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Abstract: In this investigation, the terminal double bonds of the side chain epoxidized cardanol
glycidyl ether (SCECGE) molecule were further epoxidized in the presence of Oxone® (potassium
peroxomonosulfate) and fluorinated acetone. Regular methods for the double bond epoxidation are
not effective on the terminal double bonds because of their reduced electronegativity with respect
to internal double bonds. The terminal double bond functionality of the SCECGE was epoxidized
to nearly 70%, increasing the epoxy functionality of SCECGE from 2.45 to 2.65 epoxies/molecule
as measured using proton magnetic nuclear resonance (1H-NMR). This modified material—side
chain epoxidized cardanol glycidyl ether with terminal epoxies (TE-SCECGE)—was thermally cured
with cycloaliphatic curing agent 4-4′-methylenebis(cyclohexanamine) (PACM) at stoichiometry, and
the cured polymer properties, such as glass transition temperature (Tg) and tensile modulus, were
compared with SCECGE resin cured with PACM. The Tg of the material was increased from 52 to
69 ◦C as obtained via a dynamic mechanical analysis (DMA) while the tensile modulus of the material
increased from 0.88 to 1.24 GPa as a result of terminal double bond epoxidation. In addition to
highlighting the effects of dangling side groups in an epoxy network, this modest increase in Tg and
modulus could be sufficient to significantly expand the potential uses of amine-cured cardanol-based
epoxies for fiber reinforced composite applications.

Keywords: biobased; epoxy; epoxidation; thermoset; cardanol; reactivity; cure

1. Introduction

Cardanol, which is the main component of the thermally treated cashew nutshell liquid (CNSL),
is characterized by a phenol ring connected to C15 alkyd chains at the meta position that have
different degrees of unsaturation [1]. The C15 alkyd chain of the cardanol molecule is found to
be completely saturated (5%), mono- (40%), di- (20%) and tri- (35%) unsaturated with the double
bonds on the 8–9, 11–12 and 14–15 carbon positions of the side chain [2]. The unique structure of
cardanol makes this material a promising candidate for a variety of applications and for many routes of
chemical modifications. So far, cardanol has been utilized in many thermosetting applications as vinyl
esters [1,3,4], polyols [5,6], polyurethanes [7,8], novolacs [9,10], benzoxazines [11–13], epoxies [14,15]
and amines [16,17]. Among the different type of thermosetting resins that can be synthesized from
cardanol, epoxy resins are an important class of materials because they can be further modified to
obtain different materials, such as vinyl ester and polyol resins. Cardanol based epoxies, can be used for
protective anticorrosion coatings of metal structures, in adhesive formulations for construction, and as
matrices in fiber reinforced composites for marine and automotive applications provided the Tg is high
enough. The direct epoxidation of cardanol can be achieved at the phenolic moiety via the reaction
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with epichlorohydrin, which leads to phenolic, primary epoxies [15] or through the epoxidation of
the side chain unsaturation with peroxyacids or other means, which results in secondary aliphatic
epoxies [18].

Epoxidation of the olefins on the cardanol side chain can be achieved via a few different chemistries.
The final structure proposed by these studies generally state that the terminal unsaturation is effectively
epoxidized. However, their proton nuclear magnetic resonance (1H-NMR) and/or epoxy equivalent
weight (EEW) titrations do not match with the proposed final structure and suggests that terminal
double bonds are not as reactive as internal ones [17–20]. In a series of studies conducted on the
epoxidation of the cardanol side chain in the presence of the m-chloroperoxybenzoic acid catalyst,
terminal epoxies were proposed [17,18]. Yet, their EEW, 1H-NMR and iodine value results [17,18] do
not support the fact that the terminal double bond is epoxidized effectively. In the 1H-NMR spectra of
the product, poly epoxy cardanol glycidyl ether (PECGE), the multiplet related to the terminal double
bonds (5.0 and 5.8 ppm) was clearly observed after the side chain epoxidation reaction. Additionally,
the product EEW value 175 g/eq closely matches our pervious study in which the structure of side
chain epoxidized cardanol glycidyl ether (SCECGE) was proposed without the terminal epoxies [21].
Furthermore, if the terminal unsaturation were completely epoxidized, there would be 2.80 epoxies
per cardanol with an EEW of 155 g/eq based on our structural analysis. The high iodine value
(25.8 g/100 g) obtained after the side chain epoxidation reaction [17,18] also indicates that the terminal
double bonds are not effectively epoxidized with the current method. Moreover, these terminal
epoxies on the cardanol structure were designated as the secondary epoxies on the related 1H-NMR
spectra [17,18]; however, terminal epoxies have a primary nature and should be recognized as primary
epoxies, as primary glycidyl epoxies have significantly higher reactivity than secondary aliphatic [21],
and it is likely that primary aliphatic epoxies also have higher reactivity than secondary ones. In
another study, the side chain epoxidation of cardanol is achieved via an enzymatic route (lipase) and
suggests a molecular structure with terminal epoxies [19,20]. Yet, their 1H-NMR analysis also shows
that the peaks representing the terminal double bonds (5.0 and 5.8 ppm) were generally unchanged
in the spectra [19,20] and thus terminal double bonds are still present in the final structure as per
the previous example. The internal unsaturation peaks observed at 5.4 ppm, on the other hand,
are significantly reduced in intensity after the synthesis protocol [19,20] suggesting that this enzymatic
route is significantly more effective on the internal double bonds than on the terminal ones. In
addition, the epoxide content values that are obtained by titrations showed that only 51% of the double
bonds were converted to the epoxies [19,20] indicating poor reactivity of the terminal unsaturation
sites. In a related study where the side chain of cardanol was epoxidized via hydrogen peroxide and
formic acid and was further hydrolyzed to hydroxyl groups [6], the structure of the side chain epoxy
cardanol molecule was proposed with terminal epoxies, but again, their 1H-NMR analysis clearly
showed that most of the terminal unsaturation peaks observed between 5.0 and 5.8 ppm still remained
in the molecule’s spectra after the epoxidation reaction, while the peak observed around 5.4 ppm,
which represents the internal double bonds, completely disappeared after a 24 h reaction [6]. This again
suggests that this common epoxidation method is not effective for the epoxidation of the terminal
double bonds. Furthermore, because of the flawed structural analysis of the side chain epoxidized
cardanol, the hydrolyzed structure of the cardanol was proposed with terminal hydroxyl groups [6].
Incorrect structural analysis of these molecules may lead to inaccurate stoichiometry calculations and
muddled structure–property analysis of resulting polymers. In our previous study it was found that
the terminal double bonds are more difficult to epoxidize using common synthetic methods and that
more effective means of oxidation are required [21].

A recent advance is the use of dioxiranes under room temperature conditions for the epoxidation
of olefins [22]. These reagents are generated from Oxone® (a potassium monopersulfate compound)
and the parent ketone in the presence of acetonitrile/water/sodium bicarbonate system that allows
the accelerating effect of ketones [23,24]. Using fluorinated ketones instead of non-fluorinated ones
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improves the electronegativity of the formed dioxiranes, and they are significantly more effective for
the epoxidation of the less electrophilic terminal double bonds [25,26].

In this study, the SCECGE molecule with 2.45 epoxies/molecule (1.05 primary epoxy/molecule and
1.40 secondary epoxy/molecule) and 0.32 terminal double bonds/molecule was prepared and further
epoxidized at the terminal double bonds of the alkyd chain via Oxone® and fluorinated acetone in the
water/acetonitrile/NaHCO3 buffer (Figure 1). The epoxidized cardanol was characterized by 1H-NMR
and epoxy titration and showed that the terminal site was in fact epoxidized. This is of practical
importance in designing new materials because it provides a way to eliminate dangling chain ends that
are a cause of low Tg for network polymers derived from cardanol. Thus, epoxy resins were formulated
using this material and the extent of cure and thermomechanical properties of the resulting polymers
were assessed demonstrating that terminal epoxides improve the cure and polymer properties.
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Figure 1. Synthesis scheme of the terminal double bond epoxidation reaction via representative
idealized structures.

2. Materials and Methods

2.1. Materials

Ethyl acetate (>99%), acetonitrile (99.9%), 1,1,1-trifluoroacetone (>98%), sodium chloride (99.9%),
sodium bicarbonate (99.9%), magnesium sulfate (>99%) and Oxone® potassium monopersulfate
compound (CAS no: 70693-62-8) were purchased from Sigma Aldrich, St. Louis, MO, USA.
4-4′-methylene biscyclohexaneamine PACM (99%) were obtained from Air Products, Allentown,
PA, USA. SCECGE, was synthesized as previously reported [21]. All chemicals in this work were used
as received.

2.2. Epoxidation of the Terminal Double Bond via Oxone®

The terminal double bonds presented on the alkyd chain of the SCECGE molecule were epoxidized
in the presence of fluorinated acetone and the Oxone® reagent (Figure 1). In a representative procedure,
10 mol (4.0 g) of SCECGE were dissolved in 50 mL 50/50 (v/v) acetonitrile/water solution and charged
into a three-necked round-bottom flask equipped with a reflux condenser and constant magnetic
stirring. The contents were allowed to mix at 0 ◦C for ten minutes and then 4 mL (12.1 equivalent
per terminal double bond) 1,1,1 trifluoroacetone was introduced to the reactor and mixed for another
thirty minutes at this temperature. Homogenous mixtures of Oxone® 11.9 g (15.1 equivalent per
terminal double bond) and sodium bicarbonate (7.01 g, 8.3 equivalent per double bond) in 50/50 v/v
acetonitrile/water were introduced to the reactor at 0 ◦C in one portion. The contents were allowed to
react at room temperature with constant stirring and treated with 50 mL of water after 24 h. The reaction
mixture was extracted with ethyl acetate (3 × 50 mL). The combined organic layers were washed with
saturated sodium chloride solution (5 × 50 mL), dried over anhydrous magnesium sulfate and rotary
evaporated to give the product TE-SCECGE (yield: 30–35%).

2.3. Characterization of the TE-SCECGE Resin

Proton magnetic nuclear resonance and epoxy equivalent weight titrations were used to calculate
the epoxy functionality of the SCECGE and TE-SCECGE resins and identify and quantify the remaining
unsaturation. An 1H-NMR (500 MHz, Varian Unity Inova) unit was used with a spectral window of
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±2000 Hz, 90◦ pulse width and 32 scans at 25 ◦C. EEW titrations were performed in accordance with the
ASTM D1652-97 to determine the epoxy content of the resins before and after the epoxidation reaction.

2.4. Preparation of Cured Samples of SCECGE and TE-SECCGE with PACM

Polymer samples were prepared by thermally curing SCECGE and TE-SCECGE epoxy resin
with the cycloaliphatic curing agent PACM at stoichiometry of epoxides to amine hydrogens.
The epoxy–amine combinations were mixed and degassed, cast into the rectangular rubber molds,
then thermally cured at 90 ◦C for 12 h and post-cured at 180 ◦C for another 3–4 h. The conversion of the
epoxy and amine groups was measured by Fourier transform near infrared (FT-NIR) spectrometry using
a Nicolet Nexus 670 spectrometer (Thermo Electron Corporation, Waltham, MA, USA), operating in the
transmission mode with a deuterated triglycine sulfate (DTGS) detector. FT-NIR spectra were recorded
with 32 scans at an 8 cm−1 resolution in 4000−8000 cm−1 range at room temperature. In addition,
the reactivity difference between SCECGE and TE-SCECGE resins towards PACM was determined via
DSC (TA Instruments, New Castle, DE, USA, Q2000) by thermally scanning epoxy/amine mixtures
from 30 to 180 ◦C with 2 ◦C/min heating rate in the nitrogen environment. After the curing was
achieved via the first scan, samples were cooled back to −50 ◦C and reheated to 200 ◦C at 5 ◦C/min to
obtain the glass transition temperature of the cured material.

2.5. Properties of the Cured Epoxy–Amine Polymer

The dynamic mechanical analysis (TA Instruments, Q800) was used to evaluate the cross-link
density (v), and Tg of the cured polymers. Rectangular DMA bars with approximate dimensions of
35 mm3

× 12 mm3
× 3.5 mm3 were scanned from−100 ◦C to well above their glass transition temperature

at 1 Hz with a deflection of 15 µm while ramping the temperature at 2 ◦C/min. The temperature
value of the maximum of the loss modulus peak was taken as the Tg value of the cured polymer.
The crosslink density values were calculated using Equation (1), where E is the rubbery modulus at
a given absolute temperature T, and R is the ideal gas constant [27]. The rubbery plateau storage
modulus (E’ at Tg +50 ◦C) was used for E in Equation (1).

v =
E

3RT
(1)

Tensile tests were performed on dumb-bell-shaped (type IV) samples of all the fully cured samples of
epoxy and amine combinations in accordance with the ASTM D-638 standard test method. Samples
were tested at ambient conditions using an extensometer to measure strain with a constant crosshead
speed of 1 mm/min and a gauge length of 45 mm. For each formulation, at least 6 tensile specimens
were tested and analyzed.

3. Results and Discussion

3.1. Characterization of the Epoxidized Cardanol

SCECGE was characterized in previous work [21] as summarized in Table 1. The EEW was
determined to be 177 g/mol. The results showed that SCECGE had 0.99 aromatic glycidyl groups,
0.06 primary aliphatic epoxy groups and 1.45 secondary epoxy groups with a total of 2.45 epoxy
groups per cardanol molecule. SCECGE had 0.32 terminal unsaturation sites remaining per molecule,
but no non-terminal unsaturation sites. The average molecular weight of the monomer was 430 g/mol
assuming no oligomerization.
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Table 1. Epoxy content of the side chain epoxidized cardanol glycidyl ether (SCECGE) and TE-SCEGE
resins as obtained via 1H-NMR and epoxy equivalent weight (EEW) titrations.

Epoxy Resin

Terminal
Double Bond
Functionality

(per Molecule)

Primary Epoxy
Functionality

(per Molecule)

Secondary
Epoxy

Functionality
(per Molecule)

Total Epoxy
Functionality

(per Molecule)

EEW
(g/Equivalent)

SCECGE [21] 0.32 1.05 1.40 2.45 177
TE-SCECGE 0.10 1.25 1.40 2.65 165

The 1H-NMR spectra of the SCECGE and TE-SCECGE are shown in Figure 2a,b, respectively,
along with the corresponding peak assignments. In the 1H-NMR spectra of the reactant SCECGE,
the terminal double bonds are recognized between 5.1 and 5.8 ppm as B and D; and after 24 h of
reaction, the intensity of these peaks reduced significantly. Similarly, the peaks representing the
primary epoxies, which are designated as k, l and m, slightly increased in intensity in the TE-SCECGE
spectra suggesting that a significant amount of terminal double bonds was converted to primary
epoxies. The terminal double bond and the primary epoxy functionality of the TE-SCECGE resin were
determined via the integration of the related 1H-NMR peaks in Figure 2a,b as explained in our previous
study [21]. The integral values of the related 1H-NMR peaks are also presented in the supplemental
information (Tables S1 and S2). The terminal double bond functionality of the SCECGE reduced
from 0.32 to 0.10 double bonds/molecule after the epoxidation reaction. Additionally, the primary
epoxy functionality of the TE-SCECGE resin was increased by 0.20–1.25 primary epoxy/molecule.
The secondary epoxy functionality of the SCECGE resin was calculated as 1.40 epoxies/molecule and
did not change after 24 h of reaction. Thus, TE-SCECGE had 2.65 epoxide/molecule where 1.25 was
phenolic (0.99) and terminal primary epoxies (0.26), and 1.40 was the secondary, aliphatic epoxy as
summarized in Table 1. The 0.02 unsaturation that was not converted to epoxies was lost to side
reactions, likely resulting in etherification or alkoxyl formation. This indicates a conversion efficiency
of terminal unsaturation to terminal epoxies of 63%. Based on this level of epoxidation, the calculated
molecular weight of TE-SCECGE was 437 g/mol assuming no oligomerization.
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Figure 2. 1H-NMR analysis of the reactant: (a) SCECGE and the product (b) TE-SCECGE.

The EEW of the SCECGE and TE-SCECGE were also determined via epoxy titration and results
are presented in Table 1. The EEW of the SCECGE was determined as 177 g/equivalent. The EEW
of SCECGE was reduced from 177 to 165 g/equivalent for TE-SCECGE as a result of the addition
of primary epoxies. This equated to 2.65 epoxies per TE-SCECGE, an increase of 0.2 epoxies per
molecule from SCECGE. This level of epoxidation was in excellent agreement with the NMR analysis.
Again, the results confirmed a 63% conversion of the double bonds to primary epoxies and the
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synthesis protocol did not hydrolyze the existing primary and/or secondary epoxies already present
on the SCECGE molecule. When considering the fact that cardanol and cardanol glycidyl ether have
0.38 unsaturation per equivalent, the overall conversion of the terminal unsaturation to primary
aliphatic epoxies was 68% after two different means of epoxidation. The calculated molecular weight
based on EEW was 437 g/mol, again assuming no oligomerization, which agreed exactly with the
1H-NMR analysis.

It is also important to report that we performed the same synthesis protocol using acetone instead
of fluorinated acetone and we observed only a very slight epoxidation of the terminal double bond
with a conversion around 5–10%. Due to the less electrophilic nature of the terminal double bonds
with respect to the inner ones as a result of their primary nature, fluorinated acetone was used along
with Oxone® to increase the electronegativity of the oxygen carrier dioxirane formed as a result of
the Oxone–ketone reaction [24,25] resulting in the 63% conversion of unsaturation to epoxidation
previously discussed. This shows that fluorinated acetone was significantly more effective for the
epoxidation of the less electrophilic terminal double bond.

3.2. Curing of the Epoxy Resins with PACM

Figure 3 shows the near-IR spectra of SCECGE and TE-SCECGE samples with PACM after post
cure along with the representative uncured epoxy/amine spectra. The primary epoxy and primary
amine peaks observed at 4540 and 4940 cm−1, respectively, completely disappeared while the peak
representing both the primary and secondary amine at 6570 cm−1 was still observed as a slight hump
after the post-cure step in both SCECCGE and TE-SCECGE spectra despite the stoichiometric amount
of amine [28]. The reason for the incomplete curing for the SCECGE and TE-SCECGE resins can be
explained by the less reactive nature of the secondary epoxides, which cannot be cross-linked to a high
degree as we demonstrated previously [21]. However, the overall extent of the cure for the TE-SCECGE,
which was calculated around 84%, was slightly higher than the SCECGE resin (82%) as a result of the
extra primary epoxy, which can completely react with amines and contribute to network formation.
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Figure 3. Extent of the epoxy/amine curing reaction via near-IR.

DSC was employed to confirm the extent of curing of both epoxy resins and to compare the
reactivity difference between SCECGE and TE-SCECGE in the presence of the cycloaliphatic curing agent
PACM. DSC scans of uncured SCECGE and TE-SCECGE resin prepared with PACM at stoichiometry
are presented in Figure 4. In the first heating cycle where epoxy and amine curing reaction occurred,
the temperature associated with the maximum in the heat release rate of the curing reactions (Tmax)
and the heat of the curing reaction (∆Hcure) values were determined and presented in Table 2. Figure 4
shows that SCECGE and TE-SCECGE epoxy resins, which possessed both primary and secondary
epoxy functionality, had a two-step curing process. The peak at lower temperatures, observed around
70–80 ◦C, was assigned to the primary epoxy curing reaction and the second peak, observed as a
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slight hump around 120–125 ◦C, was assigned to the secondary epoxy curing reaction [21]. ∆Hcure

values—obtained via the area under two exotherms presented in Table 2—showed the ∆Hcure value of
the SCECGE was around 45 kJ/mol of epoxy, and after the addition of the terminal primary epoxy,
the ∆Hcure value of TE-SCECGE increased to 52 kJ/mol of the epoxy. Previous work [21] showed that
the ∆Hcure value of the secondary epoxies is extremely low (8 kJ/mol of epoxy) and this significant
increase can be associated with the presence of extra primary epoxies on the side chain. This supports
our claim that we have added terminal epoxies to the side chain of cardanol glycidyl ether. More so,
it shows that primary aliphatic epoxy groups have similar reactivity to glycidyl groups and are far
more reactive than secondary epoxy groups.
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Table 2. Thermomechanical property comparison of SCECGE and TE-SCECGE.

Epoxy Resin ∆HRXN
(J/mol)

Tg (DSC)
(◦C)

Cross-Link Density
(mol/m3)

Tg (DMA)
(◦C)

SCECGE [21] 45 49 375 52
TE-SCECGE 52 65 625 69

Our previous analysis also showed that the ∆Hcure values for DGEBA based epoxies are 90 kJ/mol
(45 kJ/mol epoxy), which correspond to the heat of reaction value of a primary epoxy and amine found
in the literature [29,30]. Given the increase of 0.2 primary epoxies and the same heat of reaction for
primary aliphatic epoxies vs. glycidyl epoxies, the predicted ∆Hcure should be 56 kJ/mol, which is
higher than the 52 kJ/mol measured. To obtain this value the heat of reaction would have to be
29 kJ/mol for primary aliphatic epoxies. This indicates that the reaction of primary aliphatic epoxies
is less exothermic, and these epoxy groups are less reactive than glycidyl groups but are still far
more reactive than secondary epoxy groups (8 kJ/mol). However, TE-SCECGE resin gels very quickly
and a significant amount of polymerization may have occurred during sample preparation for DSC
measurements; thus, the calculated value of 29 kJ/mol for terminal primary epoxy was most likely
lower than the actual value of ∆Hcure.

3.3. Comparison of the Thermomechanical and Mechanical Properties of SCECGE and TE-SCECGE

DSC scans of the second heating cycle (Figure 4b) had a slope change attributed to the materials
glass transition temperature (Table 2). The glass transition temperatures of the SCECGE and TE-SCECGE
cured with PACM were measured as 49 and 65 ◦C, respectively, via DSC. This shows that the addition
of only 0.2 reactive primary terminal epoxies resulted in a relatively large 16 ◦C in the glass transition
of this material. More so, it again corroborated the fact that special reaction conditions are necessary to
produce terminal epoxies on the alkyl chain of cardanol.



Polymers 2020, 12, 2104 8 of 12

Figure 5 shows the temperature dependence of the storage modulus and loss modulus curves
for SCECGE and TE-SCECGE cured with PACM at stoichiometry. The cross-link density of the
epoxy/amine formulations was determined via DMA as previously explained and presented in Table 2.
The cross-link density value was determined as 375 mol/m3 for the SCECGE, and after the addition of
the terminal epoxy, the cross-link density of the cured polymer increased to 625 mol/m3 because of
the presence of an extra reacting site. We also calculated the cross-link density of these polymers by
using a simple method proposed by Hill et al. for partial network formation to compare the cross-link
density measurements [31]. The cross-link density of the SCECGE and TE-SCECGE epoxy was
estimated as 745 mol/m3 and 1100 mol/m3 via the Hill’s method. The values were higher for the Hill’s
method; this is typical because this theoretical method does not factor in intramolecular cyclization.
Yet, the Hill’s method shows the same trend and magnitude of increase in the cross-link density as
we go from SCECGE to TE-SCECGE. The addition of the terminal epoxy to the side chain increased
the epoxy functionality of the TE-SCECGE resin, and thus a higher cross-link density value was
observed for TE-SCECGE. In addition, the glass transition temperature of the fully cured epoxy/amine
mixture increased from 52 to 69 ◦C as determined via DMA as a result of the additional cured epoxy
groups. These Tg values were very similar, albeit slightly higher, to that measured by DSC, and the Tg

increment of 17 ◦C measured by DMA was nearly identical to that measured via DSC. In addition,
the β transition that is observed at lower temperatures, which is associated with the rotation of groups
along the polymer backbone, had increased intensity for the TE-SCECGE with respect to SCECGE.
DGEBA-PACM samples also have pronounced β transitions. TE-SCECGE is more similar to DGEBA
in that most of the molecule end groups are tied into the network, whereas there are large amounts of
dangling chain ends in SCECGE. Tying these dangling chain ends into the network in TE-SCECGE
constrains significant movement of the chain at temperatures below the Tg but may then enable some
of the lower energy transitions, such as molecular rotations [32].
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Figure 5. Temperature dependence of the storage and loss modulus of SCECGE and TE-SCECGE cured
with PACM at stoichiometry.

The mechanical properties such as the Young’s modulus (E), tensile strength (σ) and tensile strain
(ε) of the fully cured epoxy/amine formulations were evaluated at room temperature and presented
in Table 3. The Young’s modulus of the SCECGE and TE-SCECGE was determined as 0.88 GPa and
1.3 GPa, respectively. Similarly, the tensile strength of the epoxy/amine formulations increased from
13 to 20 MPa, which also supports the fact that the addition of the terminal epoxy improved the
mechanical properties of the epoxy/amine network significantly. The reason for the improvement in
the mechanical properties can be explained by the increased rigidity of the cured network as a result of
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increased cross-link density after the addition of the terminal epoxies. Interestingly, the failure strain
values obtained for the TE-SCECGE did not show a significant improvement with respect to SCECGE.
An increment from 3.1% to 4.0% was observed after the terminal double bond epoxidation. However,
as polymers are stiffened and cross-link density is increased, elongation to failure generally decreases.
The fact that it increased indicates that TE-SCECGE was acting more effectively as a chain extender in
the epoxy-amine resins system as a result of more epoxies per molecule and more reactive epoxies per
molecule. SCEGCE likely has more terminal cardanol units because there was only one reacted epoxy
group per molecule for a significant percentage of the polymer.

Table 3. Comparison of the mechanical properties as obtained via tensile tests.

Epoxy Resin Young’s Modulus (E)
(GPa)

Tensile Strength (σ)
(MPa)

Failure Strain (ε)
(%)

SCECGE [21] 0.88 ± 0.1 13 ± 2 3.1 ± 0.4
TE-SCECGE 1.24 ± 0.3 24 ± 7 4.0 ± 1.2

The combinatorial analysis as done in La Scala et al. for triglyceride based thermosets
was also performed on cardanol [33,34]. Using the distribution of reactive sites before reaction,
F(N), the distribution of functional groups after reaction can be determined using a binomial
distribution [33,34]. The probability of having n functional groups on the cardanol alkyl chain
with N reactive sites was calculated using Equation (2) [34].

P(N, n, ξ) = C(N, n)ξn(1− ξ)N−nF(N) (1)

where ξ is the extent of reaction and C (N, n) is the number of different ways the n functional groups
can be arranged on the cardanol alkyl chain with N reactive sites (i.e., C (N, n) is the combinatorial
function or binomial coefficient). The percentage of n-functional cardanol chains, p (n,ξ), is:

p(n, ξ) =
∑

N

P(N, n, ξ) (2)

This methodology assumes equal reactivity of each functional group with some exceptions.
Past work on SCECGE showed that 0.06 of 0.38 unsaturation were converted to primary epoxies,
and the extent of epoxidation of the secondary epoxies was 0.91 [21]. Regarding the cured species,
the primary glycidyl and alkyl epoxy functionality was shown to react to nearly 100%, while the
secondary epoxy functionality only cured to 60% [21]. Clearly, all saturated alkyl chains remained
unfunctionalized and uncured. Using this combinatorial function, we could calculate the probability
of having each species and the overall percentage of 0–3 epoxy and cured epoxy cardanol alkyl chains.
Factoring in the phenyl glycidyl group, we had functionality ranging from 0 to 4, as listed in Table 4.
The results show that in SCECGE, 33.0% of the molecules had fewer than 2 cured epoxies and thus
would result in network defects. This amount was reduced by 3.2% in TE-SCEGCE down to 29.8%
after the addition of the terminal epoxy because addition of the terminal epoxy resulted in a better
extent of cure for the TE-SCECGE polymer. Thus, this network would likely have better strength and
modulus and elongation to failure. However, relative to other cardanol networks—like NC514 that has
nearly two cured epoxies per monomer and nearly 0% of cardanol units with fewer than two uncured
epoxies—TE-SCECGE clearly had far higher amounts of such species resulting in lower elongation to
break, where elongation to break in NC514-PACM was 32.7 ± 2.6 [21].
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Table 4. Calculated distribution of epoxies and cured epoxies on the SCECGE and TE-SCECGE.

Functionality SCECGE Epoxies TE-SCECGE
Epoxies

SCECGE Cured
Epoxies

TE-SCECGE
Cured Epoxies

0 0 0 0 0
1 8.4 8.3 33.0 29.8
2 44.5 41.7 47.9 42.8
3 42.5 30.4 17.5 20.4
4 4.5 19.6 1.6 7.1

4. Conclusions

The terminal double bond of the cardanol molecule was epoxidized at 63% conversion in the
presence of Oxone® and the fluorinated acetone complex. Due to their primary nature and low
electronegativity with respect to inner double bonds, common synthetic methods were not able to
effectively epoxidize the terminal double bonds. The epoxy functionality of the SCECGE molecule with
2.45 epoxies/molecule increased to 2.65 epoxy/molecule after the epoxidation reaction with Oxone®

and the fluorinated acetone complex. Interestingly, this small level of increased epoxidation resulted in
relatively large improvements in the polymer’s properties. The glass transition temperature of the
cured material was increased by about 16 ◦C and the Young’s modulus increased from 0.88 to 1.3 GPa.
These relatively large property increases were a result of the much higher reactivity of the terminal
primary aliphatic epoxies relative to the secondary aliphatic epoxies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/9/2104/s1,
Equation (S1): Terminal double bond functionality, Equation (S2): Secondary epoxy functionality, Equation
(S3): Primary epoxy functionality, Table S1: Normalized peak intensity values as obtained via 1H-NMR traces
of the reactant SCECGE, Table S2: Normalized peak intensity values as obtained via 1H-NMR traces of the
product TE-SCECGE.
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