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Abstract. In this note we show that the expected value of the separating systole of a
random surface of genus g with respect to Weil-Petersson volume behaves like 2 log g as
the genus goes to infinity.

1. Introduction

Over the last couple of decades, different models for random hyperbolic surfaces which
sample large genus behavior have been studied. Two models are particularly natural. The
first, more combinatorial in nature, consists in randomly gluing triangles and looking at
the resulting conformal class of hyperbolic metric [BM04]. The second in using the Weil-
Petersson volume form on the moduli space Mg of hyperbolic structures on a genus g
surface, and then sampling by choosing a random point in each genus and letting the genus
grow.

This latter model was studied by Mirzakhani [Mir13] who, using her pioneering results
on Weil-Petersson volumes, showed a number of striking results, for example that random
surfaces have small diameter but large embedded balls. She also studied the systole (the
length of the shortest closed geodesic) and separating systole (the length of the shortest
simple closed geodesic) showing that the former was ”small but not too small” and the
latter grew at least like log(g). The behavior of lengths of curves was further explored by
Mirzakhani and Petri in [MP19] where they show the number of short curves is asymp-
totically Poisson distributed, and as an application computed the expected value of the
systole (which is an explicit positive constant). These results mirror similar results for the
combinatorial model [Pet17, PT18], reinforcing bridges between the two models [GPY11],
but also some key differences in the behavior of (very) short curves.

We focus on the Weil-Petersson model, and study the length of the separating systole
`sepsys(X) of a surface X:

`sepsys(X) = min
{
`γ(X) | γ ⊂ X is a separating simple closed geodesic

}
.

Unlike the systole function, the separating systole function is unbounded onMg. This is not
too difficult to see by considering a pants decomposition of a genus g surface whose geodesics
are all non-separating. By making these arbitrarily short, via the collar lemma, the length
of any curve that crosses them is at least twice the collar width, and the observation follows.
A related, but different, function on moduli space is given by the length of the shortest
geodesic trivial in homology (but homotopically non-trivial), studied by Sabourau [Sab08]
who showed a universal upper bound on the same order as the corresponding bound on
systole (on the order of log(g)).
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We study the expectation of this function. Let EgWP[`sepsys ] be the Weil-Petersson expected
value of `sepsys(·) over Mg:

EgWP[`sepsys ] =

∫
Mg

`sepsys(X)dX

Vg
where Vg is the Weil-Petersson volume of Mg. As mentioned previously, Mirzakhani’s
results showed that the expected values grow at least like log(g) as a function of genus.

Building on Mirzakhani’s methods, and essential probability estimates in [NWX20], we
add the following asymptotic growth result to this panorama:

Theorem 1. Let `sepsys(·) be the separating systole function on Mg. Then

lim
g→∞

EgWP[`sepsys ]

2 log g
= 1.

This result gives an affirmative answer to [NWX20, Question 49].
The fact that the expected value is at least on the order of 2 log(g) follows from Mirza-

khani’s estimates. The main point of this note is the upper limit, and uses the main result
from [NWX20] in an essential way. Indeed, in [NWX20] it is shown that that the separating
systole is of length < 2 log(g) with probability tending to 1 as the genus goes to infinity.
This does not imply the expected value result however, because the separating systole is
unbounded over Mg. Our contribution in this paper is exactly to overcome this problem.

Plan of the paper. In Section 2 we review the relevant background and provide an upper
bound for `sepsys(X) in terms of the systole and diameter of X. In Section 3 we prove two
bounds for the integral of the reciprocal of the Cheeger constant over small subsets in
moduli space. We complete the proof of Theorem 1 in Section 4.

Acknowledgements. The authors are grateful to Curtis McMullen and Alex Wright for
the correspondence on the proof of [Mir13, Theorem 4.4].

2. Preliminaries

In this section, we set up notation and review relevant background material about hy-
perbolic surfaces and the Weil-Petersson metric on the moduli space of Riemann surfaces.

2.1. Riemann surfaces. Let Σg be a closed orientable surface of genus g ≥ 2. LetMg be
the moduli space of all complete hyperbolic metrics homeomorphic to Σg, up to isometry.
Any X ∈ Mg, by Gauss-Bonnet, has its area Area(X) = 4π(g − 1). We are interested in
simple closed geodesics of X and sometimes in collections of disjoint simple closed geodesics
which we call geodesic multicurves. The length of a geodesic multicurve γ will be denoted
`γ(X).

The systole `sys(X), that is the length of the (or a) shortest closed geodesic on X, satisfies
an upper bound on the order `sys(X) = O(log g) where the implied constant is independent
of g. For a closed surface, the systole is always a simple closed geodesic. Similarly, the
shortest non-separating closed geodesic is always simple, but this may not be the case of
the shortest separating geodesic (see the example hinted at in the introduction). In this
paper, we study the separating systole `sepsys(X) of X, the length of the shortest separating
and simple closed geodesic of X.

The following estimate will be used in the sequel. We state it for any closed orientable
Riemannian surface just to highlight that it has nothing to do with hyperbolic geometry
(and the proof is the same).
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Lemma 2. Let X be a closed Riemannian surface of genus g ≥ 2. Then the length `sepsys(X)
of its separating systole satisfies

`sepsys(X) < 2 `sys(X) + 4 Diam(X)

where `sys(X) is the systole length of X and Diam(X) is the diameter of X.

Proof. Recall that the systole of a closed genus g surface is always a simple closed geodesic.
If the systole is separating, then the inequality clearly holds, so we suppose that the systole
is non-separating, hence non-trivial in homology.

Now consider a minimal length homology basis (for the sum of lengths) of X that contains
a systole γ1. In [Gro83, Section 5], it is shown that such a basis B always exists and all
of its curves are geodesically convex subsets. By this we mean that for any curve γ in the
basis, and any pair of points on this curve, the (or a) shortest path between the two points
is entirely contained in γ. It follows that all curves in the basis are of length bounded by
2 Diam(X).

Now let γ2 be a curve in B that intersects γ1. Again by convexity and the choice of γ1,
they intersect in exactly 1 point, and hence lie in a one-holed torus subsurface of X. As a
word in the fundamental group, the commutator [γ1, γ2] corresponds to the homotopy class
of the boundary of this one-holed torus. The length of its minimal geodesic representative δ
is bounded (strictly) above by 2 `(γ1)+2 `(γ2). Now using the fact that `(γ2) ≤ 2 Diam(X),
we have

`(δ) < 2 `sys(X) + 4 Diam(X)

and as δ is a non-trivial simple separating geodesic, the result follows. �

Remark. The observation that sys(X) < 2 Diam(X) and Lemma 2 imply that

`sepsys(X) < 8 Diam(X).

Now together with [Mir13, Part (2) of Theorem 4.10], we can deduce that

EgWP[`sepsys ]

log g
≤ C2

for some uniform constant C2 > 0 independent of g.

2.2. A geodesic Cheeger constant. Let X ∈ Mg be a hyperbolic surface. Recall that
the Cheeger constant h(X) of X is defined as

h(X) = inf
E⊂Xg

`(E)

min {Area(A),Area(B)}
where E runs over all one-dimensional subsets of X which divide X into two disjoint
components A and B, and `(E) is the length of E.

The “problem” with the Cheeger constant is that the set E is not (necessarily) realized
as a geodesic multicurve. For this reason, Mirzakhani [Mir13] introduced a geodesic Cheeger
constant H(X) of X defined as

H(X) := min
1≤m≤g−1

(
inf
γ

`γ(X)

min {Area(X1),Area(X2)}

)
where γ is a multigeodesic on X with X\γ = X1∪X2, X1 and X2 are connected subsurfaces
of X such that |χ(X1)| = m ≤ |χ(X2)|, and `γ(X) is the length of γ on X. We thus have
the following expression for H(X):
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H(X) := min
1≤m≤g−1

inf
γ

`γ(X)

2πm

The Cheeger constant is by definition upper bounded by the geodesic Cheeger constant.
Mirzakhani also provided a lower bound in the following proposition.

Proposition 3. [Mir13, Proposition 4.7] Let X ∈Mg be a hyperbolic surface. Then

H(X)

H(X) + 1
≤ h(X) ≤ H(X).

2.3. The Weil-Petersson metric. Associated to a pants decomposition of Σg, the Fenchel-

Nielsen coordinates, given by X 7→ (`αi(X), ταi(X))3g−3i=1 , are global coordinates for the Te-

ichmüller space Tg of Σg. Where {αi}3g−3i=1 are disjoint simple closed geodesics and ταi is the
twist along αi (measured in length). Wolpert in [Wol82] showed that the Weil-Petersson
sympletic structure has a natural form in Fenchel-Nielsen coordinates:

Theorem 4 (Wolpert). The Weil-Petersson sympletic form ωWP on Tg is given by

ωWP =

3g−3∑
i=1

d`αi ∧ dταi .

We mainly work with the Weil-Petersson volume form

dvolWP := 1
(3g−3)! ωWP ∧ · · · ∧ ωWP︸ ︷︷ ︸

3g − 3 copies

.

It is a mapping class group invariant measure on Tg, hence is the lift of a measure on Mg,
which we also denote by dvolWP. The total volume ofMg is finite and we denote it by Vg.

Following [Mir13], we view a quantity f : Mg → R as a random variable on Mg with
respect to the probability measure ProbgWP defined by normalizing dvolWP, and let EgWP[f ]
denote it expectation or expected value. Namely,

ProbgWP(A) :=
1

Vg

∫
Mg

1AdX, EgWP[f ] :=
1

Vg

∫
Mg

f(X)dX,

where A ⊂ Mg is any Borel subset, 1A : Mg → {0, 1} is its characteristic function, and
where dX is short for dvolWP(X).

3. Integral of 1
h

The main result of this section is to show that the integral of one over the Cheeger
constant over a small set Ag ⊂ Mg is also small (Proposition 7). In next section, we will
apply Proposition 7 to show Theorem 1.

First we recall the following well-known fact.

Lemma 5. Let (X,µ) be a measure space and f ≥ 0 on X with f ∈ L1(X,µ). Let E ⊂ X
be a measurable subset. Then∫

E
f(x)dµ(x) =

∫ ∞
0

µ
(
{f(x) ≥ t} ∩ E

)
dt.
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Proof. We provide a proof for clarity. It essentially follows from Fubini’s theorem:∫
E
f(x)dµ(x) =

∫
E

∫ ∞
0

1{f(x)≥t}dtdµ(x)

=

∫ ∞
0

∫
E
1{f(x)≥t}dµ(x)dt

=

∫ ∞
0

µ
(
{f(x) ≥ t} ∩ E

)
dt

which completes the proof. �

We now show:

Proposition 6. Let A ⊂Mg be a measurable subset. Then there exists a uniform constant
c > 0 independent of g and A such that

1

Vg

∫
A

1

H(X)
dX ≤ c · (Vol(A)

Vg
+

1

g
).

Proof. First one may assume that Vol(A) > 0, otherwise there is nothing to prove. Now
since Vol

(
{H(X) ≤ s}

)
is a continuous increasing function with respect to s, there is a

first time t0 > 0 such that Vol
(
{H(X) ≤ 1

t0
}
)

= Vol(A). (Note that t0 may depend on g.)
By Lemma 5 we have∫

A

1

H(X)
dX =

∫ ∞
0

Vol
(
{H(X) ≤ 1

t
} ∩ A

)
dt

=

∫ t0

0
Vol

(
{H(X) ≤ 1

t
} ∩ A

)
dt+

∫ ∞
t0

Vol
(
{H(X) ≤ 1

t
} ∩ A

)
dt

≤
∫ ∞
t0

Vol
(
{H(X) ≤ 1

t
}
)
dt+ t0 Vol(A).

Now we use an estimate of Mirzakhani [Mir13, Equation (4.20)] which says that there
exists a uniform constant ε0 > 0 independent of g such that for any ε < ε0 we have

Vol({H(X) ≤ ε}) ≤ c1
ε2Vg
g

for some uniform constant c1 > 0 again independent of g. There are two cases.

Case 1: Suppose that ε0 ≥ 1
t0

. We have

Vol(A) = Vol
(
{H(X) ≤ 1

t0
}
)
≤ c1

1

t20

Vg
g

which implies that∫
A

1

H(X)
dX ≤

∫ ∞
t0

Vol
(
{H(X) ≤ 1

t
}
)
dt+ t0 Vol(A)

≤
∫ ∞
t0

c1
1

t2
Vg
g
dt+ c1

1

t0

Vg
g

= 2c1
1

t0

Vg
g

≤ 2c1ε0
Vg
g
.
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Case 2: Suppose that ε0 <
1
t0

.
In this case∫

A

1

H(X)
dX ≤

∫ ∞
t0

Vol
(
{H(X) ≤ 1

t
}
)
dt+ t0 Vol(A)

≤
∫ 1

ε0

t0

Vol
(
{H(X) ≤ 1

t
}
)
dt+

∫ ∞
1
ε0

c1
1

t2
Vg
g
dt+ t0 Vol(A)

≤ (
1

ε0
− t0) Vol

(
{H(X) ≤ 1

t0
}
)

+ c1ε0
Vg
g

+ t0 Vol(A)

=
1

ε0
Vol(A) + c1ε0

Vg
g
.

We now choose

c = max{ 2

ε0
, 2c1ε0}

and the conclusion follows. �

The following consequence of Proposition 6 will be applied later:

Proposition 7. Let Ag ⊂Mg be a measurable subset satisfying

lim
g→∞

Vol(Ag)
Vg

= 0.

Then we have

lim
g→∞

1

Vg

∫
Ag

1

h(X)
dX = 0.

Proof. Recall that [Mir13, Proposition 4.7] tells that

H(X)

H(X) + 1
≤ h(X) ≤ H(X)

which together with Proposition 6 imply that

lim
g→∞

1

Vg

∫
Ag

1

h(X)
dX ≤ lim

g→∞

1

Vg

∫
Ag

(
1 +

1

H(X)

)
dX

= 0.

The proof is complete. �

The following result is contained in the proof of [Mir13, Theorem 4.10]. For completeness
we outline a proof here.

Proposition 8. Let `1(X) = min{`sys(X), 1}. Then there exists a uniform constant c > 0
independent of g such that ∫

Mg

| log(`1(X))|
h(X) dX

Vg
≤ c.

Proof. First we recall two results from [Mir13]. By setting β = 4
3 and applying [Mir13,

Theorem 4.8], we have that there exist two uniform constants C1, C2 > 0 independent of g
such that

(1) C1Vg ≤
∫
Mg

1

h(X)
4
3

dX ≤ C2Vg.
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By [Mir13, Corollary 4.3] we know that there exist two uniform constants C3, C4 > 0
independent of g such that

C3Vg ≤
∫
Mg

1

`sys(X)
dX ≤ C4Vg

which in particular implies that for any a > 0

(2)

∫
Mg

| log(`1(X))|adX = O(Vg)

where the implied constant is independent of g.
The rough equalities (1) and (2) together with Hölder’s inequality imply that∫

Mg

| log(`1(X))|
h(X)

dX ≤

(∫
Mg

1

h(X)
4
3

dX

) 3
4

·

(∫
Mg

| log(`1(X))|4dX

) 1
4

= O(Vg)

as required. �

4. Proof of Theorem 1

In this section we complete the proof of our main result, Theorem 1.
We recall two prior results essential for our purposes. The first one is:

Theorem. [Mir13, Theorem 4.4] Let 0 < a < 2. Then

ProbgWP

(
X ∈Mg | `sepsys(X) < a log g

)
= O

(
(log g)3g

a
2

g

)
.

This result in particular implies that for any ε > 0,

(3) lim
g→∞

ProbgWP

(
X ∈Mg | `sepsys(X) > (2− ε) log g

)
= 1.

The second one is:

Theorem. [NWX20, Theorem 1] Let ω(g) be a function satisfying

lim
g→∞

ω(g) = +∞ and lim
g→∞

ω(g)

log log g
= 0.

Consider the following conditions on surfaces X ∈Mg:

(a) |`sepsys(X)− (2 log g − 4 log log g)| ≤ ω(g);
(b) `sepsys(X) is achieved by a simple closed geodesic separating X into S1,1 ∪ Sg−1,1.

Then we have

lim
g→∞

ProbgWP (X ∈Mg | X satisfies (a) and (b)) = 1.

In particular, this implies that for any ε > 0

(4) lim
g→∞

ProbgWP

(
X ∈Mg | (2− ε) log g < `sepsys(X) < 2 log g

)
= 1.

We now define a special subset of moduli space Bg:

Bg := {X ∈Mg | `sepsys(X) < 2 log g}.
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Note that (4) implies

(5) lim
g→∞

ProbgWP (X ∈ Bg) = 1.

Now we are ready to show our main result.

Proof of Theorem 1. First we recall the following result of Brooks in [Bro92] (or see [Mir13,
Equation (4.21)]), which for any X ∈ Mg bounds Diam(X) from above in terms of the
systole and the Cheeger constant:

Diam(X) ≤ 2

(
`sys(X)/2 +

1

h(X)
· log

(
2π(g − 1)

Area(BH(`sys(X)/2))

))
.

(The quantity Area(BH(`sys(X)/2)) is the hyperbolic area of a geodesic ball of radius
`sys(X)/2 in the hyperbolic plane H.)

Recall that `1(X) = min{`sys(X), 1} and that `sys(X) = O(log g). The above result of
Brooks together with Proposition 2 imply that

(6) `sepsys(X) = O

(
log g +

log g

h(X)
+
| log(`1(X))|

h(X)

)
where the implied constant is independent of g.

Since ε > 0 is arbitrary, it follows from (3) that

(7) lim inf
g→∞

EgWP[`sepsys ]

log g
≥ 2.

Now we provide the other inequality. Let Ag be the complement of Bg in Mg:

Ag := {X ∈Mg | X /∈ Bg}.

So by (5) we know that

(8) lim
g→∞

Vol(Ag)
Vg

= 0.

We split the integral as

EgWP[`sepsys ]

log g
=

∫
Bg `

sep
sys(X)dX

log g · Vg
+

∫
Ag
`sepsys(X)dX

log g · Vg
.

By (6), there exists a uniform constant c > 0 independent of g such that

EgWP[`sepsys ]

log g
< 2 + c ·

Vol(Ag)
Vg

+

∫
Ag

1
h(X)dX

Vg
+

1

log g

∫
Mg

| log(`1(X))|
h(X) dX

Vg

 .

Let g →∞, then it follows by (8), Proposition 7 and Proposition 8 that

(9) lim sup
g→∞

EgWP[`sepsys ]

log g
≤ 2.

which completes the proof. �
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[Sab08] Stéphane Sabourau, Asymptotic bounds for separating systoles on surfaces, Comment. Math.

Helv. 83 (2008), no. 1, 35–54.
[Wol82] Scott Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), no. 3, 501–528.

Department of Mathematics, University of Luxembourg, Esch-sur-Alzette, Luxembourg
E-mail address, (H. P.): hugo.parlier@uni.lu

Yau Mathematical Sciences Center & Department of Mathematical Sciences, Tsinghua
University, Beijing, China

E-mail address, (Y. W.): yunhui wu@tsinghua.edu.cn

E-mail address, (Y. X.): xueyh18@mails.tsinghua.edu.cn


	1. Introduction
	Plan of the paper.
	Acknowledgements.

	2. Preliminaries
	2.1. Riemann surfaces
	2.2. A geodesic Cheeger constant
	2.3. The Weil-Petersson metric

	3. Integral of 1h
	4. Proof of Theorem 1
	References

