
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

1-10-2023

MACHINE LEARNING MODELS INTERPRETABILITY FOR MACHINE LEARNING MODELS INTERPRETABILITY FOR

MALWARE DETECTION USING MODEL AGNOSTIC LANGUAGE MALWARE DETECTION USING MODEL AGNOSTIC LANGUAGE

FOR EXPLORATION AND EXPLANATION FOR EXPLORATION AND EXPLANATION

Ikuromor Mabel Ogiriki
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ogiriki, Ikuromor Mabel, "MACHINE LEARNING MODELS INTERPRETABILITY FOR MALWARE DETECTION
USING MODEL AGNOSTIC LANGUAGE FOR EXPLORATION AND EXPLANATION" (2023). Theses and
Dissertations. 3079.
https://rdw.rowan.edu/etd/3079

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F3079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F3079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/3079?utm_source=rdw.rowan.edu%2Fetd%2F3079&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

MACHINE LEARNING MODELS INTERPRETABILITY FOR MALWARE
DETECTION USING MODEL AGNOSTIC LANGUAGE FOR EXPLORATION

AND EXPLANATION

by
Ikuromor Mabel Ogiriki

A Thesis

Submitted to the

Department of Computer Science
College of Science and Mathematics

In partial fulfillment of the requirement
For the degree of

Master of Science in Computer Science
at

Rowan University
December 8, 2022

Thesis Chair: Vahid Heydari, Ph.D., Associate Professor, Department of Computer
Science

Committee Members:

Shen-Shyang Ho, Ph.D., Associate Professor, Department of Computer Science
Silvija Kokalj-Filipovic, Ph.D., Professor, Department of Computer Science

© 2022 Ikuromor Mabel Ogiriki

Dedication

I would like to dedicate this to all black women in STEM, and more specifically,

Immigrant Nigerian women. Who work extremely hard and strive to be trailblazers in a

foreign country to create a mark and make this world a better place.

iv

Acknowledgements

 I would like to thank my advisor, who has been of immense support throughout my

entire program. I am especially grateful for his guidance, patience and push for not only

the completion of this work but throughout my academic journey. This body of work would

not have been possible without his constant input, constructive feedback, and keen patience

in the review of many drafts of my papers. Thank you, Dr. Heydari. Your constant support

helped boost my confidence and improved my writing tremendously.

I would also like to appreciate Dr. Ho and Dr. Silvija, who were also very key in

supporting my journey both as a coordinator of the MS program and as a member of my

committee. Your keenness to provide support in any way possible and push to expand the

scope of this work is invaluable.

My sincere gratitude goes to my Family, my Partner and my friends whose constant

love, encouragement, unwavering support and unshaken belief in my ability challenged me

to put my best foot forward every step of the way. This Journey was a lot easier because I

had them cheering for me.

Finally, I would like to give all thanks to God, for his provision, mercies and

unending favor. Without him, none of this would have been possible.

 v

Abstract

Ikuromor Mabel Ogiriki
MACHINE LEARNING MODELS INTERPRETABILITY FOR MALWARE

DETECTION USING MODEL AGNOSTIC LANGUAGE FOR EXPLORATION AND
EXPLANATION

2022-2023
Vahid Heydari, Ph.D.

Master of Science in Computer Science

 The adoption of the internet as a global platform has birthed a significant rise in

cyber-attacks of various forms ranging from Trojans, worms, spyware, ransomware, botnet

malware, rootkit, etc. In order to tackle the issue of all these forms of malware, there is a

need to understand and detect them. There are various methods of detecting malware which

include signature, behavioral, and machine learning. Machine learning methods have

proven to be the most efficient of all for malware detection.

In this thesis, a system that utilizes both the signature and dynamic behavior-based

detection techniques, with the added layer of the machine learning algorithm with model

explainability capability is proposed. This hybrid system provides not only predictions, but

also their interpretation and explanation for a malware detection task. The layer of machine

learning algorithm can be Logistic Regression, Random Forest, Naive Bayes, Decision

Tree, or Support Vector Machine. Empirical performance evaluation results on publicly

available datasets and manually acquired samples (both benign and malicious) are used to

compare the five machine learning algorithms. DALEX (moDel Agnostic Language for

Exploration and explanation) is integrated into the proposed hybrid approach to support

the interpretation and understanding of the prediction to improve the trust for cyber security

stakeholders on complex machine learning predictive model.

vi

Table of Contents

Abstract .. v

List of Figures .. ix

List of Tables ... xi

Chapter 1: Introduction .. 1

 1.1 Problem Statement and Solution .. 3

1.2 Thesis Outline .. 5

Chapter 2: MoDel Agnostic Language for Exploration and eXplanation (DALEX) 6

 2.1 Overview ... 6

2.2 Importance of Explanatory Model Analysis .. 7

 2.2.1 Model Complexity .. 8

 2.2.2 Right to Explanation ... 9

 2.2.3 Ethical Issues .. 9

 2.2.4 Model Debugging ... 10

 2.2.5 Trust and Model Human Interaction .. 10

 2.3 Approaches to Model Explainability ... 10

 2.3.1 Interpretable by Design .. 11

 2.3.2 Model Specific Exploration .. 11

 2.3.3 Model Agnostic Exploration .. 11

Chapter 3: Literature Review .. 13

 3.1 Classifications Based on Machine Learning ... 13

 3.1.1 DNAAct-Ran .. 13

vii

Table of Contents (Continued)

 3.2.2 Know Abnormal, Find Evil .. 14

 3.2 Classifications Based on File System/Process Monitoring 15

 3.2.1 UNVEIL ... 15

 3.2.2 RWGUARD ... 16

 3.3.3 RANSOMSPECTOR ... 16

 3.2.4 Crypto Ransomware Analysis & Detection Using Process Monitor 17

 3.3.5 Cryptodrop .. 17

 3.2.6 SSD-Assisted Ransomware Detection & Data Recovery Techniques 18

 3.3 Classifications Based on the Network Traffic ... 19

 3.3.1 The Case of BadRabbit ... 19

 3.3.2 REDFISH ... 19

Chapter 4: System Design ... 21

 4.1 Architectural Layer of the Proposed System ... 21

 4.2 Artificial User Testing Environment .. 22

 4.3 Machine Learning using Weka .. 32

 4.4 Model Explanation .. 34

Chapter 5: Experiment Design .. 37

 5.1 Data Collection .. 37

 5.1.1 Publicly Available Datasets .. 37

 5.1.2 Artificially Generated Datasets .. 37

 5.1.3 Commercial Datasets .. 37

 5.2 Description of the Dataset ... 38

viii

Table of Contents (Continued)

 5.3 Implementation .. 40

 5.4 Data Analysis ... 43

Chapter 6: Model Performance Comparison and Discussion .. 45

 6.1 Machine Learning Classifier Performance on Black Box Model 45

 6.2 Black Box Machine Learning Discussion ... 49

Chapter 7: DALEX Results and Discussion .. 52

 7.1 Machine Learning Model Explainability Using DALEX 52

 7.1.1 Machine Learning Classifier Variable Importance 52

 7.1.2 Machine Learning Classifier Breakdown ... 55

 7.2 Model Explainability on Machine Learning Models ... 58

Chapter 8: Conclusions and Future Work ... 62

References ... 64

ix

List of Figures

Figure Page

Figure 1. Predictive Model Development Lifecycle ... 8

Figure 2. Diagram of Architectural Layer of the Proposed System 22

Figure 3. Terminal Window of Cuckoo Setup .. 24

Figure 4. Terminal Window of Cuckoo Virtual Environment .. 25

Figure 5. Terminal Window of Cuckoo Router ... 26

Figure 6. Terminal Window of Successful Cuckoo Setup .. 27

Figure 7. Terminal Window of Cuckoo Web Setup .. 28

Figure 8. Cuckoo Web Application ... 29

Figure 9. Summary of EngRat Malware Samples in Cuckoo Sandbox 30

Figure 10. Signatures of EngRat Malware Samples in Cuckoo Sandbox 31

Figure 11. Summary of Benign Samples in Cuckoo Sandbox .. 32

Figure 12. Summarize Architectural Structure of Weka ... 34

Figure 13. Diagram of DALEX Explanatory Model .. 36

Figure 14. Ransomware Test Results on Windows 7 .. 41

Figure 15. Ransomware Test Results on Windows 10 .. 42

Figure 16. Variable Importance for Random Forest Classifier 53

Figure 17. Variable Importance for Decision Tree Classifier ... 53

Figure 18. Variable Importance for Logistic Regression Classifier 54

Figure 19. Variable Importance for Support Vector Machine Classifier 54

Figure 20. Variable Importance for Naive Bayes Classifier ... 55

Figure 21. Breakdown for Random Forest Classifier .. 55

x

List of Figures (Continued)

Figure 22. Breakdown for Decision Tree Classifier .. 56

Figure 23. Breakdown for Logistic Regression Classifier .. 56

Figure 24. Breakdown for Naive Bayes Classifier .. 57

Figure 25. Breakdown for Support Vector Machine Classifier 57

xi

List of Tables

Table Page

Table 1. Virus Total Dataset and Classes .. 39

Table 2. Machine Learning Result for Random Forest ... 46

Table 3. Machine Learning Result for Decision Tree ... 47

Table 4. Machine Learning Result for Logistic Regression .. 47

Table 5. Machine Learning Result for SVM ... 48

Table 6. Machine Learning Result for Naive Bayes ... 48

Table 7. Machine Learning Confusion Matrix .. 49

1

Chapter 1

Introduction

 In recent years, there has been a growing number of attacks using malware by cyber

attackers. This malware can be trojans, viruses, worms, etc., that can attack the computer

through emails, various malicious websites, software, and drives that the users have

downloaded. Over the years, malware has grown not only in the number or the volume in

which they appear but also in numerous types that perform various functionalities.

Ransomware is a type of malware where cyber attackers encrypt users' files until a ransom

is paid. This has become the most financially beneficial form of malware (Cisco, 2016)

because it has successfully recorded at least 40% of ransom payments. Even though these

payments have been made, there are few or no guarantees that the file can be removed.

These encryptions made to files are not only done to local files. Sometimes it extends to

the whole organization. Since many organizations share volumes of documents to enable

teamwork, therefore exposing other computers to the risk of being infected by the already

infected computer. This is harmful to many organizations because in order to contain and

fix these issues, most businesses must stop their operations until they can properly clean

all the affected systems and restore their backup image, which can lead to loss of money

and valuable work time.

As malware has increased, various research methods have analyzed malicious and

non-malicious malware samples using static and dynamic tools. These dynamic tools

include Process explorer (Gandotra et al., 2014), ProcMon (Bidoki et al., 2016), Wireshark/

T shark (Ndatinya et al., 2015), TCPDump (Hoque et al., 2014), TCPview (Eilam, 2005),

sandboxes (Ali et al., 2018), and many more. One of these very effective methods has been

2

using machine learning algorithms to set up an analysis environment using these static

tools. Examples of static analysis tools include PEView (Sikorski & Honig, 2012), PEid

(Wang & Wu, 2011), CFF explorer (Abimannan & Kumaravelu, 2019), disassemblers

(Sikorski & Honig, 2012), PsFile (Abdessadki & Lazaar, 2019), and so much more.

We can record how efficiently these systems are used to detect this malware based

on their effective ways of extracting features that are generally classified as malicious. One

major problem with detecting some of this malware is that most of the recently developed

have succeeded in escaping various malware analysis and detection systems used to

previously detect and classify these malware (Singh & Singh, 2018; Gao et al., 2014).

Another reason is that some of malware use encryption (Alam et al., 2015) and encoding

techniques (Singh & Singh, 2018), making detection and analysis increasingly difficult

(Hu, 2011).

The two major types of detecting malware are signature-based and behavior based.

While signature-based methods of detecting malware are fast and highly efficient, they are

easily bypassed by very new or much older types of ransomwares (Mahdavifar &

Ghorbani, 2019; Zhang et al., 2020). On the other hand, while behavior-based methods of

detecting malware have a higher resistance to this older malware, they are incredibly time-

consuming. For the two different methods of the malware detection system, we can

discover that while both are good methods, they are not comprehensive methods of

malware detection. Machine learning algorithms as malware detection techniques are

effective because they are built to handle all the complexities, and the fast-changing natures

of new malware strains have been developed. The use of machine learning algorithms as

an approach not for malware detection in cyber security but also in healthcare and medicine

3

has become widespread. Machine learning (ML) has the upper hand in areas of its high

computational power and predictive results. However, many of these machine learning

algorithms are very hard to understand and give little to no insight into the contributing

factors associated with its result. Although these Machine learning algorithms have good

predictive performance, the “opaqueness” of these models makes it difficult for decision-

makers to create real-world solutions to combat malware threats.

1.1 Problem Statement and Solution

Detection of malware is critical in order to combat the ever-growing threat that is

malware. With the rise in more dangerous types of malwares, such as ransomware,

significant efforts must be made to detect them effectively. As discussed in chapter 3, past

and current research focuses on hybrid and machine learning approaches, while useful,

cannot be trusted to be used as a result in malware detection. This is due to the complex

nature of the machine learning models, which are often described as "Black Box". Many

of these ML models focus only on accepting the input data and providing the output result

of their predictions, not bothering about the "How" surrounding the result. The idea of the

black box rings true because one has very little understanding as to why a model performs

much better, what factors contribute to the result and which factors are more important

within a given prediction. While their computational and predictive ability is ranked highly,

this limited visibility into what this complex model reasoning comprises makes it

extremely difficult for cyber analysts to trust these results. Cyber Security analysts and all

the relevant stakeholders deserve the right to know the reason behind a model's prediction

of why malware can be classified as malicious or not. The explanation of this highly

predicted result would help them evaluate any future decision, judgment, and solution on

4

combatting various malware attacks based on their insight into the "How" of these

predictions.

In this thesis, a system that utilizes both the signature and dynamic behavior-based

detection techniques, with the added layer of the machine learning algorithm with model

explainability capability is proposed. This hybrid system provides not only predictions, but

also their interpretation and explanation for a malware detection task. The layer of machine

learning algorithm can be Logistic Regression (LR), Random Forest (RF), Naive Bayes

(NB), Decision Tree (DT), and Support Vector Machine (SVM) (Fumo, 2017). Empirical

performance evaluation results on publicly available datasets and manually acquired

samples (both benign and malicious) are used to compare the five machine learning

algorithms. DALEX (moDel Agnostic Language for Exploration and explanation) (Biecek,

2018) is integrated into the proposed hybrid approach to support the interpretation and

understanding (e.g., contributing factors from prediction model) of the prediction to

improve the trust for cyber security stakeholders on complex machine learning predictive

model.

The random forest is empirically shown to be the best classifier with multiple

positive variables contributing to the prediction model. Comparing the breakdown

contributions to the Weka black box classification result, we see that random forest has the

highest number of correct classification because multiple positive variables with high

weights were factored into the classification.

Similarly, Naive Bayes, the worse classifier, only focuses on 3 out of 10 features with very

low contribution weight. From our empirical results, it is important to note that classifiers

that have greater (positive) single contributions have better predictions than classifiers with

5

multiple low contributions, which gives less accurate predictions. Therefore, the low SVM

and Naïve Bayes classification is because SVM and Naive Bayes pay little attention to

other attributes.

1.2 Thesis Outline

Chapter one of this thesis will briefly describe malware, the various types, the

channels in which this malware enters our system, and the major ways this malware is

detected to determine if a sample is malicious or not. Finally, we also described the tools

and algorithms used in the detection process, the problem statement, and the proposed

solution. In chapter 2, we discussed a brief overview of moDel Agnostic Language for

Exploration and explanation (DALEX), along with the importance of Explanatory Model

Analysis and Approaches to Model Explainability. Chapter 3 focuses on the literature

review of previous malware detection methods, such as Machine learning file

system/process monitoring and network traffic analysis, and current methods based on

similar interpretable machine learning models using explainable artificial intelligence

(XAI). Chapter 4 describes the materials and algorithm design used for the dataset for

model explainability and interpretability. Chapter 5 outlines the experiment of the system

and the plan for testing the experiment. Chapter 6 gives the result of the experiment carried

out. Chapter 7 discusses the analysis and findings that can be deduced from the result of

the experiment and possible reasons for the outcome that was shown in the experiment.

Chapter 8 focuses on the conclusion of the thesis, the final findings, the direction for future

research and provides references that were used for this thesis.

6

Chapter 2

MoDel Agnostic Language for Exploration and eXplanation (DALEX)

For this chapter, we will provide a general summary of model explainability from

the book “Explanatory Model Analysis” by Przemyslaw Biecek (Biecek, 2018), where he

created a taxonomy of model-agnostic explanations for machine learning predictive

models. This provides us with a bird’s eye view of predictive models and the ever-

increasing machine learning framework in a language-agnostic manner.

2.1 Overview

In our ever-evolving technological world, machine learning and its complex

predictive algorithm have become important in our daily lives and decisions. Some

examples include hospitals, data centers, work, and even everyday IoT devices. However,

unexplainable predictions can be very harmful (O’Neil, 2016). Typical cases of mechanical

failures used for surgical purposes have inflicted injuries on patients (Alemzadeh et al.,

2016) and so much more. Recently, this and many other similar predictive model failure

cases have increased public concerns and demand for more transparent, fair, and

explainable models.

Over the years, various model explanations have been built, such as the following:

modelStudio (Baniecki & Biecek, 2019), lime (Ribeiro et al., 2016), SHapley Additive

exPlanations (SHAP) (Lundberg & Lee, 2017), pdpbox (Jiangchuan, 2018), interpret (Nori

et al., 2019), alibi (Klaise et al., 2021), and aix360 (Arya et al., 2020). Other solutions

developed for model fairness and interactive dashboards support machine learning.

However, all these solutions need to be more cohesive. DALEX was developed to unify all

7

these fragmented solutions from the traditional black box model up to the explainability

model while not compromising on its offering interactive explainability and fairness.

2.2 Importance of Explanatory Model Analysis

 Statistical models are divided into two main areas: predictive and explanatory.

Predictive models, as part of the two types of statistical models, have existed for years.

There is an increasing need for predictive models because it helps give us insight into what

the future value of a model would look like and the consequences. For example, we use

them to see the likelihood of someone having a certain disease or not.

 There are five main reasons why explanatory models are important. These reasons

are model complexity, right to explanation, ethical issues, model debugging, and Trust and

human interaction. The explanatory model analysis is also very useful because it can be

used at any stage in the life cycle model development. Figure 1 shows what a model

development cycle for predictive looks like.

8

Figure 1

Predictive Model Development Lifecycle (Biecek, 2019)

The following five subsections will give us a more in-depth explanation of these five and

the roles they play in the importance of explanatory models.

2.2.1 Model Complexity

 Models have only gotten more and more complex. The availability of fast

computers has led to the training of much larger datasets. Therefore, analyzing these

models is more challenging by only looking directly at the provided model parameters.

Models now possess thousands and millions of these attributes/parameters, so it is essential

to have tools that would aid us in analyzing these more complex models.

9

2.2.2 Right to Explanation

 Predictive models also play a huge part in our day-to-day lives as they

constitute the basis of how many of the shows we watch are recommended, how ads are

shown on our social media, how patients are being diagnosed, and so much more. Due to

this reason, there have been changes have been made to protect our civil rights. Many

countries are now implementing what is known as “The Right to Explanation” as part of

their legal systems. Rights to explanation, as defined on Wikipedia, is “a right to be

explained an output of the algorithm. Such rights primarily refer to individual rights to be

explained decisions that significantly affect an individual, particularly legally or

financially.” This protection is put in place to help individuals to gain an understanding of

how automated processes work and how these processes affect them and be able to

challenge them where necessary.

2.2.3 Ethical Issues

 In some cases, the analysis of machine learning models might lead to biased

decisions. A clear example is models built for recidivism, where the model showed

discrimination based on skin color. Another example of biased models was credit score

models, which showed biases based on age and skin color. These biases are generated from

the learning of historical data. There are many more examples of these types of

discrimination daily. Another important factor to note is that it is also very difficult to tell

how strongly these biases contribute to the models and to what degree they contribute to

these models to help us understand the data and make attempts to correct these biases as

we encounter them. The provision of explanatory models helps us by providing those

10

necessary insights and allowing us to correct factors that may contribute to their bias in

each dataset.

2.2.4 Model Debugging

 As we mentioned earlier in subsection 2.2.1, an increase in model complexity

makes it difficult to understand models, making it difficult to fix issues associated with

such models. It would only be possible to fix model-related issues when one can understand

these models themselves. There is no say that blind changes would not affect the outcome

of our models. Therefore, there is a need for tools that provide the right insight to help us

with post hoc analysis to enable us to catch issues and fix them to get the best prediction

result possible.

2.2.5 Trust and Model Human Interaction

 Since machine learning is created to support decision-making by humans, it is

important for a level of trust between the models and the humans using them. There is a

need for tools that would bridge the gap between the communication of this prediction and

the human using them. This transparency would enable humans to trust the models a lot

better and, in turn, would enable them to take actionable steps using the information

obtained from these models.

2.3 Approaches to Model Explainability

Understanding how a model works is not novel. Over the years, tools for model

diagnosis have been developed. However, we can group these approaches of model

explainability into three major categories. These categories are interpretable by design,

Model Specific Exploration, and Model agnostic Exploration. The following subsection

will break down these individual categories with a more detailed explanation.

11

2.3.1 Interpretable by Design

The idea behind this approach is simple. The overall idea of this approach is that

since the structure of the model is simple, the analysis would equally be direct. It requires

only the use of models that consist of only simple structures that are very easy to

understand. This can consist of numbers that only have very small attributes/variables or

decision trees that are not deep or have a lot of rules. However, the drawback to this

approach is that it is very time-consuming and requires an expert who has very deep

knowledge of how to select and finetune some of the variables to achieve the result.

2.3.2 Model Specific and Exploration

Unlike the previous approach, which was used for simple structures, this is used for

more complex model structures. The main objective behind this approach is that since we

cannot analyze the parameter individually, we require specific tools to visualize and

analyze these complex structures. This approach specializes in exploring how these

complex model’s function. A few tools used in this approach include diagnostic plots for

linear models, node statistics for random forests, or integrated gradients for deep neural

networks.

2.3.3 Model Agnostic Exploration

For this research, we will be focusing on this approach. In the model agnostic

exploration approach, assumptions are not made about the internal structure of the model.

This approach does not care about the simplicity or complexity of the model. Decisions

and results for this approach are solely based on the input to this model. This is like the

black box model approach, where we analyze only the input. However, the key difference

in this approach is the relationship between what the input of the model is to the output.

12

We believe this is the best approach, and it is used for this research because it is versatile

and can be used for any model. It is also very useful in comparing different models.

13

Chapter 3

Literature Review

This chapter contains material originally published in Technical Analysis of Thanos

Ransomware presented by Ogiriki et al. and is used with permission.

This chapter briefly reviews previous malware detection methods classified based

on machine learning, file system/process monitoring, and network traffic.

3.1 Classifications Based on Machine Learning

Use machine learning algorithms to group these ransomwares based on their digital

genotype and their digital phenotype, this helps to properly identify their various malicious

functions, detect the best features of ransomware applications from benign apps, as well

as identifying ransomware applications using sequential pattern mining techniques.

3.1.1 DNAAct-Ran

According to Khan et al. (2020), traditional signature-based malware detection is

no longer efficient in identifying ransomware. As a result, their answer presented a new

and better way of using the ground-breaking Digital DNA sequencing engine. This engine

employs a machine-learning algorithm to classify ransomware based on its digital genome

and phenotype to identify its numerous destructive functionalities appropriately.

The suggested DNAAct Ran technique uses machine learning to determine if the software

is ransomware. This technique achieves this aim by first selecting the significant traits,

generating digital sequences for those selected futures, and detecting the ransomware. The

algorithms utilized are the Multi-Objective Grey Wolf Optimization (MOGWO, an

extension of GWO by Mirjalili, Mirjalili, and Lewis (2014)) and the Binary Cuckoo Search

(BCS algorithm) by Yang and Suash (2009). Compared to other ML approaches, the

14

classifier's performance is used to assess the accuracy of the DNAAct-capacity Ran’s to

identify ransomware. Some other active machine learning approaches, in addition to these

suggested ones, include naive Bayes, decision stump, and the Adaboost classification

algorithm.

3.1.2 Know Abnormal, Find Evil

Frequent Pattern Mining for Ransomware Threat Hunting and Intelligence

Homayoun et al. (2020) advocated employing sequential pattern mining algorithms to

discover the best attributes of ransomware programs from benign apps and to identify

ransomware software. Their detection characteristics' efficiency was examined using them

with the J48, random forest, bagging, and MLP classification algorithms. The criteria for

this investigation were the usual types of True Positives (for total samples now recognized),

False Positives (mistakenly identified samples), True Negatives (number of correctly

rejected samples), and False Negatives (number of incorrectly rejected samples)

(Incorrectly rejected samples). They begin by identifying and defining detectable patterns

and occurrences to identify the appropriate attributes for classification. The sequence

pattern mining approach will next be applied to each dataset in order to identify the best

sequence pattern. Each sequence in each dataset is then cross-matched based on the

maximum sequence pattern to highlight the characteristics of the training classifiers. The

following are examples and descriptions of maximum sequence patterns: 1) R (for all

events must be registry), 2) D (all events must be DLL), 3) F (all events must be file), 4)

RF (multiple transitions, but the first transition is from the registry to the file event), 5) RD

(multiple transitions, but the first transition is from the registry to the DLL

15

event), 6) FR (multiple transitions, but the first transition is from file to registry event), 7)

FD (more than one transition, although the initial transition is (more than one transition,

but the first transition is from DLL to file event).

3.2 Classifications Based on File System/Process Monitoring

Detecting ransomware based on setting indicators as a way of measuring

various ways in which a file changes, if in any case a file all these indications is found to

be true then it can be concluded that a file has indeed been corrupted and has an element

of malicious characteristics.

3.2.1 UNVEIL

Prior attempts to detect malware have primarily focused on monitoring its low-level

file system operations. UNVEIL by Kharraz et al. (2016) is one such technique. UNVEIL

detects ransomware by attempting to monitor file activity. To monitor these actions, they

were divided into three types based on file system operations (whether a file was read,

written/encrypted, deleted, or overwritten). They may be able to detect ransomware

assaults as a result of this. The Redemption by Kharraz et al. (2017) method was also used

to examine the request pattern of a file I/O to see whether there was any potential

ransomware for each process. If this is restored, the processes labeled as dangerous will be

terminated. These are good solutions in

general, but their drawback is that many harmless apps, such as encryption and

compression of applications, also have such file access characteristic features. If this is the

case, these solutions risk producing many false-positive findings since they consider those

features to be the same when identifying the activity of various ransomware file systems.

Below are a few more characterizations based on file system/process monitoring.

16

3.2.2 RWGUARD

Mehnaz et al. (2018) presented a decoy-based ransomware technique

(RWGUARD) rigorously tested to analyze 14 of the most common ransomwares and detect

their operations in real-time. It used both the file change and the process change to identify

files encrypted by ransomware.

Three monitoring strategies were used in this approach: file change monitoring, decoy

monitoring, and process monitoring. By employing the correct CryptoAPI function and

learning characteristics identical to the user’s encrypted file, it was possible to distinguish

between a benign and an encrypted ransomware file. Using this comprehensive decoy

system, it was nearly hard for ransomware to distinguish their fake files.

3.2.3 RANSOMSPECTOR

This method is based on the virtual machine introspection approach presented by

Garfinkel and Rosenblum (2003). This solution integrates file operations like opening,

renaming, closing, reading, and writing with network operations like connecting, binding,

receiving, sending, and disconnecting. They then matched them to discover which

corresponded to specific system calls in the operating system's kernel. The virtual machine

can also collect this, including context information like the system call's return value, the

parameters, and the caller's process. Tang et al. (2020) also discovered that a significant

number of crypto-ransomware samples linked to a network create a huge number of

network patterns with similar patterns that differ from their file activities. As a result, by

analyzing how these ransomware programs interface with the network and file system, they

will gain a bit more precision and inform the user if there is evidence of a ransomware

assault.

17

3.2.4 Crypto Ransomware Analysis and Detection Using Process Monitor

Kardile et al. (2017) suggested a method for identifying ransomware attacks based

on a process monitor implemented on Cuckoo Sandbox. They intentionally picked sandbox

because it removes the danger of data loss. After all, the Cuckoo sandbox returns to its

original state after executing the malicious sample. This method builds a genuine and bogus

environment to run these ransomware strains. They then capture the file system calls trail

and record the I/O access using a process monitor. Their research discovered that when

suspected malware attacked the system being targeted, the behaviors and activities of files

in the system altered dramatically. They found that the time stamp for the entries in the

Master File table was quite close to a ransomware assault occurring on that system by

observing the Master File Table.

3.2.5 Cryptodrop

Scaife et al. (2016) presented a solution designed for the Windows operating

system, which has been known to be frequently targeted by ransomware. This method of

identifying ransomware relies on indicators to track the many ways in which a file changes.

If all these indicators are discovered to be true in a file, it may be determined that the file

has been corrupted and contains harmful elements. These signs include categorizing

ransomware activity based on their actions into three categories. For class one, the

ransomware would try to rewrite what was in the original file by opening it, reading it,

encrypting it, and closing it. For class two, alter the location of the user’s file, read and

encrypt the file, and then return it to its original position. The file name may change from

the original name by shifting the file back and forth. The ransomware would examine the

file, produce an encrypted copy, and then destroy or replace the original for the final class.

18

3.2.6 SSD-Assisted Ransomware Detection and Data Recovery Techniques

On the storage side, the SSD insider++ method presented by Baek et al. (2020)

incorporates sophisticated features like online ransomware detection, flawless data

recovery, and sluggish detection. The technique described for online detection is one of the

key distinctions between this suggested approach and signature-based alternatives. The

algorithm watches and analyzes the host machine’s I/O pattern and makes a judgment

during run time by analyzing invariant traits that characterize the I/O behavior of

ransomware-affected host computers. This is especially significant since it now allows for

identifying ransomware attacks in their early phases. The SSD insider++ overcomes the

drawbacks of earlier software and hardware in detecting ransomware by combining

ransomware detection and a data recovery algorithm onto a single SSD. The SSD-

architectural insider++’s architecture comprises ransomware detection and

backup/recovery. To identify any abnormal behavior, the SSD Insider++ employs two

distinct file operations known as “update-after-read” and “trim-after-read” When

ransomware attacks files, its goal is to remain undetected for the longest time feasible by

the user. As a result, if many I/O patterns are discovered, we can interpret this as a symptom

of a ransomware assault. Baek et al. studied the behavior of six prominent real-world

malware to capture ransomware behaviors. Zerber, Locky, Cryptoshield, WannaCry, Mole,

and Jaff are examples of malware among them. To identify the traits capable of

differentiating this malware by comparing their I/O

footprints to those of common apps. After training and testing with various combinations

of this ransomware and programs, the SSD insider++ was able to identify new or

undiscovered malware by recognizing their distinctive I/O patterns.

19

3.3 Classifications Based on the Network Traffic

This solution can be described as a framework that is being used to detect and block

various ransomware actions when these malwares are in the process of encrypting files that

are being contained in a Network volume from a Network Attached Storage.

3.3.1 The Case of BadRabbit

Alotaibi et al. (2021) developed a technique for detecting efforts to distribute

ransomware at the network level rather than preventing the device from being encrypted,

which was already addressed in prior studies using BadRabbit as a case study. To

accomplish this analysis, they employ two VMs, one Windows 10 and one REMnux, for

static analysis. They operated four virtual machines for the dynamic analysis: one with a

REMnux acting as a gateway, two with Windows 10 (one infected with BadRabbit), and

one with Windows 7. The investigation showed that Bad Rabbit did not need to contact the

command-and-control server to exchange an encryption key; instead, it accessed these files

using a public key. Because Bad Rabbit is self-propagating ransomware, our solution

employs five modules to identify and fight self-propagating malware. Deep packet

inspection (dpi) and packet header inspection are examples of these modules (phi), honey

pot-based, ARP scanning-based detection, and SMB Packet size checkers.

3.3.2 REDFISH

Morato et al. (2018) presented Ransomware Early Detection from FIle SHaring

traffic which is usually referred to as REDFISH. This solution may be regarded as a

framework for detecting and blocking different ransomware behaviors when the infection

encrypts data on a network volume from a Network Attached Storage. This solution

examines the difference in traffic behavior between infected and non-infected hosts. The

20

characteristics they investigated for these host behaviors include how files on a shared file

are opened, read, written, and deleted. Their approach is derived from studying

SMB/SMB2 traffic over a single TCP connection.

21

Chapter 4

System Design

This chapter describes and discusses techniques for detecting malware, machine

learning classification, and model interpretability using DALEX. For the system design,

we used a hybrid approach that utilizes both the signature and dynamic behavior-based

detection techniques, with the added layer of the machine learning algorithm and model

explainability. This hybrid system would give a more robust answer to the malware

detection challenge. The proposed system's goal is to detect and interpret the various

models used for malware classification. The detailed information about system design and

the approach is described in detail in the chapter.

4.1 Architectural Layer of the Proposed System

As illustrated in Figure 2, we present a relatively new approach with four layers.

Malware samples would be analyzed using signature and behavior-based approaches

(layers one and two). These layers would combine the benefits of both strategies.

Afterward, we would go on to the next layer, utilizing a machine-learning technique to

train malware classifiers.

22

Figure 2

Diagram of Architectural Layer of the Proposed System

4.2 Artificial User Testing Environment

Malware generally can hide its malicious tendencies when they know they are being

monitored. Therefore, it was important to create an environment that would protect the

user's information system and information while also testing if malware is malicious or

benign. For the signature and behavioral portion of our experiment, we installed Cuckoo

Sandbox [Jurriaan, 2013]. Cuckoo Sandbox was our choice because it creates an isolated

environment, particularly on Windows 7, where a lot of malwares easily attacks. Cuckoo

sandbox is one of the leading open-source automated malware analysis systems. Using

cuckoos’ sandbox, we can provide any suspicious file, and in a matter of minutes, cuckoos

will give us a very detailed report that would enable us to see how a malware file behaves

23

when it is being carried out inside an environment that looks as realistic, but it is in fact

isolated. This software is free and can carry out tasks that can check for files that have

malicious behavior in Android, macOS, Linux, and Windows. The features of Cuckoos

are.

1. Ability to analyze various malware files, such as emails, executable files,

documents, emails, executable files, etc.

2. Ability to perform memory analysis

3. Gather the general behavior of these malicious files, which contains their

information and general signatures. It also traces their API calls and compiles them

in a simple, readable format.

4. It can analyze and dump network traffic, including when it was encrypted with

SSL/TLS.

With cuckoo, we can mimic as closely as possible a real windows environment so we can

capture a true display of malware samples. Here are a few steps on how we configured the

Cuckoo Sandbox.

How to configure Cuckoo for daily use:

● First, open 3 terminal windows:

24

Figure 3

Terminal Window of Cuckoo Setup

● Then enable the virtual environment in all 3 terminal windows (NOTE: do this

before running Cuckoo sandbox in any of the windows or else this will not work,

and an error message will be shown)

○ First, run this command in each terminal to set up the virtualenv:

virtualenv ~/cuckoo

○ Then run this command in each terminal to start the virtualenv:

25

Figure 4

Terminal Window of Cuckoo Virtual Environment

26

Figure 5

Terminal Window of Cuckoo Router

● Run the Cuckoo Rooter in one of the terminals using this command: cuckoo

rooter

● --sudo --group cyberlab:

● Run the command cuckoo in another terminal window:

27

Figure 6

Terminal Window of Successful Cuckoo Setup

● Type in this command in the third terminal to start the web UI: cuckoo web --host

127.0.0.1 --port 8080

28

Figure 7

Terminal Window of Cuckoo Web Setup

● Finally, click on the link http://127.0.0.1:8080/ to open Cuckoo Sandbox

29

Figure 8

Cuckoo Web Application

To use the sandbox test was carried out on both the benign and the malicious samples. For

the samples in Figure 9, we used EngRat.0.1.0, a type of ransomware, as our test file and

analyzed using Cuckoo in a Windows 7 VM. Here is the summary of the information:

30

Figure 9

Summary of EngRat Malware Samples in Cuckoo Sandbox

31

Figure 10

Signatures of EngRat Malware Samples in Cuckoo Sandbox

Upon analysis, cuckoo rates the ransomware at 2.6 out of 10. It notes how the ransomware

searched potentially malicious URLs, allocated read-write-execute memory to unpack

itself, and checked the adapter addresses that can detect virtual network interfaces.

We can compare this to our benign sample, which is like this ransomware:

32

Figure 11

Summary of Benign Samples in Cuckoo Sandbox

While both released potentially malicious URLs, the benign only yields a result of 0.4. It

should be noted that scores lower than 1 out of 10 are considered benign and highlighted

green. In contrast, scores higher are highlighted yellow or even red.

4.3 Machine Learning Using Weka

For the third layer of the system design using machine learning analysis, we

downloaded Weka and uploaded the CSV of the samples that have been tested and verified

from the cuckoo sandbox. Weka is an open-source software that allows for implementing

machine learning algorithms. Although it offers some visualization and output based on

the result of the machine-learning classification, it is still a black-box solution. It offers

little to no explanation about how machine learning models make their predictions and

what factors, and features contribute to their predictions. The full summary of its offerings

can be seen below in Figure 12. Weka offers various options such as classify, cluster,

33

associate, and attribute, which can be very useful for reducing the size of a data set. Weka

is also useful for massive data as it offers a simple, easy-to-use GUI interface to handle big

data with several ready-to-use algorithms, which leads to quicker development of various

machine learning model results in few seconds.

34

Figure 12

Summarize Architectural Structure of Weka

4.4 Model Explanation

From the above design, we have detected whether malware is benign or malicious.

We have also been able to use various classifiers to see which machine learning algorithm

performs the best to group this malware into their various types. While we have some

results using weka, there needs to be more trust in the result obtained because there is no

visibility into the contribution features of these results. This is where the model explanation

is useful, as can be shown in Figure 10 below. The concept of the model explanation is in

35

the form of a pyramid. At the very top, it starts with the prediction, which is very similar

to the result from weka to show how well the model performed. This assessment can be

done in various ways. It can be through the F1 score and the ROC/AUC curve. On this

level, the model provides a high-level assessment of the quality of the model.

The second layer of the pyramid provides even more details. On this level, we gain

a deeper understanding of what variables can be classified as important and what parts

influence the model to work the way it does or not. This level is concerned with showing

the strength and influence of the variable.

Further down the pyramid is the explanation of how the model would react if any

disturbances or changes occur with the values of its variables. This is also known in the

Latin phrase ceteris paribus, which translates to “all things being equal” or “all things being

unchanged”. This would help us to understand how model predictions can be affected by

variable changes, one at a time. The last layer could help us understand “How good the

local fit of the model” is to see if the model performed well in certain situations vs. others.

Overall, the entire idea of the pyramid of model explanation is that the further down you

go, the deeper the level of detail you can get about a model’s prediction. This is way more

useful in solving malware detection problems as it gives a more thorough understanding of

black box results in an interactive way.

36

Figure 13

Diagram of DALEX Explanatory Model

37

Chapter 5

Experiment Design

This chapter discusses in extensive detail the design of the experiment. This

consists of various components, such as the means of acquiring the dataset, the dataset's

description, the experiment's implementation, and the classification algorithms used.

Finally, the metrics used to determine the model's accuracy to produce the results in chapter

6.

5.1 Data Collection

Previous methods obtained data from various websites such as Virus Total, Virus

shares, Zelster, MWanalysis.org, Vxheaven, PCHome Malware Repositories, etc. For

research purposes, three major types of datasets are available/ being used and they are:

5.1.1 Publicly Available Datasets

These are currently being offered and provided publicly. They are also being

updated and maintained by research enthusiasts for the purpose of research all over the

world for free in the field of cyber security.

5.1.2 Artificially Generated Datasets

These are classified as datasets generated manually using special tools or collected

from the network traffic by cyber security researchers.

5.1.3 Commercial Datasets

As the name implies, these are datasets that are not freely offered to the public.

They are provided as commercial projects and supported by companies for commercial

purposes. For this research's sake, we obtained our dataset from publicly available datasets.

This is because public datasets are freely available, generate new insights into data

38

collected by fellow researchers, and possess a larger sample size. To obtain the biggest

sample data, we obtained malicious ransomware samples from public sites such as virus

total, Vx heavens, NetLux, Anubis, nexginre for malicious data, and Benign samples from

portableapps.com.

5.2 Description of the Dataset

The primary dataset used for this experiment was obtained from the University of

California, Irvine (Alberto, 2019), which Virus Total donated. This dataset comprises six

types of malwares. The samples are not evenly split between each type, with malware types

such as trojans, viruses, and adware having the highest numbers, while worms and

ransomware have much lower samples. The dataset consists of 2955 samples in total from

Virus Total, with over 1000 extracted attributes. With 1901 malware samples and 1054

benign, respectively. These samples consist of both benign and malware samples. Two

types of features can be extracted from malware samples. They are static features and

dynamic features. Static features are features that can be obtained without running the

malicious samples. Whereas Dynamic features are obtained from running the malicious

samples from a testing environment. The attribute features for this dataset consist only of

dynamic features extracted from the cuckoo sandbox. Cuckoo sandbox is extremely useful

for malware analysis because it allows the simulation of an actual computing environment

by performing basic human interactions such as opening/closing files, running command

line scripts, enabling the submission of malware samples, and much more. This way, we

can correctly record the attributes of this malware. Although Cuckoo sandbox is our choice

for this experiment, any other sandbox, such as Anubis, NorMan etc., that are used for

dynamic analysis could also be used.

39

Due to the number of attributes, there were a lot of null or empty values, so this dataset

required a lot of cleaning to ensure the accuracy of the result. We were able to effectively

reduce the attribute size from over 1000 down to 64 relevant features such as dll, file

registry information, name, type, import, etc. The dataset only contained its filename using

its SHA-256. We also used the SHA-256 value to find the malware name and class of

malware for machine learning analysis for all the malware in the dataset.

Table 1

Virus Total Dataset and Classes

No. Classes Count

1 adware 389

2 trojan 750

3 virus 438

4 riskware 45

5 worm 94

6 ransomware 185

7 benign 1054

 Total: 2955

40

5.3 Implementation

For implementation, we started by testing a lot of samples on the Cuckoo sandbox

in order to obtain the result of the samples. The results of the samples are usually stored in

a .JSON file. The benefit of Cuckoo is that it allows us to run the malicious samples on that

environment like it was a real system while obtaining information about whether the

sample was malicious. Since we wanted to test a lot of samples to ascertain whether they

were malicious, we decided to use a dataset obtained from Virus Total. The dataset

comprised 2955 samples, with features extraction of over 1000. We used this dataset

because its features were extracted from the cuckoo sandbox, which is like our already

tested samples, and we can add to this dataset to increase the numbers. Out of the 2955

samples, over 62 trojan samples were duplicated. We removed all duplicated trojan

samples and replaced them with 62 other ransomware samples. Using cuckoo sandbox, we

tested the 62 ransomware samples on both windows 10 and windows 7, respectively, and

We extracted the result seen in Figure 14 and Figure 15 below.

41

Figure 14

Ransomware Test Results on Windows 7

42

Figure 15

Ransomware Test Results on Windows 10

Steps used to Preprocess the Dataset

1. Labeling of samples: The samples only came with the hash values, so we cross

checked each hash value and relabeled each of the acquired samples in the dataset

to its original virus name. Since the samples were acquired on Virus total, we

matched the hash to the virus name on the virustotal.com website.

2. Clean the dataset: After acquiring the dataset, we realized that a lot of the

extracted features were empty. We decided to delete all the columns of the data of

the extracted features where they all had an empty or a zero value. This brought our

43

dataset from over 1000 features to about 63 relevant features such as dll, file

registry information, name, type, import, etc.

5.4 Data Analysis

Classification algorithms are divided into symbolic learning algorithms (CART.

C4.5, NewID, AC2, ITrule, Cal5, CN2), statistical algorithms (Naive Bayes, K-Nearest

neighbor, kernel density, linear discriminant, quadratic discriminant, logistic regression,

projection pursuit, Bayesian networks), neural networks (backpropagation, radial basis

functions), and Random Forest. However, for the purpose of this research, we will be

comparing Logistic Regression, Naive Bayes Classifier, Random Forest, SVM, and

Decision Tree. The aim is to record the performance of these classifiers on the data set and

compare the result of these black box models to DALEX. The result will be tabulated and

graphed to show the recommended algorithm for classifying data sets.

The experiment will consist of the following stages:

● The data was collected (and cleaned where necessary) from the various open-source

malware databases.

● The data was separated into training and test data.

● The dataset trains a model using logistic regression, performs the necessary tests,

and records findings.

● The dataset is used to train the model using the Naive Bayes Classifier, perform the

necessary tests, and record findings.

● The dataset is used to train the model using the Decision tree, perform the necessary

tests, and record findings.

44

● The dataset is used to train the model using the SVM classifier, perform the

necessary tests, and record findings.

● Compare the performance of the algorithms between the black box model and

DALEX. Also, provide proof (if any) of the recommended algorithm for the input

data.

The goal is to train the five selected classification algorithms to predict whether a

malware sample is malicious or benign. The data set used for the training and testing will

be the same. The performance of all algorithms will be measured, calculated, and compared

based on accuracy, speed, and error recorded.

45

Chapter 6

Model Performance Comparison and Discussion

In chapter 5, we talked in detail about how we set up our experiment to collect and

test benign and malware samples using weka, a black box machine learning software. In

this chapter, we will display the black box model (weka) result. The first part of this section

starts with a tabulated result of each machine learning classifier using weka. Then we

would proceed with discussing the result of the black box model. The experiment's main

objective is to conduct an extensive experiment using a black box model and find out the

best classification algorithm.

6.1 Machine Learning Classifier Performance on Black Box Model

The tabulated results shown in this subsection in Tables 2, 3, 4, 5, and 6 are from

the machine learning classification output using weka. The accuracy result for each

machine learning classifier was obtained from the Virus Total dataset discussed in section

5.1 above.

46

Table 2

Machine Learning Result for Random Forest

Weight split: 80/20

Random forest Accuracy: 88.49%

TP Rate FP Rate Precision Recall F-Measure MCC ROC area Prc area Class

0.76 0.05 0.74 0.76 0.75 0.71 0.97 0.80 adware

0.86 0.07 0.83 0.86 0.84 0.84 0.95 0.89 trojan

0.94 0.02 0.89 0.94 0.91 0.91 0.99 0.97 virus

0.22 0.00 0.50 0.20 0.29 0.29 0.74 0.34 riskware

0.77 0.00 0.94 0.77 0.85 0.85 0.97 0.89 worm

0.33 0.00 1.00 0.33 0.50 1.
00

0.93 0.39 ransomware

1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 Benign

47

Table 3

Machine Learning Result for Decision Tree

Weight split: 80/20

Decision Tree Accuracy: 86.97%

TP Rate FP Rate Precision Recall F-Measure MCC ROC area Prc area Class

0.66 0.02 0.80 0.66 0.72 0.68 0.91 0.66 adware

0.91 0.12 0.75 0.91 0.82 0.75 0.91 0.73 trojan

0.87 0.02 0.89 0.87 0.88 0.86 0.95 0.85 virus

0.20 0.00 0.67 0.20 0.31 0.36 0.74 0.24 riskware

0.68 0.00 1.00 0.69 0.81 0.82 0.95 0.77 worm

0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.11 ransomware

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Benign

Table 4

Machine Learning Result for Logistic Regression

Weight: 80 /20

Logistic Regression Accuracy: 82.06%

TP Rate FP Rate Precision Recall F-Measure MCC ROC area Prc area Class

0.67 0.06 0.64 0.67 0.66 0.60 0.94 0.64 adware

0.77 0.12 0.73 0.77 0.75 0.64 0.92 0.81 trojan

0.83 0.03 0.84 0.83 0.84 0.81 0.94 0.87 virus

0.00 0.00 0.00 0.00 0.00 -0.01 0.89 0.11 riskware

0.77 0.00 0.77 0.77 0.77 0.76 0.96 0.61 worm

0.17 0.00 0.33 0.17 0.22 0.23 0.75 0.18 ransomware

0.99 0.00 1.00 0.99 0.99 0.99 0.99 0.99 benign

48

Table 5

Machine Learning Result for SVM

Weight split: 80/20

SVM Accuracy: 55.33%

TP Rate FP Rate Precision Recall F-Measure MCC ROC area Prc area Class

0.14 0.00 0.86 0.14 0.25 0.32 0.57 0.24 adware

0.98 0.62 0.39 0.98 0.56 0.37 0.68 0.39 trojan

0.30 0.00 1.00 0.30 0.47 0.52 0.65 0.41 virus

0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.01 riskware

0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.04 worm

0.33 0.00 1.00 0.33 0.50 0.58 0.67 0.34 ransomware

0.57 0.00 1.00 0.56 0.72 0.68 0.69 0.72 Benign

Table 6

Machine Learning Result for Naive Bayes

Weight split: 80/20

Naive Bayes Accuracy: 45.35%

TP Rate FP Rate Precision Recall F-Measure MCC ROC area Prc area Class

0.27 0.07 0.38 0.27 0.32 0.23 0.87 0.48 adware

0.06 0.02 0.58 0.06 0.12 0.12 0.82 0.58 trojan

0.03 0.02 0.20 0.03 0.06 0.20 0.88 0.46 virus

0.40 0.13 0.05 0.40 0.09 0.10 0.78 0.05 riskware

0.90 0.23 0.13 0.91 0.23 0.30 0.95 0.73 worm

0.33 0.10 0.03 0.33 0.06 0.08 0.76 0.19 ransomware

1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 benign

49

6.2 Black Box Machine Learning Discussion

To discuss the accuracy results of the machine learning algorithms in section 6.1

above, it is important to understand the metrics used for the comparison that contributed to

its overall prediction result shown in Table 7 below. These key metrics are accuracy,

precision, recall, F-Measure, MCC, ROC area, and PRC area.

Table 7

 Machine Learning Confusion Matrix

 Predicted as Positive Predicted as Negative

Actually Positive True Positive (TP) False Negative (FN)

Actually Negative False Positive (FP) True Negative (TN)

From Table 7 above, we can define the following evaluation measures below.

a) Accuracy = (𝑇𝑃	 + 	𝑇𝑁) ÷ (𝑇𝑃	 + 𝑇𝑁	 + 	𝐹𝑃	 + 	𝐹𝑁)

b) Recall = 𝑇𝑃	 ÷ (𝑇𝑃	 + 	𝐹𝑁)

c) Precision = 𝑇𝑃	 ÷ (𝑇𝑃	 + 	𝐹𝑃)

d) F-Measure = 2 x [(Precision x Recall) / (Precision + Recall)]. This can be described

as the harmonic mean of recall and precision.

50

e) MCC = This is abbreviation of Matthew’s Correlation Coefficient used in model

evaluation to measure what the difference between the predicted value and the

actual value is. Ranges between -1 to + 1 with +1 being the perfect model and -1

being a poor model. It is calculated by the formula below.

𝑀𝐶𝐶 =
(𝑇𝑁	 × 	𝑇𝑃) − (𝐹𝑁	 × 	𝐹𝑃)

√(𝑇𝑃 + 𝐹𝑃)(𝐹𝑇 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

f) ROC area = This is also known as receiver operating characteristics describes the

probability that positive instances ranked higher than a negative instances when

chosen randomly.

g) PRC area = This measure compares the true positive rate to the predicted positive

rate in binary classification tasks. In other words, this can be described as the

relationship between recall and precision. For unbalanced datasets, this is a more

appropriate measure than the ROC area (Lang et al, 2019).

The model was evaluated on a data split model of the 80/20% approach. Where 80%

of the dataset was used for the training of the dataset, and 20 percent was used for the

testing of the dataset. It was important to use this method because the model needed to use

the training dataset to first learn and then apply whatever it has learned to the rest of the

dataset it hasn’t tested on before to make the most accurate model predictions. The outcome

of this prediction can be seen in chapter 6 above.

On a high level, For the machine learning black box model above, we see that Table 2,

which is the random forest had the highest score of 88.49% and the lowest being Naive

Bayes with 45.35%. Three other algorithms were also used, and they are as follows:

51

1. Decision Tree with an accuracy result of approximately 86.97%.

2. Logistic Regression with an accuracy result of approximately 82.06%.

3. Support Vector Machine with an accuracy of approximately 55.33%.

We can clearly see from the above results that 3 out of the classifiers performed well, with

very similar results ranging from 82 - 88%. However, SVM and Naive Bayes were the least

performing algorithms, with an accuracy of approximately 45 and 55%, respectively. This

clearly shows that those models were the poorest and did not classify these samples well.

Naive Bayes is known to be one of the faster classifiers compared to logistic regression,

but it was the least performer for this data set. The MCC, ROC and PRC area provides

weighted ways to understand performance. The most used out of the three is the ROC area

under the curve. Higher ROC score of about 0.5 shows that the model is randomly guessing,

anything above 0.5 shows the model is performing better than randomly guessing. From

the result above asides from SVM model, all the other classifiers have a much higher ROC

area score which indicates high performance for the model for each of the various malware

classes. While both the ROC and the PRC area look at the predictive score of the

classification model, one major difference is that the ROC area looks at the true positive

rate and the false positive rate while the PRC area looks at the positive predictive value

and the true positive predictive value.

52

Chapter 7

DALEX Results and Discussion

In this chapter, we will evaluate and compare the experimental results carried out

in Chapter 6 above and gain more insights into the contributing factors and weights using

DALEX. This section is divided into two parts. The first part discusses the result from the

explanation of the models using DALEX. Finally, we would discuss in detail some of the

features that contribute to the white box model predictions for the different machine

learning models.

7.1 Machine Learning Model Explainability Using DALEX

From section 6.1, we can see that we only get the values of the result but not the

explanation/insight of these values. This section explains each of the five machine learning

classification algorithms built for the Virus Total dataset. We consider two of the most

important explanations: the variable importance and the breakdown. We have thoroughly

explained the model breakdown in section 4.3 above. Figure 16 - 20 shows the top 10 most

important variables contributing to each machine learning classification prediction. Figure

20 - 25 shows the breakdown, which is the contributing attribute of the variables. This can

be indicated as red and green bars, which indicate either negative or positive changes in

the mean prediction.

7.1.1 Machine Learning Classifier Variable Importance

Figure 16 to 20 shows the variable importance for all the five different classifiers. The

variable importance highlights the 10 most important variables. The values of the variable

importance are determined by the drop-out loss function. The dropout loss can be described

as a function that quantifies the goodness of fit of a model, aka variable importance. In the

53

black box model, this can be described as the root mean square error (RMSE) or mean

square root (MSE).

Figure 16

Variable Importance for Random Forest Classifier

Figure 17

Variable Importance for Decision Tree Classifier

54

Figure 18

Variable Importance for Logistic Regression Classifier

Figure 19

Variable Importance for Support Vector Machine Classifier

55

Figure 20

Variable Importance for Naive Bayes Classifier

7.1.2 Machine Learning Classifier Breakdown

Figure 21 to 25 show the breakdown for all the five different classifiers. These graphs show

the name of important variables which are arranged from the highest to the lowest

contributors. Their contribution values can either be positive (in green bars) or negative (in

red bars).

Figure 21

Breakdown for Random Forest Classifier

56

Figure 22

Breakdown for Decision Tree Classifier

Figure 23

Breakdown for Logistic Regression Classifier

57

Figure 24

Breakdown for Naive Bayes Classifier

Figure 25

Breakdown for Support Vector Machine Classifier

58

7.2 Model Explainability on Machine Learning Models

 Model explainability offers insight into what factors contribute to the predictive

accuracy of a model. From the breakdown of the results, we discussed in section 6.2 above,

we can see the high disparity between the results of 2 out of the 5 models. DALEX as a

framework helps give us a visual understanding of what those features are and what weight

of contribution, they have towards affecting the model’s predictive result. For this

experiment, we choose two insights, variable importance, and breakdowns, to help explain

the model.

Before we do the comparative analysis of the results, it’s important to explain some of

the variables that are evaluated as contributors to the predictions.

● Number of IAT entries: IAT is an abbreviation of Import address tables. They are

part of a dynamic linked library (dll) that helps to keep track of the address of

functions that are gotten from other dlls. These dlls contain classes, functions, and

resources such as images, icons, files, etc. The IAT is therefore regarded as a table

that comprises function pointers. Whenever a system module is loaded, a call is

made to a particular function, which then collects the address and stores it in the

import address table. This is a honey pot for attackers because having access to

multiple import addresses can overwrite these entries, thereby causing vulnerability

to the system and making it easy for attackers to manipulate them for their own

purposes. Attackers can use the “write-what-where vulnerability” to change the

location of the pointer to wherever they want.

● Number of RVA and Size - This is described as the number of data directory items

in the optional header.

59

● Size_of_uninit_data: This is one of the first eight fields that make up the optional

header. It is known as the size of the uninitialized data, or where there are multiple

sections, this would indicate the total number of sections, usually in bytes.

● Number of Sections: Sections can be described as the basic unit of code or data

found in a portable executable (PE) or a common object file format (COFF). The

number of sections there refers to the size of the section table.

● Push: This method call is recorded in bytes that saves the data sent to the pipe

source. We can describe a pipe as a shared memory that can be used for

communication. It is normally divided into two areas: the client and the server,

which both write and read information from the pipe.

• File size: This is described as the size of the file, usually recorded in bytes. From

our analysis, we can compare the result of the predictive result of our black box

model and compare against the factors that contribute to those predictions.

According to Table 2 of the Weka analysis, random forest has the highest prediction

of 88.49%. Using DALEX as a tool for the model explanation, we can see that

Number of IAT entries has the highest contribution. To understand how important

this variable is, we must first understand what the variable is.

As shown in Figures 16 through 20, we can see that various dataset attributes accounted

for both the variable importance and the breakdown of their contribution to the model. The

variable importance of the random forest model was attributed to the amount of text and

the number of IAT entries. These were the features that were accounted to be the most

important out of the 62 in total. With a dropout loss for random forest ranging from 0.5 x

10-17 to 2.5 x 10-17 .

60

The dropout loss can be described as a function that quantifies the goodness of fit

of a model, aka variable importance. In the black box model, this can be described as the

root mean square error (RMSE) or mean square root (MSE).

The minimum value of what can be qualified as a “perfect” model is 0. The range goes

from 0 - 1, with 1 being a failure and 0 being regarded as a success. Any dropout loss that

has a value closer to 0.0 is more like to be the perfect model. From the above result, we

can see that range for the random forest model given at 0.5 x 10-17 to	2.5 x 10-17 is much

closer to zero hence why the prediction was the highest compared to the others. For the

decision tree, we can see that its prediction has all 0’s except for the variable “file size”

which was 0.5. This reduced its overall accuracy. SVM and Naive Bayes, whose

predictions are extremely low, have their variables closer to 1, indicating that the model

was less successful in its prediction than the other models.

For the least performing classifiers, we can see that they have two similar variable

importance, such as file size and ent min, in common with different levels of dropout losses.

We can observe that high dropout loss in variable importance can be linked to lower

performance in the model. Both Naive Bayes and SVM had dropout losses higher than

zero, and they accounted for being the least performers.

The breakdown in Figures 21 through 25 shows the top 10 contributing features to

the model predictions. Each of the classifiers has various contributions to the model. The

colors are usually divided into two, green and red. The green color represents positive

contributors, and the red represents the negative contributors to the model. The random

forest is the highest classifier and has a breakdown contribution, as shown in Figure 21,

with multiple positive variables contributing to the model. Comparing the breakdown

61

contributions to the weka black box classification result, we can see that random forest has

the highest correct classification because more multiple variables with high variable weight

were factored into the classification. SVM overall displayed the most diverse contribution

to its classification. Being the only classification that possessed a negative contribution to

the model. We can clearly see that the number of IAT entries, which was also one of its

most important variables, had a negative impact on the model.

Similarly, Naive Bayes, the worse classifier, only focuses on 3 out of 10 features with very

low contribution weight. From the result shown, it is important to note that classifiers that

have greater (positive) single contributions have higher predictions than classifiers with

multiple low contributions, which gives lower predictions. Therefore, the low classification

is because SVM and Naive Bayes pay little attention to other attributes.

62

Chapter 8

Conclusions and Future Work

Malware such as ransomware has led to the loss of hundreds of millions of dollars

yearly. With the invention of various strains and types, finding a long-lasting solution to

eradicate these threats in cyberspace has become increasingly more work. Various

solutions ranging from signature to behavioral have been developed to assist with not only

the detection but the studying of these ransomware behaviors to find ways to mitigate the

risk that they present. Machine learning as a tool for malware detection has become

increasingly common to help detect malware. However, many machine learning methods

can be considered black box models. While their algorithm might provide high results,

decision makers in cyberspace have difficulty trusting them because there is no insight into

the contributing factors of those model predictions.

In this research, we present a layered approach that is not just the classic signature

or behavioral detection method but also introduces model explainability to help us break

down all the important elements that contribute to why our model had the prediction results

it generated. For this experiment, we started off by creating a test bed which is a virtual

artificial environment that mimics a regular operating system and identifies malware

interactions with user data. This testbed was made in windows operating systems which

are windows 7 and windows 10. More of this was talked about in section 4.1 of this thesis.

Using this testbed, we can study how malware generally affects our system, spreads, and

continually persists in accessing the user’s information. We added these manually tested

samples to an already existing Virus Total data to build an entirely new dataset used for

this experiment. For the second phase of this experiment, we built five machine learning

63

models to determine which classification algorithm performed the best. The machine

learning classifications were Random Forest, Decision Tree, Naive Bayes, Logistic

Regression, and Supervised Vector Machine (SVM). The study was carried out first in a

black box model known as weka.

Three of the five observed models have performed very well, with an average of

over 80% accuracy in classifying the malware and benign samples. Random forest and

Decision tree had the best performance with 88.47% and 86% accuracy. The modes used

in this experiment are wider than just predicting if a malicious sample is malicious or not.

It can also be used in any area of malware detection, such as class groups, types, filenames,

etc.

The study of malware, its behavior and how it spreads with a user's system is always

a continuous study. Here, we could only look at the dataset for dynamic attributes alone.

In order to have a holistic view of malware behaviors, we must look at static attributes as

well. For future research, a comparison of machine learning performance between both

static and dynamic attributes would be necessary to see which algorithm performs the best.

Other consideration for future works would include multi-label and multi-class for

machine learning for attacks that are a can be classified as two different malware classes.

64

References

Biecek, P. (2019, July 9). [1907.04461] Model Development Process. arXiv. Retrieved
November 17, 2022, from http://arxiv.org/abs/1907.04461

Automated malware analysis. Cuckoo Sandbox - Automated Malware Analysis. (n.d.).
Retrieved November 17, 2022, from https://cuckoosandbox.org/

Alemzadeh, H., Raman, J., Leveson, N., Kalbarczyk, Z., & Iyer, R. (2016). Adverse events
in robotic surgery: A retrospective study of 14 years of FDA data. 1–20.
10.1371/journal.pone.0151470

Baniecki, H., & Biecek, P. (2019, November). modelStudio: Interactive studio with
explanations for ML predictive models. Journal of Open Source Software, 4(43) (1798).
oss.theoj.org/papers/10.21105/joss.01798

Saleiro, P., Kuester, B., Hinkson, L., London, J., Stevens, A., Anisfeld, A., Rodolfa, K. T.,
& Ghani, R. (2018, November 14). Aequitas: A Bias and Fairness Audit Toolkit. arXiv.
Retrieved November 18, 2022, from https://arxiv.org/abs/1811.05577

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why Should I Trust You?”: Explaining
the Predictions of Any Classifier. 1135–1144. 10.1145/2939672.2939778

Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model
Predictions. Advances in Neural Information Processing Systems, 4768–4777.
https://dl.acm.org/doi/10.5555/3295222.3295230

Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viegas, F., & Wilson, J. (2020).
The What-If Tool: Interactive Probing of Machine Learning Models. IEEE Transactions
on Visualization and Computer Graphics, 26(1), 56–65.
https://ieeexplore.ieee.org/abstract/document/8807255

Nori, H., Jenkins, S., Koch, P., & Caruana, R. (2019, September 19). InterpretML: A
Unified Framework for Machine Learning Interpretability. arXiv. Retrieved November 18,
2022, from https://arxiv.org/abs/1909.09223

Jiangchun, L. (2018). PDPbox: python partial dependence plot toolbox. https://
github.com/SauceCat/PDPbox

Klaise, J., Looveren, A. V., Vacanti, G., & Coca, A. (2021). Alibi Explain: Algorithms for
Explaining Machine Learning Models. Journal of Machine Learning Research, 22(181), 1-
7. https://www.jmlr.org/papers/volume22/21-0017/21-0017.pdf

Right to explanation. (n.d.). Wikipedia. Retrieved November 17, 2022, from
https://en.wikipedia.org/wiki/Right_to_explanation

Rufibach, K. (2010). Use of Brier score to assess binary predictions. Journal of Clinical
Epidemiology 63: 938–39.

65

Cisco System. (2016). Midyear Security Report 2016. Cisco. Retrieved November 18,
2022, from https://www.cisco.com/c/dam/m/en_ca/never-better/assets/files/midyear-
security-report-2016.pdf

Gandotra, E. , Bansal, D. and Sofat, S. (2014) Malware Analysis and Classification: A
Survey. Journal of Information Security, 5, 56-64. doi: 10.4236/jis.2014.52006.

Bidoki, S. M., Jalili, S., & Tajoddin, A. (2016, August). PbMMD: A novel policy based
multi-process malware detection. Engineering Applications of Artificial Intelligence, 60,
57-70. http://dx.doi.org/10.1016/j.engappai.2016.12.008

Ndatinya, V., Xiao, Z., Manepalli, V. R., Meng, K., & Xiao, Y. (2015, July 9). Network
forensics analysis using wireshark. International Journal of Security Network, 10(2), 91 -
106. http://dx.doi.org/10.1504/IJSN.2015.070421

Hoque, N., Bhuyan, M.H., Baishya, R.C., Bhattacharyya, D.K., & Kalita, J.K. (2014).
Network attacks: Taxonomy, tools and systems. journal of network and computer
applications., 40, 307-324. https://doi.org/10.1016/j.jnca.2013.08.001

Eilam, E. (2005). Reversing: Secrets of Reverse Engineering. Wiley.

Ali Mirza, Q.K., Awan, I. Younas, M. (2018) Cloudintell: An intelligent malware detection
system, Future Generation Computer. System., 86, 1042-1053
http://dx.doi.org/10.1016/j.future.2017.07.016.

Sikorski, M., & Honig, A. (2012). Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press.

T.Y. Wang, C.H. Wu, Detection of packed executables using support vector machines, in:
Proceedings - International Conference on Machine Learning and Cybernetics, (2) (2011)
pp. 717–722, http://dx.doi.org/10.1109/ICMLC.20116016774.

S. Abimannan, R. Kumaravelu, A mathematical model of HMST model on malware static
analysis, Int. J. Inf. Secur. Priv. 13 (2019) 86–103,
http://dxdoi.org/10.4018/IJISP.2019040106.

Abdessadki, I., & Lazaar, S. (2019). A New Classification Based Model for Malicious PE
Files Detection. International Journal of Computer Network and Information
Security(IJCNIS), 11(6), 1-9. 10.5815/ijcnis.2019.06.01

Singh, J., & Singh,, J. (2018). Challenges of malware analysis : Obfuscation techniques.
International Journal of Information Security Science, 7(3).
https://www.ijiss.org/ijiss/index.php/ijiss/article/view/327

Gao, Y., Lu, Z., Luo, Y. (2014). Survey on malware anti-analysis. Fifth International
Conference on Intelligent Control and Information Processing. 270–275.

66

Alam, S., Horspool, R., Traore, I., Sogukpinar I., (2015, February). A framework for
metamorphic malware analysis and real-time detection, Computer Security, 48, 212–233,
http://dx.doi.org/10.1016/j.cose.2014.10.011.

Singh, J., & Singh, Dr. J. (2019). Ransomware: An Illustration of Malicious Cryptography.
In International Journal of Recent Technology and Engineering. 8(2), 1608–1611. Blue
Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication .
https://doi.org/10.35940/ijrte.b2327.078219

Hu, X. (2011). Large-scale malware analysis, detection, and signature generation (Order
No. 3492834). Available from ProQuest Dissertations & Theses Global. (918832186).
Retrieved from
http://ezproxy.rowan.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertat
ions-theses%2Flarge-scale-malware-analysis-detection-
signature%2Fdocview%2F918832186%2Fse-2%3Faccountid%3D13605

P. Coogan (2010), Spyeye bot versus zeus bot,
http://www.symantec.com/connect/blogs/spyeye-bot-versus-zeus-bot.

Mahdavifar, S., Ghorbani, A.A. (2019). Application of deep learning to cybersecurity: A
survey, Neurocomputing, 347, 149–176, http://dx.doi.org/ 10.1016/j.neucom.2019.02.056,
http://www.sciencedirect.com/science/article/
pii/S0925231219302954.

Zhang,W., Wang, H., He, H., Liu, P. (2020). DAMBA: Detecting android malware by
ORGB analysis, IEEE Trans. Reliab. 69 (1), 55–69,
http://dx.doi.org/10.1109/TR.2019.2924677.

Mirjalili, S., Mirjalili S. M, and Lewis A. (2014), ‘‘Grey wolf optimizer,’’ Adv. Eng.
Softw., Mar, vol. 69, pp. 46–61.

X.Yang and Suash Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc. World Congr. Nature
Biologically Inspired Comput. (NaBIC), 2009, pp. 210–214.

Homayoun, S., Dehghantanha A., M. Ahmadzadeh, S. Hashemi and R. Khayami (2020),
"Know Abnormal, Find Evil: Frequent Pattern Mining for Ransomware Threat Hunting
and Intelligence," in IEEE Transactions on Emerging Topics in Computing, vol. 8, no. 2,
1 April-June pp. 341-351, doi: 10.1109/TETC.2017.2756908.

Kharaz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E. (2016): Unveil: a large-
scale, automated approach to detecting ransomware. In: 25th USENIX Security
Symposium (USENIX Security 2016), pp. 757–772. USENIX Association, Austin

Kharraz A, Kirda E (2017) Redemption: real-time protection against ransomware at end-
hosts. In: International symposium on research in attacks, intrusions, and defenses,
Springer, pp. 98–119

67

Mehnaz S, Mudgerikar A, Bertino E (2018) Rwguard: a real-time detection system against
cryptographic ransomware. In: International symposium on research in attacks, intrusions,
and defenses,Springer, pp 114–136

Garfinkel, T., Rosenblum, M., 2003. A virtual machine introspection-based architecture
for intrusion detection. In: Proceedings of the 10th Network and Distributed System
Security Symposium, pp. 191–206.

Tang, Fei & Ma, Boyang & Li, Jinku & Zhang, Fengwei & Su, Jipeng & Ma, Jianfeng.
(2020). RansomSpector: An Introspection-Based Approach to Detect Crypto Ransomware.
Computers & Security. 97. 101997. 10.1016/j.cose.2020.101997

Kardile, A.B. (2017), Crypto Ransomware Analysis and Detection Using Process Monitor.
Ph.D. Thesis, The University of Texas at Arlington, Arlington, TX, USA.

Scaife, N., Carter, H., Traynor, P., Butler, K.R.B. (2016): Cryptolock (and drop it): stop-
ping ransomware attacks on user data. In: 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), June, pp. 303–312.
https://doi.org/10.1109/ICDCS.2016.4627.

Baek, Sungha & Jung, Youngdon & Mohaisen, Aziz & Lee, Sungjin & Nyang, Daehun.
(2020). SSD-Assisted Ransomware Detection and Data Recovery Techniques. IEEE
Transactions on Computers. PP. 1-1. 10.1109/TC.2020.3011214

Alotaibi, Fahad & Vassilakis, Vassilios. (2021). SDN-Based Detection of Self-Propagating
Ransomware: The Case of BadRabbit. IEEE Access. PP. 1-1.
10.1109/ACCESS.2021.3058897.

Morato, Daniel & Berrueta, Eduardo & Magaña, Eduardo & Izal, Mikel. (2018).
Ransomware early detection by the analysis of file-sharing traffic. Journal of Network and
Computer Applications. 124. 10.1016/j.jnca.2018.09.013.

Khan, Firoz & Ncube, Dr & Ramasamy, Lakshmana & Kadry, Seifedine & Nam,
Yunyoung. (2020), “A Digital DNA Sequencing Engine for Ransomware Detection Using
Machine Learning”, IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.3003785.

Fumo, David. “Types of Machine Learning Algorithms You Should Know.” Towards Data
Science, Towards Data Science, 15 June 2017, https://towardsdatascience.com/types-of-
machine-learning-algorithms-you-should-know-953a08248861. Accessed 15 December
2022.

Jurriaan Bremer. (2013). Blackhat 2013 workshop: Cuckoo sandbox - open source
automated malware analysis. http://cuckoosandbox.org/2013-07-27-blackhat-las-vegas-
2013.html.

Biecek, Przemyslaw. (2018). “DALEX: Explainers for Complex Predictive Models in R.”
Journal of Machine Learning Research, vol. 19, no. 84, pp. 1-5,
https://jmlr.org/papers/v19/18-416.html.

68

Ogiriki, Ikuromor, Vahid Heydari, Christopher Beck (2022) “Technical Analysis of
Thanos Ransomware.” 17th International Conference on Cyber Warfare and Security, vol.
17, no. 1, pp. 497-504, https://doi.org/10.34190/iccws.17.1.62.

Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G,
Kotthoff L, Bischl B (2019). “mlr3: A modern object-oriented machine learning framework
in R.” Journal of Open Source
Software. doi:10.21105/joss.01903, https://joss.theoj.org/papers/10.21105/joss.01903.

	MACHINE LEARNING MODELS INTERPRETABILITY FOR MALWARE DETECTION USING MODEL AGNOSTIC LANGUAGE FOR EXPLORATION AND EXPLANATION
	Recommended Citation

	Microsoft Word - Mabel's Thesis Revised Submission_V2.docx

