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Abstract: The persistent shortage of cybersecurity professionals combined with enterprise networks tasked with 
processing more data than ever before has led many cybersecurity experts to consider automating some of the 
most common and time-consuming security tasks using machine learning. One of these cybersecurity tasks 
where machine learning may prove advantageous is malware analysis and classification. To evade traditional 
detection techniques, malware developers are creating more complex malware. This is achieved through more 
advanced methods of code obfuscation and conducting more sophisticated attacks. This can make the manual 
process of analyzing malware an infinitely more complex task. Furthermore, the proliferation of malicious files 
and new malware signatures increases year by year. As of March 2020, the total number of new malware 
detections worldwide amounted to 677.66 million programs. In 2020, there was a 35.4% increase in new 
malware variants over the previous year. This paper examines the viability of classifying malware binaries 
represented as fixed-size grayscale using convolutional neural networks. Several Convolutional Neural Network 
(CNN) architectures are evaluated on multiple performance metrics to analyze their effectiveness at solving this 
classification problem. 
 
Keywords: Malware Analysis, Malware Classification, Malware Visualization, Convolutional Neural Networks, 
Deep Learning 

1. Introduction 
The shortage of professional talent in the cybersecurity workforce is an issue that continues to persist as more 
businesses recognize the value of cybersecurity for their organization. In their 2021 Cybersecurity Workforce 
Study, the cybersecurity professional organization (ISC)2 reported an estimated 2.72 million global shortage of 
cybersecurity professionals (ISC2, 2021). Simultaneously, malware continues to spread at an unprecedented 
rate, with hundreds of thousands of new signatures detected every day. In 2020, Kaspersky’s detection systems 
discovered an average of 360,000 new malicious files every day over the past 12 months—18,000 more than the 
previous year (a 5.2% increase) and up from 346,000 in 2018. 60.2% of those malicious files were non-specific 
Trojans. In general, the percentage of Trojans detected increased by 40.5% when compared to the previous year 
(Kaspersky Lab, 2021). Observing these trends gives the primary motivation for seeking automated solutions for 
malware analysis, particularly in the areas where analysis is done manually. Traditionally, malware analysis is 
conducted using one, or a combination of, static and dynamic malware analysis methods. However, the 
emergence of fileless malware has prompted a new method of memory-based analysis. Here we will provide a 
high-level description of current malware analysis methods to provide a deeper understanding of the current 
landscape. 

2. Static Malware Analysis 
Static malware analysis is a signature-based approach that entails deriving information about a potentially 
malicious executable file without the executing file. This is done through a variety of methods that attempt to 
derive and enumerate any signatures that classify a given executable file as malicious. Traditional static analysis 
methods are basic and do not offer deeper insights into a malicious file’s behavior. Furthermore, sophisticated 
malware easily eludes traditional static malware analysis through increasingly complex code obfuscation 
techniques. However, these methods are the least computationally intensive and time-consuming to conduct. 
Therefore, static malware analysis is often the first method utilized when investigating an executable file. 
Typically, static malware analysis is achieved through these methods: 

• Checking the executable file’s hash against a known malware database, such as Virustotal. These 
databases are open-source and are usually evaded by serious malware developers. 

• Using the ‘strings’ command on the executable file in a command-line interface to find any malicious 
keywords contained in the file’s strings. This method is not effective on encrypted versions of malware. 
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• Manually decompiling the file in a disassembler, such as IDA, to analyze an executable file’s control flow. 
This method requires subject matter expertise and may become intractably complex if the malicious 
code is severely obfuscated. 

3. Dynamic Malware Analysis 
Dynamic malware analysis is a behavior-based approach that entails executing a potentially malicious file in a 
virtualized sandbox environment and attempting to gain insights into a file’s runtime behaviour through closely 
monitored observation. This method is the most computationally intensive of all the analysis methods due to 
the need to run the executable file in a virtualized sandbox. This prevents any damage a malicious file may cause 
to a system. Furthermore, this method may prove to be the most time-consuming as many malware files 
significantly delay the execution of their malicious code to circumvent antivirus software. Finally, sophisticated 
malware often utilizes techniques to determine if it is running in a virtualized environment and if so, will appear 
benign to this method of analysis. While this method is subject to be circumvented, if successful, significant 
insights on a malware’s behaviour can be derived from the following methods: 

• Monitoring malicious network traffic activities through tools, such as Wireshark. This allows the capture 
and deep analysis of all traffic originating from the executable file. 

• Process monitoring can also provide insights into how a potentially malicious file interacts with the host 
system. The virtualized environment can capture calls to the host device’s file system and registry to 
monitor any malicious activity, such as deleting or manipulating any important system resources. 

4. Memory Malware Analysis 
Most malware persists through an executable file or latching itself to a critical system resource. The most 
sophisticated and devastating of these are Advanced Persistent Threats (APT). However, stealthier attack vectors 
that attempt to elude traditional dynamic analysis methods, are classified as Advanced Volatile Threats (AVT). 
Fileless malware is classified as an AVT since it is malicious software that exclusively operates as an artifact in a 
system’s volatile memory or RAM. Like dynamic analysis, this method requires a virtual environment with 
allocated RAM to capture and dump a memory image and analyze artifacts that include: 

• Process lists and associated threads 
• Networking information and interfaces (TCP/UDP) 
• Kernel modules, including hidden ones 
• Bash and command history 
• System calls 
• Kernel hooks 

5. Related Research 
This section includes a brief review of some previous image-based automated malware classification 
approaches. 

5.1 Deep learning at the shallow end: Malware classification for non-domain experts 
Le et al. (2018) presented a deep learning-based malware classification approach that required no expert domain 
knowledge and is based on a pure data drive approach for complex patter and feature identification. 
Acknowledges the lack of domain expertise when handling digital evidence in law enforcement. The research 
specifically cites how Artificial Intelligence (AI) can aid digital investigators. AI can expedite the investigative 
process and ultimately reduce the case backlog while avoiding bias and prejudice (James and Gladyshev, 2013). 
The contribution of this work includes a deep learning model which achieves a 98.2% accuracy in classifying raw 
binary files into one of 9 classes of malware. The one-dimensional representation of a raw binary file is like the 
image representation of a raw binary file in the work of Nataraj et al. (2011). The sequential representation 
allowed Le et al. (2018) to apply a Convolutional Neural Network – Bi Long Short Term Memory architecture 
(CNN-BiLSTM) which helped achieve better performance than using a CNN model alone. 

5.2 Malware Detection by Eating a Whole EXE 
The most significant finding of this work from Raff et al. (2017) is how the batch normalization method hindered 
the learning process for all their proposed models, in all their approaches, on all the software platforms they 
experimented on. When given the context of analyzing binary executables, their hypothesis is well-reasoned.  

We hypothesize that batch norm’s ineffectiveness in our model is a product of training on binary 
executables. The majority of contemporary deep learning research, including batch-normalization, has 
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been done in the image and signal processing domains, with natural language a close second. In all of 
these domains, the nature of data is relatively consistent. In contrast, our binary data present a novel 
multi-modal nature of the byte values that can have drastically different meanings depending on the 
location, ranging from ASCII text, code, structured data, or even images stored for the icon. Our hypothesis 
is that this multi-modal nature produces multiple modes of activation, which violates the primary 
assumptions of batch-normalization, causing degraded performance. (Raff et al., 2017). 

6. Objective 
This work aims to research and perform practical experiments to determine the effectiveness of using a deep 
learning approach, such as a convolutional neural network, for an automated static malware detection and 
classification scheme. To investigate the effectiveness of different convolutional neural network (CNN) 
architectures for this purpose, multiple CNNs were tested, and their performance at solving this multiclass image 
classification problem was compared. Training time was used as a rudimentary measure of computational 
complexity to determine each network’s applicability to run on a device with strict resource limitations, such as 
an IoT device. The ability to perform these tasks on a low-powered edge device was taken under consideration, 
as the proliferation of IoT-based malware has been seeing a significant increase. In 2019, SonicWall Capture Labs 
threat researchers recorded 34.3 million IoT malware attacks. In 2020, that number rose to 56.9 million, a 66% 
increase (SonicWall, 2021). Traditional performance metrics used for neural networks, such as accuracy, loss, F1 
scores, precision, and recall, were used to determine the strength of each network architecture. 

Table 1: Malimg classes, and their respective sample sizes 

# Class Name Malware Type Samples 
1 Adailer.C Dialer 122 
2 Agent.FYI Backdoor 116 
3 Allaple.A Worm 2949 
4 Allaple.L Worm 1591 
5 Alueron.gen!J Worm 198 
6 Autorun.K Worm:AutoIT 106 
7 C2LOP.P Trojan 146 
8 C2LOP.gen!g Trojan 200 
9 Dialplatform.B Dialer 177 

10 Dontovo.A Trojan Downloader 162 
11 Fakerean Rogue 381 
12 Instantaccess Dialer 431 
13 Lolyda.AA1 Password Stealer 213 
14 Lolyda.AA2 Password Stealer 184 
15 Lolyda.AA3 Password Stealer 123 
16 Lolyda.AT Password Stealer 159 
17 Malex.gen!J Trojan 136 
18 Obfuscator.AD Trojan Downloader 142 
19 Rbot!gen Backdoor 158 
20 Skintrim.N Trojan 80 
21 Swizzor.gen!E Trojan Downloader 128 
22 Swizzor.gen!I Trojan Downloader 132 
23 VB.AT Worm 408 
24 Wintrim.BX Trojan Downloader 97 
25 Yuner.A Worm 800 

6.1 Dataset Description 
The Malimg dataset (Nataraj et al., 2011) is used in our investigation. This dataset contains 9,339 unique 
malware binary files, also known as portable executable (PE) files, which have been converted to PNG images. 
Each image in the dataset belongs to one of 25 total classes of malware. Each CNN was tasked with identifying 
the unique features of each malware class during training and accurately predicting the class name of a given 
malware binary image during validation. Table 1 shows the 25 classes and their respective number of instances.  

6.2 Malimg Class Distribution and Normalization 
We observe that nearly half of the dataset is comprised of only two malware classes, Allaple.A and Allaple.L. This 
can prove to be a severe issue when training the neural networks, so all of the class weights of the training data 
were normalized using the class_weight.compute_class_weight function from SciKit Learn’s utils library. While 
this distribution may not be optimal for a research environment, it is a more realistically distributed dataset. In 
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the context of malware distribution, certain classes of malware can proliferate at an exponentially higher rate 
than other malware. 
 

 
Figure 1: A bar chart demonstrating the distribution of the various classes in the Malimg dataset 

6.3 Observation of a Malware Image Sample 
To understand the structure of a Windows Portable Executable (PE) file, and to understand how these 
executable binaries were converted to images, we inspect a single, unedited sample from the Malimg dataset. 
A PE file consists of the following sections, which can be seen visually in Figure 1: 

1. .text – The default code section which contains the executable code. 
2. .rdata – The default read-only data section. String literal and C++/COM vtables are an example of items 

found in this section. 
3. .data – The default read/write data sections. Global variables typically are stored here. 
4. .rsrc – The section that contains all the resources of the module. This also includes icons that an 

application may use. (Microsoft, n.d.) 
 

 
Figure 2: The code sections of a Dontovo.A Trojan 

A given malware binary is read as a vector of 8-bit unsigned integers and then organized into a 2D array. This 
can be visualized as a grayscale image in the range [0,255] (0: black, 255: white). The width of the image is fixed, 
and the height is allowed to vary depending on the file size (Nataraj et al., 2011). In Figure 2, we notice multiple 
solid black sections, specifically in the .text section. This may represent uninitialized code; however, it is more 
likely to represent a common code obfuscation technique known as zero padding. The benefit of using a 
learning-based static analysis method is that code obfuscation techniques like this are generally ignored by each 
CNN. 
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6.4 Dataset Sample After Pre-Processing 
The following visual data sample was compiled after pre-processing all images in the data set into 64x64 
grayscale images. Not only does this compression retain the unique visual features that distinguish each malware 
class, but the image space occupied by zero padding is highly compressed and, therefore, less relevant as a 
significant feature of the data. Visual similarities between random samples of the same class, as well as visual 
similarities between similar classes are observed in Figure 3. 
 

 
Figure 3: Samples from each class of malware from the Malimg dataset after pre-processing 

7. Software and Hardware Used  

7.1 Software 
All experiments were done in a Python3 Juypter notebook. The machine learning libraries used were TensorFlow, 
Keras, and SciKit Learn. All visualizations were made using Matplotlib, and Seaborn. Other functionality, such as 
data processing and file I/O was accomplished using the NumPy, OS, Panda, and Collections Python libraries. 

7.2 Hardware 
All experiments were conducted on a 5th generation Lenovo ThinkPad X1 Carbon with an Intel Core i7-7600U 
with four logical cores with a 2.80Ghz clock speed and 16GB of RAM. There was no GPU acceleration utilized in 
these experiments. 

8.  CNN Performance Comparison 
The performance metrics used to compare the five CNNs tested during experimentation were: 

1. Total Training Time 
2. Average Training time per Epoch 
3. Total Accuracy 
4. Total Loss 
5. Weighted Average F1 Score 
6. Weighted Average Precision 
7. Weighted Average Recall 

 
The purpose of our experiments was to compare the accuracy and overall strength of each network and test 
each network’s applicability for running natively on a lower-powered device, such as an IoT or network device. 
One of static malware analysis strengths is the low computational resources required to analyze a potentially 
malicious file. Therefore, the goal of these experiments was to create a CNN that would not only classify malware 
accurately but with relatively great efficiency and low computational overhead. The time-based performance 
metrics serve as a rudimentary measure of each network’s efficiency. All models used a 70/30 training/validation 
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split during testing. Furthermore, all models used categorical cross-entropy as the loss function and the Adam 
optimizer on their compilation layers. Therefore, these constants are omitted when detailing each model’s 
architecture. 

8.1 Comparison of Convolutional Model Architectures 
A total of five CNN models were evaluated during our experiments. These models are split into two distinct 
subcategories. Models 1 and 2 use batch normalization as the normalization function, and Models 3, 4 and 5 use 
Local Response Normalization as the normalization function. Models 1 and 2 retain the same input size of 
64x64x1, with model 2 having double the number of convolutional layers in an experiment to decrease training 
time between epochs. Models 3, 4 and 5 were designed to easily scale to different input sizes and designed to 
use a new normalization method. The latter design change was done to test the hypothesis of Raff et al. (2017) 
who cited the failure of batch normalization in their experiments, while the former was done to test the 
performance impact of using different input sizes. 

8.1.1 A Comment on Normalization Functions 
As Raff et al. (2017) cited in their work, batch normalization failed in their experiments by severely hindering the 
learning process on malware binaries. In their hypothesis they cited that byte values can have drastically 
different meanings depending on the location, ranging from ASCII text, code, structured data, or even images 
stored for the icon (Raff et al., 2017). This reasoning is consistent when given the context of how the batch 
normalization function operates and given that the malware image binaries contain structured contextual data, 
which was detailed in Section 4.3. In an article titled Difference between Local Response Normalization and Batch 
Normalization, Anwar, A. (2021) details the process of the batch normalization function. Before being fed to the 
activation function, the output of the hidden neurons is processed as by completing the following steps: 

1. The entire batch B is normalized to a zero mean and unit variance 
2. The mean is calculated for the entire mini-batch output. 
3. The variance is calculated for the entire mini-batch output. 
4. The mini-batch output is normalized by subtracting the mean and dividing by the variance. 
5. Two trainable parameters are introduced, Gamma, the scale variable and Beta, the shift variable which 

scales and shifts the normalized mini-batch output. 
6. The scaled and shifted normalized mini-batch output is fed to the activation function. (Anwar, 2021) 

 
We hypothesize that the scaling and shifting of the batch data done during the normalization function is the 
reason why batch normalization may prove to hinder the learning process for contextually sensitive data, such 
as an image representation of a binary file. When the image is scaled and shifted during the batch normalization 
function, the feature’s context is lost. For example, say a given sample contains a series of bits that represent a 
malicious API call in the .text section of a Windows PE file, if the image is scaled and shifted to where this 
malicious string is moved to a different section of the PE file structure, it’s meaning, and context are lost to the 
learning algorithm. 
 
Local response normalization does not use scaling and shifting but rather uses the concept of lateral inhibition. 
Lateral inhibition is a concept from neurobiology where stimulated neurons inhibit the activity of neighbouring 
neurons. For local response normalization, this concept of lateral inhibition is used to conduct local contrast 
enhancement, so the local maximum pixel values are used as the excitation for the next layers (Anwar, 2021). 
Local response normalization, which relies on the local context of a given pixel, rather than the shifting and 
scaling the image relative to the gamma and beta values in batch normalization. Local response normalization 
function was considered as the most appropriate normalization function over batch normalization when 
considering the contextual nature of the binary data. After experimenting with model 1 and 2, which used batch 
normalization, the remaining models utilized local response normalization. Once its effectiveness was verified 
in our experimentation, we then moved to experiment with different input sizes for our training and testing 
data. This is also the reason why models 3, 4 and 5 were designed to scale well with different sized input data. 
  

Proceedings of the International Conference on Information Warfare and Security, 2022 
474



John Kiger, Shen-Shyang Ho and Vahid Heydari 

Table 2: Comparison of the model architectures tested 

Architectural Comparison 
Model  

No. 
Input 

Dimension Convolutional Layers Pooling Normalization 
Function Dense Layers 

1 64x64x1 

30 Filters, 3x3 Kernel Size, Relu 
Activation 

15 Filters, 3x3 Kernel Size, Relu 
Activation 

Max 
Pooling 
2x2 Pool 

Size 

Batch Normalization 

128 Units – 
Relu 

50 Units – 
Relu 

25 Units – 
Softmax 

2 64x64x1 

32 Filters, 3x3 Kernel Size, Relu 
Activation 

32 Filters, 3x3 Kernel Size, Relu 
Activation 

64 Filters, 3x3 Kernel Size, Relu 
Activation 

128 Filters, 3x3 Kernel Size, 
Relu Activation 

Max 
Pooling 
2x2 Pool 

Size 

Batch Normalization 

256 Units – 
Relu 

128 Units – 
Relu 

25 Units – 
Softmax 

3 128x128x1 

50 Filters, 5x5 Kernel Size, Relu 
Activation 

70 Filters, 3x3 Kernel Size, Relu 
Activation 

70 Filters, 3x3 Kernel Size, Relu 
Activation 

Max 
Pooling 
2x2 Pool 

Size 
1 Stride 

Local Response 
Normalization 

256 Units – 
Relu 

25 Units – 
Softmax 

4 64x64x1 

25 Filters, 5x5 Kernel Size, Relu 
Activation 

35 Filters, 3x3 Kernel Size, Relu 
Activation 

35 Filters, 3x3 Kernel Size, Relu 
Activation 

Max 
Pooling 
2x2 Pool 

Size 
1 Stride 

Local Response 
Normalization 

128 Units – 
Relu 

25 Units – 
Softmax 

5 32x32x1 

15 Filters, 5x5 Kernel Size, Relu 
Activation 

25 Filters, 3x3 Kernel Size, Relu 
Activation 

25 Filters, 3x3 Kernel Size, Relu 
Activation 

Max 
Pooling 
2x2 Pool 

Size 
1 Stride 

Local Response 
Normalization 

64 Units – 
Relu 

25 Units – 
Softmax 

8.2 Performance Results 

Table 3: Performance results of models tested 

Performance Comparison (best results are bolded) 

Model 
No. 

Total 
Epochs 

Total 
Training 

Time 

Average 
Training 
Time per 

Epoch 

Total 
Accuracy 

Total 
Loss 

Average 
Weighted 
F1 Score 

Average 
Weighted 
Precision 

Average 
Weighted 

Recall 

1 25 9.23 
minutes 

22.16 
seconds 85.22% 31.41% 0.84 0.85 0.85 

2 25 5.87 
minutes 

14.08 
seconds 88.69% 16.17% 0.88 0.88 0.89 

3 10 3.59 
hours 

21.52 
minutes 95.07% 29.98% 0.94 0.94 0.95 

4 10 17.38 
minutes 

1.74 
minutes 93.97% 23.12% 0.93 0.93 0.94 

5 50 11.82 
minutes 

14.18 
seconds 77.59% 135.82% 0.77 0.77 0.78 

8.2.1 Model 1 and 2 Performance Comparison 
Models 1 and 2 use very similar to architectures, both use a 64x64x1 input size, both trained for 25 epochs, and 
both use batch normalization as their normalization function. Due to their similarity, their performance results 
will be compared directly. Outside of model 5, which used a significantly reduced image input size, model 1 was 
the worst performing model regarding accuracy. While training only took under 10 minutes, the accuracy gave 
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room for improvement. Model 2 was designed to expand on model 1. First, it was designed to increase accuracy 
and reduce training time. While model 2 achieved both goals, with a 3.47% increase in accuracy with a 3.36-
minute reduction in training time, there was concerns about its strength as a model. 
 
In Figure 4, there was a significant deviation between model 2’s validation and training accuracy starting at the 
20th epoch. This is not ideal as the goal is to have the validation curve follow the training curve as closely as 
possible. Upon further investigation, we theorized that this could have been caused by using batch normalization 
or the architecture of models 1 and 2. 
 

 
Figure 4: Training vs. validation accuracy for model 2 

8.2.2 Model 3, 4 and 5 Performance Comparison 
Models 1 and 2 exhibited significant deviation between training and validation on accuracy and loss curves. This 
behaviour prompted a significant restructuring of the subsequent networks, prioritizing scalability to easily test 
different input sizes and the switch from batch normalization to local response normalization. The first model 
to test this new architecture was model 3, which used a 128x128x1 input size. Doubling the input shape over 
the previous two model’s 64x64x1 input shape increased the accuracy, with the best-recorded accuracy for 
model 3 being 95.07%. However, the training time was significantly longer, at nearly four hours. 
 

 
Figure 5: Training vs. validation accuracy for model 4 

 
Figure 6: Training vs. validation accuracy for model 5 

The lengthy training time of model 3 prompted us to revert to the previous 64x64x1 input shape in model 4 and 
scale the network down accordingly. Model 4 trained for the same number of epochs as model 3 and its 
performance results were encouraging. Model 4 reduced the training time of model 3 by 92%, while only 
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decreasing accuracy by 1.2%. This was a preferred trade-off, and a significant reduction in training time was 
desired. Curious about the effects of reducing the input size further, we scaled down the images to a 32x32x1 
input size in model 5, with the same downscaling of the model as conducted in model 4. Observing the results 
for model 5 in Table 3, the effect of scaling the images down to such a reduced image size had a negative effect 
on model 5’s performance. This is also displayed in training vs. validation accuracy plots of both models. Figure 
5 plots model 4’s training vs. validation accuracy curve. In Figure 5, the validation curve closely follows the 
training curve through all of model 4’s 10 epochs. In Figure 6, model 5’s training vs. validation accuracy curve 
shows a significant deviation from the training curve, visually displaying the issues with model 5. 
 
Furthermore, model 5 trained for a total of 50 epochs to boost its accuracy, which was only 77.59%. This 
eliminated any training time reduction desired by reducing the input size, with only a modest reduction of 5.56 
minutes of training time over model 4 but a 16.38% reduction in accuracy. This significant performance loss can 
be attributed to the severe reduction in image size. This reduced image size lost many unique class features, 
contributing to the inter-class confusion in similar classes. In model 5’s confusion matrix, the similar classes 
Allaple.A and Allaple.L appeared to the network as the same class. Any feature that could uniquely identify these 
classes was lost when reducing the image size to 32x32x1. This confusion is displayed visually in Figure 7 which 
plots model 5’s confusion matrix. 

 
Figure 7: Model 5 confusion matrix 

9. Conclusion 
Some issues regarding the future viability of this method were not covered in this work. An infinitely complex 
feature set is the most prescient issue concerning automating malware classification. Since unique malware 
signatures continue to grow, this will add more classes to an already large dataset. This complexity could prevent 
learning and cause severe inter-class confusion when presented to a learning model. This confusion could lead 
to misclassification, which can severely hinder the accuracy of a trained model. The dataset we have utilized is 
only an extremely small subset of the millions of relevant malware classes currently distributed online. To 
realistically classify malware of all relevant malware signatures, rather than a small subset, future research must 
be conducted into generalizing the classes to a level conducive to effective and fast learning. 
 
Another relevant issue that must be addressed is the difficulty of gathering a large malware dataset, which is 
even more challenging when gathering a large dataset with malicious and benign files. This data aggregation 
issue does not only affect our research, but it affects all malware researchers. For example, our dataset was not 
as easily accessible as one might expect, and it did not contain the original malware binaries. This may be due 
to file hosting services, such as Dropbox, automatically flagging files containing malware. We would have liked 
to obtain a similar dataset that contained the original PE files, where we would have conducted our own 
conversion to grayscale images. The PNG images in the Malimg data set were not true grayscale images, having 
a color depth of 3, rather than 1. This had to be addressed during preprocessing of our dataset, where all the 
images were converted to true grayscale using Python’s image library. Until malware analysts and researchers 
have an open and easily-accessible dataset to conduct experiments with, this area of research will continue to 
fall behind other fields of machine learning. 
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The final issue which must be considered is performance. Training a convolutional neural network is a 
computationally-intensive process. For example, our third model required nearly four hours of training on a mid-
level laptop with no GPU acceleration. Ideally, we would like to run a production version of this automated 
system on a network edge device. This would be the most conducive application of our proposed malware 
detection system since static malware analysis techniques are the first line of defense against malicious threats. 
Edge devices typically have limited computational resources. Providing a neural network that can run natively 
and in real-time on these edge devices is essential to achieving this goal. 
 
Finally, what has been presented should not be considered a method to supersede or replace any of the current 
static malware analysis methods. However, the proposed method should be considered a novel tool in a 
malware analyst’s skill chain. Unlike natural language processing, machine learning is not a silver bullet that 
solves all cybersecurity-related tasks. Instead, machine learning ought to automate a security professional's 
most time-consuming and repetitive tasks. Automating some of the initial stages of static malware analysis 
would allow malware analysts more time to gain deeper insights into the malicious file at hand. We are confident 
that our research shows that our proposed automated static malware analysis method can become a viable real-
time malware detection method. 
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