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Abstract
Active re-identification attacks constitute a serious threat to privacy-preserving social graph
publication, because of the ability of active adversaries to leverage fake accounts, a.k.a.
sybil nodes, to enforce structural patterns that can be used to re-identify their victims on
anonymised graphs. Several formal privacy properties have been enunciated with the purpose
of characterising the resistance of a graph against active attacks. However, anonymisation
methods devised on the basis of these properties have so far been able to address only restricted
special cases, where the adversaries are assumed to leverage a very small number of sybil
nodes. In this paper, we present a new probabilistic interpretation of active re-identification
attacks on social graphs. Unlike the aforementioned privacy properties, which model the
protection from active adversaries as the task of making victim nodes indistinguishable
in terms of their fingerprints with respect to all potential attackers, our new formulation
introduces a more complete view, where the attack is countered by jointly preventing the
attacker from retrieving the set of sybil nodes, and from using these sybil nodes for re-
identifying the victims. Under the new formulation, we show that k-symmetry, a privacy
property introduced in the context of passive attacks, provides a sufficient condition for the
protection against active re-identification attacks leveraging an arbitrary number of sybil
nodes. Moreover, we show that the algorithm K- Match, originally devised for efficiently
enforcing the related notion of k-automorphism, also guarantees k-symmetry. Empirical
results on real-life and synthetic graphs demonstrate that our formulation allows, for the first
time, to publish anonymised social graphs (with formal privacy guarantees) that effectively
resist the strongest active re-identification attack reported in the literature, even when it
leverages a large number of sybil nodes.
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1 Introduction

The last decade has witnessed a formidable explosion in the use of social networking sites.
Although the discipline of social network analysis has existed already for quite some time,
today’s scientists potentially have access as never before to massive amounts of social net-
work data. Social graphs are a particular example of this type of data, in which vertices
typically represent users (e.g. Facebook or Twitter users, e-mail addresses) and edges repre-
sent relations between these users (e.g. becoming “friends”, following someone, exchanging
e-mails). The analysis of social graphs can help scientists and other actors to discover impor-
tant societal trends, study consumption habits, understand the spread of news or diseases,
etc. For these goals to be achievable, it is necessary that the holders of this information, e.g.
online social networks, messaging services, among others, release samples of their social
graphs. However, ethical considerations, increased public awareness and reinforced legisla-
tion1 place an increasingly strong emphasis on the need to protect individuals’ privacy via
anonymisation.

Social graphs have proven themselves a challenging data type to anonymise. Even a
simple undirected graph, with arbitrary node labels and no attributes on vertices or edges, is
susceptible of leaking private information, due to the existence of unique structural patterns
that characterise some individuals, e.g. the number of friends or the relations in the immediate
vicinity [35]. Many privacy attacks that solely rely on the underlying graph topology of the
social graph exist [1], and they are still effective [32], despite advances on social graph
anonymisation. A particularly effective privacy attack is the so-called active attack, which
uses a strategy consisting in inserting fake accounts, commonly referred to as sybils, into
the real network. Once inserted, these fake users interact with legitimate users and among
themselves, and create structures that allow the adversary to retrieve the sybil nodes from a
sanitised social graph and use the connection patterns between sybils and legitimate nodes to
re-identify the original users and infer sensitive information about them, such as the existence
of relations.

The publication of social graphs that effectively resist active attackswas initially addressed
by Trujillo-Rasua and Yero [46]. They introduced the notion of (k, �)-anonymity, the first
privacy property to explicitly model the protection of published graphs against active adver-
saries. A graph satisfying (k, �)-anonymity ensures that an adversary leveraging up to � sybil
nodes and knowing the pairwise distances of all victims to all sybil nodes, is still unable to
distinguish each victim from at least k − 1 other vertices in the graph. This privacy property
served as the basis for defining several anonymisation methods for a particular case, namely
the one where either k > 1 or � > 1 [30,33]. In other words, non-trivial anonymity (k > 1)
was only guaranteed against an adversary leveraging exactly one sybil node. Later, the intro-
duction of the notion of (k, �)-adjacency anonymity [31] allowed to arbitrarily increase the
values of k for which a formal privacy guarantee can be provided, but the proposed methods
remained unable to address scenarios where the adversary can leverage more than two sybil
nodes. In consequence, until now no anonymisation method with theoretically sound pri-
vacy guarantees against active attackers leveraging three or more sybil nodes has been made
available to data publishers. This article solves such problem.

Our solution consists of identifying and formalising a more precise privacy model for
active attacks, in terms of the capabilities the adversary is supposed to have, than those
existing in the literature. We remove the assumption that the adversary is always capable

1 For example, the European GDPR, which can be consulted at https://ec.europa.eu/commission/priorities/
justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en.
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of identifying the set of sybil nodes in the published graph, which appears in all privacy
properties for active attacks [31,46] that we are aware of. In this new model, instead, the
analyst needs to calculate the actual probability of success of the attacker on re-identifying
the sybil nodes and combines it with the attacker’s probability of re-identifying the victims.

By studying active attacks without the assumption that the attacker first needs to re-
identify sybil nodes, we reached two main results: one of practical interest and another one
theoretical. Of practical interest is our proof that the algorithm K- Match [54], originally
devised for efficiently enforcing the notion of k-automorphism, makes it impossible for an
active attacker to re-identify a victim with probability higher than 1/k, regardless of the
adversary strength. Hence we show K- Match to be the first anonymisation method that
protects against active attackers of arbitrary strength. Second, we prove our privacy model to
be a proper extension of previous models [31,46,50], in the sense that it describes all graphs
that have been previously considered private, and describes others that are not captured by
existing models. This allowed us to establish the first connection between privacy models
for passive attacks, such as k-symmetry [50], and privacy models for active attacks. For
example, we prove that k-symmetry and (k, �)-anonymity are mutually exclusive, yet they
are both proper instances of our privacy model. In other words, both models are sound, as
far as resistance to active attack is concerned, but not complete. Whether there exists a k-
anonymity model that captures all graphs resistant to active attacks, i.e. that is complete, is
an open question.

Summary of contributions:

– We show that no privacy property in the literature characterises all anonymous graphs
with respect to active attacks.

– We introduce a general definition of resistance to active attacks that can be used to analyse
the actual resistance of a graph.

– We use the introduced privacy model to prove that k-symmetry, the strongest notion of
anonymity against passive attacks, also protects against active attacks.

– Of independent interest is our proof that k-automorphism does not protect against active
attacks. This is a surprising result, considering that k-automorphism and k-symmetry
have traditionally been deemed as conceptually equivalent.

– We prove that the algorithm K- Match, devised to ensure a sufficient condition for
k-automorphism, also guarantees k-symmetry.

– We provide empirical evidence on the effectiveness of K- Match as an anonymisation
strategy against the strongest active attack reported in the literature, namely the robust
active attack presented in [32], even when it leverages a large number of sybil nodes.

1.1 Structure of the paper

We discuss related work in Sect. 2 and describe our new probabilistic interpretation of the
adversarial model for active re-identification attacks in Sect. 3. Then, we discuss the appli-
cability of k-symmetry for modelling protection against active attackers in Sect. 4 and show
in Sect. 5 that the algorithm K- Match efficiently provides a sufficient condition for k-
symmetry. Finally, we empirically demonstrate the effectiveness of K- Match against the
robust active attack from [32] in Sect. 6 and give our conclusions in Sect. 7.
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2 Related work

In this paper, we focus on a particular family of properties for privacy-preserving publication
of social graphs: those based on the notion of k-anonymity [43,45]. These privacy properties
depend on assumptions about the type of knowledge that a malicious agent, the adversary,
possesses. According to this criterion, adversaries can be divided into two types. On the
one hand, passive adversaries rely on information that can be collected from public sources,
such as public profiles in online social networks, where a majority of users keep unmodified
default privacy settings that pose no access restrictions on friend lists and other types of
information. A passive adversary attempts to re-identify users in a published social graph by
matching this information to the released data. On the other hand, active adversaries not only
use publicly available information, but also attempt to interact with the real social network
before the data is published, with the purpose of forcing the occurrence of unique structural
patterns that can be retrieved after publication and used for learning sensitive information.

2.1 k-anonymity models against passive attacks

k-anonymity is based on a notion of indistinguishability between users in a dataset, which is
used to create equivalence classes of users that are pairwise indistinguishable to the eyes of an
attacker. Formally, given a symmetric, reflexive and transitive indistinguishability relation ∼
on the users of a graph G, G satisfies k-anonymity with respect to ∼ if and only if the
equivalence class with respect to ∼ of each user in G has cardinality at least k.

Several graph-oriented notions of indistinguishably appear in the literature. For example,
Liu and Terzi [25] consider two users indistinguishable if they have the same degree. Their
model is known as k-degree anonymity and gives protection against attackers capable of accu-
rately estimating the number of connections of a user. The notion of k-degree anonymity has
been widely studied, and numerous anonymisation methods based on it have been proposed,
e.g. [5,6,12,26,27,39,41,48]. Zhou and Pei [53] assume a stronger attacker able to determine
not only the connections of a user u, but also whether u’s friends (i.e. those users that u is
connected to) are connected. This means that the adversary is assumed to know the induced
subgraphs created by the users and their neighbours. It is simple to see that Zhou and Pei’s
model, known as k-neighbourhood anonymity, is stronger than k-degree anonymity.

Another privacy notion that relies on the neighbourhood of a user is (k, �)-anonymity [16],
introduced by Feder, Nabar and Terzi and later generalised by Stokes and Torra [44]. In (k, �)-
anonymity, � represents the number of neighbours two vertices ought to have to be considered
indistinguishable. This indistinguishability relation is not transitive, though, making (k, �)-
anonymity hard to compare with other privacy properties based on neighbourhood, such as
k-degree anonymity and k-neighbourhood anonymity.

The notion of k-automorphism [54] was introduced with the goal of modelling the knowl-
edge of any passive adversary. Two users u and v in a graph G are said to be automorphically
equivalent, or indistinguishable, if ϕ(u) = v for some automorphism ϕ in G. The notion
of k-automorphism ensures that every vertex in the graph is automorphically equivalent to
k − 1 other vertices. Although k-automorphism itself does not in general imply all other pri-
vacy properties (as we will show in Appendix A), the method proposed in [54] for enforcing
the (stronger) k different matches principle does achieve this goal. Similar formulations of
indistinguishability in terms of graph automorphisms were presented independently in the
work on k-symmetry [50] and k-isomorphism [11]. While k-symmetry and k-automorphism
have traditionally been viewed as equivalent, k-symmetry is actually stronger, and it does
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Fig. 1 A hierarchy of privacy
properties. An arrow has the
standard logical interpretation,
i.e. P �⇒ P ′ means that a
graph satisfying P also satisfies
P ′. Left side: models for passive
attacks. Right side: models for
active attacks. Interrogation
marks indicate connections that
have not been established yet

?

k-symmetry (k, �)-anonymity

k-neighbourhood
anonymity

(k, �)-adjacency
anonymity

k-degree anonymity
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imply all other privacy properties for passive attacks. In this paper, we additionally show
that, in the context of active attacks, k-symmetry always guarantees a 1/k upper bound on
the re-identification probability for each vertex, which k-automorphism does not.

A natural trade-off between the strength of the privacy notions and the amount of struc-
tural disruption caused by the anonymisation methods based on them has been empirically
demonstrated in [54]. The three privacy models described above form a hierarchy, which is
displayed in the left branch of Fig. 1. Privacy models tailored to active attacks also form
a hierarchy, displayed in the right branch of Fig. 1, which we describe next. Interrogation
marks in Fig. 1 indicate that connections between properties tailored for passive attacks and
those tailored for active attacks have not been established yet, neither directly nor via some
additional property.

2.2 k-anonymity models against active attacks

Backstrom et al. were the first to show the impact of active attacks in social networks back
in 2007 [2]. Their attack has been optimised a number of times, see [32,37,38], and two
privacy models particularly tailored to measure the resistance of social graphs to this type
of attack have been recently proposed [31,46]. The first of those models is (k, �)-anonymity,
introduced in 2016 by Trujillo-Rasua and Yero [46]. They consider adversaries capable of
re-identifying their own sets of sybil nodes in the anonymised graph. Adversaries are also
assumed to know or able to estimate the distances of the victims to the set of sybil nodes.
This last assumption was weakened later in [31] by restricting the adversary’s knowledge to
distances between victims and sybil nodes of length one. That is, the adversary only knows
whether the victim is connected to a sybil node. That restriction led to a weaker version of
(k, �)-anonymity called (k, �)-adjacency anonymity, as displayed in Fig. 1.

It is worth pointing out the clash in terminology with the use of (k, �)-anonymity in [16]
and [46]. Because this article focuses on active attacks, from now on whenever we write
(k, �)-anonymity we are referring to the privacy model that captures the resistance of a graph
to active attacks, i.e. to that introduced in [46].

There exist three anonymisation algorithms [30,31,33] that aim to create graphs satisfying
(k, �)-(adjacency) anonymity. Their approach consists in determining a candidate set of sybil
vertices in the original graph that breaks the desired anonymity property, and forcing via graph
transformation that every vertex has a common pattern of connections with the sybil vertices
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shared by at least k − 1 other vertices. A common shortcoming of these methods is that
they only provide formal guarantees against attackers leveraging a very small number of
sybil nodes (no more than two). This limitation seems to be an inherent shortcoming of the
entire family of properties of which (k, �)-anonymity and (k, �)-adjacency anonymity are
members. Indeed, for large values of �, which are required in order to account for reasonably
capable adversaries, anonymisation methods based on this type of property face the problem
that any change introduced in the original graph to render one vertex indistinguishable from
others, in terms of its distances to a vertex subset, is likely to render this vertex unique in
terms of its distances to other vertex subsets.

2.3 Other privacymodels

For the sake of completeness, we finish this brief literature review by surveying probabilistic
privacymodels.Apopular example is differential privacy (DP) [13], a semantic privacy notion
which, instead of anonymising the dataset, focuses on the methods accessing the sensitive
data and provides a quantifiable privacy guarantee against an adversary who knows all but
one entry in the dataset. In the context of graph data, the notion of two datasets differing
by exactly one entry can have multiple interpretations, the two most common being edge-
differential privacy and vertex-differential privacy. While a number of queries, e.g. degree
sequences [18,22] and subgraph counts [21,52], havebeen addressedunder (edge-)differential
privacy, the use of this notion for numerous very basic queries, e.g. graph diameter, remains
a challenge. Recently, differentially private methods leveraging the randomised response
strategy for publishing agraph’s adjacencymatrixwere proposed in [42].While thesemethods
do not necessarily view vertex ids as sensitive, data holders whose goal in preventing re-
identification attacks is to prevent the adversary from learning the existence of relations
may view this approach as an alternative to k-anonymity-based methods. Another DP-based
alternative to k-anonymity-based methods consists in learning the parameters of a graph
generative model under differential privacy and then using this model to publish synthetic
graphs that resemble the original one in some structural properties [10,20,34,40,49,51].

Random perturbation for graph privacy has been used prior the introduction of differential
privacy [7]. For example, within the context of passive attacks, Bonchi et al. [4] introduced
a method that randomly removes and adds edges to the original graph. The anonymity level
offered by their approach is evaluated against an information-theoreticmeasure that considers
the uncertainty added to the original graph. We observe that randomisation techniques have
not been successfully adapted to counteract active attacks. While intuition suggests that the
task of re-identification becomes harder for the adversary as the amount of random noise
added to a graph grows, it has been shown in [32] that active attacks can be made robust
against reasonably large amounts of random perturbation.

Other probabilistic privacy models rely on the notion of adversary’s prior belief, defined
as a probability distribution on sensitive values. For example, t-closeness [24] measures
attribute protection in terms of the distance between the distribution of sensitive values in the
anonymised dataset with respect to the distribution of sensitive attribute values in the original
table. Such definition of prior belief is different to other works, such as (ρ1, ρ2)-privacy [15]
and ε-privacy [28], where prior belief represents the adversary’s knowledge in the absence
of knowledge about the dataset. In either case, estimating the prior belief of the adversary is
challenging, as discussed in [13].

123



Preventing active attacks on social graphs via sybil subgraph obfuscation 1083

2.4 Concluding remarks

As illustrated in Fig. 1, the development of k-anonymity models against passive and active
attacks has been traditionally split and had no apparent intersection. This article provides, to
the best of our knowledge, thefirst connectionbetween the twodevelopments. This is achieved
by introducing a probabilistic model for active attacks that characterises all graphs that resists
active attacks, of which k-symmetry and (k, �)-anonymity are proven to be sufficient, yet not
necessary, conditions.

3 Probabilistic adversarial model

Our adversarial model is a generalisation of the model introduced in [32], which captures the
capabilities of an active attacker and allows one to analyse the resistance of anonymisation
methods to active attacks. Such analysis is expressed as a three-step gamebetween the attacker
and the defender. In the first step, the attacker is allowed to interact with the network, insert
sybil accounts and establish links with other users (called the victims). The defender uses
the second step to anonymise and perturb the network, which was previously manipulated
by the attacker. Lastly, the attacker receives the anonymised network and makes a guess on
the pseudonyms used to anonymise the victims. Each of these steps is formalised in what
follows.

3.1 Attacker subgraph creation

The attacker–defender game starts with a graph G = (V , E) representing a snapshot of a
social network, as in Fig. 2a. The attacker knows a subset of the users, called the victims and
denoted I , but not the connections between them. The attacker is allowed to insert a set of
sybil nodes S into G and establish connections with their victims.

This step of the attack transforms the original graph G = (V , E) into a graph G+ =
(V ′, E ′) satisfying the following two properties: i) V ′ = V ∪ S and ii) E ′ \ E ⊆ (S × S) ∪
(S × I ) ∪ (I × S). The second condition says that relations established by the adversary
are constrained to the set of sybil and victim nodes. We call the resulting graph G+ the
sybil-extended graph of G. An example of a sybil-extended graph is depicted in Fig. 2b.

The attacker does not know the entire graph G+, unless the original graph was empty. The
adversary knows, however, the subgraph formed by the set of sybil nodes S, their connections
to the victims, and the victim set I . This notion of adversary knowledge is formalised next.

Definition 1 (Adversary knowledge) Let G = (V , E) be an original graph and G+ = (V ∪
S, E ′) the sybil-extended graph created by an adversary that targets a set of victims I ⊆ V .
The adversary knowledge is defined as the subgraph GS,I of G defined by

GS,I = (S ∪ I , {(u, v) ∈ E | {u, v} ⊆ S ∪ I ∧ {u, v} � I })
Note that connections between victims are not part of the adversary knowledge.

3.2 Pseudonymisation and perturbation

When the defender decides to publish the graph G+, she pseudonymises it by replacing the
real user identities with pseudonyms. That is to say, the defender obtains G+ and constructs
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Fig. 2 An active re-identification attack viewed as an attacker–defender game

an isomorphism ϕ from G+ to ϕG+. An isomorphism between two graphs G = (V , E) and
G ′ = (V ′, E ′) is a bijective function ϕ : V → V ′, such that ∀v1, v2 ∈ V : (v1, v2) ∈ E ⇐⇒
(ϕ(v1), ϕ(v2)) ∈ E ′. Two graphs are isomorphic, denoted by G 
ϕ G ′, or briefly G 
 G ′,
if there exists an isomorphism ϕ between them. Given a subset of vertices S ⊆ V , we will
often use ϕS to denote the set {ϕ(v)|v ∈ S}. In Fig. 2c, we illustrate a pseudonymisation of
the graph in Fig. 2b.

We callϕG+ the pseudonymised graph. Pseudonymisation serves the purpose of removing
personally identifiable information from the graph. Because pseudonymisation is insufficient
to protect a graph against re-identification, the defender is also allowed to perturb the graph.
This is captured by a non-deterministic procedure t thatmaps graphs to graphs. The procedure
t modifies ϕG+, resulting in the transformed graph t(ϕG+). We assume that t(ϕG+) is
ultimately made available to the public, hence it is known to the adversary.

3.3 Re-identification

The last step of the attacker–defender game is where the attacker analyses the published graph
t(ϕG+) to re-identify her own sybil accounts and the victims (see Fig. 2d). This allows her
to acquire new information, which was supposed to remain private, such as the fact that E
and F are friends.

We define the output of the adversary re-identification attempt as a mapping ρ from the
set of vertices S ∪ I to the set of vertices in t(ϕG+). This represents the adversary’s belief on
the pseudonyms used to anonymise the attacker and victim vertices in t(ϕG+). To account
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for uncertainty on the adversary’s belief, we consider that the adversary assigns a probability
value p(ρ) to each mapping, denoting the probability that the adversary chooses ρ as the
output of the re-identification attack. Let ΦS,I be the universe of mappings from the set of
vertices in S ∪ I to the set t(ϕG+). The law of total probability allows us to quantify the
adversary’s probability of success in re-identifying one victim as follows.

Proposition 1 Let G = (V , E) be an original graph, G+ = (V ∪ S, E ′) the sybil-extended
graph created by an adversary that targets a set of victims I ⊆ V , and t(ϕG+) the anonymised
version of G+ created by the defender. Then, the probability AS,I

t(ϕG+)
(u) that the adversary

successfully re-identifies a victim u ∈ I in t(ϕG+) is

AS,I
t(ϕG+)

(u) =
∑

ρ∈ΦS,I ,ρ(u)=ϕ(u)

p(ρ). (1)

In our analyses, we restrict the function p to be a probability distribution on the domain
ΦS,I , i.e.

∑
ρ∈ΦS,I

p(ρ) = 1. We also assume that p satisfies the standard random worlds
assumption enunciated in [8,29], which expresses that, in the absence of any information in
addition to t(ϕG+), any two isomorphic subgraphs in t(ϕG+) are indistinguishable for the
adversary. We enunciate the random worlds assumption next, adapting the terminology to
the one used in this paper.

Assumption 1 (Random worlds assumption [8,29]) Let G = (V , E) be an original graph,
G+ = (V ∪ S, E ′) the sybil-extended graph created by an adversary that targets a set of
victims I ⊆ V , and G ′ = t(ϕG+) the anonymised version of G+ created by the defender.
Letρ1 andρ2 be two bijective functions from S∪ I to the set of verticesVG ′ inG ′. LetG ′

ρ1S,ρ1 I
and G ′

ρ2S,ρ2 I be the two attacker subgraphs in G ′ that correspond to the adversary’s guesses
ρ1 and ρ2, respectively. If G ′

ρ1S,ρ1 I and G ′
ρ2S,ρ2 I are isomorphic, then p(ρ1) = p(ρ2).

In the remainder of this article, we will analyse the effectiveness of various anonymisation
procedures by calculating the success probability of the adversary based on Proposition 1,
and we will often resort to Assumption 1 when reasoning about the adversary’s belief ρ.

4 Applicability of current privacy properties against active attacks

In this section, we make, to the best of our knowledge, the first connection between passive
and active attacks by formally proving that k-symmetry provides protection against active
attacks. We also prove that k-symmetry is incomplete, just like (k, �)-anonymity, in the sense
that none of them characterises all anonymous graphs with respect to active attacks. Last,
but not least, we show that neither k-symmetry implies (k, �)-anonymity, nor the other way
around.

4.1 k-symmetry: an effective privacymodel against active attacks

We use the introduced privacy model to prove that k-symmetry, the strongest notion of
anonymity against passive attacks, also protects against active attacks.

Definition 2 (k-symmetry [50]) Let ΓG be the universe of automorphisms in G. Two vertices
u and v in G are said to be automorphically equivalent, denoted u ∼= v, if there exists
an automorphism γ ∈ ΓG such that γ (u) = v. Because the relation ∼= is an equivalence
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relation in the set of vertices of G, let [u]∼= be the equivalence class of u. G is said to satisfy
k-symmetry if for every vertex u it holds that |[u]∼=| ≥ k.

Theorem 1 Let G ′ = (V ′, E ′) be an original graph, G+ = (V ′ ∪ S, E ′) the sybil-extended
graph created by an adversary that targets a set of victims I ⊆ V ′, and t(ϕG+) = (V , E)

the anonymised version of G+ created by the defender. If t(ϕG+) satisfies k-symmetry, then
for every vertex u ∈ I the probability of the adversary guessing the output of ϕ(u) is lower
than or equal to 1/k.

Proof Let G be a shorthand notation for t(ϕG+). Let ΦS,I be the universe of mappings
from the set of vertices in S ∪ I to the set of vertices in G. We define a relation ∼ between
adversary’s guesses in ΦS,I by

ρ ∼ ρ′ ⇐⇒ GρS,ρ I 
 Gρ′S,ρ′ I

Because 
 is an equivalence relation, it follows that ∼ is also an equivalence relation. We
use ΦS,I /∼ to denote the partition of ΦS,I into the set of equivalence classes with respect
to ∼, and [ρ]∼ to denote the equivalence class containing ρ. Consider, given a victim u, a
successful adversary guess ρ0 ∈ ΦS,I , i.e. a mapping satisfying that ρ0(u) = ϕ(u). Our
first proof step is about showing that there exist k − 1 other mappings ρ1, . . . , ρk−1 in [ρ]∼
satisfying that

∀i, j ∈ {0, . . . , k − 1} : i �= j �⇒ ρi (u) �= ρ j (u). (2)

Let ρ0(u) = v. Because G satisfies k-symmetry, it follows that there exist k − 1 different
vertices {v1, . . . , vk−1} that are automorphically equivalent to v. That is to say, there exist
k − 1 automorphisms γ1, . . . , γk−1 in ΓG such that ∀i ∈ {1, . . . , k − 1} : γi (v) = vi �= v.
Now, consider the mappings ρi : S ∪ I → Si ∪ Ii defined by ρi = γi ◦ ρ0, for every
i ∈ {1, . . . , k − 1}. On the one hand, given that γ1, · · · , γk−1 are automorphisms, it follows
that GS0,I0 
γi GSi ,Ii , for every i ∈ {1, . . . , k − 1}, which implies that ρ0 ∼ ρi . On the
other hand, ρi (u) = ui �= u j = ρ j (u) for every i �= j ∈ {0, . . . , k − 1}. This allows us to
conclude that ρ0, . . . , ρk−1 are pairwise different and that {ρ0, . . . , ρk−1} ⊆ [ρ]∼.

Our second proof step consists of showing that, given twomappings ρ0 and ρ′
0 inΦS,I such

that ρ0(u) = ρ′
0(u) = v, and the mappings {ρ1, . . . , ρk−1} and {ρ′

1, . . . , ρ
′
k−1} constructed

as previously, it holds that

ρ0 �= ρ′
0 �⇒ ρi �= ρ′

j ∀i, j ∈ {1, . . . , k − 1}.
Let x ∈ S ∪ I such that ρ0(x) �= ρ′

0(x). Take any two integers i, j ∈ {1, . . . , k − 1}. We
analyse two cases.

Case 1 (i = j). Let ρ0(x) = y and ρ′
0(x) = y′. By construction, ρi (x) = γi (ρ0(x)) = γi (y)

and ρ′
i (x) = γi (ρ

′
0(x)) = γi (y′). The fact that γi is a bijective function and that y �= y′ gives

that γi (y) �= γi (y′), which implies that ρi �= ρ′
i .

Case 2 (i �= j). Observe that ρi (u) = γi (ρ0(u)) = γi (v) = vi and ρ′
j (u) = γ j (ρ

′
0(u)) =

γ j (v) = v j . Because vi �= v j it follows that ρi (u) �= ρ′
j (u), hence ρi �= ρ′

j .
The last proof step consists of using the formula to calculate adversary success to obtain

a probability bound. The adversary’s probability of success in re-identifying a victim u ∈ I
is calculated by,

∑

ρ∈ΦS,I ,ρ(u)=ϕ(u)

p(ρ).
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Let ρ0
1 , . . . , ρ

0
n be all functions inΦS,I satisfying ρ0

1 (u) = ρ0
2 (u) = · · · = ρ0

n (u) = ϕ(u).
It follows that the probability of success of the adversary is equal to p(ρ0

1 ) + · · · + p(ρ0
n ).

Now, for each ρi , consider the mappings ρ1
i , . . . , ρk−1

i defined by ρ
j

i = ϕ j ◦ ρ0
i , for every

j ∈ {1, . . . , k − 1}. Previously we proved the following two intermediate results.

1. For every i ∈ {1, . . . , n}, the set {ρ0
i , ρ1

i , . . . , ρk−1
i } ⊆ ΦS,I has cardinality k and its

elements satisfy ρ0
i ∼ ρ1

i ∼ . . . ∼ ρk−1
i .

2. ∀i, j ∈ {1, . . . , n} �⇒ {ρ0
i , ρ1

i , . . . , ρk−1
i } ∩ {ρ0

j , ρ
1
j , . . . , ρ

k−1
j } = ∅.

The second result and the fact that p is a probability distribution give,
∑

i∈{1,...,n}

∑

j∈{0,...,k−1}
p(ρ

j
i ) ≤ 1.

We use the first result and the random worlds assumption (Proposition 1) to conclude that
p(ρ0

i ) = p(ρ1
i ) = · · · = p(ρk−1

i ), for every i ∈ {1, . . . , n}, which gives,
∑

i∈{1,...,n}

∑

j∈{0,...,k−1}
p(ρ

j
i ) =

∑

i∈{1,...,n}
kp(ρ0

i ) ≤ 1.

The last inequality states that p(ρ0
1 ) + · · · + p(ρ0

n ) ≤ 1/k. ��

4.2 k-symmetry versus (k, �)-anonymity

As proven in Theorem 1, k-symmetry provides protection against active attacks regardless of
the number of sybil nodes inserted by the attacker, as opposed to (k, �)-anonymity which uses
� as a parameter on the maximum number of sybil nodes. In spite of that, (k, �)-anonymity
is not weaker than k-symmetry. As we prove next, they are in fact incomparable.

Theorem 2 Let Gk,� be the universe of anonymised graphs such that no adversary with �

sybil nodes or less can re-identify a victim with probability lower or equal than 1/k. There
exist k > 1 and graphs G, G ′, G ′′ ∈ Gk,� such that:

– G satisfies k-symmetry, but G does not satisfy (k, �)-anonymity for some � ≥ 1.
– G ′ satisfies (k, �)-anonymity for some � ≥ 1, but G ′ does not satisfy k-symmetry.
– G ′′ neither satisfy k-symmetry nor (k, �)-anonymity for some � ≥ 1.

Proof Figure 3a shows a 2-symmetric graph G which, for 2 ≤ � ≤ 8, does not satisfy (k, �)-
anonymity for any k > 1. Moreover, Fig. 3b shows a (2, 1)-anonymous graph G ′ which can
be verified not to satisfy k-symmetry for any k > 1. In fact, this graph even fails to satisfy k-
degree anonymity for any k > 1. An example of a graph G ′′ proving the correctness of the last
statement is displayed in Fig. 3c. That graph is neither 2-symmetric nor (2, 2)-anonymous.

��
Of independent interest is our proof that k-automorphism [54] does not protect against

active attacks. This is a surprising result, given that k-automorphism and k-symmetry have
traditionally been considered equivalent. We refer the interested reader to Appendix A.

5 AlgorithmK-MATCH guarantees k-symmetry

In this section we prove that the algorithm K- Match, proposed in [54] as a sufficient
condition to achieve k-automorphism, also guarantees k-symmetry. Given a graph G and a
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v1

v2

v3

v4 v5 v6 v7

v8

v9

v10

(a)
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(b)

v1

v2

v3

v4

v5

v6

v7
(c)

Fig. 3 Example graphs. a A 2-symmetric graph not satisfying (k, �)-anonymity for k > 1 and 2 ≤ � ≤ 8. b
A (2, 1)-anonymous graph not satisfying k-symmetry for k > 1. c A graph where the success probability of
any active attack leveraging 2 sybil nodes is at most 1/2, despite the graph neither satisfying (2, 2)-anonymity
nor 2-symmetry

value of k, the K- Match algorithm obtains a supergraph G ′ of G satisfying the following
conditions:

1. VG ′ ⊇ VG and EG ′ ⊇ EG .
2. There exist k − 1 automorphisms γ1, γ2, . . . , γk−1 of G ′ such that:

(a) For every v ∈ VG ′ and every i ∈ {1, . . . , k − 1}, γi (v) �= v.
(b) For every v ∈ VG ′ and every i, j ∈ {1, . . . , k − 1}, i �= j ⇐⇒ γi (v) �= γ j (v).
(c) For every v ∈ VG ′ and every i, j such that 1 ≤ i < j ≤ k−1, γi+ j (v) = γi (γ j (v)) =

γ j (γi (v)), with addition taken modulo k.

To obtain G ′, the algorithm first splits the vertices of G ′ into k groups and arranges them
in a k-column matrix M called the vertex alignment table (VAT for short). If |VG | is not a
multiple of k, a number of dummy vertices are added to achieve this property. The VAT is
organised in such a manner that the number of graph editions to perform in the second step of
the process is close to the minimum. For convenience, in what follows we will denote by vi j

the vertex of G ′ placed in position Mi j of the VAT. The second step of the method consists
in adding edges to EG ′ in such a way that conditions 2.a to 2.c are enforced. To that end, for
every edge (vi j , vpq), all edges of the form (vi, j+t , vp,q+t ), additions modulo k, are added
to EG ′ if they did not previously exist.

Figure 4 shows an example of a VAT allowing to enforce 3-automorphism on the graph
of Fig. 2b2. This VAT encodes two functions f1, f2 : VG ′ → VG ′ :

f1 = {(1, F), (F, D), (D, 1), (C, A), (A, B), (B, C), (2, 3), (3, E), (E, 2)},
that is, a function such that the image of every element is the one located one column to its
right (modulo 3) on the same row, and

f2 = {(1, D), (F, 1), (D, F), (C, B), (A, C), (B, A), (2, E), (3, 2), (E, 3)},
that is, a function such that the image of every element is the one located two columns to its
right (modulo 3) on the same row.

2 This table is not necessarily the one created by the first step of K- Match, but it serves to illustrate the
second step, which is the one that guarantees the privacy property and will be the basis of the main result in
this section.
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Fig. 4 An example of a VAT for
the graph shown in Fig. 2b

1 F D
C A B
2 3 E

In general, these functions are not automorphisms of G ′ upon creation of the VAT. It is
the second step of the method that will transform them into automorphisms by performing
all necessary edge-copying operations. For example, the edge (C, A) needs to be added to
G ′ because (A, B) ∈ EG but ( f2(A), f2(B)) = (C, A) /∈ EG ; and (A, 3) needs to be added
because (B, E) ∈ EG but ( f2(B), f2(E)) = (A, 3) /∈ EG . Once the method is executed,
each automorphism γt , t ∈ {1, . . . , k − 1}, defined in item 2 above is completely specified

by the VAT, as γt (vi j ) = vi, j+t , with addition modulo k, for every i ∈
{
1, . . . ,

⌈ |VG |
k

⌉}
and

every j ∈ {1, . . . , k}.
We now show the link between the K- Match method and k-symmetry.

Theorem 3 Let G = (V , E) be a graph and let G ′ = (V ′, E ′) the result of applying algorithm
K- Match to G for some parameter k. Then, G ′ satisfies k-symmetry.

Proof Let u ∈ VG ′ be an arbitrary vertex of G ′, and let v1 = γ1(u), v2 = γ2(u), …,
vk−1 = γk−1(u) be the images of u by the automorphisms γ1, γ2, . . . , γk−1 enforced on G ′
by the execution of K- Match. By definition, we have that u ∼= v1 ∼= v2 ∼= . . . ∼= vk−1

and, by conditions 2.a and 2.b, they are pairwise different. Thus, |[u]∼=| = k, hence G ′ is
k-symmetric. ��

Themost relevant consequence of Theorem 3 is that algorithmK- Match can also be used
for protecting graphs against active adversaries, as it will ensure that no victim is re-identified
with probability greater than 1/k.

6 Experiments

The purpose of these experiments3 is to demonstrate the effectiveness and usability of k-
symmetry, enforced using the K- Match algorithm, for protecting graphs against active
adversaries leveraging a sufficiently large number of sybil nodes and the strongest attack
strategy reported in the literature, namely the robust active attack introduced in [32]. Effec-
tiveness is assessed in terms of the success rate measure used in previous works on active
attacks [30–32], whereas usability is assessed in terms of several structural utility measures.
In what follows, we describe the experimental setting, display the empirical results obtained
and conclude the section with a discussion of these results.

6.1 Experimental setting

In order to make the results reported in this section comparable to previous works on
active attacks and countermeasures against them [31,32], we study the behaviour of our

3 We performed our experiments on the HPC platform of the University of Luxembourg [47]. In particular,
we ran our experiments on the Gaia and Iris clusters of the UL HPC. Detailed descriptions of these clusters
are available at https://hpc.uni.lu/systems/gaia/ and https://hpc-docs.uni.lu/systems/iris/, respectively. The
implementations of the graph generators, anonymisation methods and attack simulations are available at
https://github.com/rolandotr/graph.
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proposed method on two collections of randomly generated synthetic graphs and two real-
life datasets. For the first collection of synthetic graphs, we used Erdős–Rényi (ER) random
graphs [14]. We generated 200, 000 ER graphs, 10, 000 for each density value in the set
{0.1, 0.15, . . . , 0.95, 1.0}. The second group of synthetic graphs was generated according
to the Barabási–Albert (BA) model [3], which generates scale-free graphs. We used seed
graphs of order 50 and every graph was grown by adding 150 vertices and performing the
corresponding edge additions. The BA model has a parameter m defining the number of new
edges added for every new vertex.We generated 10, 000 graphs for every value ofm in the set
{5, 10, . . . , 50}. In generating each graph, the type of the seed graph was randomly selected
among the following choices: a complete graph, an m-regular ring lattice, or an ER random
graph of density 0.5. The probability of selecting each choice was set to 1

3 . In both cases, the
generated synthetic graphs have 200 nodes. Based on the discussion on the plausible number
of sybil nodes in Sect. 3, we make the number of sybils � = �log2 200� = 8.

The first real-life social graph used in the experiments is the so-called Panzarasa graph,
named after one of its creators [36]. This graph was collected from an online community of
students at the University of California, Irvine. In the Panzarasa graph, a directed edge (A, B)

represents that student A sent at least one message to student B. In our experiments, we used
a processed version of this graph, where edge orientation, loops and isolated vertices were
removed. This graph has 1, 893 vertices and 20, 296 edges. The second real-life social graph
that we used was constructed from a collection of e-mail messages exchanged between
students, professors and staff at Universitat Rovira i Virgili (URV), Spain [17]. For the
construction of the graph, the data collectors added an edge between every pair of users that
messaged each other. In doing so, they ignored group messages with more than 50 recipients.
Moreover, they removed isolated vertices and connected components of order 2. The URV
graph has 1, 133 vertices and 5, 451 edges. For both real-life graphs, we set the number of
sybil nodes to be � = �log2 |V |� = 11.

We analyse three values for the privacy parameter k: a low value, k = 2; a high value,
k = 8; and an intermediate value, k = 5. For every value of k, we compare the behaviour
of the K- Match algorithm, which ensures k-symmetry, and several other anonymisation
methods. We consider Mauw et al.’s algorithm for enforcing (k, ΓG,1)-adjacency anonymity
[31], which explicitly addresses active adversaries and has demonstrated effectiveness in
some instances of the active attack scenario [31,32]. Additionally, to enrich the comparison,
we included perturbation methods devised in terms of other privacy notions, namely the
edge-addition method proposed in [25] for enforcing k-degree anonymity (for k ∈ {2, 5, 8})
and the edge-set perturbation method proposed in [42] for enforcing ε-differential privacy
(for ε ∈ {0.1, 0.5, 1.0}).

In order to build the vertex alignment table, algorithmK- Match requires the vertex set of
the input graph to be partitioned into k subsets such that the number of edges linking vertices
in different subsets is close to the minimum. We used the multilevel k-way partitioning
method reported in [23], in specific its implementation included in the METIS library4, for
efficiently obtaining such a partition. The effectiveness of the anonymisation methods is
measured in terms of their resistance to the robust active attack described in [32]. Thus,
following the attacker–defender game described in Sect. 3, for every graph we first run the
attacker subgraph creation stage. Then, for every resulting graph, we obtain all variants
of anonymised graphs. Finally, for each perturbed graph, we simulate the execution of the
re-identification stage and compute its success rate as defined in [32], that is

4 Available at http://glaros.dtc.umn.edu/gkhome/views/metis.
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Success Rate =
{ ∑

X∈X pX
|X | if X �= ∅

0 otherwise
(3)

where X is the set of equally-most-likely sybil subgraphs retrieved in t(ϕG+) by the third
phase of the attack, and

pX =
{

1
|YX | if Y ∈ YX

0 otherwise

with YX containing all equally-most-likely fingerprint matchings according to X . For the
collections of synthetic graphs, in order to obtain the scores used for the comparisons, we
computed for everymethod the average of the success rates over every group of 10, 000 graphs
sharing the same set of parameter choices. In the case of real-life graphs, we executed, for
each perturbation method, 20 runs on the Panzarasa graph and 400 runs on the URV graph.
In each of these runs, a different set of victims was randomly chosen. The final scores used
for comparisons were the averaged success probabilities over every group of runs.

The anonymisation methods are also compared in terms of utility. To that end, wemeasure
the distortion caused by eachmethod on a number of global graph statistics, namely the global
clustering coefficient, the averaged local clustering coefficient and the similarity between the
degree distributions, measured in terms of the cosine of the angle between the degree vectors,
following the approach introduced in [19,30].

6.2 Results and discussion

Figure 5 shows the success rates of the attack on both random graph collections, whereas
Figs. 6, 7 and 8 show utility values in terms of degree distribution similarity, variation of
global clustering coefficient and variation of averaged local clustering coefficient, respec-
tively. Analogous results on the real-life datasets are presented in Tables 1 and 2.

Regarding the effectiveness of the anonymisation methods, the results in Fig. 5 and both
tables clearly show that K- Match is considerably more effective against the robust active
attack than (k, ΓG,1)-adjacency anonymity. These results are particularly relevant in the
light of the fact that (k, ΓG,1)-adjacency anonymity was until now the sole formal privacy
property to demonstrate non-negligible protection against the original active attack and some
instances of the robust active attack [31,32]. As expected, these results show that K- Match
consistently outperforms the formally weaker k-degree anonymity, displaying in most cases
a significant difference. Finally, we can see that, for sufficiently large values of k, algorithm
K- Match and edge-set perturbation-based differential privacy are both effective against the
robust active attack. It is worth highlighting that the experiments shown here are the first ones
where the robust active attack leveraging �log2 n� sybil nodes is shown to be consistently
thwarted by anonymisation methods based on formal privacy properties. So far, this had only
been achieved in [32] via the addition of random noise, with the limitation that this work
used no principled approach in determining the amount of noise to use.

Regarding utility, there is a number of scenarios where the strong protection offered by
K- Match is obtained at a smaller cost than that of DP, notably for low-density and scale-free
synthetic graphs, as well as both real-life graphs. Both K- Match and (k, ΓG,1)-adjacency
anonymity have a small impact on the overall similarities of the degree distributions. This
does not mean that the degrees are not affected by the methods. In fact, both methods make
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(c) ER graphs, k = 5
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(d) BA graphs, k = 5
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(e) ER graphs, k = 8
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(f) BA graphs, k = 8

Fig. 5 Success rates of the robust active attack on the collections of Erdős–Rényi (left) and Barabási–Albert
(right) random graphs, with � = 8 and k ∈ {2, 5, 8}

most degrees increase, but in a manner that does not significantly affect the ordering of
vertices in terms of their degrees. Regarding clustering coefficient-based utilities, we can
observe in Figs. 7 and 8, and both tables, that the superior effectiveness of K- Match and
DP does come at the price of a larger degradation of the values of local and global clustering
coefficients, although the scenarios where each method is the best differ from one method to

123



Preventing active attacks on social graphs via sybil subgraph obfuscation 1093

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

of
 d

eg
re

e 
di

st
rib

ut
io

ns

Density

Adjacency anonymity
k-degree anonymity

K-Match

0.1-DP
0.5-DP
1.0-DP

k = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50
Value of m

Adjacency anonymity
k-degree anonymity

K-Match

0.1-DP
0.5-DP
1.0-DP

k = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

of
 d

eg
re

e 
di

st
rib

ut
io

ns

Density

Adjacency anonymity
k-degree anonymity

K-Match

0.1-DP
0.5-DP
1.0-DP

k = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50
Value of m

Adjacency anonymity
k-degree anonymity

K-Match

0.1-DP
0.5-DP
1.0-DP

k = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
os

in
e 

of
 d

eg
re

e 
di

st
rib

ut
io

ns

Density

Adjacency anonymity
k-degree anonymity

K-Match

0.1-DP
0.5-DP
1.0-DP

k = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50
Value of m

Adjacency anonymity
k-degree anonymity

K-Match

0.1-DP
0.5-DP
1.0-DP
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Fig. 6 Degree distribution similarities on the collections of Erdős–Rényi (left) and Barabási–Albert (right)
random graphs, with � = 8 and k ∈ {2, 5, 8}

the other. It is worth highlighting that K- Match considerably outperforms DP in terms of
most utility criteria on both real-life datasets.

In our opinion, the main takeaway from the experimental results presented in this section
is that our refinement of the notion of re-identification probability for active adversaries has
led to identifying, for the first time, an anonymisation method satisfying two key properties:
(i) featuring a theoretically sound privacy guarantee against active attackers and (ii) having
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Fig. 7 Variations in global clustering coefficients on the collections of Erdős–Rényi (left) and Barabási–Albert
(right) random graphs, with � = 8 and k ∈ {2, 5, 8}

this privacy guarantee translate into effective resistance to the strongest active attack reported
so far, even when the attacker leverages a large number of sybil nodes.
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Fig. 8 Variations in averaged local clustering coefficients on the collections of Erdős–Rényi (left) and
Barabási–Albert (right) random graphs, with � = 8 and k ∈ {2, 5, 8}

7 Conclusions

We have introduced a new probabilistic interpretation of active re-identification attacks on
social graphs. This enables the privacy-preserving publication of social graphs in the presence
of active adversaries by jointly preventing the attacker from unambiguously retrieving the
set of sybil nodes, and from using the sybil nodes for re-identifying the victims. Under the
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Table 1 Results on the Panzarasa dataset

Perturb. method Succ. rate Sim. deg. distr. Δ Glob. CC Δ Av. loc. CC
None (orig. graph) 0.9984 1.0000 0.0000 0.0000

k = 2 k-adj. anon. 0.9986 0.9999 −0.0001 0.0016

k-degree anon. 0.9986 0.9997 0.0046 0.0076

K- Match 0.0041 0.9993 0.0941 0.0776

k = 5 k-adj. anon. 0.9984 0.9972 0.0050 0.0688

k-degree anon. 0.9984 0.9987 0.0320 0.0190

K- Match 0.0005 0.9967 0.1898 0.1614

k = 8 k-adj. anon. 0.9470 0.9896 0.0251 0.1279

k-degree anon. 0.9987 0.9948 0.0485 0.0638

K- Match 0.0000 0.9918 0.2278 0.1869

1.0-DP 0.0000 0.5435 0.3759 0.1608

0.5-DP 0.0000 0.5332 0.4937 0.2676

0.1-DP 0.0000 0.5287 0.5775 0.3635

Table 2 Results on the URV dataset

Perturb. method Succ. rate Sim. deg. distr. Δ Glob. CC Δ Av. loc. CC
None (orig. graph) 0.9978 1.0000 0.0000 0.0000

k = 2 k-adj. anon. 0.9978 0.9996 −0.0004 0.0003

k-degree anon. 0.9978 0.9991 −0.0033 0.0012

K- Match 0.0888 0.9991 −0.0922 −0.0824

k = 5 k-adj. anon. 0.9974 0.9910 0.0044 0.0208

k-degree anon. 0.9974 0.9964 −0.0074 0.0051

K- Match 0.0079 0.9956 −0.1080 −0.1055

k = 8 k-adj. anon. 0.2280 0.9665 0.0297 0.0438

k-degree anon. 0.2326 0.9933 −0.0123 0.0085

K- Match 0.0000 0.9890 −0.0948 −0.1055

1.0-DP 0.0000 0.7507 0.1544 0.0511

0.5-DP 0.0000 0.7435 0.2721 0.1578

0.1-DP 0.0000 0.7392 0.3559 0.2536

new formulation, we have shown that the privacy property k-symmetry provides a sufficient
condition for the protection against active re-identification attacks.Moreover, we have shown
that a previously existing efficient algorithm, K- Match, provides a sufficient condition
for ensuring k-symmetry. Through a series of experiments, we have demonstrated that our
approach allows, for the first time, to publish anonymised social graphs with formal privacy
guarantees that effectively resist the robust active attack introduced in [32], which is the
strongest active re-identification attack reported in the literature, even when it leverages a
large number of sybil nodes.

The active adversary model addressed in this paper assumes that the (inherently dynamic)
social graph is published only once. A more general scenario, where snapshots of a dynamic
social network are periodically published in the presence of active adversaries, has recently
been proposed in [9], and the robust active attack from [32] has been adapted to benefit from
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this scenario. Our main direction for future work consists in leveraging our methodology to
propose anonymisation methods suited for this new publication scenario.
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A Appendix

It is claimed in [54] that every vertex v of a k-automorphic graph (see Definition 3) is
structurally indistinguishable from k − 1 other vertices ϕ1(v), ϕ2(v), . . . , ϕk−1(v).

Definition 3 (k-automorphism [54]) An automorphism is an isomorphism from a graph to
itself. Formally, an automorphism γ within a graph G = (V , E) is a bijective function
γ : V → V , such that ∀v1, v2 ∈ V : (v1, v2) ∈ E ⇐⇒ (γ (v1), γ (v2)) ∈ E . A graph G is
said to be k-automorphic if there exist k − 1 non-trivial automorphisms ϕ1, ϕ2, . . . , ϕk−1 of
G such that ϕi (v) �= ϕ j (v) for every v ∈ VG and every pair i, j satisfying 1 ≤ i < j ≤ k −1.

Fig. 9 A graph counterexample
showing that k-automorphism
does not achieve the intended
privacy protection

u

v1

v2

v3 v4

v5

v6

However, a missing condition in Definition 3, namely requiring every ϕi to satisfy ϕi (v) �=
v, invalidates this claim. Consider the graph shown in Fig. 9. This graph satisfies k-auto-
morphism as defined in Definition 3, as can be verified by the existence of the non-trivial
automorphism γ = {(v1, v5), (v2, v6), (v3, v4), (u, u)}, yet the graph is vulnerable even to
the simplest structural attack, the degree-based attack, as vertex u is the sole vertex with
degree 2. It is worth noting that this limitation of k-automorphism does not necessarily
invalidate existing anonymisation methods. This is exemplified by the K- Match algorithm
itself, which does provide the intended protection because the property it directly enforces
is the so-called k different matches principle (see [54]), which in turn is not equivalent to
k-automorphism, but stronger.
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