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Abstract 

Ikuromor Mabel Ogiriki 
MACHINE LEARNING MODELS INTERPRETABILITY FOR MALWARE 

DETECTION USING MODEL AGNOSTIC LANGUAGE FOR EXPLORATION AND 
EXPLANATION 

2022-2023 
Vahid Heydari, Ph.D. 

Master of Science in Computer Science 
 

 The adoption of the internet as a global platform has birthed a significant rise in 

cyber-attacks of various forms ranging from Trojans, worms, spyware, ransomware, botnet 

malware, rootkit, etc. In order to tackle the issue of all these forms of malware, there is a 

need to understand and detect them. There are various methods of detecting malware which 

include signature, behavioral, and machine learning. Machine learning methods have 

proven to be the most efficient of all for malware detection.  

In this thesis, a system that utilizes both the signature and dynamic behavior-based 

detection techniques, with the added layer of the machine learning algorithm with model 

explainability capability is proposed. This hybrid system provides not only predictions, but 

also their interpretation and explanation for a malware detection task. The layer of machine 

learning algorithm can be Logistic Regression, Random Forest, Naive Bayes, Decision 

Tree, or Support Vector Machine. Empirical performance evaluation results on publicly 

available datasets and manually acquired samples (both benign and malicious) are used to 

compare the five machine learning algorithms. DALEX (moDel Agnostic Language for 

Exploration and explanation) is integrated into the proposed hybrid approach to support 

the interpretation and understanding of the prediction to improve the trust for cyber security 

stakeholders on complex machine learning predictive model.  
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Chapter 1 

Introduction 

 In recent years, there has been a growing number of attacks using malware by cyber 

attackers. This malware can be trojans, viruses, worms, etc., that can attack the computer 

through emails, various malicious websites, software, and drives that the users have 

downloaded. Over the years, malware has grown not only in the number or the volume in 

which they appear but also in numerous types that perform various functionalities. 

Ransomware is a type of malware where cyber attackers encrypt users' files until a ransom 

is paid. This has become the most financially beneficial form of malware (Cisco, 2016) 

because it has successfully recorded at least 40% of ransom payments. Even though these 

payments have been made, there are few or no guarantees that the file can be removed. 

These encryptions made to files are not only done to local files. Sometimes it extends to 

the whole organization. Since many organizations share volumes of documents to enable 

teamwork, therefore exposing other computers to the risk of being infected by the already 

infected computer. This is harmful to many organizations because in order to contain and 

fix these issues, most businesses must stop their operations until they can properly clean 

all the affected systems and restore their backup image, which can lead to loss of money 

and valuable work time.   

As malware has increased, various research methods have analyzed malicious and 

non-malicious malware samples using static and dynamic tools. These dynamic tools 

include Process explorer (Gandotra et al., 2014), ProcMon (Bidoki et al., 2016), Wireshark/ 

T shark (Ndatinya et al., 2015), TCPDump (Hoque et al., 2014), TCPview (Eilam, 2005), 

sandboxes (Ali et al., 2018), and many more. One of these very effective methods has been 
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using machine learning algorithms to set up an analysis environment using these static 

tools. Examples of static analysis tools include PEView (Sikorski & Honig, 2012), PEid 

(Wang & Wu, 2011), CFF explorer (Abimannan & Kumaravelu, 2019), disassemblers 

(Sikorski & Honig, 2012), PsFile (Abdessadki & Lazaar, 2019), and so much more.  

We can record how efficiently these systems are used to detect this malware based 

on their effective ways of extracting features that are generally classified as malicious. One 

major problem with detecting some of this malware is that most of the recently developed 

have succeeded in escaping various malware analysis and detection systems used to 

previously detect and classify these malware (Singh & Singh, 2018; Gao et al., 2014). 

Another reason is that some of malware use encryption (Alam et al., 2015) and encoding 

techniques (Singh & Singh, 2018), making detection and analysis increasingly difficult 

(Hu, 2011).  

The two major types of detecting malware are signature-based and behavior based. 

While signature-based methods of detecting malware are fast and highly efficient, they are 

easily bypassed by very new or much older types of ransomwares (Mahdavifar & 

Ghorbani, 2019; Zhang et al., 2020). On the other hand, while behavior-based methods of 

detecting malware have a higher resistance to this older malware, they are incredibly time-

consuming. For the two different methods of the malware detection system, we can 

discover that while both are good methods, they are not comprehensive methods of 

malware detection. Machine learning algorithms as malware detection techniques are 

effective because they are built to handle all the complexities, and the fast-changing natures 

of new malware strains have been developed. The use of machine learning algorithms as 

an approach not for malware detection in cyber security but also in healthcare and medicine 
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has become widespread. Machine learning (ML) has the upper hand in areas of its high 

computational power and predictive results. However, many of these machine learning 

algorithms are very hard to understand and give little to no insight into the contributing 

factors associated with its result. Although these Machine learning algorithms have good 

predictive performance, the “opaqueness” of these models makes it difficult for decision-

makers to create real-world solutions to combat malware threats.  

1.1    Problem Statement and Solution  

Detection of malware is critical in order to combat the ever-growing threat that is 

malware. With the rise in more dangerous types of malwares, such as ransomware, 

significant efforts must be made to detect them effectively. As discussed in chapter 3, past 

and current research focuses on hybrid and machine learning approaches, while useful, 

cannot be trusted to be used as a result in malware detection. This is due to the complex 

nature of the machine learning models, which are often described as "Black Box". Many 

of these ML models focus only on accepting the input data and providing the output result 

of their predictions, not bothering about the "How" surrounding the result. The idea of the 

black box rings true because one has very little understanding as to why a model performs 

much better, what factors contribute to the result and which factors are more important 

within a given prediction. While their computational and predictive ability is ranked highly, 

this limited visibility into what this complex model reasoning comprises makes it 

extremely difficult for cyber analysts to trust these results. Cyber Security analysts and all 

the relevant stakeholders deserve the right to know the reason behind a model's prediction 

of why malware can be classified as malicious or not. The explanation of this highly 

predicted result would help them evaluate any future decision, judgment, and solution on 
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combatting various malware attacks based on their insight into the "How" of these 

predictions. 

In this thesis, a system that utilizes both the signature and dynamic behavior-based 

detection techniques, with the added layer of the machine learning algorithm with model 

explainability capability is proposed. This hybrid system provides not only predictions, but 

also their interpretation and explanation for a malware detection task. The layer of machine 

learning algorithm can be Logistic Regression (LR), Random Forest (RF), Naive Bayes 

(NB), Decision Tree (DT), and Support Vector Machine (SVM) (Fumo, 2017). Empirical 

performance evaluation results on publicly available datasets and manually acquired 

samples (both benign and malicious) are used to compare the five machine learning 

algorithms. DALEX (moDel Agnostic Language for Exploration and explanation) (Biecek, 

2018) is integrated into the proposed hybrid approach to support the interpretation and 

understanding (e.g., contributing factors from prediction model) of the prediction to 

improve the trust for cyber security stakeholders on complex machine learning predictive 

model.  

The random forest is empirically shown to be the best classifier with multiple 

positive variables contributing to the prediction model. Comparing the breakdown 

contributions to the Weka black box classification result, we see that random forest has the 

highest number of correct classification because multiple positive variables with high 

weights were factored into the classification.  

Similarly, Naive Bayes, the worse classifier, only focuses on 3 out of 10 features with very 

low contribution weight. From our empirical results, it is important to note that classifiers 

that have greater (positive) single contributions have better predictions than classifiers with 
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multiple low contributions, which gives less accurate predictions. Therefore, the low SVM 

and Naïve Bayes classification is because SVM and Naive Bayes pay little attention to 

other attributes. 

 

1.2  Thesis Outline 

Chapter one of this thesis will briefly describe malware, the various types, the 

channels in which this malware enters our system, and the major ways this malware is 

detected to determine if a sample is malicious or not. Finally, we also described the tools 

and algorithms used in the detection process, the problem statement, and the proposed 

solution. In chapter 2, we discussed a brief overview of moDel Agnostic Language for 

Exploration and explanation (DALEX), along with the importance of Explanatory Model 

Analysis and Approaches to Model Explainability. Chapter 3 focuses on the literature 

review of previous malware detection methods, such as Machine learning file 

system/process monitoring and network traffic analysis, and current methods based on 

similar interpretable machine learning models using explainable artificial intelligence 

(XAI). Chapter 4 describes the materials and algorithm design used for the dataset for 

model explainability and interpretability. Chapter 5 outlines the experiment of the system 

and the plan for testing the experiment. Chapter 6 gives the result of the experiment carried 

out. Chapter 7 discusses the analysis and findings that can be deduced from the result of 

the experiment and possible reasons for the outcome that was shown in the experiment. 

Chapter 8 focuses on the conclusion of the thesis, the final findings, the direction for future 

research and provides references that were used for this thesis.  
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Chapter 2 

MoDel Agnostic Language for Exploration and eXplanation (DALEX) 

For this chapter, we will provide a general summary of model explainability from 

the book “Explanatory Model Analysis” by Przemyslaw Biecek (Biecek, 2018), where he 

created a taxonomy of model-agnostic explanations for machine learning predictive 

models. This provides us with a bird’s eye view of predictive models and the ever-

increasing machine learning framework in a language-agnostic manner. 

2.1  Overview 

In our ever-evolving technological world, machine learning and its complex 

predictive algorithm have become important in our daily lives and decisions. Some 

examples include hospitals, data centers, work, and even everyday IoT devices. However, 

unexplainable predictions can be very harmful (O’Neil, 2016). Typical cases of mechanical 

failures used for surgical purposes have inflicted injuries on patients (Alemzadeh et al., 

2016) and so much more. Recently, this and many other similar predictive model failure 

cases have increased public concerns and demand for more transparent, fair, and 

explainable models.  

Over the years, various model explanations have been built, such as the following: 

modelStudio (Baniecki & Biecek, 2019), lime (Ribeiro et al., 2016), SHapley Additive 

exPlanations (SHAP) (Lundberg & Lee, 2017), pdpbox (Jiangchuan, 2018), interpret (Nori 

et al., 2019), alibi (Klaise et al., 2021), and aix360 (Arya et al., 2020). Other solutions 

developed for model fairness and interactive dashboards support machine learning. 

However, all these solutions need to be more cohesive. DALEX was developed to unify all 
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these fragmented solutions from the traditional black box model up to the explainability 

model while not compromising on its offering interactive explainability and fairness.  

2.2  Importance of Explanatory Model Analysis  

 Statistical models are divided into two main areas: predictive and explanatory. 

Predictive models, as part of the two types of statistical models, have existed for years. 

There is an increasing need for predictive models because it helps give us insight into what 

the future value of a model would look like and the consequences. For example, we use 

them to see the likelihood of someone having a certain disease or not.  

 There are five main reasons why explanatory models are important. These reasons 

are model complexity, right to explanation, ethical issues, model debugging, and Trust and 

human interaction. The explanatory model analysis is also very useful because it can be 

used at any stage in the life cycle model development. Figure 1 shows what a model 

development cycle for predictive looks like. 
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Figure 1  

Predictive Model Development Lifecycle (Biecek, 2019) 

 

 

The following five subsections will give us a more in-depth explanation of these five and 

the roles they play in the importance of explanatory models. 

2.2.1  Model Complexity 

 Models have only gotten more and more complex. The availability of fast 

computers has led to the training of much larger datasets. Therefore, analyzing these 

models is more challenging by only looking directly at the provided model parameters. 

Models now possess thousands and millions of these attributes/parameters, so it is essential 

to have tools that would aid us in analyzing these more complex models. 
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2.2.2  Right to Explanation 

 Predictive models also play a huge part in our day-to-day lives as they 

constitute the basis of how many of the shows we watch are recommended, how ads are 

shown on our social media, how patients are being diagnosed, and so much more. Due to 

this reason, there have been changes have been made to protect our civil rights. Many 

countries are now implementing what is known as “The Right to Explanation” as part of 

their legal systems. Rights to explanation, as defined on Wikipedia, is “a right to be 

explained an output of the algorithm. Such rights primarily refer to individual rights to be 

explained decisions that significantly affect an individual, particularly legally or 

financially.” This protection is put in place to help individuals to gain an understanding of 

how automated processes work and how these processes affect them and be able to 

challenge them where necessary.  

2.2.3  Ethical Issues 

 In some cases, the analysis of machine learning models might lead to biased 

decisions. A clear example is models built for recidivism, where the model showed 

discrimination based on skin color. Another example of biased models was credit score 

models, which showed biases based on age and skin color. These biases are generated from 

the learning of historical data. There are many more examples of these types of 

discrimination daily. Another important factor to note is that it is also very difficult to tell 

how strongly these biases contribute to the models and to what degree they contribute to 

these models to help us understand the data and make attempts to correct these biases as 

we encounter them. The provision of explanatory models helps us by providing those 
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necessary insights and allowing us to correct factors that may contribute to their bias in 

each dataset. 

2.2.4  Model Debugging 

 As we mentioned earlier in subsection 2.2.1, an increase in model complexity 

makes it difficult to understand models, making it difficult to fix issues associated with 

such models. It would only be possible to fix model-related issues when one can understand 

these models themselves. There is no say that blind changes would not affect the outcome 

of our models. Therefore, there is a need for tools that provide the right insight to help us 

with post hoc analysis to enable us to catch issues and fix them to get the best prediction 

result possible. 

2.2.5  Trust and Model Human Interaction 

 Since machine learning is created to support decision-making by humans, it is 

important for a level of trust between the models and the humans using them. There is a 

need for tools that would bridge the gap between the communication of this prediction and 

the human using them. This transparency would enable humans to trust the models a lot 

better and, in turn, would enable them to take actionable steps using the information 

obtained from these models. 

2.3  Approaches to Model Explainability 

Understanding how a model works is not novel. Over the years, tools for model 

diagnosis have been developed. However, we can group these approaches of model 

explainability into three major categories. These categories are interpretable by design, 

Model Specific Exploration, and Model agnostic Exploration. The following subsection 

will break down these individual categories with a more detailed explanation. 
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2.3.1  Interpretable by Design  

The idea behind this approach is simple. The overall idea of this approach is that 

since the structure of the model is simple, the analysis would equally be direct. It requires 

only the use of models that consist of only simple structures that are very easy to 

understand. This can consist of numbers that only have very small attributes/variables or 

decision trees that are not deep or have a lot of rules. However, the drawback to this 

approach is that it is very time-consuming and requires an expert who has very deep 

knowledge of how to select and finetune some of the variables to achieve the result.  

2.3.2  Model Specific and Exploration 

Unlike the previous approach, which was used for simple structures, this is used for 

more complex model structures. The main objective behind this approach is that since we 

cannot analyze the parameter individually, we require specific tools to visualize and 

analyze these complex structures. This approach specializes in exploring how these 

complex model’s function. A few tools used in this approach include diagnostic plots for 

linear models, node statistics for random forests, or integrated gradients for deep neural 

networks. 

2.3.3  Model Agnostic Exploration 

For this research, we will be focusing on this approach. In the model agnostic 

exploration approach, assumptions are not made about the internal structure of the model. 

This approach does not care about the simplicity or complexity of the model. Decisions 

and results for this approach are solely based on the input to this model. This is like the 

black box model approach, where we analyze only the input. However, the key difference 

in this approach is the relationship between what the input of the model is to the output. 
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We believe this is the best approach, and it is used for this research because it is versatile 

and can be used for any model. It is also very useful in comparing different models. 
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Chapter 3  

Literature Review 

This chapter contains material originally published in Technical Analysis of Thanos 

Ransomware presented by Ogiriki et al. and  is used with permission. 

This chapter briefly reviews previous malware detection methods classified based 

on machine learning, file system/process monitoring, and network traffic. 

3.1  Classifications Based on Machine Learning 

Use machine learning algorithms to group these ransomwares based on their digital 

genotype and their digital phenotype, this helps to properly identify their various malicious 

functions, detect the best features of  ransomware applications from benign apps, as well 

as identifying ransomware applications using sequential pattern mining techniques. 

3.1.1  DNAAct-Ran  

According to Khan et al. (2020), traditional signature-based malware detection is 

no longer efficient in identifying ransomware. As a result, their answer presented a new 

and better way of using the ground-breaking Digital DNA sequencing engine. This engine 

employs a machine-learning algorithm to classify ransomware based on its digital genome 

and phenotype to identify its numerous destructive functionalities appropriately. 

The suggested DNAAct Ran technique uses machine learning to determine if the software 

is ransomware. This technique achieves this aim by first selecting the significant traits, 

generating digital sequences for those selected futures, and detecting the ransomware. The 

algorithms utilized are the Multi-Objective Grey Wolf Optimization (MOGWO, an 

extension of GWO by Mirjalili, Mirjalili, and Lewis (2014)) and the Binary Cuckoo Search 

(BCS algorithm) by Yang and Suash (2009). Compared to other ML approaches, the 
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classifier's performance is used to assess the accuracy of the DNAAct-capacity Ran’s to 

identify ransomware. Some other active machine learning approaches, in addition to these 

suggested ones, include naive Bayes, decision stump, and the Adaboost classification 

algorithm. 

3.1.2  Know Abnormal, Find Evil 

Frequent Pattern Mining for Ransomware Threat Hunting and Intelligence 

Homayoun et al. (2020) advocated employing sequential pattern mining algorithms to 

discover the best attributes of ransomware programs from benign apps and to identify 

ransomware software. Their detection characteristics' efficiency was examined using them 

with the J48, random forest, bagging, and MLP classification algorithms. The criteria for 

this investigation were the usual types of True Positives (for total samples now recognized), 

False Positives (mistakenly identified samples), True Negatives (number of correctly 

rejected samples), and False Negatives (number of incorrectly rejected samples) 

(Incorrectly rejected samples). They begin by identifying and defining detectable patterns 

and occurrences to identify the appropriate attributes for classification. The sequence 

pattern mining approach will next be applied to each dataset in order to identify the best 

sequence pattern. Each sequence in each dataset is then cross-matched based on the 

maximum sequence pattern to highlight the characteristics of the training classifiers. The 

following are examples and descriptions of maximum sequence patterns: 1) R (for all 

events must be registry), 2) D (all events must be DLL), 3) F (all events must be file), 4) 

RF (multiple transitions, but the first transition is from the registry to the file event), 5) RD 

(multiple transitions, but the first transition is from the registry to the DLL 
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event), 6) FR (multiple transitions, but the first transition is from file to registry event), 7) 

FD (more than one transition, although the initial transition is (more than one transition, 

but the first transition is from DLL to file event). 

3.2  Classifications Based on File System/Process Monitoring 

Detecting ransomware  based on setting indicators as a way of measuring 

various  ways in which a file changes, if in any case a file all these indications is found to 

be true then it can be concluded that a file has indeed been corrupted and has an element 

of malicious characteristics. 

3.2.1  UNVEIL 

Prior attempts to detect malware have primarily focused on monitoring its low-level 

file system operations. UNVEIL by Kharraz et al. (2016) is one such technique. UNVEIL 

detects ransomware by attempting to monitor file activity. To monitor these actions, they 

were divided into three types based on file system operations (whether a file was read, 

written/encrypted, deleted, or overwritten). They may be able to detect ransomware 

assaults as a result of this. The Redemption by Kharraz et al. (2017) method was also used 

to examine the request pattern of a file I/O to see whether there was any potential 

ransomware for each process. If this is restored, the processes labeled as dangerous will be 

terminated. These are good solutions in 

general, but their drawback is that many harmless apps, such as encryption and 

compression of applications, also have such file access characteristic features. If this is the 

case, these solutions risk producing many false-positive findings since they consider those 

features to be the same when identifying the activity of various ransomware file systems. 

Below are a few more characterizations based on file system/process monitoring. 
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3.2.2  RWGUARD 

Mehnaz et al. (2018) presented a decoy-based ransomware technique 

(RWGUARD) rigorously tested to analyze 14 of the most common ransomwares and detect 

their operations in real-time. It used both the file change and the process change to identify 

files encrypted by ransomware. 

Three monitoring strategies were used in this approach: file change monitoring, decoy 

monitoring, and process monitoring. By employing the correct CryptoAPI function and 

learning characteristics identical to the user’s encrypted file, it was possible to distinguish 

between a benign and an encrypted ransomware file. Using this comprehensive decoy 

system, it was nearly hard for ransomware to distinguish their fake files. 

3.2.3  RANSOMSPECTOR 

This method is based on the virtual machine introspection approach presented by 

Garfinkel and Rosenblum (2003). This solution integrates file operations like opening, 

renaming, closing, reading, and writing with network operations like connecting, binding, 

receiving, sending, and disconnecting. They then matched them to discover which 

corresponded to specific system calls in the operating system's kernel. The virtual machine 

can also collect this, including context information like the system call's return value, the 

parameters, and the caller's process. Tang et al. (2020) also discovered that a significant 

number of crypto-ransomware samples linked to a network create a huge number of 

network patterns with similar patterns that differ from their file activities. As a result, by 

analyzing how these ransomware programs interface with the network and file system, they 

will gain a bit more precision and inform the user if there is evidence of a ransomware 

assault. 
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3.2.4    Crypto Ransomware Analysis and Detection Using Process Monitor 

Kardile et al. (2017) suggested a method for identifying ransomware attacks based 

on a process monitor implemented on Cuckoo Sandbox. They intentionally picked sandbox 

because it removes the danger of data loss. After all, the Cuckoo sandbox returns to its 

original state after executing the malicious sample. This method builds a genuine and bogus 

environment to run these ransomware strains. They then capture the file system calls trail 

and record the I/O access using a process monitor. Their research discovered that when 

suspected malware attacked the system being targeted, the behaviors and activities of files 

in the system altered dramatically. They found that the time stamp for the entries in the 

Master File table was quite close to a ransomware assault occurring on that system by 

observing the Master File Table. 

3.2.5  Cryptodrop 

Scaife et al. (2016) presented a solution designed for the Windows operating 

system, which has been known to be frequently targeted by ransomware. This method of 

identifying ransomware relies on indicators to track the many ways in which a file changes. 

If all these indicators are discovered to be true in a file, it may be determined that the file 

has been corrupted and contains harmful elements. These signs include categorizing 

ransomware activity based on their actions into three categories. For class one, the 

ransomware would try to rewrite what was in the original file by opening it, reading it, 

encrypting it, and closing it. For class two, alter the location of the user’s file, read and 

encrypt the file, and then return it to its original position. The file name may change from 

the original name by shifting the file back and forth. The ransomware would examine the 

file, produce an encrypted copy, and then destroy or replace the original for the final class. 
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3.2.6 SSD-Assisted Ransomware Detection and Data Recovery Techniques 

On the storage side, the SSD insider++ method presented by Baek et al. (2020) 

incorporates sophisticated features like online ransomware detection, flawless data 

recovery, and sluggish detection. The technique described for online detection is one of the 

key distinctions between this suggested approach and signature-based alternatives. The 

algorithm watches and analyzes the host machine’s I/O pattern and makes a judgment 

during run time by analyzing invariant traits that characterize the I/O behavior of 

ransomware-affected host computers. This is especially significant since it now allows for 

identifying ransomware attacks in their early phases. The SSD insider++ overcomes the 

drawbacks of earlier software and hardware in detecting ransomware by combining 

ransomware detection and a data recovery algorithm onto a single SSD. The SSD-

architectural insider++’s architecture comprises ransomware detection and 

backup/recovery. To identify any abnormal behavior, the SSD Insider++ employs two 

distinct file operations known as “update-after-read” and “trim-after-read” When 

ransomware attacks files, its goal is to remain undetected for the longest time feasible by 

the user. As a result, if many I/O patterns are discovered, we can interpret this as a symptom 

of a ransomware assault. Baek et al. studied the behavior of six prominent real-world 

malware to capture ransomware behaviors. Zerber, Locky, Cryptoshield, WannaCry, Mole, 

and Jaff are examples of malware among them. To identify the traits capable of 

differentiating this malware by comparing their I/O 

footprints to those of common apps. After training and testing with various combinations 

of this ransomware and programs, the SSD insider++ was able to identify new or 

undiscovered malware by recognizing their distinctive I/O patterns. 
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3.3  Classifications Based on the Network Traffic 

This solution can be described as a framework that is being used to detect and block 

various ransomware actions when these malwares are in the process of encrypting files that 

are being contained in a Network volume from a Network Attached Storage. 

3.3.1  The Case of BadRabbit 

Alotaibi et al. (2021) developed a technique for detecting efforts to distribute 

ransomware at the network level rather than preventing the device from being encrypted, 

which was already addressed in prior studies using BadRabbit as a case study. To 

accomplish this analysis, they employ two VMs, one Windows 10 and one REMnux, for 

static analysis. They operated four virtual machines for the dynamic analysis: one with a 

REMnux acting as a gateway, two with Windows 10 (one infected with BadRabbit), and 

one with Windows 7. The investigation showed that Bad Rabbit did not need to contact the 

command-and-control server to exchange an encryption key; instead, it accessed these files 

using a public key. Because Bad Rabbit is self-propagating ransomware, our solution 

employs five modules to identify and fight self-propagating malware. Deep packet 

inspection (dpi) and packet header inspection are examples of these modules (phi), honey 

pot-based, ARP scanning-based detection, and SMB Packet size checkers. 

3.3.2  REDFISH 

Morato et al. (2018) presented Ransomware Early Detection from FIle SHaring 

traffic which is usually referred to as REDFISH. This solution may be regarded as a 

framework for detecting and blocking different ransomware behaviors when the infection 

encrypts data on a network volume from a Network Attached Storage. This solution 

examines the difference in traffic behavior between infected and non-infected hosts. The 
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characteristics they investigated for these host behaviors include how files on a shared file 

are opened, read, written, and deleted. Their approach is derived from studying 

SMB/SMB2 traffic over a single TCP connection. 
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Chapter 4 

System Design 

This chapter describes and discusses techniques for detecting malware, machine 

learning classification, and model interpretability using DALEX. For the system design, 

we used a hybrid approach that utilizes both the signature and dynamic behavior-based 

detection techniques, with the added layer of the machine learning algorithm and model 

explainability. This hybrid system would give a more robust answer to the malware 

detection challenge. The proposed system's goal is to detect and interpret the various 

models used for malware classification. The detailed information about system design and 

the approach is described in detail in the chapter. 

4.1  Architectural Layer of the Proposed System 

As illustrated in Figure 2, we present a relatively new approach with four layers. 

Malware samples would be analyzed using signature and behavior-based approaches 

(layers one and two). These layers would combine the benefits of both strategies. 

Afterward, we would go on to the next layer, utilizing a machine-learning technique to 

train malware classifiers.  

  



22 
 

Figure 2 

Diagram of Architectural Layer of the Proposed System 

 

 

4.2  Artificial User Testing Environment  

Malware generally can hide its malicious tendencies when they know they are being 

monitored. Therefore, it was important to create an environment that would protect the 

user's information system and information while also testing if malware is malicious or 

benign. For the signature and behavioral portion of our experiment, we installed Cuckoo 

Sandbox [Jurriaan, 2013]. Cuckoo Sandbox was our choice because it creates an isolated 

environment, particularly on Windows 7, where a lot of malwares easily attacks. Cuckoo 

sandbox is one of the leading open-source automated malware analysis systems. Using 

cuckoos’ sandbox, we can provide any suspicious file, and in a matter of minutes, cuckoos 

will give us a very detailed report that would enable us to see how a malware file behaves 



23 
 

when it is being carried out inside an environment that looks as realistic, but it is in fact 

isolated. This software is free and can carry out tasks that can check for files that have 

malicious behavior in Android, macOS, Linux, and Windows. The features of Cuckoos 

are.  

1. Ability to analyze various malware files, such as emails, executable files, 

documents, emails, executable files, etc. 

2. Ability to perform memory analysis 

3. Gather the general behavior of these malicious files, which contains their 

information and general signatures. It also traces their API calls and compiles them 

in a simple, readable format. 

4. It can analyze and dump network traffic, including when it was encrypted with 

SSL/TLS. 

With cuckoo, we can mimic as closely as possible a real windows environment so we can 

capture a true display of malware samples. Here are a few steps on how we configured the 

Cuckoo Sandbox.  

How to configure Cuckoo for daily use: 

● First, open 3 terminal windows: 
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Figure 3 

Terminal Window of Cuckoo Setup 

 

 

● Then enable the virtual environment in all 3 terminal windows (NOTE: do this 

before running Cuckoo sandbox in any of the windows or else this will not work, 

and an error message will be shown) 

○ First, run this command in each terminal to set up the virtualenv: 

virtualenv ~/cuckoo 

○ Then run this command in each terminal to start the virtualenv:  
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Figure 4 

Terminal Window of Cuckoo Virtual Environment 
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Figure 5 

Terminal Window of Cuckoo Router 

 

 

● Run the Cuckoo Rooter in one of the terminals using this command: cuckoo 

rooter  

● --sudo --group cyberlab: 

● Run the command cuckoo in another terminal window: 
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Figure 6 

Terminal Window of Successful Cuckoo Setup 

 

 

● Type in this command in the third terminal to start the web UI: cuckoo web --host 

127.0.0.1 --port 8080 
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Figure 7 

Terminal Window of Cuckoo Web Setup 

 

● Finally, click on the link http://127.0.0.1:8080/ to open Cuckoo Sandbox 
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Figure 8 

Cuckoo Web Application 

 

 

 

To use the sandbox test was carried out on both the benign and the malicious samples. For 

the samples in Figure 9, we used EngRat.0.1.0, a type of ransomware, as our test file and 

analyzed using Cuckoo in a Windows 7 VM. Here is the summary of the information: 

 

 

 

 

 

 

 



30 
 

Figure 9 

Summary of EngRat Malware Samples in Cuckoo Sandbox 
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Figure 10 

Signatures of EngRat Malware Samples in Cuckoo Sandbox 

 

 

Upon analysis, cuckoo rates the ransomware at 2.6 out of 10. It notes how the ransomware 

searched potentially malicious URLs, allocated read-write-execute memory to unpack 

itself, and checked the adapter addresses that can detect virtual network interfaces. 

We can compare this to our benign sample, which is like this ransomware: 
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Figure 11 

Summary of Benign Samples in Cuckoo Sandbox 

 

 

While both released potentially malicious URLs, the benign only yields a result of 0.4. It 

should be noted that scores lower than 1 out of 10 are considered benign and highlighted 

green. In contrast, scores higher are highlighted yellow or even red. 

4.3  Machine Learning Using Weka 

For the third layer of the system design using machine learning analysis, we 

downloaded Weka and uploaded the CSV of the samples that have been tested and verified 

from the cuckoo sandbox. Weka is an open-source software that allows for implementing 

machine learning algorithms. Although it offers some visualization and output based on 

the result of the machine-learning classification, it is still a black-box solution. It offers 

little to no explanation about how machine learning models make their predictions and 

what factors, and features contribute to their predictions. The full summary of its offerings 

can be seen below in Figure 12. Weka offers various options such as classify, cluster, 
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associate, and attribute, which can be very useful for reducing the size of a data set. Weka 

is also useful for massive data as it offers a simple, easy-to-use GUI interface to handle big 

data with several ready-to-use algorithms, which leads to quicker development of various 

machine learning model results in few seconds.  
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Figure 12 

Summarize Architectural Structure of Weka 

 

 

4.4 Model Explanation 

From the above design, we have detected whether malware is benign or malicious. 

We have also been able to use various classifiers to see which machine learning algorithm 

performs the best to group this malware into their various types. While we have some 

results using weka, there needs to be more trust in the result obtained because there is no 

visibility into the contribution features of these results. This is where the model explanation 

is useful, as can be shown in Figure 10 below. The concept of the model explanation is in 
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the form of a pyramid. At the very top, it starts with the prediction, which is very similar 

to the result from weka to show how well the model performed. This assessment can be 

done in various ways. It can be through the F1 score and the ROC/AUC curve. On this 

level, the model provides a high-level assessment of the quality of the model.  

The second layer of the pyramid provides even more details. On this level, we gain 

a deeper understanding of what variables can be classified as important and what parts 

influence the model to work the way it does or not. This level is concerned with showing 

the strength and influence of the variable.  

Further down the pyramid is the explanation of how the model would react if any 

disturbances or changes occur with the values of its variables. This is also known in the 

Latin phrase ceteris paribus, which translates to “all things being equal” or “all things being 

unchanged”. This would help us to understand how model predictions can be affected by 

variable changes, one at a time. The last layer could help us understand “How good the 

local fit of the model” is to see if the model performed well in certain situations vs. others. 

Overall, the entire idea of the pyramid of model explanation is that the further down you 

go, the deeper the level of detail you can get about a model’s prediction. This is way more 

useful in solving malware detection problems as it gives a more thorough understanding of 

black box results in an interactive way. 
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Figure 13 

Diagram of DALEX Explanatory Model  

 

  



37 
 

Chapter 5 

Experiment Design 

This chapter discusses in extensive detail the design of the experiment. This 

consists of various components, such as the means of acquiring the dataset, the dataset's 

description, the experiment's implementation, and the classification algorithms used. 

Finally, the metrics used to determine the model's accuracy to produce the results in chapter 

6. 

5.1 Data Collection 

Previous methods obtained data from various websites such as Virus Total, Virus 

shares, Zelster, MWanalysis.org, Vxheaven, PCHome Malware Repositories, etc. For 

research purposes, three major types of datasets are available/ being used and they are: 

5.1.1  Publicly Available Datasets 

These are currently being offered and provided publicly. They are also being 

updated and maintained by research enthusiasts for the purpose of research all over the 

world for free in the field of cyber security. 

5.1.2  Artificially Generated Datasets 

These are classified as datasets generated manually using special tools or collected 

from the network traffic by cyber security researchers. 

5.1.3  Commercial Datasets 

As the name implies, these are datasets that are not freely offered to the public. 

They are provided as commercial projects and supported by companies for commercial 

purposes. For this research's sake, we obtained our dataset from publicly available datasets. 

This is because public datasets are freely available, generate new insights into data 
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collected by fellow researchers, and possess a larger sample size. To obtain the biggest 

sample data, we obtained malicious ransomware samples from public sites such as virus 

total, Vx heavens, NetLux, Anubis, nexginre for malicious data, and Benign samples from 

portableapps.com.  

5.2 Description of the Dataset 

The primary dataset used for this experiment was obtained from the University of 

California, Irvine (Alberto, 2019), which Virus Total donated. This dataset comprises six 

types of malwares. The samples are not evenly split between each type, with malware types 

such as trojans, viruses, and adware having the highest numbers, while worms and 

ransomware have much lower samples. The dataset consists of 2955 samples in total from 

Virus Total, with over 1000 extracted attributes. With 1901 malware samples and 1054 

benign, respectively. These samples consist of both benign and malware samples. Two 

types of features can be extracted from malware samples. They are static features and 

dynamic features. Static features are features that can be obtained without running the 

malicious samples. Whereas Dynamic features are obtained from running the malicious 

samples from a testing environment. The attribute features for this dataset consist only of 

dynamic features extracted from the cuckoo sandbox. Cuckoo sandbox is extremely useful 

for malware analysis because it allows the simulation of an actual computing environment 

by performing basic human interactions such as opening/closing files, running command 

line scripts, enabling the submission of malware samples, and much more. This way, we 

can correctly record the attributes of this malware. Although Cuckoo sandbox is our choice 

for this experiment, any other sandbox, such as Anubis, NorMan etc., that are used for 

dynamic analysis could also be used.  
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Due to the number of attributes, there were a lot of null or empty values, so this dataset 

required a lot of cleaning to ensure the accuracy of the result. We were able to effectively 

reduce the attribute size from over 1000 down to 64 relevant features such as dll, file 

registry information, name, type, import, etc. The dataset only contained its filename using 

its SHA-256. We also used the SHA-256 value to find the malware name and class of 

malware for machine learning analysis for all the malware in the dataset.  

 

Table 1 

Virus Total Dataset and Classes 

No. Classes Count 

1 adware 389 

2 trojan 750 

3 virus 438 

4 riskware 45 

5 worm 94 

6 ransomware 185 

7 benign 1054 

  Total: 2955 
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5.3 Implementation 

For implementation, we started by testing a lot of samples on the Cuckoo sandbox 

in order to obtain the result of the samples. The results of the samples are usually stored in 

a .JSON file. The benefit of Cuckoo is that it allows us to run the malicious samples on that 

environment like it was a real system while obtaining information about whether the 

sample was malicious. Since we wanted to test a lot of samples to ascertain whether they 

were malicious, we decided to use a dataset obtained from Virus Total. The dataset 

comprised 2955 samples, with features extraction of over 1000. We used this dataset 

because its features were extracted from the cuckoo sandbox, which is like our already 

tested samples, and we can add to this dataset to increase the numbers. Out of the 2955 

samples, over 62 trojan samples were duplicated. We removed all duplicated trojan 

samples and replaced them with 62 other ransomware samples. Using cuckoo sandbox, we 

tested the 62 ransomware samples on both windows 10 and windows 7, respectively, and 

We extracted the result seen in Figure 14 and Figure 15 below. 
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Figure 14 

Ransomware Test Results on Windows 7 
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Figure 15 

Ransomware Test Results on Windows 10 

 

Steps used to Preprocess the Dataset  

1. Labeling of samples: The samples only came with the hash values, so we cross 

checked each hash value and relabeled each of the acquired samples in the dataset 

to its original virus name. Since the samples were acquired on Virus total, we 

matched the hash to the virus name on the virustotal.com website. 

2. Clean the dataset: After acquiring the dataset, we realized that a lot of the 

extracted features were empty. We decided to delete all the columns of the data of 

the extracted features where they all had an empty or a zero value. This brought our 
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dataset from over 1000 features to about 63 relevant features such as dll, file 

registry information, name, type, import, etc. 

5.4 Data Analysis 

Classification algorithms are divided into symbolic learning algorithms (CART. 

C4.5, NewID, AC2, ITrule, Cal5, CN2), statistical algorithms (Naive Bayes, K-Nearest 

neighbor, kernel density, linear discriminant, quadratic discriminant, logistic regression, 

projection pursuit, Bayesian networks), neural networks (backpropagation, radial basis 

functions), and Random Forest. However, for the purpose of this research, we will be 

comparing Logistic Regression, Naive Bayes Classifier, Random Forest, SVM, and 

Decision Tree. The aim is to record the performance of these classifiers on the data set and 

compare the result of these black box models to DALEX. The result will be tabulated and 

graphed to show the recommended algorithm for classifying data sets. 

The experiment will consist of the following stages:  

● The data was collected (and cleaned where necessary) from the various open-source 

malware databases.  

● The data was separated into training and test data. 

● The dataset trains a model using logistic regression, performs the necessary tests, 

and records findings.  

● The dataset is used to train the model using the Naive Bayes Classifier, perform the 

necessary tests, and record findings.   

● The dataset is used to train the model using the Decision tree, perform the necessary 

tests, and record findings.   
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● The dataset is used to train the model using the SVM classifier, perform the 

necessary tests, and record findings.  

● Compare the performance of the algorithms between the black box model and 

DALEX. Also, provide proof (if any) of the recommended algorithm for the input 

data.  

The goal is to train the five selected classification algorithms to predict whether a 

malware sample is malicious or benign. The data set used for the training and testing will 

be the same. The performance of all algorithms will be measured, calculated, and compared 

based on accuracy, speed, and error recorded.  
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Chapter 6 

Model Performance Comparison and Discussion 

In chapter 5, we talked in detail about how we set up our experiment to collect and 

test benign and malware samples using weka, a black box machine learning software. In 

this chapter, we will display the black box model (weka) result. The first part of this section 

starts with a tabulated result of each machine learning classifier using weka. Then we 

would proceed with discussing the result of the black box model. The experiment's main 

objective is to conduct an extensive experiment using a black box model and find out the 

best classification algorithm. 

6.1  Machine Learning Classifier Performance on Black Box Model 

The tabulated results shown in this subsection in Tables 2, 3, 4, 5, and 6 are from 

the machine learning classification output using weka. The accuracy result for each 

machine learning classifier was obtained from the Virus Total dataset discussed in section 

5.1 above.  
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Table 2 

Machine Learning Result for Random Forest 

Weight split:  80/20 

Random forest Accuracy: 88.49% 

TP Rate  FP Rate  Precision Recall F-Measure MCC ROC area Prc area Class 

0.76 0.05 0.74 0.76 0.75 0.71 0.97 0.80 adware 

0.86 0.07 0.83 0.86 0.84 0.84 0.95 0.89 trojan 

0.94 0.02 0.89 0.94 0.91 0.91 0.99 0.97 virus 

0.22 0.00 0.50 0.20 0.29 0.29 0.74 0.34 riskware 

0.77 0.00 0.94 0.77 0.85 0.85 0.97 0.89 worm 

0.33 0.00 1.00 0.33 0.50 1. 
00 

0.93 0.39 ransomware 

1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 Benign 
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Table 3 

Machine Learning Result for Decision Tree 

Weight split:  80/20 

Decision Tree Accuracy: 86.97% 

TP Rate  FP Rate  Precision Recall F-Measure MCC ROC area Prc area Class 

0.66 0.02 0.80 0.66 0.72 0.68 0.91 0.66 adware 

0.91 0.12 0.75 0.91 0.82 0.75 0.91 0.73 trojan 

0.87 0.02 0.89 0.87 0.88 0.86 0.95 0.85 virus 

0.20 0.00 0.67 0.20 0.31 0.36 0.74 0.24 riskware 

0.68 0.00 1.00 0.69 0.81 0.82 0.95 0.77 worm 

0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.11 ransomware 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Benign 

 

Table 4 

Machine Learning Result for Logistic Regression 

Weight: 80 /20 

Logistic Regression Accuracy: 82.06% 

TP Rate  FP Rate  Precision Recall F-Measure MCC ROC area Prc area Class 

0.67 0.06 0.64 0.67 0.66 0.60 0.94 0.64 adware 

0.77 0.12 0.73 0.77 0.75 0.64 0.92 0.81 trojan 

0.83 0.03 0.84 0.83 0.84 0.81 0.94 0.87 virus 

0.00 0.00 0.00 0.00 0.00 -0.01 0.89 0.11 riskware 

0.77 0.00 0.77 0.77 0.77 0.76 0.96 0.61 worm 

0.17 0.00 0.33 0.17 0.22 0.23 0.75 0.18 ransomware 

0.99 0.00 1.00 0.99 0.99 0.99 0.99 0.99 benign 
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Table 5 
 
Machine Learning Result for SVM 

Weight split:  80/20 

SVM Accuracy: 55.33% 

TP Rate  FP Rate  Precision Recall F-Measure MCC ROC area Prc area Class 

0.14 0.00 0.86 0.14 0.25 0.32 0.57 0.24 adware 

0.98 0.62 0.39 0.98 0.56 0.37 0.68 0.39 trojan 

0.30 0.00 1.00 0.30 0.47 0.52 0.65 0.41 virus 

0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.01 riskware 

0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.04 worm 

0.33 0.00 1.00 0.33 0.50 0.58 0.67 0.34 ransomware 

0.57 0.00 1.00 0.56 0.72 0.68 0.69 0.72 Benign 

 
 

Table 6 
 
Machine Learning Result for Naive Bayes 

Weight split:  80/20 

Naive Bayes Accuracy: 45.35% 

TP Rate  FP Rate  Precision Recall F-Measure MCC ROC area Prc area Class 

0.27 0.07 0.38 0.27 0.32 0.23 0.87 0.48 adware 

0.06 0.02 0.58 0.06 0.12 0.12 0.82 0.58 trojan 

0.03 0.02 0.20 0.03 0.06 0.20 0.88 0.46 virus 

0.40 0.13 0.05 0.40 0.09 0.10 0.78 0.05 riskware 

0.90 0.23 0.13 0.91 0.23 0.30 0.95 0.73 worm 

0.33 0.10 0.03 0.33 0.06 0.08 0.76 0.19 ransomware 

1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 benign 
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6.2   Black Box Machine Learning Discussion 

To discuss the accuracy results of the machine learning algorithms in section 6.1 

above, it is important to understand the metrics used for the comparison that contributed to 

its overall prediction result shown in Table 7 below. These key metrics are accuracy, 

precision, recall, F-Measure, MCC, ROC area, and PRC area. 

 

Table 7 

 Machine Learning Confusion Matrix 

 Predicted as Positive Predicted as Negative 

Actually Positive True Positive (TP) False Negative (FN) 

Actually Negative False Positive (FP) True Negative (TN) 

 

 

From Table 7 above, we can define the following evaluation measures below. 

 

a) Accuracy = (𝑇𝑃	 + 	𝑇𝑁) ÷ (𝑇𝑃	 + 𝑇𝑁	 + 	𝐹𝑃	 + 	𝐹𝑁) 

 

b) Recall = 𝑇𝑃	 ÷ (𝑇𝑃	 + 	𝐹𝑁) 

 

c) Precision = 𝑇𝑃	 ÷ (𝑇𝑃	 + 	𝐹𝑃) 

 
d) F-Measure = 2 x [(Precision x Recall) / (Precision + Recall)]. This can be described 

as the harmonic mean of  recall and precision. 
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e) MCC = This is abbreviation of Matthew’s Correlation Coefficient used in model 

evaluation to measure what the difference between the predicted value and the 

actual value is. Ranges between -1 to + 1 with +1 being the perfect model and -1 

being a poor model.  It is calculated by the formula below. 

𝑀𝐶𝐶 =
(𝑇𝑁	 × 	𝑇𝑃) − (𝐹𝑁	 × 	𝐹𝑃)

√(𝑇𝑃 + 𝐹𝑃)(𝐹𝑇 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 
f) ROC area = This is also known as receiver operating characteristics describes the 

probability that positive instances ranked higher than a negative instances when 

chosen randomly.  

 
g) PRC area = This measure compares the true positive rate to the predicted positive 

rate in binary classification tasks. In other words,  this can be described as the 

relationship between recall and precision.  For unbalanced datasets, this is a more 

appropriate measure than the ROC area (Lang et al, 2019). 

The model was evaluated on a data split model of the 80/20% approach. Where 80% 

of the dataset was used for the training of the dataset, and 20 percent was used for the 

testing of the dataset. It was important to use this method because the model needed to use 

the training dataset to first learn and then apply whatever it has learned to the rest of the 

dataset it hasn’t tested on before to make the most accurate model predictions. The outcome 

of this prediction can be seen in chapter 6 above.  

On a high level, For the machine learning black box model above, we see that Table 2, 

which is the random forest had the highest score of 88.49% and the lowest being Naive 

Bayes with 45.35%. Three other algorithms were also used, and they are as follows: 
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1. Decision Tree with an accuracy result of approximately 86.97%. 

2. Logistic Regression with an accuracy result of approximately 82.06%. 

3. Support Vector Machine with an accuracy of approximately 55.33%. 

We can clearly see from the above results that 3 out of the classifiers performed well, with 

very similar results ranging from 82 - 88%. However, SVM and Naive Bayes were the least 

performing algorithms, with an accuracy of approximately 45 and 55%, respectively. This 

clearly shows that those models were the poorest and did not classify these samples well. 

Naive Bayes is known to be one of the faster classifiers compared to logistic regression, 

but it was the least performer for this data set. The MCC, ROC and PRC area provides 

weighted ways to understand performance. The most used out of the three is the ROC area 

under the curve. Higher ROC score of about 0.5 shows that the model is randomly guessing, 

anything above 0.5 shows the model is performing better than randomly guessing. From 

the result above asides from SVM model, all the other classifiers have a much higher ROC 

area score which indicates high performance for the model for each of the various malware 

classes. While both the ROC and the PRC area look at the predictive score of the 

classification model, one major difference is that the ROC area looks at the true positive 

rate and the false positive rate while the PRC area looks at the positive predictive value 

and the true positive predictive value. 
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Chapter 7 

DALEX Results and Discussion 

In this chapter, we will evaluate and compare the experimental results carried out 

in Chapter 6 above and gain more insights into the contributing factors and weights using 

DALEX. This section is divided into two parts. The first part discusses the result from the 

explanation of the models using DALEX. Finally, we would discuss in detail some of the 

features that contribute to the white box model predictions for the different machine 

learning models.  

7.1  Machine Learning Model Explainability Using DALEX 

From section 6.1, we can see that we only get the values of the result but not the 

explanation/insight of these values. This section explains each of the five machine learning 

classification algorithms built for the Virus Total dataset. We consider two of the most 

important explanations: the variable importance and the breakdown. We have thoroughly 

explained the model breakdown in section 4.3 above. Figure 16 - 20 shows the top 10 most 

important variables contributing to each machine learning classification prediction. Figure 

20 - 25 shows the breakdown, which is the contributing attribute of the variables. This can 

be indicated as red and green bars, which indicate either negative or positive changes in 

the mean prediction. 

7.1.1 Machine Learning Classifier Variable Importance 

Figure 16 to 20 shows the variable importance for all the five different classifiers. The 

variable importance highlights the 10 most important variables. The values of the variable 

importance are determined by the drop-out loss function. The dropout loss can be described 

as a function that quantifies the goodness of fit of a model, aka variable importance. In the 
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black box model, this can be described as the root mean square error (RMSE) or mean 

square root (MSE). 

 

Figure 16 

Variable Importance for Random Forest Classifier 

 

 

 

Figure 17 
 
Variable Importance for Decision Tree Classifier 
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Figure 18 

Variable Importance for Logistic Regression Classifier 

 

 

Figure 19 

Variable Importance for Support Vector Machine Classifier 
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Figure 20 

Variable Importance for Naive Bayes Classifier 

 

 

7.1.2  Machine Learning Classifier Breakdown 

Figure 21 to 25 show the breakdown for all the five different classifiers. These graphs show 

the name of important variables which are arranged from the highest to the lowest 

contributors. Their contribution values can either be positive (in green bars) or negative (in 

red bars).  

 

Figure 21 

Breakdown for Random Forest Classifier 
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Figure 22 

Breakdown for Decision Tree Classifier 

 

 

Figure 23 

Breakdown for Logistic Regression Classifier 
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Figure 24 

Breakdown for Naive Bayes Classifier 

 

 

Figure 25 

Breakdown for Support Vector Machine Classifier 
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7.2   Model Explainability on Machine Learning Models 

 Model explainability offers insight into what factors contribute to the predictive 

accuracy of a model. From the breakdown of the results, we discussed in section 6.2 above, 

we can see the high disparity between the results of 2 out of the 5 models. DALEX as a 

framework helps give us a visual understanding of what those features are and what weight 

of contribution, they have towards affecting the model’s predictive result. For this 

experiment, we choose two insights, variable importance, and breakdowns, to help explain 

the model. 

Before we do the comparative analysis of the results, it’s important to explain some of 

the variables that are evaluated as contributors to the predictions. 

● Number of IAT entries: IAT is an abbreviation of Import address tables. They are 

part of a dynamic linked library (dll) that helps to keep track of the address of 

functions that are gotten from other dlls. These dlls contain classes, functions, and 

resources such as images, icons, files, etc. The IAT is therefore regarded as a table 

that comprises function pointers. Whenever a system module is loaded, a call is 

made to a particular function, which then collects the address and stores it in the 

import address table. This is a honey pot for attackers because having access to 

multiple import addresses can overwrite these entries, thereby causing vulnerability 

to the system and making it easy for attackers to manipulate them for their own 

purposes. Attackers can use the “write-what-where vulnerability” to change the 

location of the pointer to wherever they want. 

● Number of RVA and Size - This is described as the number of data directory items 

in the optional header.  
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● Size_of_uninit_data: This is one of the first eight fields that make up the optional 

header. It is known as the size of the uninitialized data, or where there are multiple 

sections, this would indicate the total number of sections, usually in bytes. 

● Number of Sections: Sections can be described as the basic unit of code or data 

found in a portable executable (PE) or a common object file format (COFF). The 

number of sections there refers to the size of the section table. 

● Push: This method call is recorded in bytes that saves the data sent to the pipe 

source. We can describe a pipe as a shared memory that can be used for 

communication. It is normally divided into two areas: the client and the server, 

which both write and read information from the pipe. 

• File size: This is described as the size of the file, usually recorded in bytes. From 

our analysis, we can compare the result of the predictive result of our black box 

model and compare against the factors that contribute to those predictions. 

According to Table 2 of the Weka analysis, random forest has the highest prediction 

of 88.49%. Using DALEX as a tool for the model explanation, we can see that 

Number of IAT entries has the highest contribution. To understand how important 

this variable is, we must first understand what the variable is.  

As shown in Figures 16 through 20, we can see that various dataset attributes accounted 

for both the variable importance and the breakdown of their contribution to the model. The 

variable importance of the random forest model was attributed to the amount of text and 

the number of IAT entries. These were the features that were accounted to be the most 

important out of the 62 in total. With a dropout loss for random forest ranging from 0.5 x 

10-17 to 2.5 x 10-17 .  
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The dropout loss can be described as a function that quantifies the goodness of fit 

of a model, aka variable importance. In the black box model, this can be described as the 

root mean square error (RMSE) or mean square root (MSE). 

The minimum value of what can be qualified as a “perfect” model is 0. The range goes 

from 0 - 1, with 1 being a failure and 0 being regarded as a success. Any dropout loss that 

has a value closer to 0.0 is more like to be the perfect model. From the above result, we 

can see that range for the random forest model given at  0.5 x 10-17 to	2.5 x 10-17 is much 

closer to zero hence why the prediction was the highest compared to the others. For the 

decision tree, we can see that its prediction has all 0’s except for the variable “file size” 

which was 0.5. This reduced its overall accuracy. SVM and Naive Bayes, whose 

predictions are extremely low, have their variables closer to 1, indicating that the model 

was less successful in its prediction than the other models. 

For the least performing classifiers, we can see that they have two similar variable 

importance, such as file size and ent min, in common with different levels of dropout losses. 

We can observe that high dropout loss in variable importance can be linked to lower 

performance in the model. Both Naive Bayes and SVM had dropout losses higher than 

zero, and they accounted for being the least performers. 

The breakdown in Figures 21 through 25 shows the top 10 contributing features to 

the model predictions. Each of the classifiers has various contributions to the model. The 

colors are usually divided into two, green and red. The green color represents positive 

contributors, and the red represents the negative contributors to the model. The random 

forest is the highest classifier and has a breakdown contribution, as shown in Figure 21, 

with multiple positive variables contributing to the model. Comparing the breakdown 
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contributions to the weka black box classification result, we can see that random forest has 

the highest correct classification because more multiple variables with high variable weight 

were factored into the classification. SVM overall displayed the most diverse contribution 

to its classification. Being the only classification that possessed a negative contribution to 

the model. We can clearly see that the number of IAT entries, which was also one of its 

most important variables, had a negative impact on the model.  

Similarly, Naive Bayes, the worse classifier, only focuses on 3 out of 10 features with very 

low contribution weight. From the result shown, it is important to note that classifiers that 

have greater (positive) single contributions have higher predictions than classifiers with 

multiple low contributions, which gives lower predictions. Therefore, the low classification 

is because SVM and Naive Bayes pay little attention to other attributes. 
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Chapter 8 

Conclusions and Future Work 

Malware such as ransomware has led to the loss of hundreds of millions of dollars 

yearly. With the invention of various strains and types, finding a long-lasting solution to 

eradicate these threats in cyberspace has become increasingly more work. Various 

solutions ranging from signature to behavioral have been developed to assist with not only 

the detection but the studying of these ransomware behaviors to find ways to mitigate the 

risk that they present. Machine learning as a tool for malware detection has become 

increasingly common to help detect malware. However, many machine learning methods 

can be considered black box models. While their algorithm might provide high results, 

decision makers in cyberspace have difficulty trusting them because there is no insight into 

the contributing factors of those model predictions.  

In this research, we present a layered approach that is not just the classic signature 

or behavioral detection method but also introduces model explainability to help us break 

down all the important elements that contribute to why our model had the prediction results 

it generated. For this experiment, we started off by creating a test bed which is a virtual 

artificial environment that mimics a regular operating system and identifies malware 

interactions with user data. This testbed was made in windows operating systems which 

are windows 7 and windows 10. More of this was talked about in section 4.1 of this thesis. 

Using this testbed, we can study how malware generally affects our system, spreads, and 

continually persists in accessing the user’s information. We added these manually tested 

samples to an already existing Virus Total data to build an entirely new dataset used for 

this experiment. For the second phase of this experiment, we built five machine learning 
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models to determine which classification algorithm performed the best. The machine 

learning classifications were Random Forest, Decision Tree, Naive Bayes, Logistic 

Regression, and Supervised Vector Machine (SVM). The study was carried out first in a 

black box model known as weka. 

Three of the five observed models have performed very well, with an average of 

over 80% accuracy in classifying the malware and benign samples. Random forest and 

Decision tree had the best performance with 88.47% and 86% accuracy. The modes used 

in this experiment are wider than just predicting if a malicious sample is malicious or not. 

It can also be used in any area of malware detection, such as class groups, types, filenames, 

etc. 

The study of malware, its behavior and how it spreads with a user's system is always 

a continuous study. Here, we could only look at the dataset for dynamic attributes alone. 

In order to have a holistic view of malware behaviors, we must look at static attributes as 

well. For future research, a comparison of machine learning performance between both 

static and dynamic attributes would be necessary to see which algorithm performs the best. 

Other  consideration for future works would include multi-label and multi-class for  

machine learning for attacks that are a can be classified as two different malware classes. 
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