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Abstract. We observe n independent pairs of random variables (Wi, Yi)
for which the conditional distribution of Yi given Wi = wi belongs to a
one-parameter exponential family with parameter γ∗(wi) ∈ R and our
aim is to estimate the regression function γ∗. Our estimation strategy
is as follows. We start with an arbitrary collection of piecewise constant
candidate estimators based on our observations and by means of the
same observations, we select an estimator among the collection. Our
approach is agnostic to the dependencies of the candidate estimators
with respect to the data and can therefore be unknown. From this
point of view, our procedure contrasts with other alternative selection
methods based on data splitting, cross validation, hold-out etc. To il-
lustrate its theoretical performance, we establish a non-asymptotic risk
bound for the selected estimator. We then explain how to apply our
procedure to the changepoint detection problem in exponential families.
The practical performance of the proposed algorithm is illustrated by
a comparative simulation study under different scenarios and on two
real datasets from the copy numbers of DNA and British coal disasters
records.

1. Introduction

We observe n pairs of independent (but not necessarily i.i.d.) random
variables, i.e. Xi = (Wi, Yi) for i = 1, . . . , n, with values in a measurable
product space (W ×Y ,W⊗Y). For each i, we assume that the conditional
distribution of Yi givenWi = wi exists which we denote asR∗i (wi) andR∗i (wi)
belongs to a one-parameter exponential family with parameter γ∗(wi) ∈ R.
The aim of the present paper is to estimate the n conditional distributions
R∗i (wi) of Yi given Wi = wi, i.e. to estimate the unknown function γ∗ on
W , on the basis of the observations X = (X1, . . . , Xn).
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Under the above statistical setting, we are only aware of a small amount
of related papers tackling this estimation problem and establishing risk
bounds for the proposed estimators. Based on one model, Baraud and Chen
(2020) proposed an estimation procedure, where their idea comes from the
ρ-estimation (Baraud et al. (2017) and Baraud and Birgé (2018)). The risk
bound for their estimator γ̂ can be written as, up to a constant, the sum of
an approximation term and a complexity term of the model adopted for es-
timation. Such an approach performs well if one knows a suitable model for
the function γ∗ in advance which means a model can provide a good enough
approximation of γ∗ and is also not too complicated. But such a model can
be difficult to design in some situations where only few prior information
is known. A safer strategy then considered by Chen (2022) in which the
problem was solved by a model selection procedure. However, one defect
of this strategy is the expensive numerical cost especially when the number
of the models becomes large. At this point, an interesting problem could
be can we come up with a new estimation strategy overcoming the above
two limitations in the literature? This is to say the desired strategy should
be capable of comparing estimators from several different models with a
reasonable numerical cost.

In particular, when Wi = (i− 1)/n (or i/n in some literature) are deter-
ministic for all i ∈ {1, . . . , n} and γ∗ is an unknown function on [0, 1) (or
(0, 1] respectively), more work has been done in the statistical literature. We
only observe Y = (Y1, . . . , Yn) ∈ Y n in this case ordered by some covari-
ate such as time or position along a chromosome. Antoniadis and Sapatinas
(2001) considered one-parameter natural exponential families with quadratic
variance functions (i.e. the variance of the distribution is a quadratic func-
tion of its mean) which cover Gaussian, Poisson, gamma, binomial, negative
binomial and generalized hyperbolic secant distributions and proposed their
estimator based on wavelet shrinkage estimation. Then Antoniadis et al.
(2001) extended such a wavelet based methodology to the families with cu-
bic variance functions. Brown et al. (2010) also focused on one-parameter
natural exponential families with quadratic variance functions. When the
exponential family is parametrized by its mean, they suggest to use a mean-
match variance stabilizing transformation so that turn the original problem
into a standard homoscedastic Gaussian regression problem.

In a more specific situation where Wi = (i − 1)/n are deterministic and
γ∗ : [0, 1) → I ⊂ R is a right-continuous step function with an unknown
number N − 1 of changepoints (i.e. N segments, N ≥ 1), the estimation
problem we consider here immediately fits the setting of changepoint detec-
tion problem in exponential families. In this context, Frick et al. (2013) pro-
posed a simultaneous multiscale changepoint estimator (SMUCE for short).
More precisely, for each candidate estimator, Frick et al. (2013) designed a
multiscale statistic to evaluate the maximum over the local likelihood ratio
statistics on all discrete intervals such that the estimator is constant on these
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intervals with some value. Then provided a threshold q, the quantity N is
estimated by “N(q) which is the number of segments of the estimators sat-
isfying their threshold condition with the minimal segments. Finally, their
estimator is the likelihood maximizer over a constrained set in which all the
estimators satisfy the threshold condition with exact “N(q) segments. Cley-
nen and Lebarbier (2014, 2017) considered partitions given by the pruned
dynamic programming algorithm (Rigaill (2015)) and proposed a penalized
log-likelihood estimator following the works of constructing the penalty func-
tion done by L. Birgé and P. Massart (see Barron et al. (1999) and Birgé
and Massart (1997) for instance). They showed that their resulting esti-
mator satisfies some oracle inequalities. One common feature of the above
mentioned two methods is that they are both, more or less, based on the
maximum likelihood estimation. When the data set contains a small amount
of outliers, both of the two procedures infer extra changepoints to fit the
outliers while identifying the true ones in the signal. For this point, we shall
illustrate it in a more straightforward way in the simulation part of this pa-
per. A natural question is can we find a procedure to enhance the stability
of their estimators?

Besides the two procedures specially designed for the changepoint detec-
tion problem in exponential families, detecting changes in the characteristics
of a sequence of observed random variables has a long history and experi-
enced a renaissance in recent years boosted by a flourishing development in
bioinformatics (e.g. Olshen et al. (2004), Huang et al. (2005), Tibshirani and
Wang (2007), Zhang and Siegmund (2007) and Muggeo and Adelfio (2010)).
It also has attracted attention from other fields including climatology (e.g.
Reeves et al. (2007) and Gallagher et al. (2013)), financial econometrics
(e.g. Spokoiny (2009)) and signal processing (e.g. Blythe et al. (2012) and
Hotz et al. (2013)), among many others. Within the regime of univari-
ate mean changepoint detection, theoretical analysis has been established
recently by Verzelen et al. (2020) and Wang et al. (2020). A recently selec-
tive review of the related literature can be found in Truong et al. (2020).
We only mention some representative procedures here. Scott and Knott
(1974) proposed a binary segmentation (BS for short) method to detect the
changes in means. A modified procedure circular binary segmentation (CBS
for short) was provided by Olshen et al. (2004) then a faster algorithm was
given in Venkatraman and Olshen (2007) which has achieved a big success in
genome analysis. Later, to enhance the robustness to departures from stan-
dard model assumptions, another method (denoted as cumSeg in the sequel)
had been tailor-made by Muggeo and Adelfio (2010) to detect changes in
genomic sequences. In the direction of reducing the complexity of computa-
tion, the pruned exact linear time (PELT for short) method was proposed
by Killick et al. (2012) where they also showed PELT leads to a substantially
more accurate result than BS. Wild binary segmentation (WBS for short)
is an approach proposed by Fryźlewicz (2014) based on a development of
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BS and it becomes quite popular nowadays due to its nice performance and
an easy implementation. Aimed at improving SMUCE (Frick et al. (2013))
especially under the situation with low signal-to-noise ratio or with many
changepoints compared to the length of observations, Li et al. (2016) pro-
posed an alternative multiscale segmentation method (denoted as FDR in
the sequel) by controlling the false discovery rate of their whole segmenta-
tion procedure. In the direction of being robust in the presence of outliers,
Fearnhead and Rigaill (2019) proposed an algorithm (denoted as robseg in
the sequel) based on the idea of adapting existing penalized cost methods
to some loss functions which are less sensitive to the outliers. Two examples
of the loss functions to which their procedure applies are the Huber loss
and biweight loss. In practice, based on the same observations, different
approaches mentioned above may give different estimators. As it was point
out by the comparison study in Fearnhead and Rigaill (2020), it is rather
rare that one particular method uniformly outperforms another. Given so
many experts’ suggestions, a realistic and also interesting question is which
one we should pick? Or in another word, can we let the data decide the pref-
erence of several (possibly random) estimators case by case so that finally
we can always achieve a nearly optimal performance among the candidates
taken into consideration?

These three problems mentioned above are the main motivations to pro-
pose this paper. In fact, we shall see that all of them can be solved si-
multaneously by an estimation strategy based on a data-driven estimator
selection (denoted as ES in the sequel). More precisely, given the observa-
tions X = (X1, . . . , Xn), we assume to have at disposal an arbitrary but
at most countable collection of piecewise constant (possibly random) candi-
dates for γ∗ which we denote as Γ̂(X). The dependency of each candidate
in Γ̂ on the observations X can be unknown. We design an algorithm to
compare these candidates in Γ̂ pair by pair based on the same observations
X and let the data choose the desired one. A non-asymptotic risk bound for
the selected estimator is established, where we compare it with the infimum
of the risks over the collection Γ̂(X).

The paper is organized as follows. We give a specific description of the sta-
tistical framework in Section 2. Our estimator selection procedure and the
theoretical properties of the resulting estimator are presented in Section 3.
In Section 4, we explain how to apply this procedure to the changepoint
detection problem in exponential families. Section 5 is devoted to a com-
parative simulation study for illustrating the practical performance of the
selected estimator. Its performance on two real datasets (DNA copy num-
bers and British coal disasters) is exhibited in Section 6. Finally, all the
proofs in this paper are left to Section 7, and details of the test signals used
in Section 5 are provided in the Appendix.



ESTIMATOR SELECTION IN EXPONENTIAL-LIKE FAMILIES 5

2. The statistical setting

We observe n pairs of independent (but not necessary i.i.d.) random
variables Xi = (Wi, Yi), for i ∈ {1, . . . , n} with values in a measurable
product space (X ,X ) = (W × Y ,W ⊗ Y). We denote R the set of all
probabilities on (Y ,Y) and equip it with the Borel σ-algebra R associated
to the Hellinger distance (which induces the same topology as the total
variation distance one). Recall that the Hellinger distance between two
probabilities P = p · µ and Q = q · µ dominated by a reference measure µ
on a measurable space (A,A) is given by the formula

(1) h(P,Q) =
ï1

2

∫
A

(√p−√q)2 dµ

ò1/2
,

which is independent with respect to the choice of the dominated reference
measure µ. For each i ∈ {1, . . . , n}, we assume the conditional distribution of
Yi given Wi = wi exists and can be written as R∗i (wi) with R∗i a measurable
function from (W ,W) to R. Let us remark that with the choice ofR, for any
R ∈ R and all i ∈ {1, . . . , n}, the mapping w 7→ h2(R,R∗i (w)) on (W ,W)
is measurable. Before introducing our statistical setting, we also recall the
following definition.

Definition 1. Let I be a non-trivial interval of R (i.e. I̊ 6= ø). We call a
family of probabilities Q0 = {Rγ , γ ∈ I} on the measured space (Y ,Y, µ) an
exponential family under its general form, if Q0 is a family of probabilities
on (Y ,Y) admitting densities rγ with respect to µ of the form, for all γ ∈ I

rγ(y) = eu(γ)T (y)−A(γ)h(y), for all y ∈ Y ,

where T is a real-valued measurable function on (Y ,Y) which does not co-
incide with a constant ν = h · µ-a.e., u is a continuous, strictly monotone
function on I, h is a nonnegative function on Y and

A(γ) = log
ï∫

Y
eu(γ)T (y)h(y)dµ(y)

ò
.

Definition 1 covers many interesting and useful distributions including
Gaussian (with a known variance), Poisson, binomial (with a known number
of trials, e.g. Bernoulli) and gamma (with a fixed shape parameter, e.g.
exponential) distributions, among many others. In the sequel, for simplicity,
we rewrite Q0 as {Rγ = rγ · ν, γ ∈ I}, with the notation

(2) rγ(y) = eu(γ)T (y)−A(γ), for all y ∈ Y and γ ∈ I.

The statistical framework we consider here is more general than the one
we have mentioned in the introduction. More precisely, based on the ob-
servations X = (X1, . . . , Xn), we would like to estimate the n conditional
distributions R∗i (wi) of Yi given Wi = wi for i ∈ {1, . . . , n}. To do so, we
presume (even this may not be true) that there exists a piecewise constant



6 JUNTONG CHEN

function γ∗ on W such that for all i ∈ {1, . . . , n}, the conditional distribu-
tions R∗i (wi) of Yi given Wi = wi are of the form Rγ∗(wi) or at least not far
away from it with respect to the Hellinger distance defined by (1). Such a
statistical setting includes the following situations:

(i) the ideal case, where the conditional distributions R∗i (wi) = Rγ∗(wi)
for all i ∈ {1, . . . , n}. We then refer to this γ∗ as the regression
function which is a natural generalization from Gaussian regression.

(ii) the model is slightly misspecified. This includes the situation where
for some i ∈ {1, . . . , n}, the conditional distributions R∗i (wi) are
slightly different from the presumed ones Rγ∗(wi) or the situation
where the data set contains a small amount of outliers.

Let RW be the collection of all measurable mappings from (W ,W) into
(R,R) and set RW = Rn

W . We denote R∗ the n-tuple (R∗1, . . . , R∗n) and
hence R∗ ∈ RW . Our goal is to estimate this R∗ based on the observations
X = (X1, . . . , Xn). Our estimation strategy is as follows. We suppose
that we have at disposal an arbitrary but at most countable collection of
(possibly random) piecewise constant candidates of γ∗ mapping W into I
written as Γ̂ = {γ̂λ(X), λ ∈ Λ}. We then design a procedure based on
the same data X to select among Γ̂ and denote the selected one as γ̂

λ̂
(X)

(or γ̂
λ̂
for short). Once obtaining γ̂

λ̂
, our estimator of R∗ is given by the

mapping Rγ̂
λ̂

: w = (w1, . . . , wn) ∈ W n 7→
Ä
Rγ̂

λ̂
(w1), . . . , Rγ̂

λ̂
(wn)
ä
taking

values in Qn
0 with Rγ̂

λ̂
∈ RW . With a slight abuse of language, sometimes

in this paper we also call γ̂
λ̂
an estimator of γ∗ though we know that such

a regression function γ∗ does not necessarily exist. It is worth emphasizing
that besides the independence, we assume nothing about the distributions
of the covariates Wi which therefore can be unknown.

To evaluate the performance of the selected estimator Rγ̂
λ̂
, we need to

introduce a loss function. Since we focus on estimating the n conditional
distributions, it is natural to consider a loss function based on the Hellinger
distance. More precisely, we endow the space RW with a pseudo Hellinger
distance h defined for any R = (R1, . . . , Rn) and R′ = (R′1, . . . , R′n) in RW

by

h2(R,R′) = E
ñ
n∑
i=1

h2 (Ri(Wi), R′i(Wi)
)ô

(3)

=
n∑
i=1

∫
W
h2 (Ri(w), R′i(w)

)
dPWi(w),

where h is the Hellinger distance introduced in (1). Whenever the regression
function γ∗ exists, we automatically deduce a performance of γ̂

λ̂
with respect

to γ∗ by the distance d
(
γ∗, γ̂

λ̂

)
= h

Ä
Rγ∗ ,Rγ̂

λ̂

ä
. In particular, in the

context of changepoint detection problem in exponential families where Wi
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are deterministic, the loss function h is the sum of the Hellinger distances
between each two probabilities Ri and R′i. Such a loss function has been
considered in several literature, for instance Le Cam (1986) and Le Cam and
Yang (1990). From this point of view, unlike the typical methods detecting
changes for some parameter of a distribution (for example detecting changes
in means for Gaussian and Poisson distributions), our approach validates the
changes along the sequence if there are abrupt variations with respect to the
distribution level.

3. A strategy based on estimator selection

As already mentioned, given the observations X = (X1, . . . , Xn), we as-
sume that we have at disposal an arbitrary but at most countable (possibly
random) candidates Γ̂ = {γ̂λ(X), λ ∈ Λ} for γ∗, where for each λ ∈ Λ, γ̂λ
is piecewise constant on W . This Γ̂ may contain the estimators based on
the minimization of some criterions, estimators based on Bayes procedures
or just simple guesses by some experts. The dependency of these estimators
with respect to the observations X can be unknown. Our goal is to select
some γ̂

λ̂
(X) among the family Γ̂ = {γ̂λ(X), λ ∈ Λ} based on the same

observations X such that the risk of our estimator is as close as possible to
the quantity infλ∈Λ E

[
h2(R∗,Rγ̂λ)

]
.

3.1. Estimator selection procedure. LetM be a finite or countable set
of partitions on W . We begin with a family of collections {Γm, m ∈M}
indexed by the partition m on W , where for each m ∈ M, Γm stands for
an at most countable collection of piecewise constant functions on W with
values in I based on the partition m. Setting the notation Γ̃ = ∪m∈MΓm,
we assume the family of (possibly random) candidates Γ̂ = {γ̂λ(X), λ ∈ Λ}
for γ∗ (may not exist) with values in Γ̃. This is to say, for each λ ∈ Λ, there
is a (possibly random) partition “m(λ) ∈ M such that γ̂λ ∈ Γ“m(λ). For any
γ ∈ Γ̃, we define

M(γ) = {m ∈M, γ ∈ Γm} ,
therefore naturally we have “m(λ) ∈M(γ̂λ).

Let ∆(·) be a map from M to R+ = [0,+∞). For each m ∈ M, we
associate it with a nonnegative weight ∆(m) and assume the following holds
true.

Assumption 1. There exists a positive number Σ such that
(4) Σ =

∑
m∈M

e−∆(m) < +∞.

We remark that when Σ = 1, the weights ∆(m) define a prior distribution
on the collection of partitions M, which gives a Bayesian flavour to our
selection procedure.
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Given two partitions m1,m2 ∈M, we define a refined partition m1 ∨m2
on W generated by m1,m2 as

m1 ∨m2 = {K1 ∩K2 | K1 ∈ m1, K2 ∈ m2, K1 ∩K2 6= ø} .

For any partition m on W , we denote the number of its segments by |m|.
To define our selection procedure, we also make the following assumption
on the familyM.

Assumption 2. There exists some constant α ≥ 1 such that |m1 ∨m2| ≤
α(|m1|+ |m2|), for all m1,m2 ∈M.

We give some examples of the family M here satisfying Assumption 2.
When W is either R or some subinterval of R, for any finite or countable
family M of partitions on W , it is easy to observe that Assumption 2 is
satisfied with α = 1. Another example can be the nested partitions, i.e. the
familyM is ordered for the inclusion. In this situation,m1∨m2 either equals
tom1 orm2 so that Assumption 2 also holds true with α = 1. Besides, when
W = [0, 1)d with d ≥ 2, a specific example satisfying Assumption 2 with
α = 2 has been introduced in Example 3 of Baraud and Birgé (2009).

Our selection procedure is based on a pair-by-pair comparison of the can-
didates, where the selection mechanism is inspired by a series of work of
ρ-estimation (Baraud et al. (2017) and Baraud and Birgé (2018)). However,
unlike the above literature, we generalize the comparison device into the
situation where the elements in Γ̂ can be random.

Let us first introduce a monotone increasing function ψ from [0,+∞] into
[−1, 1] defined as

ψ(x) =


x− 1
x+ 1 , x ∈ [0,+∞),

1 , x = +∞.

For any γ,γ ′ ∈ Γ̃, we define the T-statistic as

T(X,γ,γ ′) =
n∑
i=1

ψ

(√
rγ′(Wi)(Yi)
rγ(Wi)(Yi)

)
with the conventions 0/0 = 1 and a/0 = +∞ for all a > 0. Let Dn be a
map fromM to R+ defined as, for any m ∈M,

Dn(m) = |m|
ï
9.11 + log+

Å
n

|m|

ãò
,

where log+(x) = max {log(x), 0}. We define the penalty function from Γ̃ to
R+ such that for all γ ∈ Γ̃,

(5) pen(γ) ≥ C0

Å
2α+ 1

2

ã
inf

m∈M(γ)
[Dn(m) + ∆(m)] ,
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where C0 > 0 is a universial constant. For each λ ∈ Λ, we set
υ(X, γ̂λ) = sup

λ′∈Λ
[T(X, γ̂λ, γ̂λ′)− pen(γ̂λ′)] + pen(γ̂λ).

We select γ̂
λ̂
as any measurable element of the random (and non-void) set

(6) E(X) =
ß
γ̂λ ∈ Γ̂ such that υ(X, γ̂λ) ≤ inf

λ′∈Λ
υ(X, γ̂λ′) + 1

™
.

The final selected estimator Rγ̂
λ̂
of R∗ is given by Rγ̂

λ̂
=
Ä
Rγ̂

λ̂
, . . . , Rγ̂

λ̂

ä
.

We comment that the number 1 in (6) does not play any role, therefore
can be substituted by any small number δ > 0. We choose δ = 1 here
just for enhancing the legibility of our results. Moreover, to improve the
performance of the selected estimator Rγ̂

λ̂
, the choice of a γ̂

λ̂
such that

υ(X, γ̂
λ̂
) = infλ∈Λ υ(X, γ̂λ) should be preferred whenever available, which

is the case when Γ̂ is a finite set.

3.2. The performance of the selected estimator. In this section, we
establish non-asymptotic exponential inequalities of deviations between the
selected estimator Rγ̂

λ̂
and the truth R∗.

Theorem 1. Under Assumption 1 and 2, whatever the conditional distri-
butions R∗ = (R∗1, . . . , R∗n) of Yi given Wi and the distributions of Wi, there
exists a universal constant C0 > 0 such that the selected estimator Rγ̂

λ̂
given

by the procedure in Section 3.1 among a family of (possibly random) can-
didates Γ̂ = {γ̂λ(X), λ ∈ Λ} based on the observations X = (X1, ..., Xn)
satisfies for any ξ > 0, on a set of probability larger than 1− Σ2e−ξ

(7) h2(R∗,Rγ̂
λ̂
) ≤ inf

λ∈Λ

[
c1h2(R∗,Rγ̂λ) + c2pen(γ̂λ)

]
+ c3 (1.471 + ξ) ,

where c1 = 91.4, c2 = 42.7 and c3 = 12666.9.

The proof of Theorem 1 is postponed to Section 7. We hereby give a short
discussion of the numerical constant C0 appearing in the penalty function
(5). In the proof of Theorem 1, we show that there does exist a numerical
constant C0 > 0 such that for all the penalties satisfying (5), our procedure
defined in Section 3.1 results in a selected estimator fulfilling the perfor-
mance stated in Theorem 1. Unfortunately, this theoretical constant C0
turns out to be quite large and we do not have enough information about
the smallest value of C0 which validates the non-asymptotic exponential in-
equalities in (7). In practice, when we implement our estimator selection
procedure we regard this C0 as a tuning parameter instead of using the the-
oretical value. For this point, we will make it more clear in the simulation
study, where it also turns out the value of C0 in theory seems to be too
pessimistic.

To comment on the performance of the selected estimator further, we
integrate (7) with respect to ξ and obtain the following risk bound.
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Corollary 1. Under Assumption 1 and 2, whatever the conditional distri-
butions R∗ = (R∗1, . . . , R∗n) of Yi given Wi and the distributions of Wi, there
exists a universal constant C0 > 0 such that the selected estimator Rγ̂

λ̂
given

by the procedure in Section 3.1 among Γ̂ = {γ̂λ(X), λ ∈ Λ} satisfies

E
î
h2(R∗,Rγ̂

λ̂
)
ó
≤ E
ï

inf
λ∈Λ

(
c1h2(R∗,Rγ̂λ) + c2pen(γ̂λ)

)ò
+ c3

(
Σ2 + 1.471

)
≤ inf

λ∈Λ

{
E
[
c1h2(R∗,Rγ̂λ) + c2pen(γ̂λ)

]}
+ c3

(
Σ2 + 1.471

)
.

In particular, if the equality in (5) holds,

(8) E
î
h2(R∗,Rγ̂

λ̂
)
ó
≤ Cα,Σ inf

λ∈Λ

{
E
[
h2(R∗,Rγ̂λ)

]
+ E [Ξ(γ̂λ)]

}
,

where for all λ ∈ Λ,

Ξ(γ̂λ) = inf
m∈M(γ̂λ)

ï
|m|
Å

9.11 + log+

Å
n

|m|

ãã
+ ∆(m)

ò
≤ |“m(λ)|

ï
9.11 + log+

Å
n

|“m(λ)|

ãò
+ ∆(“m(λ))

and

Cα,Σ =
ñ
c2C0

Å
2α+ 1

2

ã
+
c3
(
Σ2 + 1.471

)
9.11

ô
∨ c1.

The result given in (8) compares the risk of the selected estimator Rγ̂
λ̂
to

those of Rγ̂λ plus an additional nonnegative term E [Ξ(γ̂λ)]. One nice feature
of this approach implied by (8) lies in the fact that the risk bound does not
depend on the cardinality of the set Γ̂. This entails that if we enlarge the
collection of our candidates by keepingM unchanged (so that ∆(m) will not
change), the risk bound for the selected estimator only decreases over the
larger collection of candidates. On the other hand, our procedure is based
on O(|Γ̂|2) times of pair-by-pair comparisons. Therefore, the payment for
enlarging set Γ̂ is the computation time.

The risk bound (8) in Corollary 1 also accounts for the stability of our
selection procedure under a slight misspecification framework. To illustrate,
let us first consider the ideal situation where R∗ = Rγ∗ = (Rγ∗ , . . . , Rγ∗)
with γ∗ a piecewise constant function based on the partition m∗ of W .
We denote Γm∗ the class of all piecewise constant functions with values in
I ⊂ R based on the partition m∗ and assume for simplicity Γ̂ = Γm∗ , where
Γm∗ stands for a dense (for the topology of the pointwise convergence) and
countable subset of Γm∗ . Taking ∆(m∗) = 0, we deduce from (8) that the
estimator Rγ̂ based on the selection among Γm∗ satisfies for C > 0 being a
numerical constant,

(9) E
[
h2(Rγ∗ ,Rγ̂)

]
≤ C|m∗|

ï
1 + log+

Å
n

|m∗|

ãò
,
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which is, up to a logarithm term, the expected magnitude of |m∗| for the
quantity h2(Rγ∗ ,Rγ̂). If it is not the ideal case, an approximation error
h2(R∗,Qm∗) with Qm∗ =

{
Rγ , γ ∈ Γm∗

}
, will be added into the right

hand side of (9) according to (8). However, as long as this bias term remains
small, the performance of our selected estimator will not deteriorate too
much as compared to the ideal situation.

3.3. Connection to model selection. The work done in this paper differs
from the corresponding result (12) given by a model selection procedure in
Chen (2022). In fact, one can regard Corollary 1 in this paper as a more
general result of the one in Chen (2022). We illustrate this connection as
follows.

We consider the particular application of our selection procedure in the
context of model selection. For simplicity, let the equality holds in (5). We
take Λ =

¶
1, . . . , |Γ̃|

©
which is the index set of all the functions belonging to

Γ̃ = ∪m∈MΓm so that in this case, Γ̂ = Γ̃ = {γλ, λ ∈ Λ} is a collection of
deterministic candidates. Moreover, for each λ ∈ Λ, there exists a determin-
istic m(λ) ∈M such that γλ ∈ Γm(λ). Let us denote Qm = {Rγ , γ ∈ Γm},
for all m ∈M. We can immediately deduce from (8) that the estimator Rγ̂

based on the selection among the family {Γm, m ∈M} satisfies

E
[
h2(R∗,Rγ̂)

]
≤ Cα,Σ inf

m∈M

[
h2(R∗,Qm) +Dn(m) + ∆(m)

]
,

which is, up to constants, the result (12) of Chen (2022) when one takes
Γm in Chen (2022) as the collection of piecewise constant functions on W .
The difference is their model selection procedure, on the one hand, does
not require Assumption 2 to be satisfied and can be applied to other types
of models to approximate the potential γ∗ besides piecewise constant ones.
On the other hand, when the number of models becomes large, model selec-
tion strategy is more of theoretical interest due to its expensive numerical
cost. Our estimator selection strategy, however, allows to deal with random
partitions which can be obtained for example from dynamic programming
algorithm (e.g. Rigaill (2015)) or CART algorithm (e.g. Breiman et al.
(1984)). Efficiently reducing the cardinality of Γ̂, these algorithms together
with our estimator selection procedure take the model selection strategy into
practice. Moreover, the idea that selecting among random candidates set
makes the selection between estimators given by different model selection
strategies possible.

4. Application to changepoint detection in exponential
families

In this section, we consider the application of our estimator selection
procedure to changepoint detection problem in exponential families. In this
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context, people usually assume the exponential family Q0 = {Rγ , γ ∈ I}
has been parametrized in its natural form which entails u is taken as the
identity function in (2) and A(γ) = log [

∫
Y exp (γT (y)) dν(y)]. We observe a

sequence Y = (Y1, . . . , Yn) with values in Y n and assume that there exists
a vector γ∗ = (γ∗1 , . . . , γ∗n) ∈ In with N − 1 changepoints, N ≥ 1 such
that within each segment, the values of γ∗ remain a constant and for each
i ∈ {1, . . . , n}, the distribution of Yi is given by Rγ∗i . This corresponds to
the situation in our setting when Wi = (i − 1)/n are deterministic, for all
i ∈ {1, . . . , n} so that W = [0, 1) and the function γ∗ : [0, 1) → I ⊂ R is a
right-continuous step function with N ≥ 1 segments. For consistency with
the previous paragraphs, we takeWi = (i−1)/n throughout this section and
use the function notation γ∗ rather than the vector γ∗ ∈ In in the sequel.

For each 1 ≤ k ≤ n, letMk stand for the collection of all possible parti-
tions of the sequence 1, . . . , n into k segments and denoteM = ∪1≤k≤nMk.
In changepoint detection problem, for each m ∈M, we assign its weight as

(10) ∆(m) = log
Ç
n− 1
|m| − 1

å
+ |m|.

With (10), a basic computation leads to Σ =
∑
m∈M exp [−∆(m)] ≤ 1/(e−1)

which entails Assumption 1 is satisfied. Moreover, since W = [0, 1) ⊂ R, for
any m1,m2 ∈M, |m1∨m2| ≤ |m1|+ |m2|−1, Assumption 2 also holds true
with α = 1.

Supposing that we have a finite but arbitrary collection of (possibly ran-
dom) piecewise constant candidates Γ̂ = {γ̂λ(X), λ ∈ Λ}, we associate each
γ̂λ(X) with the penalty

pen(γ̂λ) = κ

®
|“m(λ)|

ï
10.11 + log

Å
n

|“m(λ)|

ãò
+ log

Ç
n− 1

|“m(λ)| − 1

å´
,

where κ = 2.5C0 is the parameter to be tuned later. Once the value of κ
is given, our estimator selection procedure can be implemented by running
Algorithm 1.

Algorithm 1 Estimator selection
Input:

X = (X1, · · · , Xn): the observations.
Output: γ̂

λ̂

1: Collect Γ̂ = {γ̂λ, λ ∈ Λ} based on X.
2: for λ ∈ Λ do
3: υ(X, γ̂λ)← supλ′∈Λ [T(X, γ̂λ, γ̂λ′)− pen(γ̂λ′)] + pen(γ̂λ).
4: end for
5: λ̂← argminλ∈Λ υ(X, γ̂λ).
6: Return γ̂

λ̂
.



ESTIMATOR SELECTION IN EXPONENTIAL-LIKE FAMILIES 13

4.1. Calibrating the value of κ. We take κ = 0.08 uniformly over all
the exponential families. The reason for this choice of κ is explained in this
section.

The idea to calibrate the value of κ is rather simple. Roughly speaking, we
first simulate data of size n and prepare a collection of candidates Γ̂ which
can be done by running the algorithm in R package Segmentor3IsBack
(implementing the procedure proposed by Cleynen and Lebarbier (2014,
2017)). Then we take different values of κ to design our penalty function
and obtain a sequence of the selected γ̂

κ,λ̂
among Γ̂ associated to various κ.

For each value of κ, we repeat the experiment under each simulation setting
100 times and finally evaluate the risk E

î
h2
Ä
R∗,Rγ̂

κ,λ̂

äó
of the selected

estimator Rγ̂
κ,λ̂

by its empirical mean, i.e. we compute

R̂n
Ä
γ̂
κ,λ̂

ä
= 1

100

100∑
l=1

ñ
n∑
i=1

h2
Å
R∗i , Rγ̂l

κ,λ̂
( i−1
n )

ãô
,

where γ̂l
κ,λ̂

is the l-th realisation of the selected estimator associated to a
fixed κ.

4.1.1. Simulating data. We carry out experiments for three models: Gauss-
ian, Poisson and exponential changepoint detection.

Let γ∗ be piecewise constant on [0, 1) with N segments and R∗ = Rγ∗ .
For each model, we design the experiments under three settings where for
all the settings n = 500, but N = 5, N = 10 and N = 20 respectively. For
all the three settings, the changepoints are uniformly located, i.e. every 100
data-points for the first setting, every 50 data-points for the second setting
and every 25 data-points for the third setting.

— Under all the settings of Gaussian model, for 1 ≤ i ≤ n, if Yi locates
at the j-th segment with 1 ≤ j ≤ N , Yi follows a Gaussian distribution with
mean (j + 1)/2, variance σ2 = 1.

— Under all the settings of Poisson model, for 1 ≤ i ≤ n, if Yi locates
at the j-th segment with 1 ≤ j ≤ N , Yi follows a Poisson distribution with
mean j which means γ∗ takes value log(j) on the j-th segment.

— Under all the settings of exponential model, for 1 ≤ i ≤ n, if Yi locates
at the j-th segment with 1 ≤ j ≤ N , Yi follows an exponential distribution
with natural parameter 0.01j.

Figure 1 exhibits one example of the simulated data (when N = 10) and
the true value of the regression function γ∗ (or a suitable transformation of
γ∗) on each segment.

4.1.2. Collecting candidates in Γ̂. In the work of Cleynen and Lebarbier
(2014, 2017), they solved this problem by a model selection procedure via
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Figure 1. The 1st graph (top) corresponds to one profile of the simu-
lated data (dots) and γ∗ (solid line) for Gaussian model; The 2nd graph
(middle) corresponds to one profile of the simulated data (dots) and
exp(γ∗) (solid line) for Poisson model; The 3rd graph (bottom) corre-
sponds to one profile of the simulated data (dots) and 1/γ∗ (solid line)
for exponential model.

some suitable penalty function based on the partitions given by the pruned
dynamic programming algorithm (PDPA for short) proposed by Rigaill
(2015). Given Nmax the maximum number of segments for consideration,
for each integer λ with 1 ≤ λ ≤ Nmax, PDPA searches the optimal partition
with exact λ segments. We set Nmax = 30 hence 30 different partitions of
the sequence 1, . . . , n are returned by PDPA. Provided a partition, the value
of γ∗ on each segment is given by maximum likelihood estimation as it was
done in Cleynen and Lebarbier (2014, 2017). By doing so, we collect 30
candidates which we denote as Γ̂c = {γ̂λ, 1 ≤ λ ≤ Nmax}.

4.1.3. Results. Under each setting of all the three models, one experiment
means we simulate n = 500 observations with N segments based on the
corresponding γ∗ introduced in Section 4.1.1. We then select the estimator
among the candidate ones Γ̂c by Algorithm 1 via the penalty functions
associated to different values of κ. Finally we observe the quantity R̂n(γ̂

κ,λ̂
)

and regard it as the criterion to calibrate a suitable value of κ. The results for
all nine settings are shown in Figure 2, where the horizontal axis represents
the value of κ and the vertical axis indicates the quantity R̂n(γ̂

κ,λ̂
).

In Figure 2, the quantities R̂n(γ̂
κ,λ̂

) in all nine settings have a tendency
to first decrease and then increase with respect to the increasing of κ, which
is consistent to the theoretical results. When κ is too small, the penalty
function is relatively small for the complexed models therefore the overfit-
ting issue may happen. However, when κ is too large, the penalty function
is excessively large for the complexed models which will cause an overpe-
nalization. Moreover, the minimizers of κ for the quantities R̂n(γ̂

κ,λ̂
) in all

nine settings are very close to each other and all concentrate within a short
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(a) Gaussian (b) Poisson

(c) exponential (d) 3 in 1

Figure 2. “Rn(γ̂κ,λ̂) with respect to κ under nine settings.

interval [0.05, 0.1]. Considering the optimal performance of all the settings
and also being safe with respect to overfitting, we choose κ as the largest
minimizer of R̂n(γ̂

κ,λ̂
) among nine settings which approximately equals to

0.08 and implement our procedure with κ = 0.08 in later studies.

5. Simulation study and discussion

Throughout this section, we carry out a comparative simulation study
with the state-of-art competitors available in R packages for changepoint
detection problem in exponential families. Unless otherwise specified, the
competitors are implemented under the default settings in their packages.
For Gaussian model, some of our competitors use the estimated value of the
standard deviation σ. To make the comparison as fair as possible, we also
implement the median absolute deviation estimator for σ while running our
procedure, which is the one adopted in Killick et al. (2012) and Fearnhead
and Rigaill (2019).

To evaluate the performance of each estimator, besides the empirical risk
R̂n(·) obtained from replications, we also record “N −N which computes the
difference between the estimated number of segments and the truth for each
replication.
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5.1. Accuracy. In this section, we study the changepoint detection prob-
lem for Gaussian model where numerous literature can be found tackling this
issue. We construct our candidates set Γ̂ as a collection of some cutting-edge
estimators with implemented R packages and these ones are also regarded as
the competitors of our estimator ES. More precisely, the competing packages
we consider are: PSCBS, which implements the CBS procedure proposed in
Olshen et al. (2004); cumSeg, which performs the method given by Muggeo
and Adelfio (2010); changepoint, which implements the PELT approach
provided by Killick et al. (2012); StepR, which implements the SMUCE
given by Frick et al. (2013); Segmentor3IsBack, which implements CL
proposed by Cleynen and Lebarbier (2014, 2017); wbs, which implements
the wild binary segmentation methodology proposed in Fryźlewicz (2014);
FDRSeg, which implements the approach given in Li et al. (2016); robseg,
which implements the procedure proposed by Fearnhead and Rigaill (2019).
We would like to study the performance of our estimator ES based on the
selection among these state-of-art ones.

We follow the test signals considered by Fryźlewicz (2014) and then by
Fearnhead and Rigaill (2019) which involves 5 different formats of signals
with length from n = 140 to 2048: (1) blocks, (2) fms, (3) mix, (4)
teeth10 and (5) stairs10. The specific settings of these signals including
the sample sizes and noise standard deviations are given in Appendix B
of Fryźlewicz (2014). Following the experiments done in Fearnhead and
Rigaill (2019), we also consider an additional signal setting by changing the
standard deviation of (2) fms from 0.3 into 0.2, which is also one of the
settings studied in Frick et al. (2013). An example of one profile of the
simulated data and the underlying signals γ∗ are plotted in Figure 3. For
each signal, the experiment has been replicated 1000 times. The results are
shown in Table 1. The performance of each estimator is stated as follows.

CBS and cumSeg. The CBS and cumSeg in general behave poorly com-
pared with other procedures. The CBS only has satisfactory performance
of detecting changes for blocks and fms (σ = 0.2) but it turns out CBS
always results in a relatively large empirical risk R̂n(·). Except acceptable
performance for fms (σ = 0.2) and stairs10, cumSeg always tends to un-
derestimate the number of changes and also yields an estimator with quite
large empirical risk.

PELT. The PELT has excellent performance for both of the fms signals
and stairs10. For blocks signal, it is above the average but does not
belong to the first class among all. As for mix and teeth10, it performs
rather average.

SMUCE. The SMUCE has very excellent performance for fms (σ = 0.2).
However, it behaves poorly for all the other signals.
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(a) blocks (b) fms (σ = 0.3) (c) fms (σ = 0.2)

(d) mix (e) teeth10 (f) stairs10

Figure 3. The six signals (solid line) and simulated data (dots).

CL. The CL has nice performance for teeth10. For blocks and mix,
its performance is satisfactory though not belonging to the first class. For
both of the fms signals, it shows rather average performance. The CL does
not behave well for the stairs10 signal where it tends to overestimate the
number of changes compared to other methods. Let us remark here that the
performance of CL in our simulation study is better than the correspond-
ing context in Fryźlewicz (2014). This is because when implementing the
package Segmentor3IsBack, users need to set the maximum number of
segments Nmax. We set Nmax = 20 for all the six signals considering the
maximal number of changepoints (i.e. N − 1) among six signals is 14 and
they set Nmax = 15 which resulted in a systematical underestimation of the
number of changepoints for CL in their study.

WBS sSIC. We implement the package wbs combining the WBS method
with the sSIC stopping criterion which, as it has been shown in Fryźlewicz
(2014), is the overall winner compared to combining the WBS method with
other thresholding stopping rules. The WBS sSIC has excellent performance
for both of the fms signals and teeth10. However, it performs rather aver-
age for blocks and mix. As for stairs10, the performance of WBS sSIC
is a little poor as a consequence of overestimating the number of change-
points. Such a result has also been confirmed by the study of WBS sSIC in
Fryźlewicz (2014).
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“N −N
Method Signal ≤ −2 -1 0 1 ≥ 2 R̂n(·) Contribution

ES blocks 0.005 0.278 0.656 0.055 0.006 5.61 ± 0.12 -

CBS blocks 0.006 0.090 0.575 0.184 0.145 7.57 ± 0.14 0.000

cumSeg blocks 0.653 0.335 0.011 0.001 0.000 15.71 ± 0.40 0.000

PELT blocks 0.014 0.389 0.574 0.020 0.003 5.69 ± 0.11 0.035

SMUCE blocks 0.940 0.060 0.000 0.000 0.000 16.02 ± 0.37 0.010

CL blocks 0.010 0.356 0.595 0.035 0.004 5.67 ± 0.12 0.533

WBS sSIC blocks 0.021 0.412 0.532 0.032 0.003 6.11 ± 0.13 0.013

FDR(α = 0.05) blocks 0.008 0.447 0.478 0.059 0.008 6.15 ± 0.13 0.332

robseg(Huber) blocks 0.004 0.234 0.674 0.072 0.016 5.84 ± 0.12 0.063

robseg(biweight) blocks 0.020 0.404 0.558 0.017 0.001 5.88 ± 0.12 0.014

ES fms(0.3) 0.008 0.002 0.915 0.069 0.006 2.16 ± 0.07 -

CBS fms(0.3) 0.007 0.012 0.796 0.139 0.046 5.10 ± 0.09 0.000

cumSeg fms(0.3) 0.706 0.041 0.224 0.028 0.001 7.07 ± 0.44 0.000

PELT fms(0.3) 0.007 0.003 0.922 0.061 0.007 2.15 ± 0.08 0.054

SMUCE fms(0.3) 0.074 0.537 0.388 0.001 0.000 5.15 ± 0.18 0.293

CL fms(0.3) 0.002 0.001 0.837 0.119 0.041 2.28 ± 0.08 0.199

WBS sSIC fms(0.3) 0.007 0.003 0.933 0.048 0.009 2.26 ± 0.08 0.008

FDR(α = 0.05) fms(0.3) 0.001 0.027 0.879 0.076 0.017 2.28 ± 0.09 0.409

robseg(Huber) fms(0.3) 0.001 0.001 0.825 0.130 0.043 2.37 ± 0.08 0.007

robseg(biweight) fms(0.3) 0.013 0.005 0.928 0.049 0.005 2.23 ± 0.08 0.030

ES fms(0.2) 0.000 0.000 0.923 0.071 0.006 1.61 ± 0.06 -

CBS fms(0.2) 0.000 0.000 0.871 0.086 0.043 5.79 ± 0.07 0.000

cumSeg fms(0.2) 0.094 0.009 0.812 0.083 0.002 5.19 ± 0.22 0.002

PELT fms(0.2) 0.000 0.000 0.929 0.060 0.011 1.59 ± 0.06 0.022

SMUCE fms(0.2) 0.000 0.001 0.994 0.005 0.000 1.49 ± 0.06 0.734

CL fms(0.2) 0.000 0.000 0.840 0.128 0.032 1.74 ± 0.07 0.102

WBS sSIC fms(0.2) 0.000 0.000 0.945 0.050 0.005 1.65 ± 0.06 0.003

FDR(α = 0.05) fms(0.2) 0.000 0.000 0.871 0.103 0.026 1.66 ± 0.06 0.115

robseg(Huber) fms(0.2) 0.000 0.000 0.830 0.135 0.035 1.83 ± 0.07 0.008

robseg(biweight) fms(0.2) 0.000 0.000 0.937 0.058 0.005 1.63 ± 0.06 0.014

ES mix 0.264 0.243 0.434 0.056 0.003 5.91 ± 0.12 -

CBS mix 0.313 0.201 0.324 0.109 0.053 11.18 ± 0.17 0.000

cumSeg mix 0.999 0.001 0.000 0.000 0.000 32.61 ± 0.92 0.000

PELT mix 0.375 0.270 0.321 0.032 0.002 6.11 ± 0.12 0.070

SMUCE mix 0.922 0.076 0.002 0.000 0.000 12.59 ± 0.42 0.042

CL mix 0.305 0.244 0.390 0.053 0.008 6.04 ± 0.12 0.585

WBS sSIC mix 0.342 0.269 0.351 0.032 0.006 5.99 ± 0.12 0.029

FDR(α = 0.05) mix 0.411 0.358 0.181 0.038 0.012 6.71 ± 0.13 0.190

robseg(Huber) mix 0.209 0.240 0.444 0.088 0.019 6.10 ± 0.12 0.051

robseg(biweight) mix 0.403 0.264 0.305 0.026 0.002 6.30 ± 0.12 0.033

ES teeth10 0.215 0.025 0.721 0.037 0.002 5.69 ± 0.24 -

CBS teeth10 0.999 0.000 0.001 0.000 0.000 24.69 ± 0.07 0.000

cumSeg teeth10 1.000 0.000 0.000 0.000 0.000 24.85 ± 0.01 0.005

PELT teeth10 0.274 0.029 0.657 0.037 0.003 6.03 ± 0.24 0.090

SMUCE teeth10 0.984 0.013 0.003 0.000 0.000 20.11 ± 0.22 0.003

CL teeth10 0.029 0.013 0.679 0.204 0.075 4.71 ± 0.13 0.321

WBS sSIC teeth10 0.067 0.021 0.752 0.120 0.040 5.30 ± 0.26 0.010

FDR(α = 0.05) teeth10 0.309 0.135 0.508 0.040 0.008 7.68 ± 0.32 0.356

robseg(Huber) teeth10 0.105 0.026 0.748 0.102 0.019 4.94 ± 0.15 0.016

robseg(biweight) teeth10 0.318 0.028 0.635 0.019 0.000 6.31 ± 0.25 0.199

ES stairs10 0.00 0.004 0.949 0.044 0.003 3.33 ± 0.09 -

CBS stairs10 0.012 0.172 0.789 0.027 0.000 13.81 ± 0.16 0.000

cumSeg stairs10 0.024 0.090 0.819 0.067 0.000 8.61 ± 0.24 0.000

PELT stairs10 0.000 0.004 0.955 0.039 0.002 3.32 ± 0.09 0.017

SMUCE stairs10 0.801 0.137 0.062 0.000 0.000 22.26 ± 0.58 0.050

CL stairs10 0.000 0.001 0.768 0.184 0.047 3.50 ± 0.09 0.178

WBS sSIC stairs10 0.000 0.001 0.608 0.301 0.090 3.91 ± 0.10 0.004

FDR(α = 0.05) stairs10 0.002 0.028 0.896 0.053 0.021 3.57 ± 0.12 0.703

robseg(Huber) stairs10 0.000 0.000 0.867 0.110 0.023 3.45 ± 0.09 0.006

robseg(biweight) stairs10 0.000 0.005 0.964 0.031 0.000 3.36 ± 0.09 0.042

Table 1. Frequencies of “N − N and “Rn(·) of ES and its competitors
for Gaussian model over 1000 simulated sample paths. Contribution
denotes the frequency of each competitor being selected as ES. Bold:
highest empirical frequency of “N − N = 0 and those with frequencies
within 10% off the highest. The uncertainty is obtained by computing
2σ̂/√nr, where σ̂2 is the empirical variance and nr is the number of
replications.
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FDR. The FDR with α = 0.05 performs well for fms (σ = 0.3) and
satirs10 signals. For fms (σ = 0.2), it has an average performance. But
it behaves below the average under other test signals.

robseg. We consider Huber loss and biweight loss when implementing
the package robseg which are the recommended ones (especially the bi-
weight loss) according to Fearnhead and Rigaill (2019). We adopted the
suggested values in the Section 5.2 of their paper to set the parameters
in their algorithms. The robseg (Huber) performs excellently for blocks,
mix and teeth10. It behaves rather average for both of the fms signals
and stairs10. The robseg (biweight) performs excellently for both of the
fms signals and stairs10. As for blocks, mix and teeth10 signals, it
performs rather average.

ES. As we can observe from the column named “Contribution” in Table 1,
under different test signals, our estimator selection procedure tends to al-
locate different preference to the candidates in Γ̂ based on their practical
performance. For example, when SMUCE shows obvious outperformance
for the signal fms (σ = 0.2), we select it with a frequency 0.734 as our ES
estimator. However, when SMUCE performs poorly under other signals we
automatically reduce the frequency to select it as ES but prefer some more
competitive ones. As a final result, our ES estimator shows a very compet-
itive performance under all the test signals. The interesting point is that
this cannot be achieved by any single candidate in Γ̂ since as we have seen
above, each of them only outperforms others for some of the test signals but
not all.

5.2. Stability when outliers present. As we have mentioned in the theo-
retical analysis part, our estimator selection procedure possesses the stability
when there is a slight departure from the presumption R∗ = Rγ∗ with γ∗
beging piecewise constant on W . One of the application scenario for this
property is when there is a small proportion of outliers presenting in the
observations which has attracted more and more attention recently in the
changepoint detection. In this section, we test the practical performance of
ES as well as its competitors when outliers present. We take the signal fms
(σ = 0.2) as an example since most of the existing methods behave rather
well under this signal. Based on this signal, we add outliers by randomly
choosing five points among the sequence of length n = 497 and modifying
the values of them into 3. The results of all the estimators are shown in
Table 2.

We can observe from Table 2 that in such a scenario PELT, SMUCE, CL,
WBS sSIC, FDR and robseg (Huber) are all not robust with respect to the
outliers and they all overestimate the number of changepoints due to fitting
the outliers. The CBS and cumSeg still systematically underestimate the
number of changepoints. It is not that surprising robseg (biweight) proposed
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“N −N
Method Signal Outlier ≤ −2 -1 0 1 ≥ 2 R̂n(·) Contribution

ES fms(0.2) Yes 0.000 0.000 0.956 0.043 0.001 1.64 ± 0.06 -

CBS fms(0.2) Yes 0.660 0.282 0.038 0.016 0.004 34.55 ± 0.79 0.000

cumSeg fms(0.2) Yes 0.801 0.056 0.083 0.021 0.039 16.96 ± 0.51 0.000

PELT fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.27 ± 0.07 0.000

SMUCE fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 8.02 ± 0.11 0.000

CL fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.29 ± 0.07 0.000

WBS sSIC fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.33 ± 0.07 0.000

FDR(α = 0.05) fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.44 ± 0.07 0.000

robseg(Huber) fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.51 ± 0.08 0.000

robseg(biweight) fms(0.2) Yes 0.000 0.000 0.956 0.043 0.001 1.64 ± 0.06 1.000

Table 2. Frequencies of “N−N and “Rn(·) of ES and its competitors for
fms (σ = 0.2) signal with 5 outliers over 1000 simulated sample paths.
Contribution denotes the frequency of each competitor being selected as
ES. Bold: highest empirical frequency of “N − N = 0. The uncertainty
is obtained by computing 2σ̂/√nr, where σ̂2 is the empirical variance
and nr is the number of replications.

in Fearnhead and Rigaill (2019) is quite robust in this scenario since it was
designed to handle such an issue. It shows a very high frequency 0.956 to
recover the correct number of changepoints. Moreover, from the quantity
of empirical risk R̂n(·), it turns out robseg (biweight) outperforms all the
other candidates significantly which also indicates an excellent performance
of localising the changepoints as well as estimating the value of γ∗ on each
segment. Our selection procedure automatically gives the preference to rob-
seg (biweight) in this case with frequency 1.000 which confirms the stability
of our selection rule practically.

5.3. From Gaussian to Poisson and exponential models. As we have
mentioned in the introduction, there are not too many works in the statisti-
cal literature addressing changepoint detection for Poisson and exponential
models and establishing a theoretical guarantee for the proposed estimator.
The CL method proposed by Cleynen and Lebarbier (2014, 2017)) performs
a model selection procedure based on the partitions given by Rigaill (2015)
and they have proved the resulting estimator satisfies some oracle inequal-
ity. The R package Segmentor3IsBack implements their procedure and
tackle both of Poisson and exponential models. Another approach is given
by Frick et al. (2013) with the R package StepR where algorithm is only
available for Poisson segmentation.

A selection merely based on these two estimators is boring. Recall that in
Section 3.2, one feature of our selection procedure is enlarging the (possibly
random) collection Γ̂ but keeping M unchanged, the risk bound for the
selected estimator only decreases (or at least keeps unchanged) over the
larger collection. Therefore, for Poisson and exponential models, besides
CL and SMUCE (if available), we would like to recruit some reasonable
estimators into our candidates set Γ̂. Although these estimators do not exist
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in the literature and no quantitative or qualitative analysis for them, once
they are selected as ES by our selection procedure, the theoretical guarantee
we built in Section 3.2 indicates that, up to a constant, they perform better
than the state-of-art ones (CL and SMUCE).

One natural idea is to borrow the estimators for Gaussian model which is
the case intensively studied. Inspired by Brown et al. (2010) where they im-
plemented a mean-matching variance stabilizing transformation (MM-VST
for short) to turn the problem of regression in exponential families into a
standard homoscedastic Gaussian regression problem, we can perform a sim-
ilar technique to the observations Y . For more details of MM-VST, we refer
Section 2 of Brown et al. (2010). Let us remark that while implementing
MM-VST, we need to choose the value of m which corresponds to the num-
ber of data-points binned for transformation. Although it turns out that
for regression problem, this m needs to be suitably chosen (see Section 4
of Brown et al. (2010)), we do not want this pre-process step presumes any
information of the segmentation as we are in the context of changepoint
detection. Therefore, we simply take m = 1 in their transformation proce-
dure and implement the formula Y ′i = 2

√
Yi + 1/4 for Poisson model and

Y ′i = log(2Yi) for exponential model to derive new sequences of observations
Y ′ = (Y ′1 , . . . , Y ′n). We then apply the algorithms introduced in the last
section to Y ′ to get the locations of changepoints. Based on these locations,
we associate ρ-estimators proposed in Baraud and Chen (2020) to the es-
timated values of γ∗ on each segment to improve the performance. As it
was shown in Baraud and Chen (2020), under some suitable conditions and
when the model is exact, ρ-estimator recovers the accurate result given by
MLE. Moreover, it possesses more robustness compared to MLE when there
is a model misspecification and/or data contamination. To conclude, the
candidates set for Poisson model is given by

Γ̂ =
¶

SMUCE,CL,CBSt + ρ, cumSegt + ρ,PELTt + ρ,WBS sSICt + ρ,

FDRt(α = 0.05) + ρ, robseg(Huber)t + ρ, robseg(biweight)t + ρ
©
,(11)

where the character “t” indicates the procedure is implemented on the trans-
formed data. For exponential model, Γ̂ is constructed the same as (11)
except we change SMUCE to SMUCEt + ρ since it is no longer available.

To investigate the performance of ES and the candidates in Γ̂, we mimic
the test signals fms and mix for Poisson model and teeth10 and stairs10
for exponential model. We also study the scenario when outliers present in
the observations for the mimic signals fms (Poisson) and teeth10 (expo-
nential). We shall describe the specific settings of these signals as well as
how we add outliers in Appendix. Figure 4 exhibits the four underlying
signals together with one profile of the simulated data for each signal.
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(a) fms-type (b) mix-type

(c) teeth-type (d) stairs-type

Figure 4. (A) and (B): the test signals of the form exp(γ∗) (solid line)
and simulated data (dots) for Poisson model. (C) and (D): the test
signals of the form of 1/γ∗ (solid line) and simulated data (dots) for
exponential model.

The results of Poisson model are shown in Table 3. Let us first comment
the two existing estimators in the literature, namely SMUCE and CL. In
both of the scenarios with or without outliers, the performance of SMUCE
is quite poor at least under these two test signals. When no outlier presents
in the observations, SMUCE has a tendency to underestimate the number of
changepoints for both of the two signals fms-type and mix-type. When
there are outliers, SMUCE is sensitive to them therefore overestimates the
number of changepoints. The CL performs much better than SMUCE in
the scenario where no outlier presents in the observations but it is also not
robust with respect to the outliers. When no outlier presents, our estimator
ES slightly improves the performance of CL on detecting changes under both
of the two signals. When there are outliers presenting in the observations,
ES obviously outperforms CL as a consequence of enjoying the excellent
performance given by robseg (biweight)t. Interestingly, we find that when
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“N −N
Method Signal Outlier ≤ −2 -1 0 1 ≥ 2 R̂n(·) Contribution

ES fms-type No 0.002 0.050 0.878 0.062 0.008 2.51 ± 0.09 -

SMUCE fms-type No 0.288 0.528 0.184 0.000 0.000 6.21 ± 0.19 0.184

CL fms-type No 0.000 0.046 0.854 0.082 0.018 2.54 ± 0.10 0.725

CBSt + ρ fms-type No 0.030 0.254 0.546 0.131 0.039 5.34 ± 0.11 0.000

cumSegt + ρ fms-type No 0.424 0.374 0.193 0.009 0.000 7.26 ± 0.20 0.001

PELTt + ρ fms-type No 0.003 0.054 0.867 0.062 0.014 2.56 ± 0.10 0.015

WBS sSICt + ρ fms-type No 0.010 0.132 0.781 0.051 0.026 3.08 ± 0.12 0.013

FDRt(α = 0.05) + ρ fms-type No 0.288 0.528 0.184 0.000 0.000 5.97 ± 0.18 0.000

robseg(Huber)t + ρ fms-type No 0.001 0.035 0.800 0.130 0.034 2.68 ± 0.10 0.032

robseg(biweight)t + ρ fms-type No 0.005 0.073 0.867 0.048 0.007 2.63 ± 0.10 0.030

ES fms-type Yes 0.001 0.092 0.825 0.070 0.012 3.78 ± 0.11 -

SMUCE fms-type Yes 0.000 0.000 0.000 0.000 1.000 12.76 ± 0.21 0.000

CL fms-type Yes 0.000 0.000 0.000 0.000 1.000 8.58 ± 0.11 0.000

CBSt + ρ fms-type Yes 0.521 0.354 0.086 0.035 0.004 11.98 ± 0.36 0.000

cumSegt + ρ fms-type Yes 0.795 0.164 0.038 0.003 0.000 12.01 ± 0.28 0.009

PELTt + ρ fms-type Yes 0.000 0.000 0.000 0.000 1.000 8.45 ± 0.10 0.000

WBS sSICt + ρ fms-type Yes 0.000 0.000 0.000 0.000 1.000 8.82 ± 0.12 0.000

FDRt(α = 0.05) + ρ fms-type Yes 0.000 0.000 0.000 0.000 1.000 11.35 ± 0.18 0.001

robseg(Huber)t + ρ fms-type Yes 0.000 0.008 0.048 0.062 0.882 6.13 ± 0.13 0.053

robseg(biweight)t + ρ fms-type Yes 0.000 0.092 0.839 0.066 0.003 3.74 ± 0.11 0.937

ES mix-type No 0.005 0.371 0.523 0.091 0.010 3.98 ± 0.09 -

SMUCE mix-type No 0.128 0.828 0.044 0.000 0.000 4.67 ± 0.13 0.339

CL mix-type No 0.014 0.439 0.466 0.071 0.010 3.99 ± 0.09 0.481

CBSt + ρ mix-type No 0.034 0.448 0.358 0.122 0.038 13.39 ± 0.11 0.000

cumSegt + ρ mix-type No 0.990 0.010 0.000 0.000 0.000 31.18 ± 0.45 0.000

PELTt + ρ mix-type No 0.010 0.443 0.466 0.071 0.010 4.03 ± 0.09 0.027

WBS sSICt + ρ mix-type No 0.018 0.509 0.402 0.056 0.015 4.03 ± 0.09 0.013

FDRt(α = 0.05) + ρ mix-type No 0.128 0.828 0.044 0.000 0.000 4.67 ± 0.12 0.000

robseg(Huber)t + ρ mix-type No 0.003 0.293 0.530 0.149 0.025 4.15 ± 0.09 0.099

robseg(biweight)t + ρ mix-type No 0.014 0.486 0.458 0.040 0.002 4.06 ± 0.09 0.041

Table 3. Frequencies of “N−N and “Rn(·) of ES and its competitors for
Poisson model over 1000 simulated sample paths. Contribution denotes
the frequency of each competitor being selected as ES. Bold: highest
empirical frequency of “N − N = 0 and those with frequencies within
10% off the highest. The uncertainty is obtained by computing 2σ̂/√nr,
where σ̂2 is the empirical variance and nr is the number of replications.

there is no outlier presenting in the observations, the combinations PELTt+
ρ and robsegt + ρ are perhaps nice choices at least under these two signals.

The results for exponential model are shown in Table 4. Under the
teeth-type signal without an outlier, the ES obviously outperforms any
single candidate by selecting mainly from CL and robseg (biweight)t + ρ.
When there are outliers, robseg (biweight)t+ρ is the best one among all and
we observe that ES improves the frequency of selecting robseg (biweight)t+ρ
as the final estimator so that finally ES achieves a competitive performance
compared to robseg (biweight)t + ρ and significantly outperforms the exist-
ing estimator CL. For stairs-type signal, CL performs quite nice but ES
still slightly improves it by enjoying the contribution from other candidates
in Γ̂.
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“N −N
Method Signal Outlier ≤ −2 -1 0 1 ≥ 2 R̂n(·) Contribution

ES teeth-type No 0.327 0.077 0.468 0.106 0.022 7.69 ± 0.25 -

CL teeth-type No 0.381 0.055 0.411 0.116 0.037 9.27 ± 0.38 0.766

SMUCEt + ρ teeth-type No 0.998 0.002 0.000 0.000 0.000 20.29 ± 0.14 0.000

CBSt + ρ teeth-type No 1.000 0.000 0.000 0.000 0.000 22.52 ± 0.06 0.000

cumSegt + ρ teeth-type No 1.000 0.000 0.000 0.000 0.000 22.56 ± 0.05 0.000

PELTt + ρ teeth-type No 0.134 0.068 0.241 0.191 0.366 9.14 ± 0.19 0.015

WBS sSICt + ρ teeth-type No 0.829 0.022 0.058 0.036 0.055 18.62 ± 0.37 0.007

FDRt(α = 0.05) + ρ teeth-type No 0.998 0.002 0.000 0.000 0.000 20.30 ± 0.14 0.000

robseg(Huber)t + ρ teeth-type No 0.076 0.096 0.263 0.227 0.338 8.42 ± 0.18 0.023

robseg(biweight)t + ρ teeth-type No 0.435 0.122 0.348 0.082 0.013 8.86 ± 0.21 0.189

ES teeth-type Yes 0.383 0.082 0.303 0.151 0.081 9.38 ± 0.25 -

CL teeth-type Yes 0.500 0.048 0.169 0.128 0.155 12.42 ± 0.42 0.534

SMUCEt + ρ teeth-type Yes 1.000 0.000 0.000 0.000 0.000 22.02 ± 0.14 0.000

CBSt + ρ teeth-type Yes 1.000 0.000 0.000 0.000 0.000 24.43 ± 0.07 0.001

cumSegt + ρ teeth-type Yes 1.000 0.000 0.000 0.000 0.000 24.49 ± 0.06 0.000

PELTt + ρ teeth-type Yes 0.090 0.069 0.131 0.162 0.548 10.48 ± 0.18 0.023

WBS sSICt + ρ teeth-type Yes 0.908 0.014 0.017 0.024 0.037 21.82 ± 0.32 0.008

FDRt(α = 0.05) + ρ teeth-type Yes 1.000 0.000 0.000 0.000 0.000 22.02 ± 0.14 0.001

robseg(Huber)t + ρ teeth-type Yes 0.090 0.074 0.202 0.222 0.412 9.37 ± 0.18 0.105

robseg(biweight)t + ρ teeth-type Yes 0.456 0.106 0.316 0.105 0.017 9.48 ± 0.20 0.328

ES stairs-type No 0.000 0.000 0.923 0.067 0.010 2.09 ± 0.08 -

CL stairs-type No 0.000 0.000 0.907 0.075 0.018 2.10 ± 0.08 0.977

SMUCEt + ρ stairs-type No 0.000 0.008 0.489 0.225 0.278 4.28 ± 0.19 0.003

CBSt + ρ stairs-type No 0.006 0.134 0.594 0.193 0.073 6.27 ± 0.31 0.000

cumSegt + ρ stairs-type No 0.002 0.120 0.682 0.192 0.004 7.54 ± 0.32 0.000

PELTt + ρ stairs-type No 0.000 0.000 0.032 0.041 0.927 6.56 ± 0.18 0.000

WBS sSICt + ρ stairs-type No 0.000 0.003 0.456 0.094 0.447 4.63 ± 0.17 0.001

FDRt(α = 0.05) + ρ stairs-type No 0.000 0.008 0.489 0.225 0.278 4.27 ± 0.19 0.002

robseg(Huber)t + ρ stairs-type No 0.000 0.000 0.207 0.144 0.649 4.84 ± 0.16 0.001

robseg(biweight)t + ρ stairs-type No 0.000 0.000 0.699 0.183 0.118 3.21 ± 0.12 0.016

Table 4. Frequencies of “N − N and “Rn(·) of ES and its competitors
for exponential model over 1000 simulated sample paths. Contribution
denotes the frequency of each competitor being selected as ES. Bold:
highest empirical frequency of “N − N = 0 and those with frequencies
within 10% off the highest. The uncertainty is obtained by computing
2σ̂/√nr, where σ̂2 is the empirical variance and nr is the number of
replications.

6. Real data examples

In this section, we apply our estimator selection procedure to two real
datasets and investigate its performance. The first one is the observations
of DNA copy numbers from biological research where Gaussian model is
considered to detect changes. The second one is the British coal disasters
dataset to which Poisson model is applied.

6.1. Detecting changes in DNA copy numbers. In normal human cells,
it is well known that the number of DNA copies is two. As it has been
revealed by many works in biological research (see Albertson and Pinkel
(2003) and Redon et al. (2006) for example), the pathogenesis of some dis-
eases including various cancers and mental retardation is often associated
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to chromosomal aberrations such as deletions, duplications and/or amplifi-
cations which finally result in the copy number of DNA from such regions
differs from the normal number two. Including microarray and sequencing
experiments, biologists have developed various techniques to measure DNA
copy numbers of the selected genes on some genome and they record their
experimental results as a sequence of observations Y = (Y1, . . . , Yn). The
statistical interest lies in finding abrupt changes in the means of the observa-
tions. To address this issue, we consider Gaussian model with an estimated
variance.

In R package jointseg (Pierre-Jean et al. (2015)), they provide two
real datasets GSE11976 and GSE29172 to resample from, where the truth of
changepoints is already known. However, since we do not have the informa-
tion about the true value of γ? on each segment, it is impossible to compute
the pseudo Hellinger distance between each estimator and the truth. Note
that for both GSE11976 and GSE29172 datasets, we need to choose the
tumour fraction when resampling from them. We consider the tumour frac-
tion levels 0.79 and 1 for the dataset GSE11976 and the levels 0.7 and 1 for
GSE29172 which turns out to be the situations where the size of each jump
at the changepoint is relatively large as indicated in Figure 9 of Fearnhead
and Rigaill (2019). Therefore, we can roughly evaluate the performance
of each estimator by its frequency of correctly estimating the number of
changepoints. Although our selection procedure can be applied in the sce-
nario where small amount of outliers present in the observations, as we have
seen in Section 5 some candidates in Γ̂ are sensitive to the outliers. To
avoid the phenomenon that an estimator systematically underestimates the
number of changepoints but due to the sensitivity to outliers it accidentally
gives a correct number of segments, we run a smooth procedure on the data
before applying all the estimation procedures by implementing the function
smooth.CNA from the famous R package DNAcopy. Moreover, since we
have seen in the simulation study that the performance of CBS and cumSeg
is quite poor, we remove these two estimators from our candidates set Γ̂ for
simplicity. For each dataset and each level of tumour fraction, we simulate
1000 profiles of length n = 1000 with 5 changepoints where the length of
each segment is at least 20. The results are shown in Table 5. As one can
observe, among the state-of-art ones, robseg (biweight) is the best for cor-
rectly estimating the number of changepoints on this dataset. By running
a data-driven procedure to select among the candidates set Γ̂, our selected
estimator ES shows a competitive performance in this situation as compared
to the best one robseg (biweight).

6.2. British coal disasters dataset. To investigate the performance of
ES for Poisson model in practice, we apply our procedure to British coal
disasters dataset. This dataset is quite well-known in the context of Poisson
segmentation see Green (1995), Yang and Kuo (2001), Fearnhead (2006)
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“N −N
Method Dataset Fraction ≤ −3 -2 -1 0 1 2 ≥ 3 Contribution

ES GSE11976 0.79 0.003 0.028 0.044 0.771 0.108 0.031 0.015 -

PELT GSE11976 0.79 0.000 0.002 0.008 0.198 0.096 0.196 0.500 0.060

SMUCE GSE11976 0.79 0.004 0.021 0.124 0.391 0.203 0.139 0.118 0.147

CL GSE11976 0.79 0.011 0.066 0.053 0.550 0.117 0.118 0.085 0.393

WBS sSIC GSE11976 0.79 0.005 0.031 0.066 0.508 0.066 0.174 0.150 0.100

FDR(α = 0.05) GSE11976 0.79 0.000 0.005 0.011 0.096 0.056 0.126 0.706 0.020

robseg(Huber) GSE11976 0.79 0.001 0.012 0.022 0.569 0.193 0.110 0.093 0.121

robseg(biweight) GSE11976 0.79 0.002 0.046 0.045 0.778 0.102 0.019 0.008 0.159

ES GSE11976 1.00 0.000 0.003 0.007 0.790 0.100 0.046 0.054 -

PELT GSE11976 1.00 0.000 0.000 0.000 0.243 0.067 0.195 0.495 0.046

SMUCE GSE11976 1.00 0.000 0.002 0.035 0.395 0.178 0.177 0.213 0.208

CL GSE11976 1.00 0.001 0.011 0.011 0.604 0.098 0.170 0.105 0.357

WBS sSIC GSE11976 1.00 0.000 0.003 0.008 0.536 0.060 0.225 0.168 0.075

FDR(α = 0.05) GSE11976 1.00 0.000 0.000 0.004 0.138 0.059 0.126 0.673 0.018

robseg(Huber) GSE11976 1.00 0.000 0.002 0.004 0.559 0.163 0.126 0.146 0.155

robseg(biweight) GSE11976 1.00 0.000 0.010 0.006 0.794 0.101 0.043 0.046 0.141

ES GSE29172 0.70 0.014 0.136 0.133 0.596 0.088 0.028 0.005 -

PELT GSE29172 0.70 0.003 0.027 0.054 0.210 0.139 0.181 0.386 0.089

SMUCE GSE29172 0.70 0.016 0.112 0.307 0.247 0.176 0.087 0.055 0.099

CL GSE29172 0.70 0.035 0.159 0.155 0.305 0.129 0.126 0.091 0.302

WBS sSIC GSE29172 0.70 0.022 0.105 0.155 0.290 0.113 0.173 0.142 0.046

FDR(α = 0.05) GSE29172 0.70 0.003 0.024 0.075 0.133 0.112 0.133 0.520 0.032

robseg(Huber) GSE29172 0.70 0.007 0.068 0.087 0.533 0.163 0.092 0.050 0.224

robseg(biweight) GSE29172 0.70 0.018 0.168 0.153 0.597 0.052 0.012 0.000 0.208

ES GSE29172 1.00 0.000 0.005 0.003 0.828 0.093 0.051 0.020 -

PELT GSE29172 1.00 0.000 0.001 0.001 0.233 0.070 0.251 0.444 0.046

SMUCE GSE29172 1.00 0.000 0.004 0.044 0.416 0.193 0.199 0.144 0.185

CL GSE29172 1.00 0.001 0.009 0.006 0.684 0.077 0.163 0.060 0.427

WBS sSIC GSE29172 1.00 0.000 0.006 0.009 0.576 0.051 0.230 0.128 0.070

FDR(α = 0.05) GSE29172 1.00 0.000 0.001 0.002 0.119 0.063 0.133 0.682 0.018

robseg(Huber) GSE29172 1.00 0.000 0.001 0.001 0.594 0.145 0.158 0.101 0.120

robseg(biweight) GSE29172 1.00 0.000 0.007 0.006 0.833 0.098 0.043 0.013 0.134

Table 5. Frequencies of “N−N of ES and its competitors for DNA copy
numbers data. Contribution denotes the frequency of each competitor
being selected as ES. Bold: highest empirical frequency of “N − N = 0
and those with frequencies within 10% off the highest.

and Lloyd et al. (2015) for example. We choose this dataset mainly because
of two reasons. First, the changepoints have been studied by many different
methods which makes it easier to understand our result. Besides, the se-
quence has a general tendency to decrease with the progress over time which
can be correlated to implementing safety regulation in the history. Though
pretty rough, we have some evidence to evaluate the changepoint detection
procedures on this dataset.

The data at hand include the number of each year coal disasters in UK
during the period from March 15th, 1851 to March 22nd, 1962 with length
n = 112. In this situation, to detect changes along the sequence, Pois-
son model is considered together with the candidates set (11) described in
Section 5.3. We conclude the results of different estimators as follows. Con-
cerning to the changepoints, there are in total three suggestions:
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(1) 1 changepoint at the year 1891: cumSegt+ρ, PELTt+ρ, WBS sSICt+
ρ, FDRt(α = 0.05) + ρ and robseg(biweight)t + ρ;

(2) 2 changepoints at the year 1891 and 1947: SMUCE and CL;
(3) 3 changepoints at the year 1891, 1929 and 1942: robseg(Huber)t+ρ.

Our selection procedure finally choose SMUCE as ES, i.e. we support the
suggestion with two changepoints at the year 1891 and 1947. The dataset
as well as the result of ES (SMUCE) is plotted in Figure 5.

Figure 5. Coal mining disasters data (dots) and ES estimator (solid line).

Now we comment our result by comparing it with the existing ones in
the literature. In Green (1995), they used the coal mining disasters data
recorded per day and proposed a reversible jump MCMC approach to de-
tect changepoints and estimate the intensity function. According to the
Figure 2 in the same paper, the model with two changepoints has the high-
est posterior probability. Moreover, according to their Figure 3, in the two
changepoints scenario, the posterior mode is approximately 14,000 days for
the first changepoint and 35,000 days for the second one. This is very close
to our result since counting from March 15th, 1851, 14,000 days is between
the year 1889 and 1890 and 35,000 days is the time between the year 1946
and 1947. Later, a Bayesian binary segmentation procedure was proposed
by Yang and Kuo (2001) to locate changepoints for Poisson process. Based
on two different tests they adopted, their procedure obtained two different
sets of changepoints (one changepoint for applying Bayes factor criterion
and two for applying BIC approximation criterion) where the locations of
changepoints for these two models are quite similar to the results (1) and
(2) mentioned in the last paragraph. On the other hand, as it was pointed
out in Lloyd et al. (2015), UK parliament passed several acts to improve the
safety of mine works including the Coal Mines Regulation Acts of 1872 and
1887 and a further one in 1954 with mines and quarries acts. In general, it is
reasonable to have a non-increasing expectation of the number of disasters
after the year releasing these regulations. As it is shown in Figure 5, the
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model with two changepoints meets the releasing regulation years 1887 and
1954. Considering the best fit with the time of released regulations and the
results given in the literatures, we believe the two changepoints model for
this dataset is the most reasonable one to the truth.

7. Proofs

We first introduce some notations for later use. Recall that (X ,X ) =
(W × Y ,W ⊗ Y). We denote P the set of all product probabilities on
(X n,X⊗n). For all i ∈ {1, . . . , n}, we denote the true distribution of Xi =
(Wi, Yi) by P ∗i and denote the true joint distribution of X = (X1, . . . , Xn)
by P∗ = ⊗ni=1P

∗
i ∈ P . We denote Pγ = ⊗ni=1Pi,γ the joint distribution

of independent random variables (W1, Y1), . . . , (Wn, Yn) for which the con-
ditional distribution of Yi given Wi = wi is given by Rγ(wi) ∈ Q0 for all
i ∈ {1, . . . , n}. Under such a notation setting, we have P ∗i = R∗i · PWi ,
Pi,γ = Rγ · PWi as well as the following equality

(12) h2(P ∗i , Pi,γ) =
∫

W
h2(R∗i (w), Rγ(w))dPWi(w).

We define the pseudo Hellinger distance h between two probabilities P =
⊗ni=1Pi and P′ = ⊗ni=1P

′
i by

(13) h2(P,P′) =
n∑
i=1

h2(Pi, P ′i ).

As an immediate consequence of (12) and (13), for any γ ∈ Γ̃,

h2(R∗,Rγ) =
n∑
i=1

∫
W
h2(R∗i (w), Rγ(w))dPWi(w)

=
n∑
i=1

h2(P ∗i , Pi,γ) = h2(P∗,Pγ).(14)

For each m ∈ M, we define the set of probabilities Pm = {Pγ , γ ∈ Γm}
and P̃ = {Pγ , γ ∈ Γ̃} with Γ̃ = ∪m∈MΓm. For any y > 0, P∗ ∈ P ,
Pm1 ,Pm2 with m1,m2 ∈M, we define the set

BPm1×Pm2 (P∗, y)
=
{

(Pγ1 ,Pγ2)
∣∣ Pγ1 ∈ Pm1 ,Pγ2 ∈ Pm2 ,h2(P∗,Pγ1) + h2(P∗,Pγ2) < y2}

and for any γ1,γ2 ∈ Γ̃, we set

Z(X,γ1,γ2) = T(X,γ1,γ2)− E [T(X,γ1,γ2)] .

We then introduce bellow Proposition 45 of Baraud et al. (2017) which is an
extensional version of Talagrand’s Theorem on the supremum of empirical
processes proved in Massart (2007).
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Proposition 1. Let T be some finite or countable set, U1,...,Un be indepen-
dent centered random vectors with values in RT and let

Z = sup
t∈T

∣∣∣ n∑
i=1

Ui,t

∣∣∣.
If for some positive numbers b and v,

max
i=1,...,n

|Ui,t| ≤ b and
n∑
i=1

E
[
U2
i,t

]
≤ v2 for all t ∈ T,

then, for all positive numbers c and x,

P
[
Z ≤ (1 + c)E(Z) + (8b)−1cv2 + 2(1 + 8c−1)bx

]
≥ 1− e−x.

7.1. Elementary results and proofs. Before proving our main theorem,
we first present two preliminary results and their proofs in this section.

Lemma 1. Let m1,m2 ∈ M be any two partitions on W . The class of
functions

F (m1,m2) =
®
rγ2

rγ1
: (w, y) 7→

rγ2(w)(y)
rγ1(w)(y) , γ1 ∈ Γm1 , γ2 ∈ Γm2

´
on X = W × Y is a VC-subgraph class with dimension not larger than
2|m1 ∨m2|+ 1.

Proof. For any γ1 ∈ Γm1 and γ2 ∈ Γm2 , we define function gγ1,γ2 on W ×Y
as

gγ1,γ2(w, y) = T (y) [u(γ2(w))− u(γ1(w))]− [A(γ2(w))−A(γ1(w))]

and define G (m1,m2) the class of functions as

G (m1,m2) = {gγ1,γ2 | γ1 ∈ Γm1 ,γ2 ∈ Γm2} .

With the fact that F (m1,m2) = {eg, g ∈ G (m1,m2)} and the exponential
function is monotone on R, by Baraud et al. (2017)[Proposition 42-(ii)], it
is enough to prove the conclusion holds for the class G (m1,m2).

Let K = |m1 ∨ m2| be the number of segments given by the refined
partition m1 ∨ m2 and I1, . . . , IK the resulted segments on W . For any
γ1 ∈ Γm1 , we can rewrite it as

γ1(w) =
K∑
k=1

ak1Ik(w), where (a1, . . . , aK) ∈ IK

and any γ2 ∈ Γm2 ,

γ2(w) =
K∑
k=1

bk1Ik(w), where (b1, . . . , bK) ∈ IK .
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As an immediate consequence, for any gγ1,γ2 ∈ G (m1,m2), it can be rewrit-
ten as

gγ1,γ2(w, y) =
K∑
k=1

[u(bk)− u(ak)]1Ik(w)T (y)−
K∑
k=1

[A(bk)−A(ak)]1Ik(w).

Therefore, G (m1,m2) is contained in a 2K-dimensional vector space spanned
by {1Ik(w), T (y)1Ik(w), k = 1, . . . ,K}. By Lemma 2.6.15 of van der Vaart
and Wellner (1996), we conclude G (m1,m2) is VC-subgraph on X = W ×Y
with dimension not larger than 2K + 1. �

Proposition 2. Let m1,m2 ∈ M be any two partitions on W . Under
Assumption 2, for any P∗ ∈ P , η ≥ 1 and any y > 0 satisfying

y2 ≥ η [Dn(m1) +Dn(m2)] ,

we have

E

[
sup

(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P∗,y)
|Z(X,γ1,γ2)|

]

≤

[
9.77
 

2α+ 1/2
η

+ 90(2α+ 1/2)
η

]
y2.

Proof. We set τ = ⊗ni=1τi with τi = PWi ⊗ ν. For any γ ∈ Γ̃, we denote rγ
a density on X n = (W × Y )n as

rγ(x1, . . . , xn) = rγ(x1) · · · rγ(xn), for all (x1, . . . , xn) ∈X n

so that for any γ ∈ Γ̃, we have Pγ = rγ · τ . For any y > 0, we define
Fy(m1,m2) the class of functions on X asß
ψ

Å…
rγ2

rγ1

ã∣∣∣∣ γ1 ∈ Γm1 ,γ2 ∈ Γm2 ,h2(P∗, rγ1 · τ ) + h2(P∗, rγ2 · τ ) < y2
™
.

Since Fy(m1,m2) is a subset of the collectionß
ψ

Å…
rγ2

rγ1

ã∣∣∣∣ γ1 ∈ Γm1 ,γ2 ∈ Γm2

™
and the function ψ is monotone, it follows from Lemma 1 and Proposition 42-
(ii) of Baraud et al. (2017) that Fy(m1,m2) is VC-subgraph on X with
dimension not larger than V = 2|m1 ∨m2| + 1. Besides, by Proposition 3
of Baraud and Birgé (2018), our choice of the function ψ satisfies their
Assumption 2 and more precisely (11) in their paper with a2

2 = 3
√

2 so that
for any y > 0,

(15) sup
f∈Fy(m1,m2)

n−1
n∑
i=1

E
[
f2(Xi)

]
≤ a2

2y
2

n
.
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Moreover, since the function ψ takes values in [−1, 1], we derive from (15)
that

sup
f∈Fy(m1,m2)

n−1
n∑
i=1

E
[
f2(Xi)

]
≤
Å
a2

2y
2

n

ã
∧ 1 ≤ 1.

To bound the expectation of the supremum of an empirical process over
a VC-subgraph class, we apply Theorem 2 of Baraud and Chen (2020) to
Fy(m1,m2) and obtain

E

[
sup

(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P∗,y)
|Z(X,γ1,γ2)|

]

= E

[
sup

(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P∗,y)
|T(X,γ1,γ2)− E [T(X,γ1,γ2)]|

]

= E
ñ

sup
f∈Fy(m1,m2)

∣∣∣∣∣ n∑
i=1

(f(Xi)− E [f(Xi)])
∣∣∣∣∣
ô

≤ 9.77y
»
V Ln(y) + 90V Ln(y),(16)

where Ln(y) = 9.11 + log+
[
n/
(
3
√

2y2)] . Under Assumption 2, there exists
a constant α ≥ 1 such that

(17) V = 2|m1 ∨m2|+ 1 ≤ 2α(|m1|+ |m2|) + 1 ≤
Å

2α+ 1
2

ã
(|m1|+ |m2|).

Therefore, combining (16) and (17), we obtain

E

[
sup

(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P∗,y)
|Z(X,γ1,γ2)|

]

≤9.77y
 Å

2α+ 1
2

ã
(|m1|+ |m2|)Ln(y) + 90

Å
2α+ 1

2

ã
(|m1|+ |m2|)Ln(y).

(18)

Recall that Dn(m) = |m|
[
9.11 + log+ (n/|m|)

]
. For any η ≥ 1, provided

y2 ≥ η [Dn(m1) +Dn(m2)], on the one hand, we have

y2 ≥ η|m1|
Å

9.11 + log+

Å
n

|m1|+ |m2|

ãã
+ η|m2|

Å
9.11 + log+

Å
n

|m1|+ |m2|

ãã
= η(|m1|+ |m2|)

ï
9.11 + log+

Å
n

|m1|+ |m2|

ãò
.(19)
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On the other hand, (19) also implies y2 ≥ |m1|+ |m2|. Therefore,

Ln(y) = 9.11 + log+

Å
n

3
√

2y2

ã
≤ 9.11 + log+

ñ
n

3
√

2(|m1|+ |m2|)

ô
≤ 9.11 + log+

Å
n

|m1|+ |m2|

ã
.(20)

Plugging (19) and (20) into (18), we complete the proof. �

7.2. Proof of Theorem 1. The proof of Theorem 1 is inspired by the
proof of Theorem A.1 in Baraud and Birgé (2018). Before we start to prove
Theorem 1, we first show the following result.

Proposition 3. Let numbers a, η ≥ 1 and δ, ϑ > 1 such that

(21) 2 exp(−ϑ) +
+∞∑
j=1

exp(−ϑδj) ≤ 1.

Under Assumption 1 and 2, for any ξ > 0 and for all m1,m2 ∈M simulta-
neously, with probability at least 1− Σ2e−ξ,

sup
(Pγ1 ,Pγ2 )∈Pm1×Pm2

[
|Z(X,γ1,γ2)| − k1

[
h2(P∗,Pγ1) + h2(P∗,Pγ2)

]]
≤ k0a {η [Dn(m1) +Dn(m2)] ∨ (∆(m1) + ∆(m2) + ϑ+ ξ)} ,

where

k0 =16

Ã
9.77

√
2α+1/2

η + 90(2α+1/2)
η + 3

√
2

16

2a + 4
a

+
(

9.77
 

2α+ 1/2
η

+ 90(2α+ 1/2)
η

)
,

k1 =16

Ã
δ

Å
9.77

√
2α+1/2

η + 90(2α+1/2)
η + 3

√
2

16

ã
2a + 4

a

+
(

9.77
 

2α+ 1/2
η

+ 90(2α+ 1/2)
η

)
δ.

Proof. Let ξ > 0, δ, ϑ > 1, a, η ≥ 1 and m1,m2 ∈ M be fixed. For each
j ∈ N, we set

x0(m1,m2) = η (Dn(m1) +Dn(m2)) ∨ (∆(m1) + ∆(m2) + ϑ+ ξ) ,

xj(m1,m2) = δjx0(m1,m2), y2
j (m1,m2) = axj(m1,m2).
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For each j ∈ N, we define the set

BPm1×Pm2
j (P∗)

=
{

(Pγ1 ,Pγ2) ∈ Pm1 ×Pm2

∣∣ y2
j ≤ h2(P∗,Pγ1) + h2(P∗,Pγ2) < y2

j+1
}

and set

ZPm1×Pm2
j (X) = sup

(Pγ1 ,Pγ2 )∈B
Pm1×Pm2
j (P∗)

|Z(X,γ1,γ2)| .

For simplifying the notations, let us drop the dependancy of xj and yj with
respect to m1,m2 for a while. Since BPm1×Pm2

j (P∗) ⊂BPm1×Pm2 (P∗, yj+1)
and y2

j+1 > y2
0 = ax0 ≥ η [Dn(m1) +Dn(m2)], under Assumption 2, apply-

ing Proposition 2 yields,

E
[
ZPm1×Pm2
j (X)

]
= E

 sup
(Pγ1 ,Pγ2 )∈B

Pm1×Pm2
j (P∗)

|Z(X,γ1,γ2)|


≤ E

[
sup

(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P∗,yj+1)
|Z(X,γ1,γ2)|

]

≤

(
9.77
 

2α+ 1/2
η

+ 90(2α+ 1/2)
η

)
y2
j+1.(22)

For i ∈ {1, . . . , n}, we set

(23) Ui,(rγ1 ,rγ2 ) = ψ

(√
rγ2(Wi)(Yi)
rγ1(Wi)(Yi)

)
− E

[
ψ

(√
rγ2(Wi)(Yi)
rγ1(Wi)(Yi)

)]
.

With the fact that ψ takes values in [−1, 1], it is easy to observe that

max
i=1,...,n

∣∣∣Ui,(rγ1 ,rγ2 )

∣∣∣ ≤ 2.

Moreover, ψ satisfies the Assumption 2 more precisely (11) in Baraud and
Birgé (2018) with a2

2 = 3
√

2, we derive for each j ∈ N, all γ1 ∈ Γm1 ,
γ2 ∈ Γm2 such that (Pγ1 ,Pγ2) ∈ BPm1×Pm2

j (P∗)

n∑
i=1

E
î
U2
i,(rγ1 ,rγ2 )

ó
≤

n∑
i=1

E

[
ψ2

(√
rγ2(Wi)(Yi)
rγ1(Wi)(Yi)

)]
≤ 3
√

2y2
j+1.

Then, for each j ∈ N, we can apply Proposition 1 with b = 2, v2 = 3
√

2y2
j+1

and T = BPm1×Pm2
j (P∗) and obtain that for all c > 0 and for all (Pγ1 ,Pγ2) ∈
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BPm1×Pm2
j (P∗) with probability at least 1− e−xj ,

|Z(X,γ1,γ2)| ≤ ZPm1×Pm2
j (X)

≤ (1 + c)E
[
ZPm1×Pm2
j (X)

]
+

3
√

2y2
j+1c

16 + 4
Å

1 + 8
c

ã
xj

≤ (1 + c)
(

9.77
 

2α+ 1/2
η

+ 90(2α+ 1/2)
η

)
y2
j+1

+
3
√

2y2
j+1c

16 + 4
Å

1 + 8
c

ã
xj

≤ (1 + c)
(

9.77
 

2α+ 1/2
η

+ 90(2α+ 1/2)
η

)
y2
j+1

+
3
√

2y2
j+1c

16 + 4
a

Å
1 + 8

c

ã
y2
j

≤ (1 + c)
(

9.77
 

2α+ 1/2
η

+ 90(2α+ 1/2)
η

)
δy2
j

+
ñ

3
√

2cδ
16 + 4

a

Å
1 + 8

c

ãô
y2
j .

Taking

c =
Õ

32Å
9.77

√
2α+1/2

η + 90(2α+1/2)
η + 3

√
2

16

ã
δa

to minimize the bracketed term yields for all (Pγ1 ,Pγ2) ∈ BPm1×Pm2
j (P∗),

with probability at least 1− e−xj

|Z(X,γ1,γ2)| ≤ k1y
2
j .

By the definition of BPm1×Pm2
j (P∗), we get for all (Pγ1 ,Pγ2) belonging to

BPm1×Pm2
j (P∗), with probability at least 1− e−xj ,

|Z(X,γ1,γ2)| ≤ k1y
2
j ≤ k1

[
h2(P∗,Pγ1) + h2(P∗,Pγ2)

]
.

We define

ZPm1×Pm2 (X) = sup
(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P∗,y0)

|Z(X,γ1,γ2)| .

With an analogous argument by applying Proposition 1 to ZPm1×Pm2 (X)
with x = x0, we can obtain for all (Pγ1 ,Pγ2) ∈ BPm1×Pm2 (P∗, y0) and all
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c > 0, with probability at least 1− e−x0 ,

|Z(X,γ1,γ2)| ≤ ZPm1×Pm2 (X)

≤ (1 + c)
(

9.77
 

2α+ 1/2
η

+ 90(2α+ 1/2)
η

)
y2

0

+
ñ

3
√

2c
16 + 4

a

Å
1 + 8

c

ãô
y2

0.

To minimize the bracketed term, we take

c =
Õ

32Å
9.77

√
2α+1/2

η + 90(2α+1/2)
η + 3

√
2

16

ã
a

and therefore for all (Pγ1 ,Pγ2) ∈ BPm1×Pm2 (P∗, y0) with probability at
least 1− e−x0 ,

|Z(X,γ1,γ2)| ≤ ZPm1×Pm2 (X) ≤ ak0x0.

Combining all the bounds together, we derive for all (Pγ1 ,Pγ2) ∈ Pm1×Pm2
simultaneously with probability at least 1− ε(m1,m2),

|Z(X,γ1,γ2)| ≤ k1
[
h2(P∗,Pγ1) + h2(P∗,Pγ2)

]
+ ak0x0(m1,m2),

where

ε(m1,m2) = 2 exp [−x0(m1,m2)] +
∑
j≥1

exp [−xj(m1,m2)] .

By the definition of xj(m1,m2), we notice that for all j ∈ N, xj(m1,m2) ≥
∆(m1) + ∆(m2) + ϑδj + ξ. Hence, provided (21), we have

ε(m1,m2) ≤ exp [−ξ −∆(m1)−∆(m2)]
(

2 exp(−ϑ) +
∑
j≥1

exp(−ϑδj)
)

≤ exp [−ξ −∆(m1)−∆(m2)] .

Finally we can extend this result to all (Pγ1 ,Pγ2) ∈ P̃ × P̃ by summing
these bounds over (m1,m2) ∈M×M and using (4). �

Proof of Theorem 1. We apply Proposition 3 with δ = 1.175, ϑ = 1.47 and
as for the values of η and a, we shall choose them later such that k1 = 3β/8,
with some 0 < β < 1. On a set Ωξ the probability of which is at least
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1− Σ2e−ξ, for all Pγ1 ,Pγ2 ∈ P̃ and all Pm1 ×Pm2 containing (Pγ1 ,Pγ2)

T(X,γ1,γ2) ≤ E [T(X,γ1,γ2)] + 3β
8
[
h2(P∗,Pγ1) + h2(P∗,Pγ2)

]
+ k0a [η (Dn(m1) +Dn(m2)) ∨ (∆(m1) + ∆(m2) + ϑ+ ξ)]

≤ E [T(X,γ1,γ2)] + 3β
8
[
h2(P∗,Pγ1) + h2(P∗,Pγ2)

]
+ k0a [ηDn(m1) + ηDn(m2) + ∆(m1) + ∆(m2) + ϑ+ ξ] .

Since the last inequality is true for all the Pm1×Pm2 containing (Pγ1 ,Pγ2),
provided C0(2α + 1/2) ≥ k0aη, we derive from (5) that with a probability
at least 1− Σ2e−ξ,

T(X,γ1,γ2) ≤ E [T(X,γ1,γ2)] + 3β
8
[
h2(P∗,Pγ1) + h2(P∗,Pγ2)

]
+ pen(γ1) + pen(γ2) + k0a(ϑ+ ξ).(24)

According to Proposition 3 of Baraud and Birgé (2018), the function ψ
satisfies Assumption 2 (more precisely (10)) in the same paper with a0 = 4
and a1 = 3/8. As a consequence, for all Pγ1 ,Pγ2 ∈ P̃ and P∗ ∈ P ,

(25) E [T(X,γ1,γ2)] ≤ 4h2(P∗,Pγ1)− 3
8h2(P∗,Pγ2).

Combining (24) and (25), we derive that for all Pγ1 ,Pγ2 ∈ P̃ and P∗ ∈ P ,
with a probability at least 1− Σ2e−ξ,

T(X,γ1,γ2) ≤ (4 + 3β
8 )h2(P∗,Pγ1)− 3(1− β)

8 h2(P∗,Pγ2)

+ pen(γ1) + pen(γ2) + k0a(ϑ+ ξ).(26)

This entails that, for any (random) elements Pγ̂λ ,Pγ̂
λ̂
∈ P̃ , on a set Ωξ

with probability at least 1− Σ2e−ξ

T(X, γ̂λ, γ̂λ̂) ≤ (4 + 3β
8 )h2(P∗,Pγ̂λ)− 3(1− β)

8 h2(P∗,Pγ̂
λ̂
)(27)

+ pen(γ̂λ) + pen(γ̂
λ̂
) + k0a(ϑ+ ξ)

and

υ(X, γ̂λ) = sup
λ′∈Λ

[T(X, γ̂λ, γ̂λ′)− pen(γ̂λ′)] + pen(γ̂λ)

≤ (4 + 3β
8 )h2(P∗,Pγ̂λ)− 3(1− β)

8 inf
λ′∈Λ

h2(P∗,Pγ̂λ′
)(28)

+ 2 pen(γ̂λ) + k0a(ϑ+ ξ).

By the construction of ψ, T(X, γ̂
λ̂
, γ̂λ) = −T(X, γ̂λ, γ̂λ̂). Combining (27),

(28) and (6) leads to for any λ ∈ Λ, on a set Ωξ with probability at least
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1− Σ2e−ξ

3(1− β)
8 h2(P∗,Pγ̂

λ̂
) ≤ (4 + 3β

8 )h2(P∗,Pγ̂λ)−T(X, γ̂λ, γ̂λ̂)

+ pen(γ̂λ) + pen(γ̂
λ̂
) + k0a(ϑ+ ξ)

≤ (4 + 3β
8 )h2(P∗,Pγ̂λ) +

[
T(X, γ̂

λ̂
, γ̂λ)− pen(γ̂λ)

]
+ pen(γ̂

λ̂
) + 2 pen(γ̂λ) + k0a(ϑ+ ξ)

≤ (4 + 3β
8 )h2(P∗,Pγ̂λ) + υ(X, γ̂

λ̂
)

+ 2 pen(γ̂λ) + k0a(ϑ+ ξ)

≤ (4 + 3β
8 )h2(P∗,Pγ̂λ) + υ(X, γ̂λ) + 1

+ 2 pen(γ̂λ) + k0a(ϑ+ ξ).(29)

Plugging (28) into (29) yields, for any λ ∈ Λ, on a set Ωξ with probability
at least 1− Σ2e−ξ,

3(1− β)
8 h2(P∗,Pγ̂

λ̂
) ≤ (8 + 3β

4 )h2(P∗,Pγ̂λ) + 4 pen(γ̂λ) + 2k0a(ϑ+ ξ) + 1.

Therefore, for any λ ∈ Λ on a set Ωξ with probability at least 1− Σ2e−ξ,
(30)

h2(P∗,Pγ̂
λ̂
) ≤ 64 + 6β

3(1− β)h2(P∗,Pγ̂λ)+ 32
3(1− β) pen(γ̂λ)+ 16k0a(ϑ+ ξ) + 8

3(1− β) .

By the equality (14), we rewrite (30) as the following
(31)

h2(R∗,Rγ̂
λ̂
) ≤ 64 + 6β

3(1− β)h2(R∗,Rγ̂λ)+ 32
3(1− β) pen(γ̂λ)+16k0a(ϑ+ ξ) + 8

3(1− β) .

Taking β = 0.75, η ≈ 9947.13(2α + 1/2), we can compute the value of
a ≈ 2365.57 such that k1 = 3β/8 and k0 ≈ 0.251. Therefore, provided
C0 ≥ 5.9 × 106, plugging the values of β, k0, a and ϑ into (31), we finally
conclude. �

Appendix. Signals for testing Poisson and exponential models

fms-type (Poisson): n = 497, changepoints are located at the positions

l0 =
Å139

497 ,
226
497 ,

243
497 ,

300
497 ,

309
497 ,

333
497

ã
.

The Poisson mean on each segment is 4, 6, 10, 3, 7, 1, 5 respectively, i.e.
γ∗ takes the value log 4, log 6, log 10, log 3, log 7, log 1, log 5 on each seg-
ment. For this signal, we also test the scenario when outliers present in the
observations by randomly modifying five points in the observations into 30.
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mix-type (Poisson): n = 560 and γ∗ is a piecewise constant function on
[0, 1) with 13 changepoints at a sequence of locations

l0 =
Å 11

560 ,
21
560 ,

41
560 ,

61
560 ,

91
560 ,

121
560 ,

161
560 ,

201
560 ,

251
560 ,

301
560 ,

361
560 ,

421
560 ,

491
560

ã
and on each segment the Poisson mean eγ∗ is given by the value 30, 2, 26,
4, 24, 6, 22, 8, 20, 10, 18, 12, 16, 14 respectively.
teeth-type (exponential): n = 140 and γ∗ is a piecewise constant

function on [0, 1) with 13 changepoints at a sequence of locations

l0 =
Å 11

140 ,
21
140 ,

31
140 ,

41
140 ,

51
140 ,

61
140 ,

71
140 ,

81
140 ,

91
140 ,

101
140 ,

111
140 ,

121
140 ,

131
140

ã
and on each segment the value of γ∗ is given by 0.5, 5, 0.5, 5, 0.5, 5, 0.5, 5,
0.5, 5, 0.5, 5, 0.5, 5 respectively. For this signal, we also test the scenario
when outliers present in the observations by randomly modifying two points
in the observations into 20.
stairs-type (exponential): n = 500 and γ∗ is a piecewise constant

function on [0, 1) with 4 changepoints at a sequence of locations

l0 =
Å101

500 ,
201
500 ,

301
500 ,

401
500

ã
and on each segment the value of γ∗ is given by 24, 22, 1, 2−2, 2−4 respec-
tively.
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Indian J. Stat., Ser. A, 63, 309–327.

Baraud, Y. and Birgé, L. (2009). Estimating the intensity of a random
measure by histogram type estimators. Probab. Theory Related Fields,
143, 239–284.

Baraud, Y. and Birgé, L. (2018). Rho-estimators revisited: general theory
and applications. Ann. Statist., 46, 3767–3804.



ESTIMATOR SELECTION IN EXPONENTIAL-LIKE FAMILIES 39

Baraud, Y., Birgé, L., and Sart, M. (2017). A new method for estimation
and model selection: ρ-estimation. Invent. Math., 207, 425–517.

Baraud, Y. and Chen, J. (2020). Robust estimation of a regression function
in exponential families. arXiv preprint, arXiv:2011.01657.

Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selec-
tion via penalization. Probab. Theory Related Fields, 113, 301–413.

Birgé, L. and Massart, P. (1997). From model selection to adaptive estima-
tion. In Festschrift for Lucien Le Cam, 55–87. Springer, New York.

Blythe, D. A. J., von Bunau, P., Meinecke, F. C. and Muller, K.-R. (2012).
Feature extraction for change-point detection using stationary subspace
analysis. IEEE Trans. Neural Netw. Learn. Syst., 23, 631–643.

Breiman, L., Friedman, J., Stone, C. J. and Olshen, R. A. (1984). Classifi-
cation and Regression Trees. Taylor & Francis, New York.

Brown, L. D., Cai, T. T., and Zhou, H. H. (2010). Nonparametric regression
in exponential families. Ann. Statist., 38, 2005–2046.

Chen, J. (2022). Estimating a regression function in exponential families by
model selection. arXiv preprint, arXiv:2203.06656.

Cleynen, A. and Lebarbier, E. (2014). Segmentation of the Poisson and
negative binomial rate models: a penalized estimator. ESAIM Probab.
Stat., 18, 750–769.

Cleynen, A. and Lebarbier, E. (2017). Model selection for the segmentation
of multiparameter exponential family distributions. Electron. J. Stat., 11,
800–842.

Fearnhead, P. (2006). Exact and efficient Bayesian inference for multiple
changepoint. Statist. Comput., 16, 203–213.

Fearnhead, P. and Rigaill, G. (2019). Changepoint detection in the presence
of outliers. J. Amer. Statist. Assoc., 114, 169–183.

Fearnhead, P. and Rigaill, G. (2020). Relating and comparing methods for
detecting changes in mean. Stat, e291.

Frick, K., Munk, A. and Sieling, H. (2013). Multiscale change point infer-
ence. J. Roy. Statist. Soc., Ser. B, 76, 495–580.

Fryźlewicz, P. (2014). Wild binary segmentation for multiple change-point
detection. Ann. Statist., 42, 2243–2281.

Gallagher, C., Lund, R. and Robbins, M. (2013). Changepoint detection in
climate time series with long-term trends. J. Clim., 26, 4994–5006.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computa-
tion and Bayesian model determination. Biometrika, 82, 711–732.

Hotz, T., Schütte, O. M., Sieling, H., Polupanow, T., Diederichsen, U.,
Steinem, C. and Munk, A. (2013). Idealizing ion channel recordings by a
jump segmentation multiresolution filter. IEEE Trans. NanoBioscience,
12, 376–386.

Huang, T., Wu, B., Lizardi, P. and Zhao, H. (2005). Detection of DNA copy
number alterations using penalized least squares regression. Bioinformat-
ics, 21, 3811–3817.



40 JUNTONG CHEN

Killick, R., Fearnhead, P. and Eckley, I. A. (2012). Optimal detection of
changepoints with a linear computational cost. J. Amer. Statist. Assoc.,
107, 1590–1598.

Kolaczyk, E. D. and Nowak, R. D. (2005). Multiscale generalised linear
models for nonparametric function estimation. Biometrika, 92, 119–133.

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory.
Springer Series in Statistics. Springer, New York.

Le Cam, L. and Yang, G. L. (1990). Asymptotics in Statistics : Some Basic
Concepts. Springer Series in Statistics. Springer, New York.

Li, H., Munk, A. and Sieling, H. (2016) FDR-control in multiscale change-
point segmentation. Electron. J. Stat., 10, 918–959.

Lloyd, C., Gunter, T., Osborne, M. A. and Roberts, S. J. (2015) Vari-
ational inference for Gaussian process modulated Poisson processes. In
International Conference on Machine Learning, 37, 1814–1822.

Massart, P. (2007). Concentration Inequalities and Model Selection, volume
1896 of Lecture Notes in Mathematics. Springer, Berlin. Lectures from
the 33rd Summer School on Probability Theory held in Saint-Flour, July
6–23, 2003.

Muggeo, V. M. R. and Adelfio, G. (2010). Efficient change point detection
for genomic sequences of continuous measurements. Bioinformatics, 27,
161–166.

Olshen, A. B., Venkatraman, E., Lucito, R. and Wigler, M. (2004). Circular
binary segmentation for the analysis of array-based DNA copy number
data. Biostatistics, 5, 557–572.

Pierre-Jean, M., Rigaill, G. and Neuvial, P. (2015). Performance evaluation
of DNA copy number segmentation methods. Brief. Bioinformatics, 16,
600–615.

Redon, R., Ishikawa, S., Fitch, K., Feuk, L., Perry, G., Andrews, T., Fiegler,
H., Shapero, M., Carson, A., Chen, W., Cho, E., Dallaire, S., Freeman, J.,
Gonzalez, J., Gratacòs, M., Huang, J., Kalaitzopoulos, D., Komura, D.,
Macdonald, J. and Hurles, M. (2006). Global variation in copy number
in the human genome. Nature, 444, 444-454.

Reeves, J., Chen, J., Wang, X. L., Lund, R. and Lu, Q. Q. (2007). A review
and comparison of changepoint detection techniques for climate data. J.
Appl. Meteorol. and Climatol., 46, 900–915.

Rigaill, G. (2015). A pruned dynamic programming algorithm to recover
the best segmentations with 1 to Kmax change-points. arXiv preprint,
arXiv:1004.0887.

Scott, A. J. and Knott, M. (1974). A cluster analysis method for grouping
means in the analysis of variance. Biometrics, 30, 507–512.

Spokoiny, V. (2009). Multiscale local change point detection with applica-
tions to value-at-risk. Ann. Statist., 37, 1405–1436.

Tibshirani, R. and Wang, P. (2007). Spatial smoothing and hot spot detec-
tion for CGH data using the fused Lasso. Biostatistics, 9, 18–29.



ESTIMATOR SELECTION IN EXPONENTIAL-LIKE FAMILIES 41

Truong, C., Oudre, L. and Vayatis, N. (2020). Selective review of offline
change point detection methods. Signal Process., 167, 107299.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and
Empirical Processes. With Applications to Statistics. Springer Series in
Statistics. Springer-Verlag, New York.

Venkatraman, E. S. and Olshen, A. B. (2007). A faster circular binary seg-
mentation algorithm for the analysis of array CGH data. Bioinformatics,
23, 657–663.

Verzelen, N., Fromont, M., Lerasle, M. and Reynaud-Bouret, P. (2020).
Optimal change-point detection and localization. arXiv preprint,
arXiv:2010.11470.

Wang, D., Yu, Y. and Rinaldo, A. (2020). Univariate mean change point
detection: penalization, CUSUM and optimality. Electron. J. Stat., 14,
1917–1961.

Yang, T. Y. and Kuo, L. (2001). Bayesian binary segmentation procedure for
a Poisson process with multiple changepoints. J. Comput. Graph. Statist.,
10, 772–785.

Zhang, N. R. and Siegmund, D. O. (2007). A modified Bayes informa-
tion criterion with applications to the analysis of comparative genomic
hybridization data. Biometrics, 63, 22–32.

Department of Mathematics,
University of Luxembourg
Maison du nombre
6 avenue de la Fonte
L-4364 Esch-sur-Alzette
Grand Duchy of Luxembourg
Email address: juntong.chen@uni.lu


	1. Introduction
	2. The statistical setting
	3. A strategy based on estimator selection
	3.1. Estimator selection procedure
	3.2. The performance of the selected estimator
	3.3. Connection to model selection

	4. Application to changepoint detection in exponential families
	4.1. Calibrating the value of 

	5. Simulation study and discussion
	5.1. Accuracy
	5.2. Stability when outliers present
	5.3. From Gaussian to Poisson and exponential models

	6. Real data examples
	6.1. Detecting changes in DNA copy numbers
	6.2. British coal disasters dataset

	7. Proofs
	7.1. Elementary results and proofs
	7.2. Proof of Theorem ??

	Appendix. Signals for testing Poisson and exponential models
	Acknowledgements
	References

