32 the value of F̄ (0)

22 = ∇Xu
(0)
22 +∇Y u

(1)
22 + 1 is

moderated due to the opposite signs of ∇Xu
(0)
22 and ∇Y u

(1)
22 . b The ele-

ment F̄ (0)
11 is only due to ∇Y u

(1)
11 since the element ∇Xu

(0)
11 is negligible

5 Conclusion

Starting from the ALE formulation of the FSI problem at the
pore level, we develop the governing PDEs for homogenised
porohyperelastic problems under finite strain. This is accom-
panied by a standard fluid RVE problem (to determine the
hydraulic conductivity) and a hyperelastic solid problem

with pore pressure and deformation-dependent Neumann
B.C. together with a body force, driven by the macroscale
displacement gradient. The latter RVE problem provides,
firstly, the field of microscale response to study the local phe-
nomena and, secondly, the average microscale displacement
gradient tensor. The latter is required for the homogenised
governing PDEs in an online form to determine the macro-
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Fig. 22 Relative fluid velocity in ALE case is calculated by w =
−K (F̄

(0)
)−T∇X p(0) while in the linear case it is wL = −K∇x p(0).

The comparison shows the effects of the difference in the spatial
distribution of the pore pressure aswell as the gradient operator transfor-

mation. aALE and linear relative fluid flow, similar to other parameters,
diverge considerably. b Relative fluid velocity and the transformed
relative fluid velocity (wtr = Ḡ(0)w) used in Equation (90). The com-
parison demonstrates the effect of the application of Nanson’s formula
(7) (transformation of the normal vector) in mass conservation Eq. (60)

scopic mechanical and hydraulic responses of the medium.
Since solving the solid RVE problem via DNS for every
numerical quadrature point in every time increment is very
time-consuming,we employ anANNas a real-time surrogate
model for the RVE solid problem. A reliable adaptive sam-
pling algorithm is introduced to provide an optimal training
dataset for ANN parameter tuning using the Adam optimi-
sation algorithm.

A sensitivity analysis is carried out by varying the pore
pressure and macroscale displacement gradient as the inputs
of the RVE problem and the microscopic response as the
outputs. A considerable deformation and strain energy den-
sity concentration is observed at the interface of the RVE
poreswith amagnitudemuch greater than the average values.
We show that, considering the fully nonlinear RVE problem,
several microscale deformations that are neglected in Eule-
rian/linear poroelastic formulation can take significant values
at large deformations. Furthermore, we show that the trans-
formed hydraulic conductivity varies nonlinearly due to the
pore pressure and macroscopic deformation.

Following the incremental weak formulation and numeri-
cal implementation of the macroscale problem (which com-
pletes the solution cycle/approach), we perform a confined
compression/consolidation problem as a proof-of-concept
multi-scale test for the proposedmethod. Although this prob-
lem results in a uniaxial macroscale displacement gradient
tensor we show that the microscale deformation and, conse-
quently, the leading order deformation gradient tensor are
three-dimensional. As an implementation verification and
comparison means, the same problem is also solved via lin-

ear poroelasticity using the initial effective properties derived
from the same initial model parameters. As expected from
the strain stiffening of the neo-Hookean material model
the settlement of the nonlinear ALE case is smaller than
the conventional linear poroelastic case. The importance of
employing the present method is more evident by studying
the hydraulic response of the medium which shows a much
faster transition from transient to steady-state (faster fluid
drainage). One reason for the latter is the sizeable increase in
the transformed hydraulic conductivity due to themacroscale
and microscale deformations. Furthermore, the spatial vari-
ations of different parameters with their interactions are
studied in detail. Finally, the model response is dimension-
alised using the typical/general characteristic values in the
brain tissue and soil mechanics applications showing one of
the advantages of solving the problems non-dimensionally.

The present methodology is applicable in a wide range
of scenarios from biological applications to soil and rock
mechanics which provide numerous future directions in
higher dimensions. From a numerical point of view, the
solution strategy can be improved by translating the ANN
into Unified Form Language (UFL) to avoid linearising it
within the time increments. Furthermore, the methodology
can be extended to include local fracture/damage and path-
dependent RVE solid material (e.g. viscoelastic) since the
response is determined using a strain energy density func-
tion.
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Fig. 23 Poroelastic properties and their variation in space and time.

They are calculated by 〈M〉s = ∂〈∇Y u(1)〉s
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A Expansion of general fields

In this section, we apply multi-scale expansion to some basic
fields, namely, F, J = det(F), and G plus the expanded
form of Nanson’s formula that are frequently used in ALE-
FSI formulation. Assuming n = 1 which results in two-scale
expansion, see Eq. (20), the deformation gradient may be
expanded as

F = F(0) + εF(1)

= (∇X + 1

ε
∇Y )(u(0) + εu(1)) + I

= ∇Xu(0) + ε∇Xu(1) + 1

ε
∇Yu

(0)

+ ∇Y u(1) + I . (98)

Considering C(1) and C(ε1) of Eq. (98), F(0) and F(1) are
calculated as

F(0) = ∇Xu(0) + ∇Y u(1) + I (99)

F(1) = ∇Xu(1). (100)

We notice that considering C(ε−1),

0 = ∇Y u(0) (101)

indicating that u(0) is locally constant
(
u(0)(X, t)

)
. The Jaco-

bian can also be expanded as

J = J (0) + ε J (1) = det(F(0) + εF(1)) (102)

again, considering C(1)

J (0) = det(F(0)). (103)

By application of a Neumann series, F−1 can be expanded
as [38]

F−1 = (F(0))−1 − εF(1)(F(0))−2, (104)

which allows us to expand Piola transformation as follows

G = G(0) + εG(1)

= J (0)(F(0))−1 − ε J (0)F(1)(F(0))−2

+ ε J (1)(F(0))−1 − ε2 J (1)F(1)(F(0))−2

rendering

G(0) = J (0)(F(0))−1 (105)

G(1) = J (1)(F(0))−1 − J (0)F(1)(F(0))−2 (106)

The expansion of
∫
�

∇X · GT = 0 results in

0 = ∇X · (G(0))T + ∇Y · (G(1))T (107)

0 = ∇X · (G(1))T (108)

0 = ∇Y · (G(0))T . (109)

Furthermore,wemay expandNanson’s formula (nda = GT ·
Nd A), which yields

nda = GT · NdA

= (G(0)T + εG(1)T ) · NdA

= G(0)T · NdA. (110)
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