
Journal of Cybersecurity Education, Research and Practice Journal of Cybersecurity Education, Research and Practice 

Volume 2022 Number 2 Article 9 

January 2023 

Teaching by Practice: Shaping Secure Coding Mentalities through Teaching by Practice: Shaping Secure Coding Mentalities through 

Cybersecurity CTFs Cybersecurity CTFs 

Jazmin Collins 
Arcadia University, collinsjazmin.21@gmail.com 

Vitaly Ford 
Arcadia University, fordv@arcadia.edu 

Follow this and additional works at: https://digitalcommons.kennesaw.edu/jcerp 

 Part of the Curriculum and Instruction Commons, Information Security Commons, and the Technology 

and Innovation Commons 

Recommended Citation Recommended Citation 
Collins, Jazmin and Ford, Vitaly (2023) "Teaching by Practice: Shaping Secure Coding Mentalities through 
Cybersecurity CTFs," Journal of Cybersecurity Education, Research and Practice: Vol. 2022: No. 2, Article 
9. 
Available at: https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9 

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been 
accepted for inclusion in Journal of Cybersecurity Education, Research and Practice by an authorized editor of 
DigitalCommons@Kennesaw State University. For more information, please contact 
digitalcommons@kennesaw.edu. 

https://digitalcommons.kennesaw.edu/jcerp
https://digitalcommons.kennesaw.edu/jcerp/vol2022
https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2
https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9
https://digitalcommons.kennesaw.edu/jcerp?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2022%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/786?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2022%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2022%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2022%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2022%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2022%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu


Teaching by Practice: Shaping Secure Coding Mentalities through Cybersecurity Teaching by Practice: Shaping Secure Coding Mentalities through Cybersecurity 
CTFs CTFs 

Abstract Abstract 
The use of the Capture the Flag (CTF)-style competitions has grown popular in a variety of environments 
as a method to improve or reinforce cybersecurity techniques. However, while these competitions have 
shown promise in student engagement, enjoyment, and the teaching of essential workforce cybersecurity 
concepts, many of these CTF challenges have largely focused on cybersecurity as a general topic. Further, 
most in-school CTF challenges are designed with technical institutes in mind, prepping only experienced 
or upper-level students in cybersecurity studies for real-world challenges. Our paper aims to focus on the 
setting of a liberal arts institute, emphasizing secure coding as the focus of CTF-engaged learning for 
beginner to upper-level undergraduate students. We propose a survey system to evaluate the secure 
coding mentality of our students before and after taking these challenges, as well as an easily-hosted, 
low-resource CTF platform that students can access either in or outside of the classroom. We have found 
this system to be moderately effective at framing and improving the secure coding mentalities of our 
students. 

Keywords Keywords 
Cybersecurity Education, CTF, Secure Coding 

Cover Page Footnote Cover Page Footnote 
We thank the Computer Science and Mathematics department of Arcadia University for their support 
during this project. We are eternally grateful for the contributions made by Amela Gjishti (testing and 
support), Konstantin Menako (PHP challenges), Alexandr Chebatarev (deployment automation, C++/JS 
challenges), and Daniel Tyler (initialization of the dockerization process). 

This article is available in Journal of Cybersecurity Education, Research and Practice: 
https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9 

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9


INTRODUCTION
With the rapidly growing scope of technology, there has been a consequently growing
demand for cybersecurity professionals from nearly all sectors of industry. Secure
practices in coding and code evaluation are a crucial part of creating a safe digital
world, but unfortunately, many software engineers and programmers entering the
workforce lack experience with such practices (Paulsen et al., 2012). This is largely
due to the struggles faced by current cybersecurity educators, who face an increas-
ingly intense demand for cybersecurity instruction, without an increased flow of
resources that they can use to support this instruction (Cobb, 2016).

In particular, we have noticed that cybersecurity educators are often tasked with
preparing their students for both theoretical and practical aspects of cybersecurity,
with greater challenges presented for the practical side. The theories within cyberse-
curity education are generally simpler to introduce and create traditional, lecture-
based curriculum for, and there are a fair amount of resources present for educators to
utilize in creating their theoretical curriculum. Some examples of these resources in-
clude online articles, information databases, or conferences sponsored by government
cybersecurity education initiatives, such as NICE (https://www.nist.gov/itl/applied-
cybersecurity/nice) and CISA (https://www.cisa.gov/cybersecurity-education-career-
development). These programs give educators access to shared resources that they
can introduce into their classrooms, and provide useful hubs of information explain-
ing theoretical concepts for cybersecurity.

However, on the practical side of things, educators’ access to useful resources is
much more limited. Generally, educators require platforms that they can utilize in
class to give their students hands-on experience. These platforms can be expensive
to host, complicated to set-up or scale to match the size of a class, and difficult
to maintain for an educator already balancing their other responsibilities as an
instructor. There are some programs that seek to offer educators pre-prepared spaces
where they can imitate practical, workforce scenarios for their students, such as
the NICE Challenge (https://nice-challenge.com/), but there is not an abundance
of such practicality-focused platforms. Further, we have noted that these resources
- as well as the theoretical resources discussed above - tend to focus on broader
defense-related topics in security, with a noticeable lack of attention to other sides
of cybersecurity. In particular, there is rarely a focus on secure coding as a training
method for cybersecurity professionals, or offensive tactics of security evaluation.

Our project seeks to add to the practical resources that cybersecurity educators
can utilize in their courses to increase and improve the secure coding mentality of
their students. We specifically plan to create resources that highlight secure coding
and offensive security practices through the common cybersecurity competition

1

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



tactic known as capture-the-flag (CTF) challenges. The reasons for this specific goal
and the classroom-based framework within which we set up our challenges will be
discussed at further length in later sections.

MOTIVATION
There is much that needs to be improved within the field of cybersecurity edu-
cation, specifically in teaching secure coding practices and mindsets. Many CS
undergraduate students begin to learn the foundations of their coding skills early
in their education, without much thought or preparation given to secure practices
while coding. This leads to an incoming software engineering workforce unused to
thinking of the security of the code they produce, and a belated need to check for
security exploits and attack vectors after software is already in production (Gasiba
et al., 2020; Taylor and Kaza, 2011; Chi et al., 2013). Unless students are taught to
be security-conscious while coding, employing secure coding practices as they write
software instead of afterwards, this will continue to be a costly, common problem in
the tech industry.

The primary objective of this project was to employ CTF coding challenges as a
means to improve the consideration of secure coding among undergraduate students
who are interested in programming. Subsequently, the major learning objective is for
the students to change their coding mindset by considering security as a vital step in
the development process rather than keeping it as a mere afterthought. Another core
learning objective is for the students to get a feel of what to look for in their code
when they conduct its security evaluation. We would test how students approach
code before the CTF challenges and how they approached code after attempting
them, to see if their mentality in checking the security of the code changed at all.
Ideally, we wanted to increase the secure coding mindsets of the undergraduate
students so that they would begin to write and evaluate code with secure practices in
mind. In doing so, we hope to help produce software engineers more equipped for
the necessity of security-conscious programming in the growing tech industry. Our
other objectives with this project were that:

• Students should have an increased practical understanding of web security.
They should also have an increased understanding of typical attack vectors in
web security, and be able to more easily comprehend the attacking of insecure
code. We hoped that this would represent increased confidence in topics of
web security, and a recognition of the importance of building web applications
in particular with secure coding practices in mind.

2

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



• Our CTF challenges would influence increased engagement with secure cod-
ing concepts, as well as improved interest in the cybersecurity field at our
university. Coming from the background of a liberal arts university, with a
smaller CS program, students primarily focus on software development and
rarely take cybersecurity electives. We hope that secure coding concepts would
draw more interest in cybersecurity among undergraduates.

• Students should have access to a variety of CTF-related and secure coding-
related resources following the completion of the course that they feel com-
fortable using. This will allow them to pursue their interest in cybersecurity
outside of the class and build up a steady project base in their own time. Ideally,
this will allow us to spread the importance of secure coding outside of the
course content itself, and continue to encourage students to think about and
prioritize it even once the CTF challenges are over. It will also encourage
independent learning and engagement with cybersecurity in our university
community.

We have designed the framework and resources of our project with these ob-
jectives in mind, establishing a customized CTF challenge educational platform
that will be expounded upon in the following section. We incorporated the CTF
challenges into the Introduction to Network Security course that does not have any
prerequisites and is structured to be taken by non-CS majors. It is important to note
that the above-mentioned objectives are not related to the learning objectives in the
network security class, with the idea that the CTF challenges can be introduced in
any CS course (where it is deemed appropriate).

RELATED WORK
The use of CTF-style competitions has grown popular in a variety of environments as
a method to improve or reinforce cybersecurity techniques. Several previous papers
have discussed the usage of CTF as a gamified method of enhancing cybersecurity
performance for individuals in the technology fields (Taylor et al., 2013). Generally,
there appears to have been the greatest amount of focus on traditional, competition
CTF challenges, hosted in city-wide or even nation-wide events where teams compete
against one another in a variety of CTF styles. Gasiba et. al. have utilized this setting,
usually thought of as a space for undergraduate student engagement, as a training
setting for industry cybersecurity professionals (Gasiba et al., 2020). Their work
demonstrates the need for increased cybersecurity excellence continuing even with
current industry workers. They bring to light the value of CTFs as a means to
reinforce or teach concepts often overlooked by workers in a time-constrained,
intense competition. They affirm the benefits of using CTF in education settings, and

3

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



believe that CTF should be used for training in the industry as well as academia. The
competition-style CTF has also been used as a tactic to encourage undergraduate
student interest in cybersecurity, with studies by Davis et al. demonstrating their use
as a recruitment tool for students interested in cybersecurity and an encouragement
to increase student knowledge of their own cybersecurity concepts outside of the
classroom. Specifically, Davis et al. designed apps allowing students to launch their
own CTF for practice at home. Davis et. al. also adds within their own study that
while the CTF competitions can work to encourage students to learn more on their
own, it does not seem effective as its own education tool (Davis et al., 2014).

However, there are other settings where CTF has been used specifically as a
tool for education. The tactic of integrating small modules of CTF into the course
curriculum is introduced by Mirkovic and Peterson, who developed CTF challenges
to give to students in an undergraduate security class. Mirkovic and Peterson’s
challenges were introduced 2-3 times a semester, allowing students a few weeks in
between to prepare for the challenges and treating them like a competition-style CTF.
Their class CTFs have a slightly lighter load than competition CTFs, though, making
them easier to implement (Mirkovic and Peterson, 2014). Chothia and Novakovic
also implemented in-class CTF challenges in a separate study, where CTF challenges
were designed as the primary part of a cybersecurity course’s classwork throughout
an 11-week semester. The course was set up with a student expectation of 3-4 hours
of work on CTF challenges, along with a write-up describing how each flag was
obtained. Programs were designed to be completed on VMs offline (Chothia and
Novakovic, 2015). These integrations primarily take the CTFs as modules within
the coursework, designed to be completed by students as they learn, as a manner
of using gamification (Gonzalez et al., 2017) to encourage participation and active
learning/retention of cybersecurity concepts. Gonzales et. al. takes a slightly different
approach with their use of CTF in the academic setting, placing the challenge instead
at the end of the school semester and utilizing it primarily as a reinforcement
technique for what students have been taught by the ordinary class curriculum in a
cybersecurity course (Gonzalez et al., 2019). Success in student engagement with the
core concepts of cybersecurity classes has generally been met through all versions of
the academia CTF challenges, with high participation and reported enjoyment from
students for the challenges themselves.

For all academic settings, a constant challenge for incorporating CTFs is the
creation of enough challenges to satisfy all students. A study by Schreuders and
Ardern investigated a technique of using machine learning to generate random
challenges for students, but ran into difficulties with students recognizing the same
general patterns after a while and being able to more quickly complete the tasks
(Schreuders and Ardern, 2015). Another consistent challenge for academia CTFs is

4

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



the manner of testing how effective the CTFs are at teaching or reinforcing concepts
for students. A variety of evaluation methods are presented, and a particularly
thorough one by Chothia and Nvakovic utilizes open-ended student feedback as well
as point systems to determine material learned. A correlation was shown between the
understanding of basic cybersecurity concepts greatly strengthened by the number
of flags achieved, but the correlation was weaker for the students with higher marks,
and it couldn’t indicate a deeper understanding of the concepts. Describing fixes for
the problems helped demonstrate which students had a deeper understanding. This
study, however, admits the pitfalls that even with a thorough evaluation technique, it
becomes difficult at the higher level to tell how deeply students are understanding
and retaining concepts based purely on the measurements in place (Chothia and
Novakovic, 2015).

SYSTEM OVERVIEW
General Framework
Our CTF challenges (open-source, dockerized, available on GitHub, and publicly-
deployed on Oracle Cloud always-free servers for everyone to use at (Ford, 2022a,
Ford, 2022b)) are set up on the main CTFd server (Chung, 2017) being run 24/7.
CTFd is an open-source server for running CTF challenges which we have utilized
as the base of our project for its easy set-up and website design. CTFd does not have
any challenges on its own. Our challenges are designed in the Jeopardy-style of CTF,
where students will form teams to find exploits and attack vectors of various hosted
webpages, and uncover the flags (strings of text and numbers) hidden within these
vulnerabilities. We developed a total of 20 challenges, inspired by real-world vulner-
abilities that we searched for on Vulmon (Vulmon, 2022), for instance, Heartbleed
Vulnerability (Vulmon, 2014) and SQL Truncation Vulnerability (Vulmon, 2008).
We simplified the exploitation chain for those vulnerabilities, making it feasible
to approach by people who have never worked on CTFs or thought about secure
coding at all. By submitting flags to the main CTFd server, students then gain points
for their team. These points are used in ranking the teams against one another on a
scoreboard, and also in determining extra credit received in the main course the CTF
competition is being held within (see section Integration with the Course for more
details).

Our CTF challenges are written in a variety of languages, encouraging students
to interact with various programming languages they may encounter in security fields
and situations later in the industry. The highest number of challenges are written in
PHP or a combination of PHP and Javascript, giving priority to languages commonly
used in website design and web security. Challenges written in Java are the second

5

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



highest in number, followed by a handful of challenges in Python that are the third
highest. One challenge is written in C++. Each of these challenges is also set up with
downloadable files of source code which students can analyze while they are trying
to find the flag (see section Viewing Source Code for more details). These files of
source code are written in the languages each challenge is marked as (for instance,
PHP or PHP/Javascript, Java, and so on).

As students progress through capturing flags, the challenges are designed to
increase in difficulty, with the exact vulnerabilities present in each challenge webpage
going beyond what is taught in the class. Students will be highly encouraged to look
things up and utilize the Internet to figure out what they need to do next, mirroring
the traditional CTF-style competition setting, instead of asking the professor for
assistance. Teams will also be able to “purchase” hints through the CTFd hint system,
with a varying number of hints available on each challenge. These hints will cost
points from the teams’ overall scores, again to encourage students to discover the
answers on their own before buying them. However, if a team of students finds
themselves completely lost, even with the assistance of hints and the Internet, they
may ask the professor for guidance in solving certain challenges. This will be treated
only as a last-resort option, though, to keep in the spirit of the CTF competitions and
as a result of these CTFs being treated as an extra credit assignment for class (again,
see section Integration with the Course for more details).

Viewing Source Code
As part of the CTF challenges, students will be able to download source code files
corresponding to each challenge webpage. These files are designed to be examined
while students test out site vulnerabilities on the webpage, and serve as a guide for
students to see what parts of the website code might be vulnerable to attack. This
approach to evaluating the system mimics white-box cryptography (Saxena et al.,
2009; Beunardeau et al., 2016), and allows students to spend less time figuring out
what is inside the system they are trying to exploit, and more time discovering the
problems within it straight from the beginning. By reading through the source code,
students can look for vulnerabilities written into the code, and try exploiting them on
the corresponding website as though they are system evaluators rather than attackers.

The idea for this white-box approach to our CTF challenges rather than the
typical black box comes from work with encryption algorithms. Effective encryption
algorithms are public and open-source, allowing them to be reviewed heavily by
any parties interested in reviewing them for vulnerabilities. The security of these
algorithms is not dependent on an intimate knowledge of the system they come
from, but rather on the evaluation of how they are written and what can be done to

6

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



improve them. Instead of hiding vulnerabilities, they can be openly available for
anyone to find and fix, leading to a less “dangerous” environment, as Bellovin and
Bush call it (Bellovin and Bush, 2002). Encryption algorithms and schemes are
often public rather than proprietary due to this largely beneficial state of community
involvement and improvement, rebuking the concept of “security through obscurity”
(Edwards, 2014) that many proprietary systems follow, and sometimes suffer due to.
By mirroring the white-box encryption algorithm approach, our students are able to
become invested reviewers of the security of our challenge webpages, able to test its
weaknesses and identify the problematic elements of code that need to be changed
within it through familiarity with security practices.

Our source code approach also has other ramifications for our students, and in
particular, for our main objective with this project. As we are trying to increase
the secure coding mentality of our students, encouraging them to think of security
problems as they code instead of afterwards, giving them access to source code itself
is invaluable. It allows them to start learning how to read code with security in mind,
and how to think of ways to look for code vulnerabilities as they write their own
programs. They begin to think of how to interact with code securely rather than
simply how to interact with an exploitable website, building the secure mentality we
are looking for.

Additionally, by having the source code, students from a variety of coding back-
grounds are able to read and understand the weaknesses present in every challenge
even without a “proper” background in each coding language. Since they have direct
access to source code, they can use their knowledge of whichever coding languages
they are most familiar with to parse through unknown coding languages, looking up
language-specific terms where needed, but otherwise using simply their own general
knowledge. They begin to learn to figure things out in unknown languages with a cod-
ing mindset, and develop methods of dealing with problems cross-language through
a programming mentality. By making source code accessible for our students, we
also remove the barriers that typically divert beginners away from participating in
CTFs.

Integration with the Course
Our CTF competition is embedded within the framework of an undergraduate net-
work security class, taken as an elective within our university’s CS degree curriculum
by students varying in background from freshmen to seniors. The course does not
assume any prior knowledge in any of the CS areas. The CTF competition is designed
to serve as a supplement to the topics being discussed within the network security
class and opened for two months in the middle of the semester. It is meant to give a

7

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



practical and hands-on look at the topics outside of the class (the challenges’ topics
are not directly covered in the class), and while not included as a required part of the
curriculum, it will be used for extra credit (bonus points) for students who participate
in it. Participating students will organize themselves into teams of two, reflective of
common pair programming techniques in CS education.

It is important to note that even though the CTF challenges are used in a network
security class at our institution, they are developed to be easily integrated into any CS
course where it makes sense to introduce practical secure coding. Also, students who
have never programmed before would struggle to work on these challenges. However,
in our particular case, first-year students were still able to solve Java challenges as
they have taken their first Java course in the fall, and the network security class runs
in the spring. In fact, most of the students in the class were only familiar with Java
but that did not hinder them from solving challenges written in Python or PHP due
to the hints, comments, and resources integrated into the CTF challenges.

Depending on the number of challenges teams of students are able to complete,
and thus the amounts of points they receive, students will be given a number of addi-
tional points added to their main tests in the class. Specifically, for every challenge
they are able to solve, ten points will be added to their test grades, starting with
the midterm and then the final. Full credit on both tests (each worth 5% of the final
course grade) is feasible with this point system, if 20 challenges are solved. The
course is explicitly designed so that not participating will not impact a student’s
grade in any way, though significant advantages can be gained by completing the
challenges. The challenges will be continuously running as soon as they are launched,
and students are given some opportunities to work on the challenges in class, though
they may also continue to work on them from home. The amount of time in which
they devote to the challenges is entirely up to them.

The CTF competition is launched in March during the Spring semester of the
security class, after students have consumed a large portion of the class content.
Not all students within the network security class are expected to have coding
experience, as it is a course open to beginners in the CS fields without prerequisites
and sometimes is taken by non-CS majors. Thus, it is primarily students with coding
experience within the class who want to take their practical skills a step further that
participate in the challenges, though all students are highly encouraged to participate
in the CTF challenges after they are launched.

Challenge Examples
When students begin to approach these challenges, they first select one they wish to
pursue from the main CTFd server home page. After selecting one, a screen will pop

8

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



Figure 1: Image of the general pop-up that displays for a Java CTF Challenge called “Sloth”

up to give students a link to the webpage they will be trying to exploit, download
options for any source code files they will need for the challenge, and an option to
unlock hints. There will also be an area to submit the flag text as soon as it is found
(see figure 1).

From this screen, students can open the webpage they will be looking at and
begin to examine the code behind it, trying to find vulnerabilities in the webpage. For
many of the earlier challenges, the source code will be commented with subtle hints
or messages from a “developer” that may give them clues as to where they need to
direct their attention. In the Java program shown in figure 2 for instance, a comment
is left above a hash saying that the hash is “just for testing purposes, please change
when deploying in production!!”. While not all comment hints are this obvious, lines

9

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



such as this may draw students’ attention to suspicious or vulnerable functions in
the code that they need to pay attention to.

Figure 2: Image of part of the Java source code within the “Sloth” CTF challenge, displaying
developer comments

Students within the example problem may realize the next steps they should
experiment with thanks to such hints, such as finding a de-hashing website and
running the hash code through it along with the content of the variable password. If
they manage this, they will find the correct credentials and be able to log into the
exploitable webpage (see figure 3). For this problem, after a student logs in, they
will next be able to access the flag file and submit it.

Not all exploitable webpages within the CTF challenges will look or act the
same. Another example of a CTF challenge students might come across is a Python
challenge called “Da Bug”, which contains the remnants of debugging commands
that can be used insecurely by users. By noticing the comments above this section of
the code, and realizing that admin commands in Linux are still available to anyone
who enters the website, students may begin to examine the commands available to
them in Linux and see which ones are necessary to retrieve a flag file. The tricky
portion of this challenge would be figuring out where to interact with the webpage
to put the commands, as there are no input boxes on this website, such as with the
password fields from before (see figure 4). Students may figure out that the URL
path is another interactive portion of the website, and that Python code permits users
to enter Linux commands within it. They may discover this by purchasing hints,
recalling class lessons, or playing around with the website. From here, it is a short
journey for students to enter the correct Linux commands necessary to access the
flag file and submit it for points.

10

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



Figure 3: Image of the exploitable webpage for the Java CTF challenge, “Sloth”

The two challenges covered above are both beginner-level challenges that would
come early in the CTF competition stages. However, other challenges work also very
similar to the process described above, with students having access to the webpage
and source code, and looking between the two of them to see which portions are
vulnerable. Often, the hints within comments on the code - which range from the
more obvious notes given above to a simple line describing a function of a piece
of code that may be useful for a student’s attack attempts - will be the first step
in guiding students to the right answer. These comments are especially helpful for
the beginner population of our network security class, as many of them have no
experience with cybersecurity before this and would not know what to look for.

RESULTS
Prior to the beginning of the challenges, our participating students completed a
pre-survey indicating their level of agreement (via the Likert scale) with a variety
of statements. These statements were designed to reflect the core objectives of our
project, gauging the students’ pre-challenge secure coding mindsets, understanding
of web security, interest in cybersecurity, and access to cybersecurity resources. The
same questions were provided as a post-survey following the challenge period, with
additional short response questions as well as a final open-ended question asking for
their thoughts on the challenges. The data that we collected from both surveys, and
specifically, the overall changes we are able to see in the class mindset following the

11

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



Figure 4: Image of the exploitable webpage for the Python CTF challenge, “Da Bug”

completion of the challenges, have been examined to evaluate the results of our CTF
challenges.

Pre-Survey Results
We received a total of 28 responses from our student participants on the pre-survey
of five, Likert-style questions. Although we had 28 submissions to the form, only 19
participants later registered as active users on the site to complete the secure coding
challenges.

The five statements that our students were asked to rate their agreement with
during the pre-survey are the following:

• I often think of evaluating my code for security when I write or see it.

• I can comfortably analyze my code using attack and/or vulnerability vectors.

• While navigating the Internet, I have a high level of awareness of web attacks
and/or web attack vectors.

• I am currently interested in topics of cybersecurity and secure coding.

• I have a reliable amount of cybersecurity/secure coding resources that I can
use often and easily.

Of these five questions, the first two are designed to evaluate the secure coding
mindset, the third evaluates understanding of web security, the fourth evaluates

12

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



cybersecurity interests, and the fifth evaluates access to cybersecurity resources.
All of our questions evaluate these through the students’ self-reported assessments,
due to the goals of this study as well as the course our students were in. Since this
course was an elective introduction to network security, the goal was not to make
all students proficient in identifying bugs in code. Similarly, the goal of our study
was not security proficiency, either. It was to see if students noticed changes in their
mindsets and the way they approach secure coding and coding in general, which we
decided would be best noted through the perspective questions listed above.

None of our students responded to any of our statements with “Strongly Dis-
agree”, indicating that our student population was at least marginally familiar with
cybersecurity, including our beginning learners. However, 46.4% of our students
indicated “Disagree” to the statement “I can comfortably analyze my code using
attack and/or vulnerability vectors”, our highest concentration of the “Disagree”
response within the survey. This demonstrates an overall unfamiliarity with secure
coding as a mindset within our student population.

Further exemplifying this unfamiliarity, our questions that garnered the most
“Neutral” responses were our two secure coding mindset questions (see figure 5).
For the same statement mentioned in the previous paragraph, 46.4% of our students
responded “Neutral”, making a total of 92.8% of students who either marked “Neu-
tral” or “Disagree” to their ability to analyze their code with attack/vulnerability
vectors. 50% of students also responded “Neutral” to the statement “I often think of
evaluating my code for security when I write or see it”, indicating that a majority of
our student population does not actively prioritize security while coding.

When it came to passive security awareness, however, we received a much more
positive response. In response to the statement: “While navigating the Internet, I
have a high level of awareness of web attacks and/or web attack vectors”, 50% of
students indicated “Agree” and 25% indicated “Strongly Agree”, making a total of
75% of our population that claimed security awareness during their own browsing. A
similar level of enthusiasm was garnered for our question on cybersecurity interest,
with 42.9% responding “Agree” and 39.3% responding “Strongly Agree” to our
statement “I am currently interested in topics of cybersecurity and secure coding”,
for a total of 82.2% positive responses.

Our final question regarding access to cybersecurity resources was the most split.
The highest concentrated response was tied between “Neutral” and “Agree” at 35.7%
each, followed by “Strongly Agree” and “Disagree” which were also evenly split
at 14.3% each. This forms an excellent representation of the mixed background
of our student participants, some of which are cybersecurity beginners and others

13

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



Figure 5: Image of a pie chart representation of responses to our first two questions, demon-
strating the high level of “Neutral” responses

enthusiasts, as well as a general need for our curriculum to provide more reliable
cybersecurity resources to our students across the board.

Post-Survey Results
We received a total of 11 responses from our student participants on the post-survey
of five, Likert-style questions with additional open-ended questions. This accounts
for 11 out of our total of 19 active users, three of which had completed every
challenge available on the site (as an additional note, many of the top performing
students within our group, including two of our participants who completed every
challenge, were female). We did not collect data on why some students did not
complete every challenge, but our assumptions are that some did not have enough
motivation to complete all challenges (seeing as it was not a requirement to do

14

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



so), others may have been overloaded with work from classes, and still, others
may have only attempted challenges written in programming languages they were
already familiar with. The focus of our post-survey was to judge not completion or
proficiency with the challenges, but to evaluate changes in our students’ mindset
regarding secure coding as a result of them.

As such, the Likert-scale questions on the post-survey were identical to the pre-
survey set, paired with additional open-ended questions that encouraged students to
recall their experiences with the CTF challenges and secure coding concepts relevant
to each question. A final open-ended question was created at the end of the survey,
asking for additional thoughts from our participants.

To begin with a comparative analysis of the Likert-style questions, we can again
say that none of our participants responded with “Strongly Disagree” to any of our
statements. Further, only one statement garnered any “Disagree” responses at all: “I
can comfortably analyze my code using attack and/or vulnerability vectors”. The
concentration of our “Disagree” responses was marginally lower on this question
than in the previous survey, with only 9.1% of participants selecting it. In total,
compared to the 92.5% of students who previously responded to this statement with
either “Neutral” or “Disagree”, only 27.3% of students in the post-survey responded
with either of those categories, while 72.7% responded “Agree”, showing a marked
increase in secure coding familiarity and comfort among our participants (see figure
6).

Our second secure coding mentality statement - “I often think of evaluating my
code for security when I write or see it” - saw a similar positive increase, going
from a majority response of 48.1% “Neutral” to a majority of 63.6% “Agree”, with
the rest of the percentage split evenly at 18.2% between responses for “Neutral”
and “Strongly Agree”. The increase in our level of “Strongly Agree” responses, in
particular, going from 7.4% in the pre-survey to the even split of 18.2% in the post-
survey, also showcases a notable improvement in our participants’ secure coding
mentality (see figure 6).

Similar to our results in the pre-survey, our most positive responses came from
the statement “While navigating the Internet, I have a high level of awareness of
web attacks and/or web attack vectors”. However, whereas the pre-survey reported a
total of 74% of responses being either “Agree” or “Strongly Agree”, the post-survey
was 100% comprised of these two responses, with 63.6% of participants choosing
“Agree”, and the remaining 36.4% choosing “Strongly Agree”. This shows not only
a maintaining of student confidence in security awareness, but a solid increase in it
that has eliminated indications of discomfort and unfamiliarity with the subject.

15

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



Figure 6: Image of a pie chart representation of responses to our first two questions, demon-
strating the dramatic increase in positive responses to our secure coding mentality questions.

Our statement on cybersecurity interest saw a similar increase in student con-
fidence, but not at a drastic level. Responses here were split at 45.5% between
“Agree” and “Strongly Agree”, with the remaining 9.1% being “Neutral”. We saw
an improvement from the pre-survey in how “Strongly Agree” rose to equal the
amount of “Agree” responses indicated, creating a total of 91% positive responses
compared to the pre-survey’s rating of 81.4%. This demonstrates a steady increase
in cybersecurity interest from our students after completing the challenges.

Finally, our statement on cybersecurity resources was highly different from
the results of the pre-survey. No longer resulting in the most split responses, this
statement garnered a solid majority of 54.5% responses of “Agree”, with 36.4% of
other responses being “Strongly Agree” and only 9.1% of responses being “Neutral”.
The majority response changed from being “Neutral” to “Agree”, and “Disagree”

16

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



disappeared entirely from received responses. This shows another drastic increase
in our students’ confidence, this time representing their increased access to reliable
cybersecurity resources (see figure 7).

Figure 7: Image of a pie chart representation of responses to our final question, indicating
the far more even responses received in the post-survey, compared to the split responses of
the pre-survey.

Overall, we saw a greater amount of confidence from our student participants
across the board in their secure coding mentalities, passive security awareness,
cybersecurity interest, and resource access. A note on these changes, however, is
that this increased confidence may have come in part from the concurrently taught
network security class these students were in, rather than as a direct result of their
participation in the CTF Challenges themselves. When examining the open-ended
responses that we received, we gain a much clearer picture of what benefits students
perceived that came specifically from the CTF challenges.

As open-ended questions were made optional in the post-survey, not every
student submitted a response for each one. Collectively, we received 38 open-ended
responses to the 6 open-ended questions posed. Out of these responses, the most
impactful to our understanding of the CTF Challenges’ effect were the following:

• “CTF challenges are now an additional learning resource that are definitely
getting me out of my comfort zone with NS but really get me thinking.”

• “Learned more about penetration testing and vulnerabilities in code than
if it hadn’t been in the course. The high bonus point incentive also really
incentivizes people to work hard on it.”

17

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



• “The code analysis was interesting as well, it made me a lot more aware about
how data is stored when writing programs”

• “Need more challenges”

• “The one thing that was a bit difficult...is that the hint system is a bit too
technical at times...It probably is expected that we were familiar with certain
tools or concepts, but it would be nice to kind of dumb down some of the hints
or make their explanations a bit more expansive”

• “Maybe it would be chill to have like a tutorial or prompt system to interact
with the user upon entry or throughout the challenges to keep them engaged/on
task.”

• “you could have the point locked hints be for how to use [freely provided]
tools, where to refer in the article/tutorial linked previously, and then how to
acquire the answer (but of course without saying it explicitly)”

These comments showed us a variety of things about our program. One of
the most surprising was that some students considered the challenges a practice
resource, and indicated a desire to return to the challenges in the future for more
practice. This went hand-in-hand with a request several students mentioned for
more challenges, both as general additions to existing content, and as specific
additions of certain programming languages/security issues not as well represented
in the current challenges. While we had intended our program to be used as a
one-semester, concurrent addition to the network security course, it seems our
students would appreciate it more as a continuous resource they can access post-
course, with increasing content and additional challenges being added for further
practice. Whether this would be feasible requires deeper consideration, and would
also necessitate a restructuring of the extra-credit incentive given to students, as
completing all challenges on a continuously expanding platform is not fair to future
students.

From seeing these comments, it is also clear that the extra-credit incentive is
a necessary part of this concurrent program. Specifically, the “high” nature of the
incentive that allows students to potentially skip their midterms and finals is a
massive draw for participants. While many of them were eager to learn more about
cybersecurity outside of the scope of the network security course, these incentives
likely served much better to garner a wider pool of participants at the beginning.

Our inclusion of source code also appeared to be a good idea based on some of
the responses received, encouraging student participants to think more deeply about
different aspects of their code “when writing programs”. This directly tied into our

18

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



objectives for getting students to think with a secure coding mindset while they are
writing their own code. However, we did not receive any responses from students
who considered themselves beginners about how much more accessible the source
code made the challenges for them. It remains unclear as to whether the source code
increased or decreased the accessibility of our challenges and the amount of them
new students could complete.

On the topic of accessibility, the final takeaway that we learned from the above
comments was that our hint system was not as helpful as it could have been, particu-
larly for beginning students. The technical language of the hints made them more
confusing, and the minimalist approach we took with adding links to external sources
also garnered some frustration. While the extra sources that we offered students
were appreciated, beginner students sometimes did not know how to navigate these
sources and found them to be a further layer of complexity keeping them from
figuring out their next step. One student suggested making the external resources
“free”, that is, provided initially in each challenge’s description rather than only
available in point-locked hints. The hints could then be unlocked via points with
extra advice on how to utilize these resources, or where to find pertinent informa-
tion for the challenges at hand. Another comment from above gave suggestions on
making the interface of the website itself more user-friendly for beginners, with a
potentially dynamic website set-up that can keep students engaged as they begin
to learn how to complete the challenges. This student described the initial website
as “overwhelming”, indicating another weakness with our current set-up for how
accessible the CTF challenges are to students.

While the comments discussed in-depth above were the most impactful for us, it
is also worth noting that throughout the open-ended responses, students often made
direct references to practices they had learned during the CTF challenges or as a
result of the challenges. For example, “After CTF-> [evaluating code for security
means] any type of overflow that would cause a leak, double checking user input
values, having up to date patches if using certain software”. One student even directly
referenced a piece of code from one challenge as an example of a vulnerability: “flag
= “bananas”;”. This demonstrated clearly for us that many of these students were
considering the CTF challenges in their thought processes for cybersecurity and
secure coding, and that it had framed examples of security vulnerabilities for them
to be aware of.

Based on the wording of responses like these as well as the impactful comments
above, we have seen that the CTF challenges proved to be a useful resource for
framing and improving our students’ security mindsets.

19

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



CONCLUSIONS AND FUTURE DIRECTIONS
Ultimately, based on the results enumerated above, we conclude that our CTF
challenges were moderately effective at improving the secure coding mentality
of our students. Students were on average more likely to consider the security of
their code while writing it and to consider security vulnerabilities while examining
other code or browsing through websites. Most of our students believed that the
challenges were a fun and engaging way to let them practice secure coding concepts
in a hands-on manner, supplementing the content of the network security class
they were enrolled in. Many of our students demonstrated increased confidence
in their ability to recognize, patch, and/or exploit security vulnerabilities, as well
as increased awareness of cybersecurity resources they could use to practice such
activities post-challenge.

Based on the experience of developing CTF secure coding challenges, we would
like to encourage others to take a look at real-world vulnerabilities (for example, on
the Vulmon search engine that we used (Vulmon, 2022)), learn about the impact and
the main exploitation vector, and develop a challenge in any modern language that
would mimic the real vulnerability in a simplified form.

Moving forward, one of the obvious weaknesses of our study is our limited
sample size for students who attempted our CTF challenges. Additionally, it should
be noted that there is a possibility of non-response bias as the pre-survey and post-
survey were anonymous and not required (hence, there is a difference in the number
of responders in the pre-survey and post-survey). While we wish we could have
increased that size, our class sizes are extremely small at our liberal arts institution,
and there are not many electives offered frequently where these challenges could
have been introduced in parallel in the same semester. We would recommend those
who take our work further test challenges like these on a greater number and variety
of students, for an extended period of time. Also, it is likely that requiring the
students to complete the post-survey would facilitate better analysis and avoid the
challenges of non-response bias.

Regarding the CTF challenges themselves, further improvements can be made
which include expansive content, a platform navigation tutorial, and more beginner-
friendly hints and resources. In general, our current system would ideally be made
substantially more user-friendly for beginner students and would incorporate more
pedagogically-helpful tools for our students to encourage them to learn the chal-
lenge material in smaller, scaffolded steps. Particularly, we would want to create
this scaffolding within our hint system, while leaving the challenges themselves
similar to traditional CTF challenges, without any additional help for the students
attempting to solve them. We will also consider making the CTF challenges an

20

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



ongoing platform that will be consistently expanded for students who intend to use
it as a continuous training/practice resource. In the future, we would expand the
platform by incorporating more challenges in other coding languages, increasing the
difficulty of existing challenges and relaunching them as new levels, or introducing
new concepts from cybersecurity not as greatly emphasized in our current challenges,
such as database attacks.

REFERENCES
Bellovin, S. M., & Bush, R. (2002). Security through obscurity considered dangerous.
Beunardeau, M., Connolly, A., Geraud, R., & Naccache, D. (2016). White-box cryptography: Security

in an insecure environment. IEEE Security & Privacy, 14(5), 88–92.
Chi, H., Jones, E. L., & Brown, J. (2013). Teaching secure coding practices to stem students.

Proceedings of the 2013 on InfoSecCD’13: Information Security Curriculum Development
Conference, 42–48.

Chothia, T., & Novakovic, C. (2015). An offline capture the flag-style virtual machine and an
assessment of its value for cybersecurity education. 2015 {USENIX} Summit on Gaming,
Games, and Gamification in Security Education (3GSE 15).

Chung, K. (2017). Capture the flag platform [https://ctfd.io].
Cobb, S. (2016). Mind this gap: Criminal hacking and the global cybersecurity skills shortage, a

critical analysis. Virus Bulletin Conference, 1–8.
Davis, A., Leek, T., Zhivich, M., Gwinnup, K., & Leonard, W. (2014). The fun and future of {ctf}.

2014 {USENIX} Summit on Gaming, Games, and Gamification in Security Education (3GSE
14).

Edwards, C. (2014). Researchers probe security through obscurity.
Ford, V. (2022a). Deployed free secure coding ctf platform [https://ctf.vford.com].
Ford, V. (2022b). Secure coding ctf platform source code [https://github.com/vitalyford/secure-

coding-ctf].
Gasiba, T., Lechner, U., Pinto-Albuquerque, M., & Zouitni, A. (2020). Design of secure coding

challenges for cybersecurity education in the industry. International Conference on the
Quality of Information and Communications Technology, 223–237.

Gonzalez, H., Llamas, R., & Ordaz, F. (2017). Cybersecurity teaching through gamification: Aligning
training resources to our syllabus. Res. Comput. Sci., 146, 35–43.

Gonzalez, H., Llamas, R., & Rivas, O. M. (2019). Using a ctf tournament for reinforcing learned
skills in cybersecurity course. Res. Comput. Sci., 148(5), 133–141.

Mirkovic, J., & Peterson, P. A. (2014). Class capture-the-flag exercises. 2014 {USENIX} Summit on
Gaming, Games, and Gamification in Security Education (3GSE 14).

Paulsen, C., McDuffie, E., Newhouse, W., & Toth, P. (2012). Nice: Creating a cybersecurity workforce
and aware public. IEEE Security & Privacy, 10(3), 76–79.

Saxena, A., Wyseur, B., & Preneel, B. (2009). Towards security notions for white-box cryptography.
International Conference on Information Security, 49–58.

Schreuders, Z. C., & Ardern, L. (2015). Generating randomised virtualised scenarios for ethical
hacking and computer security education: Secgen implementation and deployment.

Taylor, B., Bishop, M., Hawthorne, E., & Nance, K. (2013). Teaching secure coding: The myths
and the realities. Proceeding of the 44th ACM technical symposium on Computer science
education, 281–282.

21

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022

https://ctfd.io
https://ctf.vford.com
https://github.com/vitalyford/secure-coding-ctf
https://github.com/vitalyford/secure-coding-ctf


Taylor, B., & Kaza, S. (2011). Security injections: Modules to help students remember, understand,
and apply secure coding techniques. Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education, 3–7.

Vulmon. (2008). Cve-2008-4160 wordpress sql truncation vulnerability [https : / / vulmon . com /
vulnerabilitydetails?qid=CVE-2008-4106&scoretype=cvssv3].

Vulmon. (2014). Cve-2014-0160 heartbleed vulnerability [https://vulmon.com/vulnerabilitydetails?
qid=CVE-2014-0160&scoretype=cvssv3].

Vulmon. (2022). Vulnerability search engine, from products to vulnerability types [https://vulmon.
com/].

22

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9

https://vulmon.com/vulnerabilitydetails?qid=CVE-2008-4106&scoretype=cvssv3
https://vulmon.com/vulnerabilitydetails?qid=CVE-2008-4106&scoretype=cvssv3
https://vulmon.com/vulnerabilitydetails?qid=CVE-2014-0160&scoretype=cvssv3
https://vulmon.com/vulnerabilitydetails?qid=CVE-2014-0160&scoretype=cvssv3
https://vulmon.com/
https://vulmon.com/


APPENDIX

Figure 8: Image depicting the number of times each of our challenges were solved by different
participant teams.

Figure 9: Image depicting the concentration of score ranges across our participant teams,
showing great variation in the ranges achieved.

23

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022



Figure 10: Image depicting the percentage of participant teams who were able to solve each
challenge.

Figure 11: Image depicting the percentages of solution submissions we received from partici-
pant teams that were either solves or fails.

24

Journal of Cybersecurity Education, Research and Practice, Vol. 2022, No. 2 [2022], Art. 9

https://digitalcommons.kennesaw.edu/jcerp/vol2022/iss2/9



Figure 12: Image depicting the percentage of challenges that were from different weeks in
the CTF platform (the later weeks indicate higher difficulty).

25

Collins and Ford: Shaping Secure Coding Mentalities through Cybersecurity CTFs

Published by DigitalCommons@Kennesaw State University, 2022


	Teaching by Practice: Shaping Secure Coding Mentalities through Cybersecurity CTFs
	Recommended Citation

	Teaching by Practice: Shaping Secure Coding Mentalities through Cybersecurity CTFs
	Abstract
	Keywords
	Cover Page Footnote

	Teaching by Practice: Shaping Secure Coding Mentalities through Cybersecurity CTFs

