
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Faculty Scholarship for the College of Science &
Mathematics College of Science & Mathematics

3-2022

Malware Binary Image Classification Using Convolutional Neural Malware Binary Image Classification Using Convolutional Neural

Networks Networks

John Kiger
Rowan University

Shen-Shyang Ho
Rowan University, hos@rowan.edu

Vahid Heydari
Rowan University, heydari@rowan.edu

Follow this and additional works at: https://rdw.rowan.edu/csm_facpub

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
J. Kiger, S.-S. Ho, and V. Heydari, “Malware Binary Image Classification Using Convolutional Neural
Networks,” International Conference on Cyber Warfare and Security, vol. 17, no. 1. Academic Conferences
International Ltd, pp. 469–478, Mar. 02, 2022. doi: 10.34190/iccws.17.1.59.

This Conference Paper is brought to you for free and open access by the College of Science & Mathematics at
Rowan Digital Works. It has been accepted for inclusion in Faculty Scholarship for the College of Science &
Mathematics by an authorized administrator of Rowan Digital Works.

https://rdw.rowan.edu/
https://rdw.rowan.edu/csm_facpub
https://rdw.rowan.edu/csm_facpub
https://rdw.rowan.edu/csm
https://rdw.rowan.edu/csm_facpub?utm_source=rdw.rowan.edu%2Fcsm_facpub%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fcsm_facpub%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fcsm_facpub%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages

Malware Binary Image Classification Using Convolutional Neural
Networks

John Kiger, Shen-Shyang Ho and Vahid Heydari
Rowan University, Glassboro, NJ, USA
kigerj19@students.rowan.edu
hos@rowan.edu
heydari@rowan.edu

Abstract: The persistent shortage of cybersecurity professionals combined with enterprise networks tasked with
processing more data than ever before has led many cybersecurity experts to consider automating some of the
most common and time-consuming security tasks using machine learning. One of these cybersecurity tasks
where machine learning may prove advantageous is malware analysis and classification. To evade traditional
detection techniques, malware developers are creating more complex malware. This is achieved through more
advanced methods of code obfuscation and conducting more sophisticated attacks. This can make the manual
process of analyzing malware an infinitely more complex task. Furthermore, the proliferation of malicious files
and new malware signatures increases year by year. As of March 2020, the total number of new malware
detections worldwide amounted to 677.66 million programs. In 2020, there was a 35.4% increase in new
malware variants over the previous year. This paper examines the viability of classifying malware binaries
represented as fixed-size grayscale using convolutional neural networks. Several Convolutional Neural Network
(CNN) architectures are evaluated on multiple performance metrics to analyze their effectiveness at solving this
classification problem.

Keywords: Malware Analysis, Malware Classification, Malware Visualization, Convolutional Neural Networks,
Deep Learning

1. Introduction
The shortage of professional talent in the cybersecurity workforce is an issue that continues to persist as more
businesses recognize the value of cybersecurity for their organization. In their 2021 Cybersecurity Workforce
Study, the cybersecurity professional organization (ISC)2 reported an estimated 2.72 million global shortage of
cybersecurity professionals (ISC2, 2021). Simultaneously, malware continues to spread at an unprecedented
rate, with hundreds of thousands of new signatures detected every day. In 2020, Kaspersky’s detection systems
discovered an average of 360,000 new malicious files every day over the past 12 months—18,000 more than the
previous year (a 5.2% increase) and up from 346,000 in 2018. 60.2% of those malicious files were non-specific
Trojans. In general, the percentage of Trojans detected increased by 40.5% when compared to the previous year
(Kaspersky Lab, 2021). Observing these trends gives the primary motivation for seeking automated solutions for
malware analysis, particularly in the areas where analysis is done manually. Traditionally, malware analysis is
conducted using one, or a combination of, static and dynamic malware analysis methods. However, the
emergence of fileless malware has prompted a new method of memory-based analysis. Here we will provide a
high-level description of current malware analysis methods to provide a deeper understanding of the current
landscape.

2. Static Malware Analysis
Static malware analysis is a signature-based approach that entails deriving information about a potentially
malicious executable file without the executing file. This is done through a variety of methods that attempt to
derive and enumerate any signatures that classify a given executable file as malicious. Traditional static analysis
methods are basic and do not offer deeper insights into a malicious file’s behavior. Furthermore, sophisticated
malware easily eludes traditional static malware analysis through increasingly complex code obfuscation
techniques. However, these methods are the least computationally intensive and time-consuming to conduct.
Therefore, static malware analysis is often the first method utilized when investigating an executable file.
Typically, static malware analysis is achieved through these methods:

• Checking the executable file’s hash against a known malware database, such as Virustotal. These
databases are open-source and are usually evaded by serious malware developers.

• Using the ‘strings’ command on the executable file in a command-line interface to find any malicious
keywords contained in the file’s strings. This method is not effective on encrypted versions of malware.

Proceedings of the International Conference on Information Warfare and Security, 2022
469

mailto:kigerj19@students.rowan.edu
mailto:hos@rowan.edu
mailto:heydari@rowan.edu

John Kiger, Shen-Shyang Ho and Vahid Heydari

• Manually decompiling the file in a disassembler, such as IDA, to analyze an executable file’s control flow.
This method requires subject matter expertise and may become intractably complex if the malicious
code is severely obfuscated.

3. Dynamic Malware Analysis
Dynamic malware analysis is a behavior-based approach that entails executing a potentially malicious file in a
virtualized sandbox environment and attempting to gain insights into a file’s runtime behaviour through closely
monitored observation. This method is the most computationally intensive of all the analysis methods due to
the need to run the executable file in a virtualized sandbox. This prevents any damage a malicious file may cause
to a system. Furthermore, this method may prove to be the most time-consuming as many malware files
significantly delay the execution of their malicious code to circumvent antivirus software. Finally, sophisticated
malware often utilizes techniques to determine if it is running in a virtualized environment and if so, will appear
benign to this method of analysis. While this method is subject to be circumvented, if successful, significant
insights on a malware’s behaviour can be derived from the following methods:

• Monitoring malicious network traffic activities through tools, such as Wireshark. This allows the capture
and deep analysis of all traffic originating from the executable file.

• Process monitoring can also provide insights into how a potentially malicious file interacts with the host
system. The virtualized environment can capture calls to the host device’s file system and registry to
monitor any malicious activity, such as deleting or manipulating any important system resources.

4. Memory Malware Analysis
Most malware persists through an executable file or latching itself to a critical system resource. The most
sophisticated and devastating of these are Advanced Persistent Threats (APT). However, stealthier attack vectors
that attempt to elude traditional dynamic analysis methods, are classified as Advanced Volatile Threats (AVT).
Fileless malware is classified as an AVT since it is malicious software that exclusively operates as an artifact in a
system’s volatile memory or RAM. Like dynamic analysis, this method requires a virtual environment with
allocated RAM to capture and dump a memory image and analyze artifacts that include:

• Process lists and associated threads
• Networking information and interfaces (TCP/UDP)
• Kernel modules, including hidden ones
• Bash and command history
• System calls
• Kernel hooks

5. Related Research
This section includes a brief review of some previous image-based automated malware classification
approaches.

5.1 Deep learning at the shallow end: Malware classification for non-domain experts
Le et al. (2018) presented a deep learning-based malware classification approach that required no expert domain
knowledge and is based on a pure data drive approach for complex patter and feature identification.
Acknowledges the lack of domain expertise when handling digital evidence in law enforcement. The research
specifically cites how Artificial Intelligence (AI) can aid digital investigators. AI can expedite the investigative
process and ultimately reduce the case backlog while avoiding bias and prejudice (James and Gladyshev, 2013).
The contribution of this work includes a deep learning model which achieves a 98.2% accuracy in classifying raw
binary files into one of 9 classes of malware. The one-dimensional representation of a raw binary file is like the
image representation of a raw binary file in the work of Nataraj et al. (2011). The sequential representation
allowed Le et al. (2018) to apply a Convolutional Neural Network – Bi Long Short Term Memory architecture
(CNN-BiLSTM) which helped achieve better performance than using a CNN model alone.

5.2 Malware Detection by Eating a Whole EXE
The most significant finding of this work from Raff et al. (2017) is how the batch normalization method hindered
the learning process for all their proposed models, in all their approaches, on all the software platforms they
experimented on. When given the context of analyzing binary executables, their hypothesis is well-reasoned.

We hypothesize that batch norm’s ineffectiveness in our model is a product of training on binary
executables. The majority of contemporary deep learning research, including batch-normalization, has

Proceedings of the International Conference on Information Warfare and Security, 2022
470

John Kiger, Shen-Shyang Ho and Vahid Heydari

been done in the image and signal processing domains, with natural language a close second. In all of
these domains, the nature of data is relatively consistent. In contrast, our binary data present a novel
multi-modal nature of the byte values that can have drastically different meanings depending on the
location, ranging from ASCII text, code, structured data, or even images stored for the icon. Our hypothesis
is that this multi-modal nature produces multiple modes of activation, which violates the primary
assumptions of batch-normalization, causing degraded performance. (Raff et al., 2017).

6. Objective
This work aims to research and perform practical experiments to determine the effectiveness of using a deep
learning approach, such as a convolutional neural network, for an automated static malware detection and
classification scheme. To investigate the effectiveness of different convolutional neural network (CNN)
architectures for this purpose, multiple CNNs were tested, and their performance at solving this multiclass image
classification problem was compared. Training time was used as a rudimentary measure of computational
complexity to determine each network’s applicability to run on a device with strict resource limitations, such as
an IoT device. The ability to perform these tasks on a low-powered edge device was taken under consideration,
as the proliferation of IoT-based malware has been seeing a significant increase. In 2019, SonicWall Capture Labs
threat researchers recorded 34.3 million IoT malware attacks. In 2020, that number rose to 56.9 million, a 66%
increase (SonicWall, 2021). Traditional performance metrics used for neural networks, such as accuracy, loss, F1
scores, precision, and recall, were used to determine the strength of each network architecture.

Table 1: Malimg classes, and their respective sample sizes

Class Name Malware Type Samples
1 Adailer.C Dialer 122
2 Agent.FYI Backdoor 116
3 Allaple.A Worm 2949
4 Allaple.L Worm 1591
5 Alueron.gen!J Worm 198
6 Autorun.K Worm:AutoIT 106
7 C2LOP.P Trojan 146
8 C2LOP.gen!g Trojan 200
9 Dialplatform.B Dialer 177

10 Dontovo.A Trojan Downloader 162
11 Fakerean Rogue 381
12 Instantaccess Dialer 431
13 Lolyda.AA1 Password Stealer 213
14 Lolyda.AA2 Password Stealer 184
15 Lolyda.AA3 Password Stealer 123
16 Lolyda.AT Password Stealer 159
17 Malex.gen!J Trojan 136
18 Obfuscator.AD Trojan Downloader 142
19 Rbot!gen Backdoor 158
20 Skintrim.N Trojan 80
21 Swizzor.gen!E Trojan Downloader 128
22 Swizzor.gen!I Trojan Downloader 132
23 VB.AT Worm 408
24 Wintrim.BX Trojan Downloader 97
25 Yuner.A Worm 800

6.1 Dataset Description
The Malimg dataset (Nataraj et al., 2011) is used in our investigation. This dataset contains 9,339 unique
malware binary files, also known as portable executable (PE) files, which have been converted to PNG images.
Each image in the dataset belongs to one of 25 total classes of malware. Each CNN was tasked with identifying
the unique features of each malware class during training and accurately predicting the class name of a given
malware binary image during validation. Table 1 shows the 25 classes and their respective number of instances.

6.2 Malimg Class Distribution and Normalization
We observe that nearly half of the dataset is comprised of only two malware classes, Allaple.A and Allaple.L. This
can prove to be a severe issue when training the neural networks, so all of the class weights of the training data
were normalized using the class_weight.compute_class_weight function from SciKit Learn’s utils library. While
this distribution may not be optimal for a research environment, it is a more realistically distributed dataset. In

Proceedings of the International Conference on Information Warfare and Security, 2022
471

John Kiger, Shen-Shyang Ho and Vahid Heydari

the context of malware distribution, certain classes of malware can proliferate at an exponentially higher rate
than other malware.

Figure 1: A bar chart demonstrating the distribution of the various classes in the Malimg dataset

6.3 Observation of a Malware Image Sample
To understand the structure of a Windows Portable Executable (PE) file, and to understand how these
executable binaries were converted to images, we inspect a single, unedited sample from the Malimg dataset.
A PE file consists of the following sections, which can be seen visually in Figure 1:

1. .text – The default code section which contains the executable code.
2. .rdata – The default read-only data section. String literal and C++/COM vtables are an example of items

found in this section.
3. .data – The default read/write data sections. Global variables typically are stored here.
4. .rsrc – The section that contains all the resources of the module. This also includes icons that an

application may use. (Microsoft, n.d.)

Figure 2: The code sections of a Dontovo.A Trojan

A given malware binary is read as a vector of 8-bit unsigned integers and then organized into a 2D array. This
can be visualized as a grayscale image in the range [0,255] (0: black, 255: white). The width of the image is fixed,
and the height is allowed to vary depending on the file size (Nataraj et al., 2011). In Figure 2, we notice multiple
solid black sections, specifically in the .text section. This may represent uninitialized code; however, it is more
likely to represent a common code obfuscation technique known as zero padding. The benefit of using a
learning-based static analysis method is that code obfuscation techniques like this are generally ignored by each
CNN.

Proceedings of the International Conference on Information Warfare and Security, 2022
472

John Kiger, Shen-Shyang Ho and Vahid Heydari

6.4 Dataset Sample After Pre-Processing
The following visual data sample was compiled after pre-processing all images in the data set into 64x64
grayscale images. Not only does this compression retain the unique visual features that distinguish each malware
class, but the image space occupied by zero padding is highly compressed and, therefore, less relevant as a
significant feature of the data. Visual similarities between random samples of the same class, as well as visual
similarities between similar classes are observed in Figure 3.

Figure 3: Samples from each class of malware from the Malimg dataset after pre-processing

7. Software and Hardware Used

7.1 Software
All experiments were done in a Python3 Juypter notebook. The machine learning libraries used were TensorFlow,
Keras, and SciKit Learn. All visualizations were made using Matplotlib, and Seaborn. Other functionality, such as
data processing and file I/O was accomplished using the NumPy, OS, Panda, and Collections Python libraries.

7.2 Hardware
All experiments were conducted on a 5th generation Lenovo ThinkPad X1 Carbon with an Intel Core i7-7600U
with four logical cores with a 2.80Ghz clock speed and 16GB of RAM. There was no GPU acceleration utilized in
these experiments.

8. CNN Performance Comparison
The performance metrics used to compare the five CNNs tested during experimentation were:

1. Total Training Time
2. Average Training time per Epoch
3. Total Accuracy
4. Total Loss
5. Weighted Average F1 Score
6. Weighted Average Precision
7. Weighted Average Recall

The purpose of our experiments was to compare the accuracy and overall strength of each network and test
each network’s applicability for running natively on a lower-powered device, such as an IoT or network device.
One of static malware analysis strengths is the low computational resources required to analyze a potentially
malicious file. Therefore, the goal of these experiments was to create a CNN that would not only classify malware
accurately but with relatively great efficiency and low computational overhead. The time-based performance
metrics serve as a rudimentary measure of each network’s efficiency. All models used a 70/30 training/validation

Proceedings of the International Conference on Information Warfare and Security, 2022
473

John Kiger, Shen-Shyang Ho and Vahid Heydari

split during testing. Furthermore, all models used categorical cross-entropy as the loss function and the Adam
optimizer on their compilation layers. Therefore, these constants are omitted when detailing each model’s
architecture.

8.1 Comparison of Convolutional Model Architectures
A total of five CNN models were evaluated during our experiments. These models are split into two distinct
subcategories. Models 1 and 2 use batch normalization as the normalization function, and Models 3, 4 and 5 use
Local Response Normalization as the normalization function. Models 1 and 2 retain the same input size of
64x64x1, with model 2 having double the number of convolutional layers in an experiment to decrease training
time between epochs. Models 3, 4 and 5 were designed to easily scale to different input sizes and designed to
use a new normalization method. The latter design change was done to test the hypothesis of Raff et al. (2017)
who cited the failure of batch normalization in their experiments, while the former was done to test the
performance impact of using different input sizes.

8.1.1 A Comment on Normalization Functions
As Raff et al. (2017) cited in their work, batch normalization failed in their experiments by severely hindering the
learning process on malware binaries. In their hypothesis they cited that byte values can have drastically
different meanings depending on the location, ranging from ASCII text, code, structured data, or even images
stored for the icon (Raff et al., 2017). This reasoning is consistent when given the context of how the batch
normalization function operates and given that the malware image binaries contain structured contextual data,
which was detailed in Section 4.3. In an article titled Difference between Local Response Normalization and Batch
Normalization, Anwar, A. (2021) details the process of the batch normalization function. Before being fed to the
activation function, the output of the hidden neurons is processed as by completing the following steps:

1. The entire batch B is normalized to a zero mean and unit variance
2. The mean is calculated for the entire mini-batch output.
3. The variance is calculated for the entire mini-batch output.
4. The mini-batch output is normalized by subtracting the mean and dividing by the variance.
5. Two trainable parameters are introduced, Gamma, the scale variable and Beta, the shift variable which

scales and shifts the normalized mini-batch output.
6. The scaled and shifted normalized mini-batch output is fed to the activation function. (Anwar, 2021)

We hypothesize that the scaling and shifting of the batch data done during the normalization function is the
reason why batch normalization may prove to hinder the learning process for contextually sensitive data, such
as an image representation of a binary file. When the image is scaled and shifted during the batch normalization
function, the feature’s context is lost. For example, say a given sample contains a series of bits that represent a
malicious API call in the .text section of a Windows PE file, if the image is scaled and shifted to where this
malicious string is moved to a different section of the PE file structure, it’s meaning, and context are lost to the
learning algorithm.

Local response normalization does not use scaling and shifting but rather uses the concept of lateral inhibition.
Lateral inhibition is a concept from neurobiology where stimulated neurons inhibit the activity of neighbouring
neurons. For local response normalization, this concept of lateral inhibition is used to conduct local contrast
enhancement, so the local maximum pixel values are used as the excitation for the next layers (Anwar, 2021).
Local response normalization, which relies on the local context of a given pixel, rather than the shifting and
scaling the image relative to the gamma and beta values in batch normalization. Local response normalization
function was considered as the most appropriate normalization function over batch normalization when
considering the contextual nature of the binary data. After experimenting with model 1 and 2, which used batch
normalization, the remaining models utilized local response normalization. Once its effectiveness was verified
in our experimentation, we then moved to experiment with different input sizes for our training and testing
data. This is also the reason why models 3, 4 and 5 were designed to scale well with different sized input data.

Proceedings of the International Conference on Information Warfare and Security, 2022
474

John Kiger, Shen-Shyang Ho and Vahid Heydari

Table 2: Comparison of the model architectures tested

Architectural Comparison
Model

No.
Input

Dimension Convolutional Layers Pooling Normalization
Function Dense Layers

1 64x64x1

30 Filters, 3x3 Kernel Size, Relu
Activation

15 Filters, 3x3 Kernel Size, Relu
Activation

Max
Pooling
2x2 Pool

Size

Batch Normalization

128 Units –
Relu

50 Units –
Relu

25 Units –
Softmax

2 64x64x1

32 Filters, 3x3 Kernel Size, Relu
Activation

32 Filters, 3x3 Kernel Size, Relu
Activation

64 Filters, 3x3 Kernel Size, Relu
Activation

128 Filters, 3x3 Kernel Size,
Relu Activation

Max
Pooling
2x2 Pool

Size

Batch Normalization

256 Units –
Relu

128 Units –
Relu

25 Units –
Softmax

3 128x128x1

50 Filters, 5x5 Kernel Size, Relu
Activation

70 Filters, 3x3 Kernel Size, Relu
Activation

70 Filters, 3x3 Kernel Size, Relu
Activation

Max
Pooling
2x2 Pool

Size
1 Stride

Local Response
Normalization

256 Units –
Relu

25 Units –
Softmax

4 64x64x1

25 Filters, 5x5 Kernel Size, Relu
Activation

35 Filters, 3x3 Kernel Size, Relu
Activation

35 Filters, 3x3 Kernel Size, Relu
Activation

Max
Pooling
2x2 Pool

Size
1 Stride

Local Response
Normalization

128 Units –
Relu

25 Units –
Softmax

5 32x32x1

15 Filters, 5x5 Kernel Size, Relu
Activation

25 Filters, 3x3 Kernel Size, Relu
Activation

25 Filters, 3x3 Kernel Size, Relu
Activation

Max
Pooling
2x2 Pool

Size
1 Stride

Local Response
Normalization

64 Units –
Relu

25 Units –
Softmax

8.2 Performance Results

Table 3: Performance results of models tested

Performance Comparison (best results are bolded)

Model
No.

Total
Epochs

Total
Training

Time

Average
Training
Time per

Epoch

Total
Accuracy

Total
Loss

Average
Weighted
F1 Score

Average
Weighted
Precision

Average
Weighted

Recall

1 25 9.23
minutes

22.16
seconds 85.22% 31.41% 0.84 0.85 0.85

2 25 5.87
minutes

14.08
seconds 88.69% 16.17% 0.88 0.88 0.89

3 10 3.59
hours

21.52
minutes 95.07% 29.98% 0.94 0.94 0.95

4 10 17.38
minutes

1.74
minutes 93.97% 23.12% 0.93 0.93 0.94

5 50 11.82
minutes

14.18
seconds 77.59% 135.82% 0.77 0.77 0.78

8.2.1 Model 1 and 2 Performance Comparison
Models 1 and 2 use very similar to architectures, both use a 64x64x1 input size, both trained for 25 epochs, and
both use batch normalization as their normalization function. Due to their similarity, their performance results
will be compared directly. Outside of model 5, which used a significantly reduced image input size, model 1 was
the worst performing model regarding accuracy. While training only took under 10 minutes, the accuracy gave

Proceedings of the International Conference on Information Warfare and Security, 2022
475

John Kiger, Shen-Shyang Ho and Vahid Heydari

room for improvement. Model 2 was designed to expand on model 1. First, it was designed to increase accuracy
and reduce training time. While model 2 achieved both goals, with a 3.47% increase in accuracy with a 3.36-
minute reduction in training time, there was concerns about its strength as a model.

In Figure 4, there was a significant deviation between model 2’s validation and training accuracy starting at the
20th epoch. This is not ideal as the goal is to have the validation curve follow the training curve as closely as
possible. Upon further investigation, we theorized that this could have been caused by using batch normalization
or the architecture of models 1 and 2.

Figure 4: Training vs. validation accuracy for model 2

8.2.2 Model 3, 4 and 5 Performance Comparison
Models 1 and 2 exhibited significant deviation between training and validation on accuracy and loss curves. This
behaviour prompted a significant restructuring of the subsequent networks, prioritizing scalability to easily test
different input sizes and the switch from batch normalization to local response normalization. The first model
to test this new architecture was model 3, which used a 128x128x1 input size. Doubling the input shape over
the previous two model’s 64x64x1 input shape increased the accuracy, with the best-recorded accuracy for
model 3 being 95.07%. However, the training time was significantly longer, at nearly four hours.

Figure 5: Training vs. validation accuracy for model 4

Figure 6: Training vs. validation accuracy for model 5

The lengthy training time of model 3 prompted us to revert to the previous 64x64x1 input shape in model 4 and
scale the network down accordingly. Model 4 trained for the same number of epochs as model 3 and its
performance results were encouraging. Model 4 reduced the training time of model 3 by 92%, while only

Proceedings of the International Conference on Information Warfare and Security, 2022
476

John Kiger, Shen-Shyang Ho and Vahid Heydari

decreasing accuracy by 1.2%. This was a preferred trade-off, and a significant reduction in training time was
desired. Curious about the effects of reducing the input size further, we scaled down the images to a 32x32x1
input size in model 5, with the same downscaling of the model as conducted in model 4. Observing the results
for model 5 in Table 3, the effect of scaling the images down to such a reduced image size had a negative effect
on model 5’s performance. This is also displayed in training vs. validation accuracy plots of both models. Figure
5 plots model 4’s training vs. validation accuracy curve. In Figure 5, the validation curve closely follows the
training curve through all of model 4’s 10 epochs. In Figure 6, model 5’s training vs. validation accuracy curve
shows a significant deviation from the training curve, visually displaying the issues with model 5.

Furthermore, model 5 trained for a total of 50 epochs to boost its accuracy, which was only 77.59%. This
eliminated any training time reduction desired by reducing the input size, with only a modest reduction of 5.56
minutes of training time over model 4 but a 16.38% reduction in accuracy. This significant performance loss can
be attributed to the severe reduction in image size. This reduced image size lost many unique class features,
contributing to the inter-class confusion in similar classes. In model 5’s confusion matrix, the similar classes
Allaple.A and Allaple.L appeared to the network as the same class. Any feature that could uniquely identify these
classes was lost when reducing the image size to 32x32x1. This confusion is displayed visually in Figure 7 which
plots model 5’s confusion matrix.

Figure 7: Model 5 confusion matrix

9. Conclusion
Some issues regarding the future viability of this method were not covered in this work. An infinitely complex
feature set is the most prescient issue concerning automating malware classification. Since unique malware
signatures continue to grow, this will add more classes to an already large dataset. This complexity could prevent
learning and cause severe inter-class confusion when presented to a learning model. This confusion could lead
to misclassification, which can severely hinder the accuracy of a trained model. The dataset we have utilized is
only an extremely small subset of the millions of relevant malware classes currently distributed online. To
realistically classify malware of all relevant malware signatures, rather than a small subset, future research must
be conducted into generalizing the classes to a level conducive to effective and fast learning.

Another relevant issue that must be addressed is the difficulty of gathering a large malware dataset, which is
even more challenging when gathering a large dataset with malicious and benign files. This data aggregation
issue does not only affect our research, but it affects all malware researchers. For example, our dataset was not
as easily accessible as one might expect, and it did not contain the original malware binaries. This may be due
to file hosting services, such as Dropbox, automatically flagging files containing malware. We would have liked
to obtain a similar dataset that contained the original PE files, where we would have conducted our own
conversion to grayscale images. The PNG images in the Malimg data set were not true grayscale images, having
a color depth of 3, rather than 1. This had to be addressed during preprocessing of our dataset, where all the
images were converted to true grayscale using Python’s image library. Until malware analysts and researchers
have an open and easily-accessible dataset to conduct experiments with, this area of research will continue to
fall behind other fields of machine learning.

Proceedings of the International Conference on Information Warfare and Security, 2022
477

John Kiger, Shen-Shyang Ho and Vahid Heydari

The final issue which must be considered is performance. Training a convolutional neural network is a
computationally-intensive process. For example, our third model required nearly four hours of training on a mid-
level laptop with no GPU acceleration. Ideally, we would like to run a production version of this automated
system on a network edge device. This would be the most conducive application of our proposed malware
detection system since static malware analysis techniques are the first line of defense against malicious threats.
Edge devices typically have limited computational resources. Providing a neural network that can run natively
and in real-time on these edge devices is essential to achieving this goal.

Finally, what has been presented should not be considered a method to supersede or replace any of the current
static malware analysis methods. However, the proposed method should be considered a novel tool in a
malware analyst’s skill chain. Unlike natural language processing, machine learning is not a silver bullet that
solves all cybersecurity-related tasks. Instead, machine learning ought to automate a security professional's
most time-consuming and repetitive tasks. Automating some of the initial stages of static malware analysis
would allow malware analysts more time to gain deeper insights into the malicious file at hand. We are confident
that our research shows that our proposed automated static malware analysis method can become a viable real-
time malware detection method.

Acknowledgement
This material is based upon work supported by the National Science Foundation under Grant No. 1753900.

References
Anwar, A. (2021). Difference between Local Response Normalization and Batch Normalization. [online] Medium. Available

at: http://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-
272308c034ac [Accessed 3 Feb. 2022].

Bhodia, N., Prajapati, P., Troia, F. and Stamp, M. (2019). Transfer Learning for Image-Based Malware Classification.
Gibert, D., Mateu, C., Planes, J. and Vicens, R. (2018). Using convolutional neural networks for classification of malware

represented as images. Journal of Computer Virology and Hacking Techniques, 15(1), pp.15–28.
ISC2 (2021). 2021 Cybersecurity Workforce Study. [online] www.isc2.org, ISC2, pp.24–25. Available at:

https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2021.ashx [Accessed 4 Feb.
2022].

Kaspersky Lab (2021). The number of new malicious files detected every day increases by 5.2% to 360,000 in 2020. [online]
www.kaspersky.com. Available at: https://www.kaspersky.com/about/press-releases/2020_the-number-of-new-
malicious-files-detected-every-day-increases-by-52-to-360000-in-2020 [Accessed 4 Feb. 2021].

Le, Q., Boydell, O., Mac Namee, B. and Scanlon, M. (2018). Deep learning at the shallow end: Malware classification for
non-domain experts. Digital Investigation, [online] 26, pp.S118–S126. Available at:
https://www.sciencedirect.com/science/article/pii/S1742287618302032 [Accessed 30 Jan. 2020].

Mallet, H. (2020). Malware Classification using Convolutional Neural Networks — Step by Step Tutorial. [online] Medium.
Available at: https://towardsdatascience.com/malware-classification-using-convolutional-neural-networks-step-by-
step-tutorial-a3e8d97122f.

Microsoft (n.d.). An In-Depth Look into the Win32 Portable Executable File Format, Part 2: Figures. [online]
bytepointer.com. Available at:
https://bytepointer.com/resources/pietrek_in_depth_look_into_pe_format_pt2_figures.htm [Accessed 4 Feb. 2022].

Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath, B.S. (2011). Malware images. Proceedings of the 8th International
Symposium on Visualization for Cyber Security - VizSec ’11.

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B. and Nicholas, C. (2017). Malware Detection by Eating a Whole
EXE.

SonicWall (2021). 2021 SonicWall Cyber Threat Report. [online] https://www.sonicwall.com/, Milpitas, CA: SonicWall Inc.,
p.58. Available at: https://www.sonicwall.com/resources/white-papers/2021-sonicwall-cyber-threat-report/ [Accessed
4 Feb. 2022].

Theta432 (2020a). Theta432. [online] www.theta432.com. Available at: http://www.theta432.com/post/malware-analysis-
part-1-static-analysis [Accessed 3 Feb. 2022].

Theta432 (2020b). Theta432. [online] www.theta432.com. Available at: http://www.theta432.com/post/malware-analysis-
series-part-2-dynamic-analysis [Accessed 3 Feb. 2022].

Theta432 (2020c). Theta432. [online] Theta432.com. Available at: http://www.theta432.com/post/malware-analysis-
series-part3-memory-malware-analysis.

Véstias, M.P. (2019). A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing. Algorithms,
12(8), p.154.

Proceedings of the International Conference on Information Warfare and Security, 2022
478

http://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac
http://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac
https://towardsdatascience.com/malware-classification-using-convolutional-neural-networks-step-by-step-tutorial-a3e8d97122f
https://towardsdatascience.com/malware-classification-using-convolutional-neural-networks-step-by-step-tutorial-a3e8d97122f

	Malware Binary Image Classification Using Convolutional Neural Networks
	Recommended Citation

	ZXX- Kiger 115
	1. Introduction
	2. Static Malware Analysis
	3. Dynamic Malware Analysis
	4. Memory Malware Analysis
	5. Related Research
	5.1 Deep learning at the shallow end: Malware classification for non-domain experts
	5.2 Malware Detection by Eating a Whole EXE

	6. Objective
	6.1 Dataset Description
	6.2 Malimg Class Distribution and Normalization
	6.3 Observation of a Malware Image Sample
	6.4 Dataset Sample After Pre-Processing

	7. Software and Hardware Used
	7.1 Software
	7.2 Hardware

	8. CNN Performance Comparison
	8.1 Comparison of Convolutional Model Architectures
	8.1.1 A Comment on Normalization Functions

	8.2 Performance Results
	8.2.1 Model 1 and 2 Performance Comparison
	8.2.2 Model 3, 4 and 5 Performance Comparison

	9. Conclusion
	Acknowledgement
	References

