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a b s t r a c t   

Additive manufacturing and data analytics are independently flourishing research areas, where the latter 
can be leveraged to gain a great insight into the former. In this paper, the mechanical responses of additively 
manufactured samples using vat polymerization process with different weight ratios of magnetic micro-
particles were used to develop, train, and validate a neural network model. Samples with six different 
compositions, ranging from neat photopolymer to a composite of photopolymer with 4 wt.% of magnetic 
particles, were manufactured and mechanically tested at quasi-static strain rate and ambient environ-
mental conditions. The experimental data were also synthesized using a data-driven approach based on 
shape-preserving piecewise interpolations while leveraging the concept of simple micromechanics rule of 
mixture. The overarching objective is to forecast the mechanical behavior of new compositions to eliminate 
or reduce the need for exhaustive post-manufacturing testing, resulting in an accelerated product devel-
opment cycle. The ML model predictions were found to be in excellent agreement with the experimental 
data for prognostication of the mechanical behavior of physically tested samples with near-unity correlation 
coefficients. Furthermore, the ML model performed reasonably well in predicting the mechanical response 
of untested, newly formulated compositions of photopolymers and magnetic particles. On the other hand, 
the data-driven approach predictions suffered from processing artifacts, demonstrating the superiority of 
ML algorithms in handling this type of data. Overall, this analysis approach holds great potential in ad-
vancing the prospects of additive manufacturing and model-less mechanics of material analyses. A by-
product of the ML approach is using the results for quality assurance, accelerating the acceptance of 
additively manufactured parts into industrial deployments. 

© 2022 The Author(s). Published by Elsevier B.V. 
CC_BY_NC_ND_4.0   

1. Introduction 

Recent advances in manufacturing processes and unprecedented 
progress in data analytics have nurtured important innovation in 
materials and design, and fueled the fourth industrial revolution. On 
the one hand, advanced manufacturing has engulfed every aspect of 
the supply chain in every industrial sector, ranging from consumer 
goods to space and defense applications (Goh et al., 2020). For 

example, additively manufactured (3D printed) running shoes and 
protective helmets are now available in the open market at relatively 
competitive prices, revolutionizing many aspects of the conventional 
supply chains such as leading to skilled labors, shorting time-to- 
market (i.e., logistics), and eliminating or reducing material waste 
(Tan et al., 2020). The latter is an inherent aspect of additive man-
ufacturing, where the part or component is fabricated from the 
ground up by adding one layer of material at a time, in contrast to 
conventional subtractive manufacturing. On the other hand, the in-
dustrial tracking and scientific testing of the additively manu-
factured parts using a plethora of materials and methods results in a 
wealth of experimental data that can be mined in real-time for ways 
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to improve the manufacturing processes and the material perfor-
mance simultaneously. These combined advances present a unique 
opportunity for the process-structure-property-nexus at the foun-
dation of the mechanics of materials discipline (Youssef, 2021). The 
progress in 3D printing, including new processes, materials, and 
design approaches, must be continuous to meet the rigorous re-
quirements of trans-disciplinary fields such as medicine and en-
gineering (Ngo et al., 2018; Beaman et al., 2020). There are a few 
recent review papers holistically dedicated to the state-of-the-art, to 
which the reader is referred to (Goh et al., 2020; Tan et al., 2020; 
Beaman et al., 2020; Bikas et al., 2016; Alshahrani, 2021). 

Of specific interest to this study is the liquid-crystal display (LCD) 
3D printing process based on photo-curable polymer resin. In LCD, 
the part is additively printed one entire layer at a time, accelerating 
the print time in comparison to the infamous fused filament fabri-
cation (FFF), where each layer is deposited one bead at the time 
(Huynh et al., 2020; Youssef et al., 2021). Recently, Malley et al. 
demonstrated the fabrication of particulate magnetoelectric com-
posites, discussed next, using the LCD process, overcoming sig-
nificant challenges such as particle agglomeration, premature 
curing, and pre-fabrication gelation (Malley et al., 2021). Malley et al. 
fabricated samples with different geometries for mechanical, elec-
trical, and magnetic testing, evidencing the persistence of multi- 
functionality of the samples (Malley et al., 2021). Additionally, Lan-
tean et al. performed comprehensive experimental investigations on 
the suspension of magnetic particles in a photo-curable resin used in 
3D printing while concurrently controlling the strength and direc-
tion of an applied magnetic field (Lantean et al., 2021, 2018, 2019), 
an aspect that Malley et al. study proposed as future work (Malley 
et al., 2021). They studied the conditions leading to the self-assembly 
of the magnetic particles during the 3D printing process and the 
physical attributes of the self-assembled particles. It was also de-
monstrated that an off-the-shelf digital light project (DLP) printer 
could be readily modified to align the magnetic particles along or 
away from the printing direction by manipulating the magnetic field 
during printing (Lantean et al., 2021, 2018). These recent studies add 
to the burgeoning efforts of multifunctional structures using ad-
vanced additive manufacturing approaches (Ngo et al., 2018; Youssef 
et al., 2021; Malley et al., 2021; Lantean et al., 2021, 2018). 

Magnetoelectric composite materials constitute a scientifically 
and technologically viable alternative to materials with intrinsic 
coupling between the magnetic field and electrical polarization. 
However, the intrinsic counterpart is scarce, resulting in suboptimal 
coupling at room temperature, while a greater coupling efficacy 
exists at cryogenic temperatures (Spaldin and Ramesh, 2019). On the 
other hand, magnetoelectric composites can be developed using a 
broad range of magnetic and electrical materials constituents in 
different geometries and configurations, including laminated plates, 
stacked cylinders, or particulate composites (Bichurin et al., 2020). 
Compliant particulate composites, consisting of magnetic particles 
suspended in an electroactive polymer matrix, are of specific interest 
to flexible and wearable electronics due to their low mechanical 
stiffness and multifunctional coupling between electric and mag-
netic energies (Newacheck et al., 2021; Newacheck and Youssef, 
2021, 2019). While superior magnetoelectric coupling is theoretically 
predicted, two overarching challenges prevent the broad industrial 
adaptions of the aforementioned multifunctional composites, 
namely, manufacturability and performance. The latter challenge is 
due to the discrepancy between theoretically predicted coupling 
coefficients and their experimentally measured values. This chal-
lenge is sometimes manifested by the laboratory values showing 
inferior efficacy (Newacheck et al., 2021). Moreover, it has been re-
ported that the samples breakdown prematurely during testing and 
characterization. Newacheck et al. pinpointed the source of the 
breakdown, attributing it to the viscosity of the polymer matrix that 
results in particle mobility and attraction to the testing electrodes 

(Newacheck et al., 2021; Newacheck and Youssef, 2021). They de-
monstrated particle mobility, even after fully curing the composite 
samples, using experimental and theoretical models (Newacheck 
et al., 2021; Newacheck and Youssef, 2021). Furthermore, New-
acheck and collaborators explained the difference between predicted 
and measured coupling coefficients based on the geometry and 
distribution of magnetic particles as a function of the applied mag-
netic field (Newacheck et al., 2021). The second challenge of man-
ufacturability stems from the disparity in the physical properties 
between the magnetic particles and the surrounding polymer ma-
trix. This challenge represents the primary motivation leading to the 
present research. Here, the manufacturability challenge is overcome 
using the digital light projection additive manufacturing approach, 
as discussed later. 

The advents in data analytics using machine-learning algorithms 
have invigorated new research directions in mechanics and mate-
rials at different spatial and temporal scales in a broad range of 
material systems (Miyazawa et al., 2019; Yang et al., 2020;  
Murugesan et al., 2019; Weng et al., 2020; Stendal et al., 2019; Jordan 
et al., 2020; DebRoy et al., 2021). Data-driven modeling and scientific 
discovery have led to a paradigm change on how many problems, 
both in science and engineering, are addressed. The addition of 
physics in machine-learning models has created new excitements 
due to combining physical constitutive equations with the power of 
artificial intelligence, accelerating the scientific discovery cycle. For 
instance, machine learning algorithms have been used to predict the 
stress-strain behavior of elastic and elastoplastic material systems 
after modeling, training, and tuning a neural network using ex-
perimental data (Murugesan et al., 2019). These algorithms have also 
been leveraged to classify whether the material behavior represents 
a brittle or ductile response. The continuous advancement in data 
analytics using artificial intelligence is conducive to alleviating the 
experimental burden by reducing the number of samples and testing 
conditions (e.g., volume or weight percentages of reinforcement 
fillers in composite materials). In this work, we demonstrate the 
ability of a machine-learning algorithm to forecast the stress-strain 
behavior of composite materials with different magnetic particles, 
followed by exemplifying the utility of these algorithms in fore-
casting the mechanical response of new compositions. That is, the 
application of machine-learning algorithm to predicting the me-
chanical response of tested and untested compositions (i.e., different 
volume fractions of the constituents) represents the primary novelty 
of this research. However, other approaches are also available to 
alleviate the experimental burdens at lower computational effort, 
the prime of which are data-driven approaches, where the experi-
mental data of known material compositions are used to forecast the 
response of other untested conditions. This was recently demon-
strated by Uddin et al. (2020). Therefore, we will compare the pre-
dictive ability of machine learning algorithms with those of data- 
driven approaches. 

This research aims to combine the capabilities of 3D printing of 
multifunctional composite materials with the power of data analy-
tics using machine learning to predict the mechanical performance 
of fabricated parts. In doing so, samples with different magnetic 
filler contents were fabricated using digital light projection additive 
manufacturing. These samples were then mechanically character-
ized using a standard load frame in tension at quasi-static strain rate 
conditions. The experimental data was exploited using machine- 
learning and data-driven approaches to forecast the mechanical 
performance of 3D printed materials that were not printed or 
characterized. 

2. Sample preparation and testing 

Six sets of samples were fabricated and tested in this research. 
Each set consisted of five specimens printed in dog-bone geometry 
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according to ASTM D638 Type IV in two batches (i.e., three dog- 
bones per printing batch) (International, 2014). The first set of 
samples was 3D printed using an unaltered neat photopolymer (PP, 
Monoprice Rapid UV Printer Resin). The remaining sets included 
magnetic iron oxide particles (Fe3O4, 44 μm (mesh size 325) average 
size powder). As-received Fe3O4 particles with different weight ra-
tios (0.5 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, and 4 wt.%) were suspended in 
the photopolymer while sonicating for 20 min. 

The samples were additively manufactured using a vat poly-
merization 3D printer (Creality LD002R LCD Resin 3D Printer) with 
0.02 mm layer height. Additional details regarding the fabrication 
method included an exposure time of 10 s for ten bottom layers, 80 s 
bottom exposure time, 5 mm bottom lift and lifting distance, and 
65 mm/min bottom lift and lifting speed (Malley et al., 2021). The 
specimens were post-cured in an ultraviolet enclosure (built in- 
house) with a radiation dose of ~18 mJ/cm2 for two 10 min dosages. 
In the first 10 min, one surface of the specimen was directly facing 
the ultraviolet source, while in the second dose, the other surface 
was set to face the UV light. All printing and curing artifacts were 
removed before starting mechanical testing, including excess ma-
terial on the surface close to the print bed. The specimens were then 
allowed to rest for one week before mechanical testing commenced. 
The stress-strain responses of the additively manufactured compo-
sites were characterized using a standard load frame (Instron Series 
5843) equipped with a ± 1 kN load cell and a long travel ex-
tensometer (Instron Long Travel XL Extensometer 2603-084XL) at a 
quasi-static strain rate of ~0.03 s-1. Malley et al. compared several 
mechanical attributes of these samples, including the elastic mod-
ulus and the yield strength (Malley et al., 2021), to which the reader 
is referred for more information. Here, the stress-strain data were 
used as inputs for analytics using machine-learning and data-driven 
approaches. Fig. 1 summarizes the mixing of constituents, 3D 
printing using a LCD printer, and mechanical testing of 3D printed 
dog-bone composite samples. 

3. Modeling approaches 

In the area of mechanics of materials, constitutive equations (i.e., 
a mathematical description of stress-strain behavior and its corre-
lations with material properties) have been and continue to be a 
topic of research, especially with new material subclasses springing 
into existence. However, these relatively restrictive models require 
exhaustive numerical and computational efforts to process the me-
chanical testing data and to facilitate the extraction of the model 
parameters. Moreover, any changes in the material composition, e.g., 
heterogeneity due to the addition of a reinforcement phase in 
composites, necessitate the repetition of the attributes extraction 
process. Furthermore, given the applicability of several of these 
parametric models, additional efforts must be made to fit the 

experimentally measured values with prescribed (and often overly 
simplified) mathematical expressions. In the case of novel material 
systems with unknown behaviors, the latter challenge may lead to 
significant errors due to the parametric fitting process. Alternatively, 
data-driven and machine-learning algorithms utilize the un-
processed testing data to predict the behavior without constraining 
assumptions beyond those imposed during the data collection 
phase. This includes the potential of predicting the mechanical be-
havior of new compositions, as demonstrated later. Here, we 
leverage the analytical power of these algorithms to investigate the 
mechanical behavior (i.e., stress-strain curves) of 3D printed neat 
photopolymers and a composite of magnetic microparticles em-
bedded in the same polymer matrix. It is imperative to note that the 
overarching limitation of the machine-learning algorithm used 
herein is the absence of physics and mechanics in the model; a 
limitation that can be mitigated using physics-informed neural 
networks by combining the advantages of physical and mechanical 
constitutive models with the power of artificial intelligence 
(Miyazawa et al., 2019; Yang et al., 2020; Murugesan et al., 2019;  
Karniadakis et al. 2021; Wang et al., 2017; Fuhg, 2021). 

3.1. Machine-learning approach 

A supervised machine-learning algorithm was constructed and 
trained in this research to predict the entire stress-strain curves of 
3D printed particulate composite samples, consisting of photocur-
able polymer resin and magnetic microparticles. Here, the inputs 
and the outputs were known to the algorithm a priori based on the 
experimental data collected during the tensile testing, as discussed 
in the previous section. We used an artificial neural network (ANN) 
in the Deep Learning Toolbox in MATLAB® to construct, train, and 
test the machine-learning model. Given the importance of data 
structures on the performance of the ANN, the inputs and outputs 
were carefully paired. The inputs consisted of two attributes, in-
cluding the strain values and their corresponding coded composi-
tions (listed in Table 1), where the strains were sequentially stacked 
from all the samples data in one column and their compositions in a 
companion column. 

The stresses were also stacked similarly and fed into the neural 
network as the output. It is worth noting that the input and output 
values were normalized with respect to their respective global 
maxima, resulting in accelerated optimization and better overall 
performance. In general, we used a fully connected cascade feed-
forward neural network (similar to feedforward networks with ad-
ditional connections between the input and previous layers to 
following layers, see the right panel in Fig. 2). Several hyper-para-
meters were adjusted during the network optimization process 
based on the Levenberg-Marquardt backpropagation optimization 
algorithm, a ubiquitous nonlinear least-squares fitting algorithm 
widely used in machine-learning models. It was found that in-
itialization of the hidden and output layers before training had a 
profound effect on the overall performance of the ANN. The opti-
mized ANN model consisted of two hidden layers with 2 and 1 in-
terconnected artificial neurons. The transfer function prescribed to 
all the hidden and output layers neurons was the hyperbolic tangent, 
resulting in the best performance based on the mean squared error 
(mse) cost function 

=
=

mse
n

T Y
1

( )
i

n

i i
1

2

(1) 

where, Ti is the known output stress values (i.e., the target), Yi is the 
predicted output stresses using the neural network, and n is the 
number of data points. The latter was 11,700 stress data points for 
the current research collected during physical testing. The number of 
iterations was set to 2000 epochs; however, the best performance of 

Fig. 1. Synthesis, fabrication, and testing of 3D printed dog-bone composite samples, 
consisting of magnetite microparticles suspended in photocurable resin. The samples 
were manufactured using LCD 3D printing approach and tensile tested in standard 
load frame at quasi-static loading rate. 
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×mse 4.3 10 4 was attained with less than 1000 epochs. The 
learning rate and the Marquardt adjustment parameter were taken 
to be 0.01 and 0.005, respectively. The entire dataset (organized as 
described above) was fed to the ANN, divided randomly and in-
ternally into 70% for training, 15% for validation, and 15% for testing.  
Fig. 2 is a schematic representation of the framework used herein to 
develop a deep machine-learning model using a cascade feedfor-
ward neural network, with the aforementioned configuration and 
parameterization. It is worth noting that other neural network ar-
chitectures were explored but the selected cascade feedforward 
neural network outperformed the others. 

3.2. Data driven approach 

The mechanistic foundation of this data-driven approach is the 
concept of the rule of mixtures, broadly used to estimate the prop-
erties of composite materials. The essence of the rule of mixtures is 
that the resulting attribute of a mixture is the scaled contributions of 
the constituents based on their weight or volume fractions. However, 
the exact contribution of adjusting the content of the magnetic par-
ticles to the holistic mechanical behavior (in contrast to just one 
property) is convoluted due to smeared influence of the particle- 
matrix interface, the conditions surrounding the manufacturing pro-
cess (e.g., the influence of the 3D printing parameters on the me-
chanical performance), the particle agglomeration and size 
distributions, and the geometry of the particles. Even sophisticated 
continuative mechanics models commonly assume a spherical par-
ticle geometry, resulting in response mispredictions (Newacheck 

et al., 2021; Newacheck and Youssef, 2021), while experiments have 
shown that platonic geometries are more suitable to achieve accurate 
predictions but challenging to account for analytically. To this point, 
Newacheck et al. recently demonstrated the effect of particle geo-
metries on the magnetoelectric particulate composites using com-
putational multi-physics simulations, delineating the dependence of 
the coupling coefficient on the particle geometry and its orientation 
within the matrix (Newacheck et al., 2021; Newacheck and Youssef, 
2021, 2019). Therefore, we opted to treat each sample configuration as 
a standalone composition that contributes equally to predicting the 
mechanical behavior of new compositions. For example, the experi-
mental stress-strain curves of neat photopolymer and PP/0.5 wt.% 
Fe3O4 are interpolated to forecast the mechanical response of PP/ 
0.25 wt.% Fe3O4. It is worth noting that the latter was neither fabri-
cated nor tested; instead, it was used to demonstrate the predictive 
ability of the reported data-driven approach, which is then compared 
to similar predictions using the ANN approach discussed above. The 
approach is oblivious to any mechanics constitutive models (even the 
simple micromechanics rule of mixtures); it solely relies on the data, 
hence terming it data-driven. 

The proposed data-driven approach is faced with two symbiotic 
challenges, which also constitute its limitations. First, the ultimate 
strength and strain-to-failure for each sample, even from the exact 
composition of photopolymer and magnetic filler, are not consistent, 
resulting in considerably different dataset lengths from one sample 
to another and from one composition to another (see left panel of  
Fig. 3). The variance in the mechanical behavior, including the 
terminal stresses and strains, is attributed to the manufacturing 

Table 1 
List of the 3D printed compositions using LCD printer and their corresponding code used in codifying the inputs.     

Composition Code Description  

PP 0 Pure (neat) photopolymer resin samples 
PP/0.5 wt.% Fe3O4 0.5 A composite of PP and 0.5 wt. % of iron oxide microparticles 
PP/1 wt.% Fe3O4 1 A composite of PP and 1 wt. % of iron oxide microparticles 
PP/2 wt.% Fe3O4 2 A composite of PP and 2 wt. % of iron oxide microparticles 
PP/3 wt.% Fe3O4 3 A composite of PP and 3 wt. % of iron oxide microparticles 
PP/4 wt.% Fe3O4 4 A composite of PP and 4 wt. % of iron oxide microparticles 

Fig. 2. Schematic of the utilized deep learning framework to predict the stress-strain behavior of 3D printed particulate composites, where all the stress-strain histories (left 
panel) were collated and organized as two attribute inputs and an output (middle panel) then fed into a cascade feedforward neural network (right panel) that was optimized 
using the Levenberg-Marquardt backpropagation algorithm. 
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process, implying material anisotropy, which is conformal with the 
primary characters of composite and 3D printed materials (Tan et al., 
2020; Ngo et al., 2018; Alshahrani, 2021; Malley et al., 2021; Lantean 
et al., 2018; Yang et al., 2020). Secondly, the variable data length is 
not conducive for calculating the average or interpolating between 
the stress-strain curves, resulting in unintended artifacts, as de-
monstrated in the results in the next section. Therefore, we trun-
cated the dataset of each configuration to the minimum size within 
the set, i.e., averaging the stress-strain curves up to the smallest 
dataset length, limiting the predictions of the mechanical behavior 
to nearly half of that possible using the ANN approach discussed in 
the previous section. 

The data-driven approach used herein is succinctly summarized 
in Fig. 3, which is divided into three steps:  

1. The dataset for each sample composition is compared, and the 
minimum data length is calculated. This was done to eliminate 
the inevitable biasing of the averaging process at the end of the 
mechanical response due to the variance in the terminal stresses.  

2. The datasets were truncated based on the calculated minimum 
size from the previous step. The average of nonzero stress and 
strain values was then calculated, accounting for all data from the 
five samples. 

3. At each strain value, all the stresses were shape-preserving pie-
cewise cubic interpolated with C1 continuity as a function of the 
compositions to generate the stresses of new compositions with 
several magnetic particle volume fractions bounded between the 
volume fractions of their fabricated and tested counterparts. The 
new predicted compositions included PP/0.75 wt.% Fe3O4, PP/ 
1.5 wt.% Fe3O4, PP/2.5 wt.% Fe3O4, and PP/3.5 wt.% Fe3O4. 

4. Results and discussion 

Fig. 4 is a collage of plots comparing experimental data (dis-
playing the stress-strain curves from all five samples) and the ANN 
predictions for all six compositions listed in Table 1. Overall, the ANN 
performed very well in prognosticating the mechanical behavior of 
neat and composite 3D printed materials. In Fig. 4, the predictions 
are shown to be in excellent agreement with the experimental data, 
exemplifying the correct behavior and forecasting accurate values. 
Furthermore, the correlation coefficient between all targets (i.e., 
experimental stress initially fed to the model) and the ANN pre-
dicted stress values were calculated to be 0.9959, quantitatively af-
firming the excellent agreement between the measured and 
predicted values irrespective of the composition. In all, there are 
three noteworthy observations based on the results presented in  
Fig. 4: (1) the mechanical behavior of the 3D printed samples, (2) the 

statistical demeanor of the experimental data, and (3) the accuracy 
of the ANN predictions. These observations are further substantiated 
based on the recent work by Malley et al. (2021). 

First, the stress-strain data in Fig. 4a indicates that the neat 
photopolymer exhibits a brittle behavior with an average elastic 
modulus of 621 ± 79 MPa and ultimate strength of 35.7 ± 5.1 MPa 
with strain-to-failure of 0.08 ± 0.01. The rest of the compositions 
investigated herein, i.e., the composite materials with different 
magnetic particle content, inherited the brittleness of the neat 
photopolymer given the large weight percentage of the resin matrix. 
It is worth noting that the maximum stress and strain values in  
Fig. 4a-d are approximately the same despite the change in the 
magnetic filler content. For samples with relatively low Fe3O4 weight 
ratio (i.e., 0.5, 1, and 2 wt.%), the mechanical behavior closely mi-
micked that of the pure polymer, with an average elastic modulus of 
563 ± 40 MPa, 603 ± 47 MPa, and 512 ± 99 MPa, respectively, eviden-
cing only an average reduction of ~10% in the material stiffness. 
Malley et al. discussed the source of the reduction using a simplified 
mechanics model, treating the stiffer particles (that may have ag-
glomerated during the printing process) as sample porosity due to 
the inability to transfer stress between the matrix and the particles 
seemingly (Malley et al., 2021). Nonetheless, such reduction is ex-
pected since the magnetic particles affected the polymerization 
process and weakened the cohesion strength of the neat polymer 
due to the introduced discontinuities from the Fe3O4 particles, i.e., 
particle-matrix interface. Moreover, the magnetic particles obscured 
the ultraviolet light path used in printing, given the disparity in the 
refractive index between the resin and the particles, resulting in a 
potential difference between the quality and mechanics of the par-
ticle-matrix interfaces of the areas facing towards and away from the 
light projection screen. That is to say, the shadow of the particles 
may affect the photocuring process during 3D printing, a topic of 
future research. While the ultimate strength displayed a close re-
semblance to the behavior of the elastic modulus, the yield strength 
exhibited the most significant difference, changing from 
13.2 ± 4.5 MPa for the pure photopolymer samples to ~18 ± 4.5 MPa 
for PP/2 wt.% Fe3O4. The drastic change in the yield point can be 
attributed to the light-particle interactions discussed above, where 
the polymer chains can sustain higher stresses due to the relative 
motion of the particles with respect to the surrounding macro-
molecules. Similar behavior was recently reported when Terfenol-D 
magnetic particles were suspended in an electroactive polymer 
matrix (Newacheck and Youssef, 2019). On the other hand, the 
stress-strain behavior is penalized when the weight ratio of the 
magnetic microparticles increases, reaching 3 and 4 wt. %, where the 
stress respectively reaches a maximum of 19.2 ± 2.6 MPa and 
18.3 ± 2.0 MPa, while the maximum strain was limited to 0.05 ± 0.01 

Fig. 3. Schematics of the data-driven approach processing the stress-strain curves of 3D printed samples, demonstrating the variability of the dataset length (left panel), 
truncation based on the minimum data length and averaging (middle panel), and interpolation and predication (right panel). 
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for PP/3 wt.% Fe3O4 and PP/4 wt.% Fe3O4 samples. The elastic moduli 
for the latter two compositions were respectively 488 ± 25 MPa and 
480 ± 38 MPa, reporting ~22 % reduction compared to the modulus of 
the neat photopolymer samples. The further increase in brittleness 
and degradation of the mechanical properties due to the increase in 
the magnetic filler content are attributed to the non-uniform dis-
tribution of the magnetic particles within the polymer matrix due to 
agglomeration and settling. 

The preceding discussion about the changes in the mechanical 
behavior and the inability of simplified micromechanics models (see 
for example Malley et al., 2021; Newacheck et al., 2021; Newacheck 
and Youssef, 2021, 2019) to reproduce such evolution highlights the 
superiority of the machine-learning approach. In other words, the 
incumbent micromechanics techniques frequently hinge on over-
simplifying the analysis, leading to significant error. At the same 
time, the machine-learning approach takes into account the collec-
tive response of the samples, including the particle-matrix interac-
tions. without imposing any simplifying assumptions. As a result, the 
classical theoretical approaches are capable of forecasting im-
provements to the properties but fail to account negative effects of 
the reinforcement phase on the overall mechanical behavior. On the 
contrary, the machine-learning algorithm was able to take into ac-
count the collective influence of the magnetic particles, including 
any potential strengthening or weakening processes (e.g., particle- 
matrix interface). Thus, the potential utility of machine-learning in 
mechanics, material analysis, and manufacturing is justified and 
substantiated. 

Second is the statistical demeanor of the experimental data, 
showing low intra-composition variability (i.e., low spread or low 
variance between the stress-strain curves within each composition) 
in the stress-strain data from one sample despite being printed into 
two batches, as discussed above. The low variability is observed in all 

the stress-strain curves, except for the slight deviation shown in  
Fig. 4d and e (i.e., 2 and 3 wt.%). This may be misleading from an 
additive manufacturing perspective since it implies that the LCD 3D 
printing process has high repeatability and consistent printing 
quality, which may be true for the neat photopolymer samples but 
not consistent with our experience manufacturing the composite 
samples. In a previous report, we noted significant inter and intra- 
batch variability when printing the composite structures due to the 
non-uniform distribution of the particles because of the pulsation 
action of the LCD printer. In the latter, the print bed continually 
moves towards and away from the printing screen to allow a fresh 
layer of the resin to cure upon exposure to the light source, displa-
cing the magnetic particles away from the print region. The reader is 
referred to the work of Malley et al. (2021) for more discussion about 
this issue. Nonetheless, a significant difference was noted in the 
mechanical behavior of 3D printed neat polymer, and magnetic 
particles reinforced photopolymer samples, which is qualitatively 
evident in Fig. 4. Future research seeks to extend the machine- 
learning framework reported here to account for the effect of the 
printing conditions on the mechanical behavior of 3D printed ma-
terials. Even though the intra-composition variability can be con-
sidered negligible, the terminal stress and strain values were not 
consistent, exemplifying a larger variance in the properties and the 
size of the dataset from one sample to another. As discussed later, 
this poses a challenge for the traditional curve fitting of the stress- 
strain curves into conventional constitutive material equations and 
the data-driven approach, but it was not the case for the machine- 
learning model. Finally, and as reported above, the neural network 
model performed well in predicting the entire mechanical response 
irrespective of the composition with a near-unity correlation coef-
ficient, as shown in Fig. 4. That is to say; the ANN prediction was 
insensitive to the significant difference in the ultimate strength and 

Fig. 4. Comparison between the experimental data (gray lines) and ANN predictions (black) of (a) neat photopolymer (PP), (b) PP/0.5 wt.% Fe3O4, (c) PP/1 wt.% Fe3O4, (d) PP/2 wt.% 
Fe3O4, (e) PP/3 wt.% Fe3O4, and (f) PP/4 wt.% Fe3O4, showing overall excellent agreement between measured and predicted data. 

S. Malley, C. Reina, S. Nacy et al. Computers in Industry 142 (2022) 103739 

6 



strain-to-failure in the experimental datasets, i.e., the variance of 
size in the datasets, where the ANN model was able to learn and 
correctly map the input-output relationships without tedious data 
preprocessing. This is consistent with the reported mean squared 
error of ×4.3 10 4 during the training process. 

It is reasonable to accept that the ANN model performs well in 
regurgitating the data it was trained, validated, and tested even 
though the testing data was internally hidden from the neural 
network during the training process. The remaining question is 
whether the ANN model can prognosticate the stress-strain beha-
vior of new compositions. Therefore, the trained ANN model was 
used to forecast the mechanical behavior of three new composi-
tions, namely PP/0.75 wt.% Fe3O4, PP/2.5 wt.% Fe3O4, and PP/3.5 wt.% 
Fe3O4. It is expected that the interpolation of the stress-strain 
curves of a new composition, e.g., PP/2.5 wt.% Fe3O4, will lay in 
between the experimental data collected from and PP/2 wt.% Fe3O4 

and PP/3 wt.% Fe3O4. Similar behavior is also forecasted for any new 
compositions bounded between those experimental data in-
vestigated herein and used to develop the ANN model. Such ex-
pectations are hinged on several mechanistic constitutive models 
for particulate composites, e.g., see (Newacheck et al., 2021; 
Newacheck and Youssef, 2021). Fig. 5 is a comparison between the 
stress-strain curves of the newly predicted compositions and the 
data from experimental testing of compositions in the vicinity of 
the predictions. For example, Fig. 5a plots the neural network 
predictions of PP/0.75 wt.% Fe3O4 along with the experimental data 
collected from 3D printed composite sample of PP/0.5 wt.% Fe3O4 

and PP/1 wt.% Fe3O4. In the absence of experimental data for the 
new compositions, i.e., the overarching objective of this research, 
only intuitive qualitative analysis is introduced based on the 
foundations of mechanics of composite materials. Generally, the 
mechanical behavior of composite materials is strongly dependent 
(but admittedly nonlinear) on the ratio of the constituents, im-
plying a change in the magnetic filler content results in a corre-
sponding manipulation of the stress-strain response. At an 
intermediate weight fraction of Fe3O4 microparticles, the latter is 
bounded by the response with lower and higher weight fractions. 
The results in Fig. 5 are mostly consistent with this expected be-
havior, as for the cases shown in Figs. 5a and 5b for the 0.75 and 
2.5 wt.% Fe3O4. On the other hand, the ANN predictions for 3.5 wt.% 
Fe3O4 are underperformed compared to the experimental data from 
3 and 4 wt.%. It is worth noting that the physical testing data from 
the latter two compositions deviated significantly from their 

preceding counterparts, as shown in Figs. 4e and 4f and discussed 
above. The change in the data demeanor affected the weights and 
biases impeded within the neural network model, resulting in the 
suboptimal predictions for higher magnetic filler compositions. 
Future research will focus on encoding physics objective functions 
to account for the change in the mechanics as a function of the 
constituents, i.e., physics-informed machine-learning (Karniadakis 
et al., 2021). 

Fig. 6 reports the predictions on the stress-strain curves of new 
compositions using the data-driven approach based on shape-pre-
serving piecewise interpolations of the experimental stresses and 
strains as a function of filler content. Fig. 6a compares the predicted 
mechanical behavior of PP/0.75 wt.% Fe3O4 with the experimentally 
acquired stress-strain curves of the photopolymer with 0.5 and 1 wt. 
% Fe3O4 magnetic particles, while Fig. 6b-d are predictions for PP/ 
1.5 wt.% Fe3O4, PP/2.5 wt.% Fe3O4, and PP/3.5 wt.% Fe3O4, respectively. 
First, it is important to note that the predictions were truncated to 
~0.05 strains, constituting the minimal data length, as discussed 
above, which is the first drastic difference between the data-driven 
and ANN model approaches. The latter is agnostic to the premature 
failure of some of the samples, demonstrating the ability of ma-
chine-learning algorithms to capture the collective contributions 
(positive and negative) of the magnetic particles to the overall re-
sponse. Second, the experimental data with lower and higher mag-
netic filler content bounded the predictions. For example, the stress- 
strain curve for PP/1.5 wt.% Fe3O4 is shown in Fig. 6b to be sand-
wiched between the experimental stress-strain curves of the 1 and 
2 wt.%, respectively. The only deviation to this observation, i.e., the 
boundness of the predictions with the experimental data, is the 
prognostication for the relatively high weight fraction, e.g., 3.5 wt.%, 
which is attributed to the intermingling of the experimental stress- 
strain responses the 3 and 4 wt.% compositions. The latter was as-
sociated earlier with possible agglomeration and settling of the 
magnetic particles during printing, resulting in non-uniform dis-
tribution and heterogeneous curing. Finally, the predictions using 
the data-driven approach exhibit calculation artifacts (encircled re-
gions in Fig. 6). While these artifacts might be filtered a priori, they 
are intentionally included since the ANN prediction did not undergo 
any postprocessing steps. The artifacts are a byproduct of the dif-
ference in data length from one composition to another. In general, 
the predictions using the data-driven were reasonable within the 
context of the measured stress-strain curves but underperformed 
the predictions of ANN approach. 

Fig. 5. The ANN model predictions (blue lines) of the stress-strain curves of (a) PP/0.75 wt.% Fe3O4, (b) PP/2.5 wt.% Fe3O4, and (c) PP/3.5 wt.% Fe3O4 compared to the composite 
compositions in the vicinity of the new compositions (gray lines). 
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5. Conclusion 

In this paper, we reported on the mechanical behavior of addi-
tively manufactured composite samples fabricated using the digital 
light projection process. The samples consisted of a composite of 
photopolymer and magnetic microparticles, where the latter in-
cluded 0.5, 1, 2, 3, 4 wt.% weight ratios. The samples were me-
chanically tested using a load frame at a quasi-static loading rate 
under ambient environmental conditions. Subsequently, the data 
were synthesized using machine-learning and data-driven ap-
proaches to prognosticate the mechanical behavior of existing and 
new compositions. The machine-learning approach outperformed 
the data-driven method that suffered from unintended artifacts and 
truncated predictions due to limitations with interpolation and data, 
respectively. While the artifacts can be removed from the data- 
driven prediction by adding a postprocessing step, we refrained from 
doing so since the machine-learning forecasts did not undergo any 
additional processing; the truncated prediction challenge is irre-
mediable, given the anisotropy of the mechanical response of the 
composite samples. On the other hand, the machine-learning stress- 
strain predictions were in excellent agreement with the experi-
mental data and were consistent with mechanics-intuitions for the 
new compositions. Therefore, the machine-learning approach holds 
great potential for advancing additive manufacturing and the me-
chanics of materials. 

Future research will emphasize two directions. First, improving 
the mechanical behavior of additively manufactured magneto-
electric composite materials by enhancing the bonding interface 
through particle functionalization while introducing additional 
functionality. This new class of materials can potentially transform 
flexible and wearable electronics. To achieve the latter, a compre-
hensive multiscale physical characterization framework will be de-
veloped to elucidate the mechanical, electrical, and magnetic 
properties of the manufactured samples. Second is to amend the 
proposed machine-learning algorithm with physics and mechanics 
constitutive models, i.e., physics-informed machine-learning, to 

improve the predictive-ability performance. The mechanical testing 
data used herein, and multi-physics experimental data will be used 
to train, validate, and test the new physics-informed models. 
Collectively, these research directions collate into the accelerated 
product development lifecycle, driving further progress in additive 
manufacturing processes and situating them as viable and in-
telligent replacements for conventional processed. 
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