
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Physics Faculty Publications Physics 

2022 

Coupled Dynamics of Spin Qubits in Optical Dipole Microtraps: Coupled Dynamics of Spin Qubits in Optical Dipole Microtraps: 

Application to the Error Analysis of a Rydberg-Blockade Gate Application to the Error Analysis of a Rydberg-Blockade Gate 

L. V. Gerasimov 

R. R. Yusupov 

A. D. Moiseevsky 

I. Vybornyi 

K. S. Tikhonov 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs 

 Part of the Atomic, Molecular and Optical Physics Commons, Numerical Analysis and Scientific 

Computing Commons, and the Quantum Physics Commons 

Original Publication Citation Original Publication Citation 
Gerasimov, L. V., Yusupov, R. R., Moiseevsky, A. D., Vybornyi, I., Tikhonov, K. S., Kulik, S. P., Straupe, S. S., 
Sukenik, C. I., & Kupriyanov, D. V. (2022). Coupled dynamics of spin qubits in optical dipole microtraps: 
Application to the error analysis of a Rydberg-blockade gate. Physical Review A, 106(4), 1-21, Article 
042410. https://doi.org/10.1103/PhysRevA.106.042410 

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been 
accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For 
more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/physics_fac_pubs
https://digitalcommons.odu.edu/physics
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/195?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1103/PhysRevA.106.042410
mailto:digitalcommons@odu.edu


Authors Authors 
L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, 
Charles I. Sukenik, and D. V. Kupriyanov 

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/physics_fac_pubs/706 

https://digitalcommons.odu.edu/physics_fac_pubs/706


PHYSICAL REVIEW A 106, 042410 (2022)
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L. V. Gerasimov ,1,2 R. R. Yusupov ,1 A. D. Moiseevsky,1 I. Vybornyi ,3 K. S. Tikhonov ,4,5

S. P. Kulik,1 S. S. Straupe,1,5 C. I. Sukenik ,6 and D. V. Kupriyanov 1,6

1Quantum Technology Centre, Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-35,
119991 Moscow, Russia

2Center for Advanced Studies, Peter the Great Saint Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
3Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

4Saint Petersburg State University, 199034 Saint Petersburg, Russia
5Russian Quantum Center, Skolkovo, Moscow 143025, Russia

6Department of Physics, Old Dominion University, 4600 Elkhorn Avenue, Norfolk, Virginia 23529, USA
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Single atoms in dipole microtraps or optical tweezers have recently become a promising platform for
quantum computing and simulation. Here we report a detailed theoretical analysis of the physics underlying
an implementation of a Rydberg two-qubit gate in such a system—a cornerstone protocol in quantum computing
with single atoms. We focus on a blockade-type entangling gate and consider various decoherence processes
limiting its performance in a real system. We provide numerical estimates for the limits on fidelity of the
maximally entangled states and predict the full process matrix corresponding to the noisy two-qubit gate.
We consider different excitation geometries and show certain advantages for the gate realization with linearly
polarized driving beams. Our methods and results may find implementation in numerical models for simulation
and optimization of neutral atom based quantum processors.

DOI: 10.1103/PhysRevA.106.042410

I. INTRODUCTION

During the last few decades, the physics of mesoscopic
cold and ultracold atomic systems has been continuously
progressing and supplying novel ideas for implementations
of innovative state-of-the-art quantum technologies [1,2].
One of the research directions showing extremely impressive
progress is quantum computing and simulation with single
trapped atoms [3–5]. Being a paradigmatic quantum system,
single atoms provide a convenient physical realization of
qubits, which is attractive in many ways—overall neutrality
allows one to controllably switch the interaction on and off,
and optical trapping provides a means for assembling large
spatially structured atomic arrays with reasonable prospects
for further scaling.

The alkali metals having a single valence electron and
convenient combination of optical and microwave spectra
can be trapped by tightly focused far-off-resonance light
beams (“optical tweezers”) and spaced conveniently for in-
dividual addressing. With the technique of holographic beam
shaping developed for such experiments [6,7], two- and
three-dimensional tweezers arrays may be constructed [8–12]
providing a means to assemble mesoscopic scale atomic struc-
tures, which can be periodically ordered in a plane with a
separation of a few microns and with lifetimes reaching up
to seconds. Similar techniques were recently developed for
alkaline-eart atoms [13–15].

Such atomic lattices consisting of single neutral atoms
confined with the microscopic optical dipole traps provide
a promising platform for preparation of conveniently con-

trollable and scalable multiqubit systems [16]. This was
recognized more than a decade ago and the potential options
and experimental capabilities were earlier reviewed in [17].
Despite impressive experimental progress since that time, the
fidelity of experimentally demonstrated entangling operations
is still on the order of 95–97% [18,19] which is still below
the thresholds required for fault-tolerant quantum computing.
This situation in quantum computing with neutral atoms has
motivated us to perform a comprehensive theoretical analysis
of the main physical mechanisms leading to violation of the
ideal scenario for an elementary controlled-NOT (CNOT) quan-
tum gate for a pair of hyperfine encoded atomic qubits.

In this paper we mainly focus on the physics of the pro-
cess and consider a standard configuration of two alkali-metal
atoms with qubits encoded in the clock transition of their
ground-state hyperfine structure. The spin entanglement is
induced via the simplest protocol of a Rydberg blockade as
proposed in [20]. By the detailed examination of such an
elementary quantum logic unit we are aiming to clarify the
main physical constraints in the coupled system of two qubits
and then to search for optimal physical conditions towards its
potential scaling up to a multiqubit configuration. Alternative
realizations of entangling gates proposed recently [18,21–
23] share the same nonidealities and sources of decoherence
and errors, so our analysis remains applicable with minor
modifications. One of the main features of our approach is
a fully quantum treatment of the atomic motional degrees of
freedom, making the analysis applicable for a full range of
temperatures including atoms cooled close to the motional
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ground state [24–26]. In recent theoretical works the Rydberg
gate fidelity limits, set by momentum transfer due to photon
absorption and reemission, were studied using semiclassical
[27] and fully quantum [28] treatment of atomic motion.
Here we present and analyze the equations describing the
dynamics of atomic motional degrees of freedom simulta-
neously affected by processes of recoil accompanying the
two-photon excitation process and atomic motion in spatially
varied amplitudes of focused Gaussian beams. We also rigor-
ously analyze the limits of the entanglement protocol set by
decoherence processes associated not only with the radiative
decay of the Rydberg state, but also with the processes of
incoherent Rayleigh and Raman scattering via intermediate
states used in the two-photon excitation scheme typical for
most experiments. We demonstrate how the entanglement loss
can be reduced by proper choice of excitation geometry, pro-
viding convenient selection rules that minimize the negative
contributions of incoherent scattering.

The paper is organized as follows. In Sec. II we give
an overview of the idealized dynamical description of the
Rydberg-blockade protocol adjusted for the implementation
of a controlled-Z (CZ) gate. Then in Sec. III we present our
approach incorporating open system dynamics and show how
the ideal dynamical process of the CZ gate is affected by spon-
taneous loss associated with different channels of incoherent
scattering. In Sec. IV we present the results of numerical
simulations for the fidelity and truth table of the CNOT gate
utilizing parameters which are realistic for most currently
existing experimental setups.

II. ENTANGLEMENT OF THE SPIN STATES OF TWO
ATOMS: DYNAMICAL DESCRIPTION

Consider the conventional Rydberg-blockade scheme,
shown in Fig. 1, which was proposed in [20]. Let us denote the
control atom experiencing the sequence of two two-photon π

pulses as A, and the target atom excited by a 2π pulse via the
transition, which can be blocked by the control atom, as B. In
an ideal scenario, as a result, the two-particle density matrix
ρAB ≡ ρ of the atomic spin state has to be transformed by a di-
agonal unitary operator diag(+1,−1,−1,−1) corresponding
to a CZ gate. However, in reality the protocol initiates a set of
physical processes disturbing the atomic system and violating
the ideal transformation scheme. It is convenient to discuss
these processes separately and clarify the theoretical model
for each of them independently. In this section we address the
dynamical part of the protocol treating the system as closed
and isolated from the environment, and driven by a specific
system Hamiltonian, which we describe below.

A. The system Hamiltonian

In a typical experiment with alkali-metal atoms in a far-off-
resonant dipole trap the Rydberg state is slightly antitrapped.
During the protocol of spin entanglement the dipole trap
is switched off, the atoms are released in free space, and
their motional and internal dynamics are decoupled. Then the
atoms are excited by a sequence of short coherent light pulses.

FIG. 1. The principle of spin entanglement creation via the pro-
tocol of the Rydberg blockade. If the control atom A occupies a
Zeeman state |a〉 belonging to the lower hyperfine sublevel and the
target atom B is in a state |b〉 belonging to the upper sublevel, the
sequence of π − 2π − π pulses coupled with the Rydberg states |r〉
and |r′〉 changes the phase of the collective spin state by π . If the
atom A occupies the upper spin state |b〉 its excitation by the π pulse
to the state |r〉 shifts the energy level and eliminates the coupling of
atom B to the state |r ′〉. The collective spin state again acquires a π

phase shift. But if both atoms are in the lower spin state |a〉 the pulse
sequence does not change their collective state.

The system Hamiltonian describing the joint dynamics of
the atoms consists of the following contributions:

Ĥ = Ĥ0 +
∑
r,r′

h̄δR|r, r′〉〈r, r′|AB + V̂eff (2.1)

where the undisturbed dynamics is driven by the Hamiltonian
Ĥ0 given by

Ĥ0 = p̂2
A

2m
+ p̂2

B

2m
+ ĤA + ĤB (2.2)

with p̂A and p̂B being the operators of linear momenta and
ĤA and ĤB being the internal Hamiltonians of atoms A and B,
respectively. Both atoms are physically indistinguishable and
have the same mass m.

The critical requirement for the considered system is that
being excited in the high-energy Rydberg states |r〉 the closely
spaced atoms A and B separated by a distance of a few mi-
crons cannot be considered as independent objects and have
a signature of a molecular system. Thus the second term in
(2.1) corrects the undisturbed Hamiltonian and adds a specific
offset h̄δR to the energy of the doubly excited Rydberg state
|r, r′〉AB, which approximates the behavior of a quasimolecular
orbital at long distances. Here we point out that there is an
option that the excited states of the separated atoms can be
different by marking one of them with a prime.

Such a model description of the Rydberg blockade can
be justified by the following physical arguments. During the
entire protocol the atoms are separated in space by dipole traps
at a sufficiently large distance of many atomic units, such
that the shift δR treated as a far asymptote for the adiabatic
potential of a quasimolecule is insensitive to its slight spatial
variations. The atoms are released from the traps to activate
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the protocol of spin entanglement for a very short time and
during this time their locations are not altered significantly.
Under these conditions the projection onto the highly excited
eigenstates of the system Hamiltonian could be approximated
by the product of atomic states having a fixed extra energy
shift δR for the double excitation (see [29]).

The two-photon excitation process is initiated by two coun-
terpropagating laser beams to minimize the recoil effect in
the linear momentum transfer from light to the atoms. The
carrier frequency of the first beam ω1 is quasiresonant to the
manifold of the hyperfine energy structure of the D1 line and
the second beam with frequency ω2 provides the two-photon
resonance with the undisturbed Rydberg state |r〉.1 With these
assumptions we can adiabatically eliminate the dynamics of
intermediate states and reduce the two-photon interaction to
the effective interaction Hamiltonian:

V̂eff = V̂A(rA, t ) + V̂B(rB, t ). (2.3)

Both contributions are functionally identical and with enu-
merating the atoms by X = A, B we can specify this part of
the Hamiltonian in the position representation for each atom
located at point rX as

V̂X (rX , t ) = − h̄

2
�(rX , t ) e−iωt+iq·rX |r〉〈b|X + H.c., (2.4)

where ω = ω1 + ω2 and the recoil wave vector q is given by
the sum of the wave vectors of the beams: q = k1 + k2. The
effective Rabi frequency � = �(rX , t ), assuming the overlap
of the laser pulses, provides coupling of the signal sublevels
|b〉 and the Rydberg state |r〉 (see Fig. 1). Since the laser beams
have inhomogeneous spatial profiles it depends on both the
atom’s position and time.

Near the point of the two-photon resonance, where ω =
ω1 + ω2 ∼ ωrb, the effective Rabi frequency is given by

� = −1

2

∑
n

�(2)
rn �

(1)
nb

−ω2 + ωrn
− 1

2

∑
n

�(1)
rn �

(2)
nb

−ω1 + ωrn
, (2.5)

where �
(1)
nb and �(2)

rn , . . . specify the Rabi frequencies of the
driving lasers for all the open transitions via the intermediate
states |n〉, and ωαβ with α, β = b, n, r . . . denote the transi-
tion frequencies, and for the sake of notation simplicity we
have omitted in (2.5) the dependence on spatial and temporal
arguments. Although we use the same notation for the Rabi
frequencies for both atoms, the parameters of the exciting
pulses are different for each of them.

The coupling term in (2.4) is responsible for the main inter-
action process leading to the repopulation of atomic states and

1Note that the hyperfine structure in the Rydberg states is unre-
solved within the considered microsecond time scale and the spin
subsystem can be equivalently described in either the spin decoupled
or coupled basis.

interference between their spatial motion and spin dynamics.
Nevertheless that is an incomplete contribution and the off-
resonant laser fields can manifest themselves in the dynamics
of the logical states |a〉 and |b〉 directly by inducing additional
phase shifts within the excitation cycle. These extra shifts can
be controlled in an experiment. Since most of our calculations
presented below were done under an approximation of nearly
rectangular time profiles of the light pulses we can incorporate
this kind of correction via “dressing” of the original atomic
states by adding the energy renormalization terms into the
undisturbed Hamiltonian (2.2):

Ĥ0 → Ĥ0 +
∑
α,β...

h̄
[
	(A)

α (rA) + 	
(B)
β (rB)

]|α, β〉〈α, β|(A,B),

(2.6)

which includes the light shifts 	(A)
α = 	(A)

α (rA) and 	
(B)
β =

	
(B)
β (rB) to the energy levels enumerated by α = a, b, r . . .

and β = a, b, r . . . for atom A and B, respectively. These en-
ergy shifts vary with position of the atoms tracing the spatial
dependence of the light intensity.

B. The system dynamics

The protocol of the Rydberg blockade consists of three
subsequent transformation steps and each of the transforma-
tions concerns only a particular atom. Therefore let us first
describe the dynamics of a single atom in the two-photon ex-
citation process. This dynamic is independent of its proximal
neighbor apart from the blockade effect contributed in (2.1).

To construct the operator of a unitary transformation for a
single atom we can simplify the problem and define a single
atom wave function as

|
(t )〉 =
∫

d3 p

(2π h̄)3
e− i

h̄ εpt
[
e− i

h̄ ε̃at cap(t ) |a, p〉

+ e− i
h̄ ε̃bt cbp(t ) |b, p〉 + e− i

h̄ ε̃r t crp(t ) |r, p〉] (2.7)

where εp = p2/2m is the kinetic energy of a free atom and the
integral expands over its linear momentum p. The basis states
are defined in the decoupled representation of the undisturbed
Hamiltonian (2.2), corrected by the radiation shifts of the
energy levels (2.6). We have denoted the renormalized internal
energy ε̃α = εα + h̄	α (0) for any level α = a, b, r . . ., where
the light shift is taken at the frame origin coinciding with the
focal point of the beam caustic.

In expansion (2.7) we have assumed that the atom can
occupy three internal states, but only |b〉 and |r〉 are involved
in the coupled coherent dynamics of the excitation process.
The state |a〉 can be considered as isolated and its probability
amplitude cap(t ) can accumulate a meaningful phase shift dur-
ing the process [see (2.6)]. The probability amplitudes crp(t )
and cbp(t ) obey the following coupled dynamics:

ċrp+h̄q = −i	r (0) e
i
h̄ εp+h̄qt

{
h̄2

z2
R2

∂2

∂ p2
z

+ 2h̄2

w2
02

�⊥ + · · ·
}

e− i
h̄ εp+h̄qt crp+h̄q(t )

+ i

2
� ei(ω̃rb−ω)t e

i
h̄ εp+h̄qt

{
1 + 2h̄

z∗

∂

∂ pz
+ h̄2

z2∗

∂2

∂ p2
z

+ 2h̄2

w2∗
�⊥ + · · ·

}
e− i

h̄ εpt cbp(t ),
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ċbp = −i	b(0) e
i
h̄ εpt

{
h̄2

z2
R1

∂2

∂ p2
z

+ 2h̄2

w2
01

�⊥ + · · ·
}

e− i
h̄ εpt cbp(t )

+ i

2
�∗ e−i(ω̃rb−ω)t e

i
h̄ εpt

{
1 − 2h̄

z∗

∂

∂ pz
+ h̄2

z2∗

∂2

∂ p2
z

+ 2h̄2

w2∗
�⊥ + · · ·

}
e− i

h̄ εp+h̄qt crp+h̄q(t ). (2.8)

Here ω̃αβ with α, β = a, b, r . . . denote the dressed transition
frequencies; w0 j and zR j with j = 1, 2 are, respectively, the
beam waists and Rayleigh ranges of the Gaussian laser beams,
and we have defined the set of effective parameters:

2

w2∗
≡ 1

w2
01

+ 1

w2
02

,

2

z∗
≡ 1

zR1
+ 1

zR2
, (2.9)

2

z2∗
≡ 1

z2
R1

+ 1

z2
R2

,

where the conventional Gaussian beam parameters in the
right-hand side are defined in Appendix A.

These equations are presented for the pulses shaped by
rectangular profiles having the same duration, such that all
the Rabi frequencies are supposed to be constant during the
pulses. We have estimated the effective Raby frequency (2.5)
and light shifts by their values at the origin point, associated
with the focal point having the maximal light intensity, such
that

	b(0) � 1

4

∑
n

∣∣�(1)
nb (0)

∣∣2

ω1 − ωnb
,

	r (0) � −1

4

∑
n

∣∣�(2)
rn (0)

∣∣2

ω2 − ωrn
(2.10)

and similar in Eq. (2.5), where we have kept the main con-
tribution with respect to the relatively small detuning ω2 −
ωrn ∼ ωnb − ω1.

The key feature of Eqs. (2.8) is the presence of differential
terms containing the first- and second-order partial derivatives
and the transverse Laplace operator �⊥ acting on the linear
momentum arguments. These terms have resulted from the
expansion (A7) for the field amplitude in the vicinity of the
focal point. Once we approximate the Gaussian mode for
both of the beams by an infinite plane wave, we arrive at the
textbook result, i.e., to the coupled equations describing the
coherent dynamics in a two-level system:

ċrp+h̄q = i

2
� exp

[
i

(
ω̃rb + q · p

m
+ h̄q2

2m
− ω

)
t

]
cbp(t ),

ċbp = i

2
�∗ exp

[
− i(ω̃rb + q · p

m
+ h̄q2

2m
− ω)t

]
crp+h̄q(t ).

(2.11)

The added terms, having an evident signature of the diffusion
process, correct the system dynamics towards parametric heat-
ing and dephasing of the internal state of the atom during its
excitation. Physically, these terms reveal an uncertainty in the
momentum conservation associated with the random drift of
the atom through the inhomogeneous field profile.

Assume that at an initial moment of time t = 0 the prob-
ability amplitudes in expansion (2.7) had the given values
cap(0), cbp(0), and crp+h̄q(0). Then after a light pulse of du-
ration τ in accordance with Eqs. (2.8) the amplitudes would
transform to⎛

⎝crp+h̄q(τ )
cbp(τ )
cap(τ )

⎞
⎠ =

⎛
⎝Ûrr (τ ) Ûrb(τ ) 0

Ûbr (τ ) Ûbb(τ ) 0
0 0 1

⎞
⎠

⎛
⎝crp+h̄q(0)

cbp(0)
cap(0)

⎞
⎠,

(2.12)
where each element in the first two rows of the transformation
matrix is an integral-type operator acting on the momentum
variables. As discussed above [see definition of the undis-
turbed Hamiltonian (2.6)] the probability amplitudes for all
the basis states accumulate additional phases associated with
the light shifts induced by the driving fields. Here in (2.12)
these phases are incorporated into the respective shifts of the
renormalized energy levels in the definition of the wave packet
(2.7), expanded in the basis of dressed states.

If we reduce (2.8) to its lighter form (2.11) the transfor-
mation would contain the c-number matrix elements such that
the solution (2.12) would reveal the well-known periodic time
beats in the two-level system with subsequent occupations by
the atom of either state |b, p〉 or |r, p + h̄q〉.

C. The entanglement protocol

The entanglement protocol is described as the following
transformation of the originally disentangled atomic state:

|ψ〉AB = Û3 Û2 Û1|ψ〉A|ψ〉B, (2.13)

where at the first step

Û1 = Û (π )
A ⊗ ÎB (2.14)

with the operator Û (π )
A defined by Eq. (2.12) and acting on the

control atom during the time |�|τ = π . The state of the target
atom is unchanged, which is formally expressed by the unit
operator ÎB.

At the second step we involve the cooperative bus-type
interaction: the action on the target atom B which is sensitive
to the state of the control atom A. The transformation matrix
Û2 is given by

Û2 =[|a〉〈a|A + |b〉〈b|A] ⊗ Û (2π )
B

+ |r〉〈r|A ⊗ Û (2π )
B

∣∣
δR

, (2.15)

where in both terms the transformation (2.12) is applied for
the duration |�|τ = 2π , but in the second term we have as-
sumed the shifted transition frequency ω̃rb → ω̃rb + δR [see
(2.1)].

At the third step of the protocol we apply the same transfor-
mation as at the first step, such that Û3 = Û1. That returns the
atom A to the ground state. The final state cannot in general
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be expressed as the product of independent wave functions
and accumulates the quantum correlations.

Let us naively assume that in an ideal scenario the
subsequent action of three operators in (2.13) ignores the
momentum variables and concerns only the internal ground
spin states |a〉 and |b〉 of both the atoms. Then we are allowed
to manipulate only with the spin subsystem of both the atoms.
Thus if [making use of the interaction representation with
respect to the internal Hamiltonian (2.2)] we have originally
prepared the states

|ψ〉A = 1√
2

[|a〉 + |b〉]A,

|ψ〉B = 1√
2

[|a〉 + |b〉]B, (2.16)

then we arrive at

|ψ〉AB = 1
2 [|a, a〉 − |b, a〉 − |a, b〉 − |b, b〉]AB, (2.17)

which corresponds to an application of a CZ quantum logic
gate in the system of two spin qubits. Nevertheless, as it is
clear from the discussion above that this can be only approx-
imately done, below, via a simple estimate, we explain why
such an ideal scenario fails and show the critical benchmark
for a potentially attainable fidelity for the state (2.17).

D. Importance of the recoil effect

Let us consider the blockade scheme and track the linear
momentum transfer accompanying the two-photon process
under conditions maximally approaching an ideal scenario.
Assume that originally both the atoms are cooled to the
ground states of the respective trap wells. Then after an excita-
tion cycle their vibrational motion would be activated because
of the linear momentum transfer in the two-photon excitation
process (see [19,28]). That qualitatively can be approximated
by a coherent mode parametrized by a displacement depend-
ing on the time spent by each atom in the upper Rydberg state.
Indeed, both the atoms, when deexcited to the ground states,
will approximately evolve to motional coherent states, i.e.,
will have the same shape of the wave-packet profile period-
ically oscillating in the trap well.

Let us denote the ground vibration state as |0〉 and the
coherent states as |α〉 and |α′〉 for the atoms A and B, respec-
tively, treating the coherent amplitudes as vector quantities
α = αx, αy, αz and α′ = α′

x, α
′
y, α

′
z, determined by the ac-

quired linear momentum. Instead of (2.17) we can expect the
following final state:

|ψ〉(s+vib)
AB = 1

2 [|a, 0; a, 0〉 − |b,α; a, 0〉
− |a, 0; b,α′〉 − |b,α; b,α′〉]AB, (2.18)

which is an entangled state with respect to both the spin states
and vibrational modes.

There is no experimental resource to control vibrational
motion and we should convert the state (2.18) to the mixed
spin state described by the density matrix

ρ̂ (s) = Tr′
vib |ψ〉〈ψ |(s+vib)

AB . (2.19)

FIG. 2. Transition diagrams for different channels of the incoher-
ent losses: (a), (b) spontaneous Raman scattering of the field mode
ω1 from the qubit states |a〉 and |b〉 to a Zeeman state |m〉, (c) same
for mode ω2 scattered from the Rydberg level |r〉, and (d) leakage
from the two-photon coherent excitation channel to the CPT “dark”
state (see the text).

Then we can estimate fidelity F of reproduction of the ideal
state (2.17) as

F = 〈ψ |ρ̂ (s)|ψ〉AB

= 1
4

[
1 + e−|α|2/2 + e−|α′|2/2 + e−(|α|2+|α′|2 )/2

]
, (2.20)

where the displacement parameters α and α′ depend on the
linear momentum transfer h̄q and on the duration of the pro-
cess, as clarified below in the end of Sec. IV B.

In theory, the problem with optimization of (2.20) could
be resolved by two-photon excitation under quasidegenerate
conditions, i.e., by choosing ω1 ∼ ω2 and q = k1 + k2 ∼ 0.
Evidently in such a case we should exclude the precise equal-
ity to avoid for which the atom could be excited by two
photons derived from the same laser beam that is split into
two counterpropagating beams. In practice, however, it would
not be so easy to stabilize the controllable excitation in a far
off-resonant frequency domain for the intermediate atomic
states. Thus one needs to stay close to the resonance of some
intermediate state, which makes the condition ω1 ∼ ω2 inac-
cessible for the existing experimental capabilities. In reality
we are limited to within a few percent for α and α′ and the
attained fidelity can be upper bounded by F < 0.9995 at best.

III. INCOHERENT LOSSES

The dynamical description of the physical processes ac-
companying the entanglement protocol presented in the
preceding section is incomplete since the entire system is open
for interaction with the environment. The coherent modes
ω1 and ω2 initiate the processes of incoherent Rayleigh and
Raman scattering via intermediate states, as it is symboli-
cally clarified by the diagrams in Fig. 2. For dynamics of a
single qubit the Rayleigh scattering preserves the atomic co-
herence, but the Raman scattering induces irreversible loss of
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coherence (see [30,31]). Here the situation is more compli-
cated and the different output scattering channels, initiated
by different modes, overlap and interfere each over. Dur-
ing a short protocol time the losses are weak and in our
further estimates we will simplify the model and com-
pletely ignore any kinematic manifestations, considering the
atoms as immobile scatterers. Even under such assump-
tions the conventional simulations guided by a rate-type
master equation would be problematic if the time duration
of the driving pulses were comparable to or less than the
natural lifetime γ −1 of the intermediate D1/2 state. In the
latter case, the transient dynamics induces the fast nonva-
nishing Rabi oscillations to the process. That would make
small but meaningful corrections to our further estimates
purposing in effective processing of the quantum correla-
tions. The transient dynamics becomes negligible for duration
sufficiently longer than γ −1, which we will additionally
assume here as a condition typically fulfilled in an experi-
ment.

A. The scattering tensor and transition rates

The spontaneous scattering can be conveniently framed by
the formalism of the scattering tensor (see [32,33]). Under the
rotating wave approximation this tensor coincides with the dy-
namical polarizability tensor. The specifics of the considered
situation is that the atom scattering the light can originally
either occupy one of the low-energy qubit states |a〉 or |b〉 or
be excited in the Rydberg state |r〉.

Then for the scattering from state |α〉 = |a〉, |b〉 it is given
by

α
(mα)
ik = −1

h̄

∑
n

(di )mn(dk )nα

ω1 − ωnα + i0
. (3.1)

But for the scattering from the upper state |r〉 there is a
difference in the structure of the denominator:

α
(mr)
ik = −1

h̄

∑
n

(di )mn(dk )nr

−ω2 + ωrn + i0
. (3.2)

In these equations the tensor indices i, k = x, y, z enumerate
the vector components of the transition dipole moments, and
|m〉 specifies those quantum states which are repopulated after
the scattering event.

Here the issue arises whether it is correct to understand
the process initiated from the upper Rydberg level and de-
scribed by the amplitude (3.2) as scattering, when instead
of annihilation the virtual transition to the intermediate level
is assisted by creation of the photon in the incident mode
ω2. That seems to contradict the conventional definition of
the scattering phenomenon and, strictly speaking, should be
designated as a two-photon emission. But we can point out
that for the processes shown in Fig. 2 there is actually neither
annihilation nor creation of a photon in the driving modes ω1

and ω2. Both modes exist in the coherent state, the amplitudes
of which are insensitive to either attenuation or amplification
at the single-photon level. In other words, under the dis-
cussed conditions both light modes are unchanged but able
to stimulate the emission of an off-resonant photon in any
direction with a certain probability and to repopulate the atom
randomly into any accessible Zeeman sublevel in its ground

state. Regardless of whether the atom occupies |a〉, |b〉, or
|r〉 states both channels work similarly and for the sake of
physical clarity we call both of them “incoherent scattering.”

The scattering processes lead to irreversible losses and to
the purity reduction of the entangled spin state shared by
the atoms. The transition rates for the scattering processes,
considered independently for each mode, can be expressed by
the Rabi frequencies of the driving lasers and are given by

wα→m = ω′3

8π h̄c3

∫
do′

∣∣∣∣∣
∑

n

(e′ · d)mn �(1)
nα

ω1 − ωnα + i0

∣∣∣∣∣
2

, (3.3)

with α = a, b and

wr→m = ω′3

8π h̄c3

∫
do′

∣∣∣∣∣
∑

n

(e′ · d)mn �(2)∗
rn

−ω2 + ωrn + i0

∣∣∣∣∣
2

, (3.4)

where ω′ = ω1 + ωαm in (3.3) and ω′ = ωrm − ω2 in (3.4) is
the frequency of the emitted photon and e′ is its polarization.
The integral is evaluated over the solid angle do′ for all the
scattering directions. However, the complete description of
the processes visualized by Figs. 2(a)–2(c) incorporates var-
ious interference contributions, provided by conditions of the
two-photon resonance, which we further clarify.

B. Evolution of the density matrix

The spatial degrees of freedom are inaccessible for direct
detection and in reality we deal with an open system, which
is relevantly described by the reduced two-particle density
matrix, defined for the collective internal spin state of the
control and target atoms: ρα′,β ′;α,β (t ), where α, α′ and β, β ′
enumerate the basis quantum states belonging to atoms A
and B, respectively. Evolution of this matrix obeys the master
equation, which includes both the dynamical transformation
and the irreversible relaxation processes. The latter lead to
entanglement losses and are mainly connected with the inco-
herent scattering channels described above which evolve the
system to a statistically mixed state. To qualify the different
contributions of the spontaneous scattering to the complete
evolution of the density matrix compiled from the elementary
processes shown in Figs. 2(a)–2(c), we will follow Keldysh’s
diagram method, and the supporting graph images are intro-
duced in Appendix C.

In order to unify our discussion, which is in what follows
based on the density-matrix formalism, with the dynamical
description presented in the preceding section, we will fol-
low the interaction representation, eliminating free-energy
oscillations induced by the internal Hamiltonian (2.2) and
(2.6) throughout our derivation below. We neglect the spatial
motion of atoms and assume the conditions of the exact two-
photon resonance between the dressed working states, such
that ω1 + ω2 = ω̃rb, but we admit that other Zeeman states can
have shifted energies because of the magnetic field, anisotropy
of light shifts, etc.

Let us consider the scattering of each mode on the control
atom A as represented by diagrams (C5) and (C6). If the
control atom occupies one of the qubit states |α〉 = |a〉, |b〉
and the target atom B occupies any accessible state |β〉, |β ′〉
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we add the term

ρ̇α,β ′;α,β = · · · − wα ρα,β ′;α,β (t ) (3.5)

with

wα =
∑

m

wα→m = γ
∑

n

∣∣�(1)
nα

∣∣2

4	2
nα

, (3.6)

where γ is the natural radiative decay rate of the state |n〉,
belonging to the intermediate levels, which is assumed to
be independent on |n〉, and 	nα = ω1 − ωnα . We keep the
interaction of the mode ω1 with both qubit states in our model,
but the depopulation rate wa is essentially smaller than wb

due to higher detuning. In the right-hand sides of (3.5) and
in all other equations appearing below in this section we
indicate the omitted terms contributing to the total time deriva-
tives of the particular components of the density matrix by
ellipses.

Similarly if the control atom A occupies the Rydberg state
|α〉 = |r〉 we add the term

ρ̇r,β ′;r,β = · · · − wr ρr,β ′;r,β (t ) (3.7)

with

wr =
∑

m

wr→m = γ
∑

n

∣∣�(2)
rn

∣∣2

4	2
rn

, (3.8)

where 	rn = ω2 − ωrn.
For coherences between |r〉 and |b〉, between |b〉 and |a〉,

and between |r〉 and |a〉 we subsequently obtain

ρ̇r,β ′;b,β = · · · −
[
wr

2
+ wb

2

]
ρr,β ′;b,β (t ),

ρ̇b,β ′;a,β = · · · −
[
wb

2
+ wa

2

]
ρb,β ′;a,β (t ), (3.9)

ρ̇r,β ′;a,β = · · · −
[
wr

2
+ wa

2

]
ρr,β ′;a,β (t ).

The coherence between |r〉 and |a〉 is created from the original
coherence between |b〉 and |a〉 by excitation of the atom from
|b〉 to |r〉 by the π pulse. The same terms have to be added
for the Hermitian conjugated components. Note that the terms
(3.5), (3.7), and (3.9) are activated only on the stages of π

pulses (see Fig. 1) and at these stages there is no interaction of
the driving fields with atom B, in which a spectator is allowed
to occupy the ground state only, such that β, β ′ �= r in all these
equations.

If the target atom B is excited by a 2π pulse the situation is
somewhat different. At this stage, for diagonal components of
the density matrix we obtain

ρ̇α′,β;α,β = · · · − wβ ρα′,β;α,β (t ) (3.10)

if |β〉 = |a〉, |b〉 with wβ given by (3.6) with α → β, and

ρ̇α′,r;α,r = · · · − wr ρα′,r;α,r (t ) (3.11)

with wr given by (3.8). For coherences we get

ρ̇α′,r;α,b = · · · −
[
wr

2
+ wb

2

]
ρα′,r;α,b(t ),

ρ̇α′,b;α,a = · · · −
[
wb

2
+ wa

2

]
ρα′,b;α,a(t ), (3.12)

ρ̇α′,r;α,a = · · · −
[
wr

2
+ wa

2

]
ρα′,r;α,a(t ).

The blockade effect prevents both atoms from simultaneously
populating the Rydberg states, such that in (3.11) α, α′ �= r
and in the first and the third lines of (3.12) α′ �= r, but in
(3.10) and in the second line of (3.12) the control atom can
occupy any state. Also note that, within the accuracy of our
consideration for such correcting terms, if the atom A is not in
|r〉 it can only occupy the state |a〉, since |b〉 is depopulated in
accordance with the protocol.

The contributions considered above correct the dynamics
of those components of the density matrix which are generated
by the driving fields as described in the preceding section.
These terms are responsible for depopulation of both the
atoms away from the working levels, and lead to decoherence
of the two-particle density matrix, and, as a consequence, to
reduction of quantum entanglement. However, there is a set
of parallel processes, which recover the population balance
among the Zeeman sublevels of the ground state and affect
the quantum correlations as well.

1. The repopulation of atoms by optical pumping

The loss of atomic population from the working levels is
partly compensated for by the opposite process of repopula-
tion by optical pumping induced by incoherent scattering, and
providing the atomic polarization transfer to the ground state.
Here, as optical pumping, we refer to those channels which
are developing independently for each mode and insensitively
to the conditions of two-photon resonance, and which are
represented by diagrams (C7) and (C8) in Appendix C.

Consider the control atom A. Transformation of the density
matrix due to optical pumping is described by the following
income-type term:

ρ̇m′,β ′;m,β (t ) = · · · + γ
∑
α′,α

exp[i(ω̃m′m − ω̃α′α )t] ρα′,β ′;α,β (t )
∑
n′,n

�
(α′ )
n′α′ �

(α)∗
nα

4	n′α′ 	nα

∑
q

CF ′M ′
F ′

0 M ′
0 1qCFM

F0M0 1q

× (−)F0−F ′
0 [(2F ′

0 + 1)(2F0 + 1)]1/2(2J + 1)

{
S I F ′

0
F ′ 1 J

}{
S I F0

F 1 J

}
(3.13)

where m = F0, M0 and m′ = F ′
0 , M ′

0 are the repopulated states
belonging to the ground manifold and expressed in the basis
of the coupled electron and nuclear spin angular momenta. We

assume the working set |a〉, |b〉, and |r〉 and possible coherent
superposition between |a〉 and |b〉 as the depopulated states
|α〉 and |α′〉 contributing to the right-hand side of this equa-
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tion. The intermediate states |n〉 and |n′〉 coherently coupled
with them via the driving fields are specified by the total
angular momenta, given by the sum of the electron orbital
and spin momenta with the nuclear spin: n = F, M and n′ =
F ′, M ′. Other quantum numbers specifying these states are
S = 1/2, I , and J—the electron spin, nuclear spin, and total
electron angular momentum, respectively. The total electron
angular momentum J is assumed to be the same for any of the
states |n〉 and |n′〉. We have superscribed here the Rabi fre-
quencies with the same index as the respective working level
for the sake of notation convenience. The transition matrix is
expressed by the angular momentum functions, namely, by
Clebsch-Gordon coefficients C...

... ... and 6 j symbols {. . .} (see
[34,35]).

The repopulating term (3.13), in particular, can provide
the resonant transfer of the ground-state hyperfine coherence,
which originally exists for the superpositions of the qubit lev-
els |a〉 and |b〉. As a result of repopulation the spin coherence
between other Zeeman states belonging to different hyperfine
sublevels may be created. So the system would have the inter-
nal quantum correlations but lose entanglement shared by the
logical states.

Optical pumping initiating the polarization transfer for the
target atom B can be similarly described with an appropriate
change of the quantum numbers in (3.13). An exception is the
case when the control atom occupies the Rydberg state and
atom B is not allowed to occupy the state |r〉 since the double
occupation |r, r〉 is prevented by the blockade effect. It might
seem that we could transfer some specific terms containing
coherence for atom A being superposed between states |r〉
and |a〉 via the optical pumping channel. Such a coherence
can be preliminarily created from the qubit state (2.16) by a
π -pulse conversion of its |b〉 part to |r〉. It might be suggested
that the particular matrix element ρa,r;r,β (with β = a, b) and
its Hermitian conjugate ρr,β;a,r can be involved in the repop-
ulation process while atom B is excited by a 2π pulse. Their
depopulation components indeed exist and were already taken

into consideration regarding the depopulating process in the
first and third lines of (3.12). However, we cannot construct
their optical pumping repopulation term since it can provide
transfer only to the ground state [see Figs. 2(a)–2(c)]. So
the suggested repopulating process to states |r, β〉 would be
extremely off resonant, which is formally expressed by the
highly oscillating term in the right-hand side of (3.13), and
actually would be far beyond all of the approximations made.

2. Coherent population trapping

The simultaneous excitation of a three level transition with
two field modes can under certain conditions transform the
system behavior to a manifestation of a coherent population
trapping (CPT) phenomenon (see [36,37]). Any element in the
unitary subspace formed by a linear span of two metastable
states, in our case |b〉 and |r〉, can be alternatively decomposed
into two orthogonal superpositions of the so-called bright and
dark states. Being excited by two coherent modes and ap-
proaching the steady-state regime the system will eventually
leak to the dark state, which eliminates its further interaction
with the driving fields [see Fig. 2(d)]. In the considered con-
figuration, assuming a pulsed excitation, we only deal with the
seeding stage of this process partly disentangling the qubits.

The spontaneous leakage to the CPT dark state can be
foreseen from the non-Hermitian correction to the interaction
part of the effective Hamiltonian (2.4) and (2.5). Indeed in a
rigorous approach, the additional terms beyond the effective
Hamiltonian concept arise from the weak relaxation of the
optical coherence, assisting the two-photon excitation during
very short virtual transition time 	−1

nb at the rate of γ /2 [see
Fig. 2(d)]. The process is expressed by diagrams (C9) and
(C10) in Appendix C. Note that the disparities between the
modes ω1 and ω2 are crucially important for a fair observation
of the CPT resonance, so for consistency we have to leave
only the first term in the structure of the effective Hamiltonian
(2.5). In the case of the control atom A being excited we obtain

ρ̇b,β ′;b,β = · · · − γ

2

∑
n

[
�(2)∗

rn �
(1)∗
nb

4	2
nb

ρr,β ′;b,β (t ) + �(2)
rn �

(1)
nb

4	2
nb

ρb,β ′;r,β (t )

]
,

ρ̇r,β ′;r,β = · · · − γ

2

∑
n

[
�(2)∗

rn �
(1)∗
nb

4	2
nb

ρr,β ′;b,β (t ) + �(2)
rn �

(1)
nb

4	2
nb

ρb,β ′;r,β (t )

]
,

ρ̇r,β ′;b,β = · · · − γ

2

∑
n

�(2)
rn �

(1)
nb

4	2
nb

[ ρb,β ′;b,β (t ) + ρr,β ′;r,β (t )],

ρ̇b,β ′;r,β = · · · − γ

2

∑
n

�(2)∗
rn �

(1)∗
nb

4	2
nb

[ ρb,β ′;b,β (t ) + ρr,β ′;r,β (t )]. (3.14)

Here we have assumed that the atom B exists in its ground
state such that β, β ′ �= r. These terms indicate leakage from
the coherent two-photon excitation dynamics and spontaneous
transition of the atom to any accessible Zeeman sublevel of
the ground state. Then, as shown by Fig. 2(d), it can with
certain probability spontaneously populate the state |b〉 in
this process, recovering its coherent coupling to the state |r〉
(bright state) or eliminating the two-photon interaction (dark

state). After a round of such spontaneous cycles, the atom will
eventually transit to the dark state.

Furthermore, recall that a key element of the entangle-
ment protocol is the dynamical transformation of coherence
between |b〉 and |a〉 to coherence between |r〉 and |a〉. It
primarily follows the dynamical evolution but, as expressed
by (3.9), is partly distorted by weak relaxation induced by the
incoherent scattering of each mode, which is treated in (3.9)
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as happening independently from either energy level. Here we
revise this point and extend the decoherence process by an
option to spontaneously emit a photon in free space fulfilling
the two-photon resonance coupling of |r〉 and |b〉. That is also
represented by diagrams (C9) and (C10) and expressed by the
following corrections to the relaxation of these coherences:

ρ̇b,β ′;a,β = · · · − γ

2

∑
n

�(2)∗
rn �

(1)∗
nb

4	2
nb

ρr,β ′;a,β (t ),

ρ̇r,β ′;a,β = · · · − γ

2

∑
n

�(2)
rn �

(1)
nb

4	2
nb

ρb,β ′;a,β (t ), (3.15)

where the free precession of the spin coherence at frequency
ω̃ba combines with an external excitation induced by the driv-
ing fields such that ω̃ra = ω̃ba + ω1 + ω2.

The leakage of the atom from the working channel in the
two-photon excitation process, expressed by (3.14) and (3.15),
is balanced by the backward repopulation process, which in
the case of atom A is given by the following incoming-type
term,

ρ̇m′,β ′;m,β (t ) = · · · + γ exp[iω̃m′mt]
∑

α=a,b

∑
n′,n

[
exp[−iω̃bαt]

�
(2)∗
rn′ �(1)∗

nα

4(−	rn′ )	nα

ρr,β ′;α,β (t ) + exp [−iω̃αbt]
�(2)

rn �
(1)
n′α

4(−	rn)	n′α
ρα,β ′;r,β (t )

]

×
∑

q

CF ′M ′
F ′

0 M ′
0 1qCFM

F0M0 1q × (−)F0−F ′
0 [(2F ′

0 + 1)(2F0 + 1)]1/2(2J + 1)

{
S I F ′

0
F ′ 1 J

}{
S I F0

F 1 J

}
, (3.16)

and expressed by the sum of diagrams (C11) and (C12) in Appendix C. Such a cooperative in-scattering by both driving
modes is constructed by various combinations of the amplitudes in Figs. 2(a) and 2(b) with the amplitude in Fig. 2(c), and
we distinguish this contribution from the optical pumping mechanism discussed above, and associate it with the CPT process. To
activate this channel of incoherent scattering it is crucially important to precisely fulfill the conditions of two-photon resonance
within a spectral resolution much narrower than γ (i.e., for sufficiently long pulses, see the preamble to Sec. III), such that the
detunings of both the modes from the intermediate level are equal: 	nb = −	rn. Although the difference between dressed and
undisturbed energies is not critical in the denominators of (3.14)–(3.16), the exact resonance ω1 + ω2 = ω̃rb is required in the
defined transformation matrices.

Similar terms, with an appropriate interchange of the indices, should be added to the master equation for the atom B at the
stage of its excitation. But again the situation is somewhat different, and if the atom A occupies the state |r〉 then the CPT
resonance condition cannot be created for the atom B and in this case we have to eliminate the associated terms in its evolution.
Nevertheless, there is a specific option when the atom A is superposed between the states |a〉 and |r〉, and, as was pointed above,
the density matrix has elements ρa,r;r,β and ρr,β;a,r with β = b, a. In this particular case we obtain

ρ̇a,b;r,β = · · · − γ

2

∑
n

�(2)∗
rn �

(1)∗
nb

4	2
nb

ρa,r;r,β (t ),

ρ̇a,r;r,β = · · · − γ

2

∑
n

�(2)
rn �

(1)
nb

4	2
nb

ρa,b;r,β (t ) (3.17)

instead of (3.14) and (3.15), and

ρ̇a,m′;r,m(t ) = · · · + γ exp[iω̃m′mt]
∑

β=a,b

∑
n′,n

exp[−iω̃bβt]
�

(2)∗
rn′ �

(1)∗
nβ

4(−	rn′ )	nβ

ρa,r;r,β (t )
∑

q

CF ′M ′
F ′

0 M ′
0 1qCFM

F0M0 1q

× (−)F0−F ′
0 [(2F ′

0 + 1)(2F0 + 1)]1/2(2J + 1)

{
S I F ′

0
F ′ 1 J

}{
S I F0

F 1 J

}
(3.18)

instead of (3.16), which together with their Hermitian
conjugated counterparts have to be added to the master equa-
tion describing the entire evolution.

The critical feature of the two-photon resonance process
in the ladder-type system is its phase sensitivity. During the
transient stage the combination of the stimulated and sponta-
neous coupling of |r〉 and |b〉 works towards rearrangement
of the Rydberg coherence, under the steady-state conditions
that would turn the dynamics to irreversible conversion of
the atomic subsystem to its dark state being a part of an
eigenstate of the global system combining a two-mode field

and an atom superposed between |b〉 and |r〉, which would
further be insensitive to the excitation process. Conversion to
the dark state in an ideal case of a closed three-level ladder
configuration |b〉 ↔ |n〉 ↔ |r〉 would be most efficient if the
spontaneous emission would transit the atom only via |n〉 to
|b〉, as highlighted by Fig. 2(d). In reality the situation is
more subtle and there are several intermediate levels n, n′, . . .
forming several ladder-type transitions with different coupling
strengths. Furthermore, in accordance with the protocol the
created dark state is superposed with the state |a〉, and the
trapping process competes with repopulation of the atoms
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out of the working channel by optical pumping. However, if
the driving modes are activated for both the atoms in a cw
regime with infinite duration, a part of the atomic system
would leak to the dark state consequently isolated from the
interaction process. Eventually, with certain likelihood, that
would contribute as a fraction of the collective coherent state
prepared for two atoms.2

The difference of the CPT dark state formation process
with the optical pumping phenomenon reveals that these
mechanisms prevent the population imbalance differently and
independently of each other. As can be straightforwardly ver-
ified by tracing the optical pumping terms for either atom
Tr′

A( ˙̂ρ)OP = Tr′
B( ˙̂ρ)OP = 0. Similarly for CPT time deriva-

tives of both atoms we obtain Tr′
A( ˙̂ρ)CPT = Tr′

B( ˙̂ρ)CPT = 0.

C. Other assumptions and the calculation scheme

In addition to the decoherence processes discussed above
there is a slow but unavoidable radiative decay channel of
the Rydberg state itself. This process can be taken into con-
sideration by including a small and empirically estimated
exponential decay rate (lifetime of 100 μs) into Eqs. (3.7),
(3.9), (3.11), and (3.12). Then, due to the atom’s cascade
decay down to the ground state the process would eventu-
ally result in equal population of all the Zeeman sublevels
belonging to the ground state. The realistic correction to the
reduced density matrix can be constructed by an admixture
of a respective Werner-type term proportional to a unit matrix
compensating the depopulation of the working levels in such
a decay process, with subsequent normalization.

We conclude this section by describing our simulation
algorithm. Initially both atoms are prepared in either |a〉 or
|b〉 state, or a superposition of these states. As a zeroth-order
approximation the dynamical equations are solved for a par-
ticular linear momentum neglecting the inhomogeneity of the
driving light beams. In this case, as shown in Appendix B,
the transformation matrix (2.12) can be found in an analyti-
cal form (B2). At the first-order approximation this result is
corrected by keeping the differential terms in (2.8) as pertur-
bations via numerical solution of (2.8). After these steps we
have a realistically constructed set of probability amplitudes
in (2.12) at any time of the entangling process treated dynam-
ically. As an undesirable variant at the end of the protocol
one or even both the atoms can occupy the Rydberg state
with small but nonvanishing probability. We have neglected
these small elements of the density matrix in the analysis of
incoherent losses but will further use them in our estimations
of the correlation properties.

The dynamics of the reduced density matrix can be ex-
tracted by tracing the extended density matrix over the spatial
variables. The tricky point is that the trace has to be evaluated
in the basis of harmonic oscillator eigenfunctions and over
the Gibbs measure at a given temperature. This part of the

2As was pointed out earlier the two-photon resonance and the ef-
fective optical pumping can be attained only asymptotically for much
longer pulses than we consider here. But even the initial stage of both
processes disentangles the qubits and can cause a considerable error
in the quantum logic operations.

calculation can be done numerically only for low temperatures
when the thermal state occupies a few low-energy oscillator
modes. This is however the most desirable limit for potential
applications, so we do not attempt to push the calculation too
far in the higher-temperature regime. Eventually at this stage
we have recovered the reduced density matrix as a function of
time during the entanglement protocol from its beginning up
to its end. That gives us the starting point for further inclusion
of the incoherent losses.

The incoherent losses can be realistically estimated by
straightforward numerical evaluation of the increments for
the density matrix, accumulated during the process. The in-
crements are small but expressed by finite integrals of the
respective time derivatives described in the preceding section.
We substitute the density matrix, as approximately reproduced
by dynamical solution, in these integrals. These corrections do
not violate the normalization condition for the density matrix.
At the final step we correct the result by incorporating the
direct decay process of the Rydberg state as described above.

IV. RESULTS

In this section we present the results of our numerical
simulations for the basic benchmarks of the entanglement pro-
tocol, namely, for purity and fidelity of the prepared entangled
state of two qubits and for the truth table of the CNOT gate
implemented with the protocol. We analyze the results and
compare the cases of different experimentally accessible exci-
tation geometries searching for an experimental configuration
optimizing the entanglement preparation.

A. The excitation geometries

To realize the protocol experimentally, it is necessary to
fulfill the conditions of a closed two-level transition between
the qubit state |b〉 and the Rydberg state |r〉. This guarantees
that the required π and 2π pulses between the ground and
excited states may be realized exactly. Otherwise the tran-
sitions between |b〉 and several |r〉 states would repopulate
the atoms out of the main channel and involve more states
in the interaction process. Since the hyperfine structure of
the Rydberg states is unresolved within the protocol duration,
typically within 1 μs, it is crucially important to select the
excitation to a single Zeeman state |r〉, which can be further
specified in the basis of the total electronic and nuclear spin
angular momenta.

As a first example we consider the specific excitation
channel existing only in the energy manifold of 87Rb when
two circularly polarized beams provide the coupling between
the ground and Rydberg electronic states, both having zero
orbital momenta, as shown in Fig. 3. We associate the axial
direction of the trap with the z axis and assume atoms A
and B as located in the x, y plane, and define the respective
directors ex, ey, ez. The qubit is encoded into the hyperfine
clock transition and we can specify the qubit states precisely
as |a〉 = |5s(2S1/2); F0 = 1; M0 = 0〉 (logic “0”) and |b〉 =
|5s(2S1/2); F0 = 2; M0 = 0〉 (logic “1”).

Then the qubit state |b〉 can be coupled by a two-photon
transition with the upper state |r〉 = |nrs(2S1/2); Fr = 2; Mr =
+2〉 with the principle quantum number nr � 50–100. This
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FIG. 3. The transition diagram and excitation geometry for 87Rb
driven by two counterpropagating and circularly polarized light
beams. In the diagram the participating states are specified by the
definite numbers of the total electronic and nuclear spin angular mo-
menta F0 = 2, F = 1, 2, Fr = 2 and their projections M0 = 0, M =
+1, Mr = +2. The used energy configuration of 87Rb is effectively
two-level and provides coupling of the qubit state |b〉 only with
a single Rydberg state |r〉 having principal quantum number nr �
50–100.

state plays the role of a quantum bus blocking the double
excitation of two atoms. We do not fix a concrete value of
nr since in our simulations it contributes to the energy shift
h̄δR only, which we consider as an external and independent
parameter. The choice of the Rydberg states with zero orbital
angular momentum is additionally motivated by a convenient
isotropic structure of this shift. Excitation with two laser
beams, both having the same circular polarizations (but differ-
ent helicities) e1 = e2 = e+1 = −(ex + iey)/

√
2, couples the

selected ground and Rydberg Zeeman states |b〉 and |r〉 via
two intermediate states |n〉 = |5p(2P1/2); F = 1, 2; M = +1〉.

Another example of the excitation process, which we shall
consider, is shown in Fig. 4 where the two counterpropagating
driving beams are directed along the y axis and linearly polar-
ized along the z axis. In this case the recoil linear momentum
pushes each of the atoms in the transverse plane where they
have tighter confinement than in the axial direction. The trans-

FIG. 4. Same as in Fig. 3 but for the excitation by two linearly
polarized light beams propagating in the transverse direction. The
energy configuration is also effectively two-level due to specific
selection rules for electric dipole transitions.

verse motion can be frozen with the aid of the Raman sideband
cooling (RSBC) protocol and the negative influence of the
recoil on the entanglement preparation, explained in Sec. II D,
can be minimized. Let us point out here that RSBC down to
the trap ground state in a three-dimensional configuration is
quite challenging and it would be problematic to do it in an
atomic lattice consisting of many qubits (see [38]). There is
no need to cool the axial motion for the excitation configured
with the linearly polarized light beams in the geometry of
Fig. 4, as we will explain later.

Unlike the excitation channel shown in Fig. 3 the excitation
by linearly polarized light beams with e1 = e2 = ez can be
used for any alkali-metal atom. An important advantage of
the linear polarizations is in convenient selection rules for the
dipole coupling of the Zeeman states with a zero projection
of the angular momentum, which provides that only one inter-
mediate state |n〉 = |5p(2P1/2); F = 1; M = 0〉 contributes to
the ladder-type two-photon excitation.

B. Fidelity of entanglement and purity of the prepared state

The two-particle density matrix of atoms A and B was
calculated for geometries of Figs. 3 and 4 as described in
Secs. II and III. For the open system, when interaction with
the environment only slightly disturbs its dynamical behavior,
the deviation from the ideal state (2.17) can be expressed by
fidelity of this state and the actually prepared mixed state
of two atoms F = 〈ψ |ρ̂|ψ〉AB. The mixed state ρ̂ can have
an eigenfunction |ψ〉 with a maximal eigenvalue, which can
be different from |ψ〉AB. In this case we will use the purity
P = Spρ̂2 as an intrinsic parameter indicating the priority of
the dynamical behavior in the state preparation.

The subtle point is that for correct comparison based on
a fidelity criterion we should eliminate the extra phases as-
sociated with the light shifts induced by the driving lasers
to the hyperfine sublevels in the prepared state. Indeed the
amplitudes of both the qubit states |a〉 and |b〉 of both the
atoms accumulate the phases during the protocol [see (2.6)
and related comments]. For the calculated fidelity F we have
eliminated these extra phase shifts, which in an experiment
would be compensated for by additional spin rotations real-
ized with additional single-qubit rotations.

The entanglement protocol, described in Sec. II C, is di-
vided into three subsequent transformations by π , 2π , and π

pulses. We express the duration of the π pulse via an effective
Rabi frequency as τπ = π/|�|, and similarly for a 2π pulse
with equal �’s for all the pulses, such that the full protocol
duration is given by 2τπ + τ2π . Then, the longer duration
corresponds to the smaller effective Rabi frequency. Note
that our calculations are sensitive to both Rabi frequencies
of the driving beams �(1) and �(2), which may be varied
independently. Here we use �(1) � �(2) but certain further
optimization of the mutual relation between these quantities
is possible.

The parameters F and P , calculated as a function of τπ , are
shown in Figs. 5 and 6 for the excitation geometries shown in
Figs. 3 and 4, respectively. The counterpropagating 795- and
474-nm light beams are detuned by 	nb = −2π × 3000 MHz
from the intermediate state |n〉 = |5p(2P1/2); F = 1; M〉. For
such detuning the Rabi frequencies �(1) and �(2) should be
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FIG. 5. Fidelity F (solid curves) and purity P (dashed curves) of
the entangled state, prepared by the protocol of the Rydberg block-
ade with excitation by circularly polarized light beams (see Fig. 3)
and considered as a function of the π -pulse duration τπ = π/|�|.
Time beats in these dependencies indicate a small but non-negligible
probability of an off-resonant transition and simultaneous occupation
of |r〉 states by atoms A and B. The transverse degrees of freedom
are frozen for both of the atoms, but the axial mode is thermalized
with a variable temperature T‖ = 0 (upper), T‖ = 5 μK (middle), and
T‖ = 10 μK (lower).

adjusted within a few hundred MHz to justify the protocol pa-
rameters. The atoms are initially localized in the traps within
a micron scale and the driving Gaussian beams are assumed
to overlap them with 3-μm waist for the beams oriented in
the longitudinal direction and 20 μm for the radially oriented
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FIG. 6. Same as in Fig. 5 but for the excitation geometry of
Fig. 4. The dependencies, related to different temperatures T‖ =
0, 5, and 10 μK, are unresolved within the plot scale.

beams (see the discussion below).3 The field inhomogeneity
near the focal point, discussed in Sec. II B, affects the en-
tanglement process and influences the calculated parameters.
As summarized in our calculation protocol in Sec. III C, the
corresponding correction is added by numerical evaluation of
the respective differential terms in (2.8) considered as weak
perturbations. We assume that both of the atoms have their
radial degrees of freedom cooled and occupy the ground state
of the transverse vibrational modes. The axial mode exists
in a thermal state described by the Gibbs measure with a
temperature varied as T‖ = 0, 5, and 10 μK. The temperature
dependence is mainly observed in Fig. 5 for the pulses of
longer duration and is unresolved in Fig. 6 within the graph
scale for the tested calculation domain.

The quantities F and P demonstrate quite an intriguing
behavior as functions of the protocol duration for different ex-
citation conditions. There are time beats of F and P vanishing
for a longer duration. That is a consequence of the protocol
imperfection allowing the simultaneous occupation of the Ry-
dberg state by atoms A and B, known as blockade leakage.
As discussed in Appendix B for such an event the respective
probability is small and oscillates with the frequency, given
by (B5) and roughly estimated as 2δR. This is visualized in
the graphs of Figs. 5 and 6, and, in accordance with (B2),
the transition amplitude (reproduced by the amplitude of time
beats in the graphs) vanishes for smaller values of the effective
|�|, i.e., for the longer protocol duration.

In our calculations we set the frequency shift δR of the
energy levels for a doubly excited Rydberg state, as δR =
2π × 50 MHz, which realistically estimates the dipole inter-
action for a pair of rubidium atoms, excited to the upper state
with a principal quantum number nr ∼ 50–100, and separated
by a distance of several microns (see [17]). Although the
condition |�| = π/τπ � δR is fulfilled, as follows from our
calculations, the probability amplitude of double excitation to
the Rydberg state is not negligibly small and for a shorter
protocol duration it increases, which eventually results in
leakage of the system out of the controllable dynamics and
induces an extra phase shift between the basis states. Thus
the dependencies of Figs. 5 and 6 suggest the optimum for
the effective Rabi frequency and the protocol duration near
τπ ∼ 100–200 ns for both the considered geometries.

Furthermore to clarify the mutual relation between F and
P let us approximate the density operator by the following
Werner-type mixture:

ρ̂ ∼ (1 − x)|ψ〉〈ψ | + x

4
ÎAB, (4.1)

where we associate the state |ψ〉 with the eigenstate of ρ̂

corresponding to the largest eigenvalue and then admix it with
a maximally mixed state described by a unit matrix ÎAB in
the linear span of states |a〉 and |b〉 for two atoms. In the
considered case of a small x we can expect that |ψ〉 ∼ |ψ〉AB.
If these functions coincide, we straightforwardly obtain that
F � P and equality is only possible for x = 0. That is per-
fectly confirmed by the dependencies plotted in Fig. 5. But

3Other parameters of the dipole trap, used in our calculations, are
the same as in [31].
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for a rather short protocol duration we arrive at the opposite
inequality F < P , as is clearly visible in Fig. 6. This unam-
biguously tells us that the excitation by linearly polarized light
beams provides a nearly dynamical behavior, with P → 1, but
at the same time indicates a deviation between the prepared
state |ψ〉 and the ideal state |ψ〉AB. This difference can be
quite important for further implementation of quantum logic
operations. In general we always have 〈ψAB|ψ〉 �= 1 since
even under the dynamical evolution the atoms can leak out of
the main channel of the Rydberg blockade, and state |ψ〉 will
contain |ψ〉AB only as a part of its Schmidt decomposition. For
optimization of the logical operation it would be wise to avoid
the poorly controllable domain with relatively high |�| � δR

and short duration τπ � δ−1
R .

In the opposite limit of infinitely long pulses, the pro-
cesses of incoherent losses, discussed in Sec. III, irreversibly
damage the generated entanglement. Asymptotically, the de-
pendencies of Figs. 5 and 6 should approach the limits of
the completely randomized mixed states, i.e., F ,P → 1/gAB,
where gAB is the degeneracy of the ground state in the com-
bined system of two atoms. In our numerical simulations this
asymptotic behavior cannot be verified due to the restrictions
of the considered model. But it seems more important that in
the optimal region with τπ ∼ 100–200 ns, fairly reproduced
by our model, there is a significant difference in estimates of
parameters F and P for the excitation geometries, designed
either with circular polarizations (Fig. 3) or with linear polar-
izations (Fig. 4).

As was mentioned in Sec. II D, entanglement is reduced for
the two-photon excitation acting within a finite time interval
due to the recoil of linear momentum, which mainly affects
the control atom A spending a relatively long time τ2π in its
Rydberg state. Referring to our estimate (2.20) above, we can
point out that roughly the displacement α ∝ (h̄q + p)/m τ2π

being averaged over thermal distribution for momentum p; it
is visualized as a path segment directed along the transferred
linear momentum h̄q.4 The direction is different for Figs. 3
and 4 but the segment length is approximately the same, such
that the recoil affects the motion in the transverse and axial
modes of the trap oscillator more or less similarly. That is
predicted by the observed slight dependence of the process
on the thermal state of the axial mode. Note that for the trap
oscillator the dimensionless displacement α, scaled by the
position uncertainty, is even higher for the tightly confined
transverse mode than for the loose axial mode. But in spite
of this, the quality of entanglement is certainly better for
the dependencies of Fig. 6 than for those of Fig. 5. So the
recoil plays a certain but not dominant role in reduction of the
entanglement under the conditions considered here. Actually
the recoil is rigorously included in our calculations within the
plane-wave approximation (see Appendix B), nevertheless the
estimate (2.20) supplies a convenient qualitative explanation
of this effect. The recoil effects will become a major error
source if the incoherent scattering from the intermediate state
is significantly reduced [28].

4Note that in our estimates the recoil linear momentum is only
negligibly varied with the principle quantum number of the Rydberg
state with nr � 1.

TABLE I. The error budget for the entangled state preparation at
T‖ = 5 μK and for τπ � 150 ns showing relative impact of various
error sources. The deviations of fidelity and purity from unity are
estimated for both the reference geometries of Fig. 3 (circular) and
Fig. 4 (linear) and the caustic waists are set different for these two
cases of focused and in-plane excitations, respectively (see the text
for details).

1 − F 1 − P

Error sources Circular Linear Circular Linear

Incoherent scattering 0.051 0.006 0.099 0.012
Rydberg state decay 0.003 0.003 0.005 0.005
Blockade leakage 0.002 0.002 2.5 × 10−5 2.5 × 10−5

Recoil effect 0.0007 0.0002 0.001 0.0004
Field inhomogeneity 3.4 × 10−5 2.0 × 10−5 6.1 × 10−5 3.5 × 10−5

The optimal duration with τπ ∼ 100–200 ns is mainly
provided by a tradeoff between the losses coming from in-
coherent scattering, which are increased with the increased
duration of the interaction process, and uncontrollable devi-
ations from the target state |ψ〉AB appearing for short control
pulses. The incoherent losses reduce the fidelity and purity
differently for the considered excitation geometries. The opti-
mal attained fidelity of the prepared entangled state is varied
from �95% in the case of Fig. 3 to �99% in the case of Fig. 4
and that highlights the advantage of two-photon excitation
with linear polarizations. The excitation by linearly polarized
light beams provides convenient selection rules with only
one intermediate state involved in the two-photon interaction
process. That minimizes the negative contributions of the pro-
cesses discussed in Sec. III.

In order to compare the partial impacts of the discussed
destructive processes on violation of an ideal scenario we have
listed the errors in F and P for an optimal pulse duration
τπ � 150 ns in Table I. Under assumption of a thermalized
longitudinal motion with temperature T � 5 μK the table dis-
plays the estimates of partial deviations of both the quantities
from unity subsequently caused by the losses from incoherent
scattering, the natural radiative decay of the Rydberg state,
the imperfection of the Rydberg blockade (blockade leakage),
the recoil effect, and the spatial inhomogeneity of the driving
beams near the focal points (field inhomogeneity).

Although our estimates show low correction to the entire
error budget from the field inhomogeneity the latter is quite
sensitive to the localization uncertainty of the atom because
of its residual axial motion. The caustic waists w0 j , j = 1, 2
should sufficiently exceed the localization scale. Otherwise
the related error is dramatically increased and will be non-
negligible particularly for the excitation geometry shown in
Fig. 4 where the field inhomogeneity strongly interferes with
the axial motion. The results shown in Table I are obtained
for the different caustic waists for the two geometries—we
used w01 = w02 = 3 μm for the focused excitation by circular
polarized beams (Fig. 3) and much wider waists of w01 =
w02 = 20 μm for the in-plane excitation by linearly polarized
beams (Fig. 4). This choice is mainly dictated by a typical
geometry of an experimental setup, where strong focusing is
usually possible only along the dipole trap axis, coinciding
with the quantization axis.
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The numerical results presented in this section were pri-
marily focused on reproducing our experimental limitations
and they eventually bounded the fidelity of the entangle-
ment protocol by 99% at highest. However, this technical
benchmark may be improved by designing the two-photon
excitation via higher intermediate states, for example, via
6p(2P1/2) in the case of rubidium atoms. This state has a
weaker spontaneous decay than 5p(2P1/2) and the incoherent
losses might be smaller. Such excitation channels were real-
ized in experiments [18,19]. The negative effect of incoherent
scattering can be also suppressed by increasing the Rydberg
beams detuning from the intermediate state at fixed effective
Rabi frequency �.

C. The truth table for a CNOT gate

In the most general case, a three-qubit quantum logic op-
erator is required to construct an arbitrary quantum network
that includes all of the options of classical computations [39].
However, for the widely used and universal set of quantum
computations, proposed in [40], the data processing can be
realized by compilation of the two-qubit CNOT gates with ar-
bitrary single-qubit rotations. Then any unitary transformation
realized by a quantum computer can be expanded as a finite
set of subsequent transformations involving only the CNOT

and single-qubit operations. Although the CNOT and CZ gates
may both be used in such universal gate sets, the CNOT is
operationally preferable, since its truth table may be directly
observed in the computational basis without full gate tomog-
raphy. Unfortunately, given various imperfections discussed
above the CNOT gate cannot be implemented ideally and in
this section we describe how the above discussed decoherence
processes affect the quality of the CNOT gate, applying our
calculations to the output density matrices.

The transformation between CZ and CNOT gates is phys-
ically implemented by two additional microwave pulses
providing the single-qubit π/2 rotations on the Bloch sphere
of the target atomic qubit B. Since fidelity of the microwave
single-qubit gates is typically much higher than fidelity of
the entangling Rydberg gate [41], we simulate them as in-
finitely short lossless transformations in the linear span of
the computational basis |aa〉, |ab〉, |ba〉, and |bb〉 ignoring the
option for the state decoherence during such an infinitely short
single-qubit operation. The complete transformation sequence
includes the Rydberg-blockade realization of the CZ gate with
many channels of losses and therefore takes part of the sys-
tem off the computational subspace. In those situations when
either one or both the atoms leave this subspace, we trace the
density matrix over the spin states of the lost atom(s). Then we
can define the following conditional probabilities clarifying
the figure of merit of the quantum gate:

P(|α, β〉) = ρα,β;α,β if α, β ∈ (a, b),

P(|α, ∅〉) =
∑

β �=a,b

ρα,β;α,β if α ∈ (a, b),

P(|∅, β〉) =
∑

α �=a,b

ρα,β;α,β if β ∈ (a, b),

P(|∅, ∅〉) =
∑

α �=a,b

∑
β �=a,b

ρα,β;α,β (4.2)

FIG. 7. The truth table for the CNOT quantum gate calculated for
the π -pulse duration τπ � 150 ns and for the excitation geometry
shown in Fig. 3. The axial mode is thermalized with the temperature
T‖ = 10 μK and other parameters are the same as in Fig. 5. The
conditional probabilities are defined by (4.2) and shown in percent.
The table rows specify the input states and the table columns specify
the outputs (see the text for more details).

where we have denoted the absence of the particular atom in
the computational subspace by the symbol of an empty set
formally written in Dirac notation in the function argument,
expressing the respective possibility. The leakage from this
subspace results either from the repopulation process due to
the incoherent scattering of the driving modes on any atom,
or from spontaneous emission from the Rydberg state of atom
A. The density matrix is calculated for the varied initial con-
ditions when each atom subsequently occupies the particular
computational state either |a〉 or |b〉.

The above defined conditional probabilities estimate the
likelihoods of different “outputs” given different originally
prepared “input” states, and they can be organized in a matrix
known as the CNOT truth table. In Figs. 7 and 8 we present
the truth tables for the excitation geometries shown in Figs. 3
and 4, respectively. The numbers in the table cells reproduce
the probabilities (4.2) where the output possibilities and the
different initial conditions are specified by the table column
and rows, respectively.

The numerical results presented in Fig. 8 show that the ex-
citation by linearly polarized driving modes (Fig. 4) provides
a certain advantage for the CNOT logic operation. As pointed
out earlier, the reason for this is in specific selection rules for
electric dipole transitions that prevent an undesirable inco-

FIG. 8. Same as in Fig. 7 but for the excitation geometry shown
in Fig. 4.
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FIG. 9. The truth tables for the CNOT based quantum gate, cal-
culated for the same parameters as in Figs. 7 and 8, but after
postselection of the atoms in the computational subspace. The tables
are shown for both considered excitation geometries: Fig. 3 (left) and
Fig. 4 (right).

herent repopulation (optical pumping) of the atoms between
the computational states. The spontaneous Raman transitions
from |a〉 to |b〉 and |b〉 to |a〉 are forbidden and do not affect the
data processing. That would not be the case for the geometry
of Fig. 3. However, for both geometries there are additional
small but non-negligible transition probabilities from the col-
lective states |ba〉 and |bb〉 to |aa〉 and |ab〉, respectively, since
the signal atom A can spontaneously decay during the protocol
from its Rydberg state to any Zeeman sublevel of its ground
state with the lifetime of �100 μs.

The truth tables can be corrected by additional posts-
election verifying the existence of both the atoms in the
computational subspace. We skip the discussion of how that
could be implemented technically and associate the correction
with the renormalized projection of the density matrix onto
the computational subspace. We present the CNOT truth tables
illustrating the postselected data processing in Fig. 9. The
tables express the quantum gate operation directly with the
numbers (00), (01), (10), and (11) and give us upper estimates
of the figure of merit for the considered realization of the CNOT

gate. Further optimizations are surely possible but significant
improvement of the protocol parameters towards gate errors
significantly less than 0.1% would challenge us to search for
other physical solutions.

A complete description of the quantum gate in the logical
subspace is given by a process matrix which may be recon-
structed from our numerical simulations (see Appendix D for
details).

Let us draw attention to the fact that the excitation geom-
etry shown in Fig. 4 revealing certainly better characteristics
than the one in Fig. 3 has not been experimentally verified
so far. In experiment it would be not so easy to do since, in
accordance with the protocol, the multiqubit quantum register,
structured in the transverse plane, should be provided with the
possibility of individual addressing for each qubit. That favors
experimental configurations which naturally imply the driving
beams directed along the axial axis, i.e., orthogonal to this
plane, with tight focusing of the beams with waists of a few
microns. Nevertheless, some alternative solutions for selective
addressing were implemented experimentally in [8,42], which
are suitable for the excitation geometry suggested by Fig. 4.

We conclude this section with the following remark. Ob-
servation of collective dynamics of the atoms driven by a
Hamiltonian with tunable and controllable parameters is an
essential element of a quantum simulator utilized for study-
ing many-body physics, phase transitions, quantum chemistry,
etc., as well as for developing universal quantum computation.
As follows from our simulations presented for the system
of two atomic qubits, the combination of optimal excitation
geometry with the Raman sideband cooling of the atoms’
transverse spatial motion only may significantly improve the
performance of the entanglement protocol based on the Ry-
dberg blockade. There are justified expectations that this key
result could be extended on a multiqubit system and be ap-
plicable for any alkali-metal atoms and finally represent an
effective tool for the creation of large-scale entanglement in
atomic systems.

V. CONCLUSION

We have analyzed various physical mechanisms underlying
the protocol of atomic spin entanglement by the Rydberg-
blockade technique and verified the proposed model by
numerical simulations. Unlike many previous studies, mostly
focusing on quantum simulators operating with multiqubit
systems, here we were motivated by clarifying the main
physical barriers in attaining an ideal scenario for digital
quantum data processing. Although fidelity for a two-qubit
entanglement at the level better than 95% was reported in
some advanced experimental demonstrations (see [18,19]), we
have obtained and discussed many difficulties for its further
improvement within technically limited capabilities of a cur-
rently used experimental design.

The main source of errors lies in spontaneous scatter-
ing which unavoidably follows coherent dynamical coupling
to the Rydberg states utilized to realize quantum logical
operations. Our numerical simulations, based on realistic de-
scription of the entire interaction process, suggest optimal
duration of the excitation pulses and control field amplitudes,
which minimize the negative influence of various channels
of incoherent scattering. As an important technical option for
practical optimization of the protocol, we have demonstrated
the advantages of using linear π -polarized excitation beams.
That would eliminate part of the spontaneous loss channels,
and, as verified by our numerical simulations, would improve
the basic parameters such as fidelity and purity of the prepared
entangled states. To the best of our knowledge, at least in the
context of single atoms in the microtraps, such an excitation
geometry was not considered previously. In practice, in-plain
excitation without tight focusing may be not straightforward
to implement in terms of individual addressing of the atoms
in the array, however additional tricks like addressing tweez-
ers may be used. Alternatively, tightly focused π -polarized
excitation may be considered, by changing the orientation of
the quantization axis to an orthogonal one. This should not
significantly affect the reported results. Interestingly, under
the experimental conditions considered here, the recoil ef-
fect plays no dominant role in the reduction of gate fidelity.
However, it will ultimately limit the achievable gate fidelity
at higher values, when other imperfections such as incoherent
scattering from the intermediate state are eliminated [28].
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Here we focused on the original variant of the blockade
gate, while current realizations tend to modify the proto-
col both for technical reasons and to reduce the error rate,
however the main sources of errors and the physical model
behind our analysis remain the same, so it can be easily
modified for other blockade-type quantum gates. We leave
the relative analysis and comparison of performance of other
blockade-based gates for future work. Focusing on fundamen-
tal limitations we have also not accounted for the influence
of technical noise, such as phase and amplitude noise of the
excitation lasers, fluctuating electrical fields, etc.; these noise
sources may be incorporated in the model later as random
fluctuations of the classical control parameters [43].

Finally, we have shown that our numerical model may be
used to simulate the global characteristics of two-qubit quan-
tum gates such as the truth table and process matrix. We have
performed a simulation of full quantum process tomography
of a two-qubit gate by calculating the output density matrices
for varying input states. The obtained results show that fideli-
ties at the level of 99% are in principle achievable without
any significant modifications to the original blockade gate
protocol and this bound may be further shifted by technical
improvements, such as utilizing an intermediate state with
longer lifetime and aiming for Rydberg states with higher
principal quantum number to reduce blockade leakage errors.
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APPENDIX A: FOCUSED GAUSSIAN MODE

Any of the light beams illuminating the atoms in the
paraxial approximation can be described by an appropriate
superposition of the mode functions U (s)(r) where the com-
bined mode index “s = k; p, l” corresponds to the standard
Laguerre-Gaussian parametrization with an azimuthal number
l and with a radial index p � l . We consider the case of a
fundamental Gaussian mode with p = l = 0 (TEM00 mode)
such that ω ≡ ωs = ωk = ck, and the mode function U (s)(r)
can be expressed in cylindrical coordinates with the origin at
the focal point as

U (s)(r) = 1√
L

eikz u(ρ, z) = constφ, (A1)

where L is the quantization length for the periodic boundary
conditions, and the slowly varying amplitude is given by

u(ρ, z) = a(z) exp

[
i

k

2q(z)
ρ2 + iψ (z)

]
(A2)

with
1

q(z)
= 1

R(z)
+ i

λ

π w2(z)
, (A3)

where R = R(z) is the wavefront curvature

R(z) = z

[
1 +

(
π w2

0

λ z

)2]
, (A4)

and

w(z) = w0

[
1 +

(
λ z

π w2
0

)2]1/2

,

ψ (z) = arctan

(
λ z

π w2
0

)
(A5)

are the beam waist and the phase shift, respectively (both
dependent on z). The outer factor a(z) is the normalization
constant. The extra phase ψ (z), varying from −π/2 to π/2, is
known as the Gouy phase and reveals a phase inversion at the
beam edges. The important longitudinal scale zR = π w2

0/λ,
called the Rayleigh range, indicates a length of the beam
divergence near the caustic waist. R(z) denotes the caustic
curvature in the ρ, z plane and it approaches infinity at z → 0,
where we have

u(ρ) ≡ u(ρ, 0) =
√

2

π w2
0

exp

[
− ρ2

w2
0

]
. (A6)

The beam has diffraction limited divergence inside a cone
with the polar angle θ = λ/(π w0) and the solid angle associ-
ated with the mode is given by πθ2 = λ2/π w2

0.
In the paper, we use the following expansion for the profile

of the field amplitude near the frame origin coinciding with
the caustic focal point:

u(ρ, z)/u(0, 0) ≈ 1 − ρ2

w2
0

− z2

2z2
R

+ i
z

zR
+ · · · , (A7)

which parametrizes the spatial dependence of the Rabi fre-
quencies for both Rydberg excitation beams.

APPENDIX B: TWO-PHOTON EXCITATION
BY PLANE WAVES

Once we neglect the differential terms in Eqs. (2.8) and
approximate the two-photon excitation by spatially homoge-
neous plane waves, as assumed in (2.11), the general solution
(2.12) simplifies as follows:⎛

⎝crp+h̄q(τ )
cbp(τ )
cap(τ )

⎞
⎠ = Û (τ )

⎛
⎝crp+h̄q(0)

cbp(0)
cap(0)

⎞
⎠, (B1)

where Û (τ ) is now expressed by a 3 × 3 matrix, with c-
number matrix elements. Straightforwardly we obtain
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Û (τ ) =

⎡
⎢⎢⎢⎢⎢⎣

[
cos

(�pτ

2

) + i 	p

�p
sin

(�pτ

2

)]
e−i	pτ/2 i |�|

�p
sin

(�pτ

2

)
e+iφ−i	pτ/2 0

i |�|
�p

sin
(�pτ

2

)
e−iφ+i	pτ/2

[
cos

(�pτ

2

) − i 	p

�p
sin

(�pτ

2

)]
ei	pτ/2 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (B2)

where

	p = ω1 + ω2 − ω̃rb − q·p
m

− h̄q2

2m
(B3)

or

	p = ω1 + ω2 − ω̃rb − q·p
m

− h̄q2

2m
− δR (B4)

in the case of blocked excitation, i.e., if the control atom A
is already in the Rydberg state and the transformation (B2)
affects only the target atom B.

Here we have denoted � = |�|eiφ and defined the gener-
alized Rabi frequency

�p =
√

|�|2 + 	2
p. (B5)

As follows from (B2) and (B4) the transition amplitude for
the simultaneous excitation of two atoms is suppressed by a
factor |�|/δR.

APPENDIX C: DIAGRAM IMAGES OF THE SCATTERING
CHANNELS

Identification and classification of the interaction channels
with the environment can be relevantly done by the nonequi-
librium diagram method introduced by Keldysh (see [44–46]).
To clarify this let us consider the following two-particle cor-
relation function:

iG (−−++)
α′β ′;α,β (r′

A, t ′
A, r′

B, t ′
B; rA, tA, rB, tB)

= 〈T̃ [
̂†
α (rA, tA) 
̂

†
β (rB, tB)]

× T [
̂β ′ (r′
B, t ′

B) 
̂α′ (r′
A, t ′

A)]〉 (C1)

where we have used the second quantized formalism, and
the chronological operators T and T̃, respectively, order and
antiorder the product of the system operators in the square
brackets in time. The atoms are assumed to be immobile
and distinguishable particles. 
̂†

α (rA, tA), 
̂α′ (r′
A, t ′

A) . . . are,
respectively, the creation and annihilation operators for atoms
A and B at certain spatial points and times evolving in the
Heisenberg picture.

Once we fix the position of each atom and neglect its
uncertainty within the trap scale, we can link this correlation
function to the two-particle density matrix introduced in the
main text:

iG (−−++)
α′β ′;α,β (r′

A, t, r′
B, t ; rA, t, rB, t )

= ρα′,β ′;α,β (t ) δ(r′
A − rA) δ(r′

B − rB). (C2)

Nevertheless it is more convenient to manipulate with (C1),
which can be expanded by the diagram series in accordance
with conventional rules of the invariant perturbation theory. To

follow this concept we can transform (C1) to the interaction
picture

(C1) = 〈
T̃

[
Ŝ†
̂ (0)†

α (rA, tA) 
̂
(0)†
β (rB, tB

]
× T

[

̂

(0)
β ′ (r′

B, t ′
B) 
̂

(0)
α′ (r′

A, t ′
A) Ŝ

]〉
(C3)

where Ŝ denotes the evolution operator:

Ŝ = T exp

[
− i

h̄

∫ ∞

−∞
V̂ (0)(t ) dt

]
. (C4)

In (C3) and (C4) the operators, superscribed by the (0) index,
are considered in the interaction picture and we have included
the interactions with the external coherent and quantized field
modes in the interaction Hamiltonian V̂ (0)(t ). The expansion
of the evolution operators can be regrouped in such a way
that it generates multiple partial contributions which can be
mapped onto specific diagram images.

For further details of Keldysh’s diagram approach we refer
to the papers cited above. The crucial feature is that the inter-
action terms generated by the expansion of Ŝ and contributing
to the vacuum expectation values are marked by a minus sign
but similar terms generated by the expansion of Ŝ† are marked
by a plus sign. Below we present the diagram images of the
processes described in Sec. III B.

The depopulation terms in the evolution of the density
matrix in Eqs. (3.9)–(3.12) for the light scattering from the
states |a〉 and |b〉 can be recovered by decoding the following
diagrams:

(C5)
where double lines visualize the original Green’s functions of
the atoms, undisturbed by incoherent losses but subject to the
coherent dynamics, and the thick solid line is the atomic prop-
agator in the intermediate state, dressed by interaction with
the vacuum modes. The thin lines are the free propagators in
the final state. The dashed arrows here express the interactions
with the coherent mode ω1. Similarly for the scattering from
the Rydberg level |r〉 we obtain

(C6)
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where the dashed arrows express the interactions with the
coherent mode ω2. In evaluation of these diagrams, as well
as of (C9) and (C10) below, we extract only the spontaneous
contributions, proportional to γ , and treat them as a small
perturbation. The dynamical behavior of the process is already
incorporated into the double arrow lines.5 Note that we have
dealt here with an entangled pair of atoms and have excluded
those events when both atoms originally occupy the Rydberg
state. The probability of such an event is small and beyond the
approximations made. Here and below we point out the latter
circumstance by dashed-boxing the forbidden processes in the
diagrams. To obtain other depopulation diagrams visualizing
the damping of coherency, originally created by dynamical
interaction between the ground and Rydberg states, one has
to combine the cross parts from (C5) and (C6).

The repopulation of atoms by optical pumping [see
Eq. (3.13)] is expressed by the diagrams

(C7)

for the scattering from the ground state and

(C8)

for the scattering from the Rydberg state. Here the photon’s
wavy line indicates tracing over all scattering directions of the
emitted photon.

The depopulation processes, induced by the two-photon
resonance [see Eqs. (3.14), (3.15), and (3.17)], are imaged by
the following diagrams:

(C9)

5The atomic propagator in the intermediate states, represented by
the thick solid line, is h̄(E − En ± iγ /2)−1, where the sign depends
on the type of time ordering. These diagrams reproduce the effective
Hamiltonian discussed in Sec. II A if γ is neglected. The first-order
corrections with respect to γ then describe the incoherent depopula-
tion processes.

and

(C10)
and one has to combine the cross parts from (C9) and (C10)
to obtain the diagram visualizing the damping of Rydberg
coherence.

The specific repopulation terms, induced by the Rydberg
coherences (3.16) and (3.18), are imaged by the diagrams

(C11)

and

(C12)

where (3.16) is given by the decoded sum of both the graphs,
but (3.18) is given by (C12) when decoding of (C11) gives its
Hermitian conjugated counterpart.

APPENDIX D: RECONSTRUCTION OF THE χ MATRIX
FOR THE CNOT GATE

When a realistic simulation of the entangling gate is ob-
tained, it can be used to simulate the procedure of the quantum
process tomography aiming at providing the most detailed
description of the underlying quantum process. In the most
general case an arbitrary quantum transformation E (·) can be
rigorously described by making use of the so-called χ matrix
or process matrix defined as follows:

E (ρ in ) =
D2∑
m,n

Ẽmρ inẼ†
n χm,n (D1)

where ρ in stands for the initial or the input state density
matrix, and D is the dimension of the system’s state space. For
the sake of notation convenience in this Appendix we specify
arbitrary basis states and the linear operators defined in the
unitary space, being a linear span of the original computation
atomic basis |α, β〉 with α, β = a, b, by integer numbers and
by their compositions (see definitions in the main text).
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FIG. 10. Real part of the χ matrix recovered for the simulated
CNOT process (see the main text). The composite indices m and n
enumerate the set of the dyadic-type transformations between input
and output bases [see (D4) and (D6)]. The color saturation in the
table cells visualizes the scale of the matrix elements varied between
−1 and 1 as clarified in the bar legend. A plus or a minus sign is
placed in the table cell to indicate the sign. Cells without a plus or
minus sign have a value of zero

Ẽn and Ẽm denote a set of basis operators acting in this
space, such that (D1) can be rewritten as

E (ρ in ) =
D2∑
i

Eiρ
inE†

i , (D2)

where

Ei =
D2∑
m

emiẼm,

E†
i =

D2∑
n

e∗
niẼ

†
n , (D3)

χm,n =
∑

i

emi e∗
ni.

In general the basis operators Ẽm and Ẽn can be chosen arbi-
trarily, but it is convenient for our purposes to define them as
the following dyadic-type transformation operators:

Ẽm = Em1,m2 = |m1〉〈m2|,
Ẽn = En1,n2 = |n1〉〈n2| (D4)

where we have implied the composite notation m = m1, m2

and n = n1, n2, where m and n can be further enumerated
by an integer number running from 1 to D2 (do not confuse
with definitions used in the main text). The expression (D2)
generates a set of transformation matrices for any evolution
process by varying the expansion coefficients eim. We accu-
mulate the details of the evolution process in the matrix χ by
transforming from (D2) to (D1).

FIG. 11. Same as in Fig. 10 but for the imaginary part of the χ

matrix recovered for the simulated CNOT process.

Let us substitute E (ρ in ) = ρout and then select an arbitrary
matrix element ρout

j,k , taken in the original basis. Then we arrive
at

ρout
j,k =

D∑
m1,m2,n1,n2

〈 j|m1〉〈m2|ρ in|n2〉〈n1|k〉χ̃m1,m2;n1,n2

=
D∑

m2,n2

ρ in
m2,n2

χ̃ j,m2;k,n2 (D5)

where the supermatrix χ̃ , being rearranged in normal square-
matrix representation, conventionally transforms to the pro-
cess matrix. Here j = m1 and k = n1, so we obtain

χ̃m1,m2;n1,n2 ≡ χm,n

FIG. 12. Absolute values of the eigenvector corresponding to the
largest eigenvalue of the CNOT χ matrix rearranged as a 4 × 4 matrix
in the computational basis. The color saturation in the table cells
visualizes the scale of the matrix elements varied between 0 and 0.5
as clarified in the bar legend.
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and enumerate the matrix elements as

m = D m1 + m2, n = D n1 + n2 (D6)

by definition. There are many ways to convert the su-
permatrix χ̃ to a square matrix, so we use the original
state specification for the χ -matrix formalism to avoid any
uncertainty.

Equation (D5) can be resolved and the process matrix can
be recovered for any physical realization of the CNOT protocol.
That allows us to implement universal process tomography
and eligible verification of the gate realization. In order to
show this the CNOT simulation was repeated for 16 different
input states from the state space of two coupled qubits. The
input states were constructed from the combinations of |a〉,
|b〉, (|a〉 + |b〉)/

√
2, and (|a〉 + i|b〉)/

√
2 for both the control

and the target qubits. Finally, the process supermatrix χ̃ was
recovered as a solution of Eq. (D5) considered for 16 different
realizations of the pure input and mixed output states.

As an illustrative example, the process χ matrix was recov-
ered for the excitation geometry of Fig. 3 and the results are
shown in Figs. 10 and 11. In these tables we have highlighted
the elements of the χ matrix which have nonzero values for
the case of an ideal CNOT protocol by number indicators. Un-
colored empty cells contain zero matrix elements. The process
matrix is Hermitian and positively defined by construction.
Its largest eigenvector (having a maximal eigenvalue), being
rearranged as a four-by-four matrix, is the unitary transforma-
tion which is the closest one to the reconstructed process. It is
shown in Fig. 12 and is equivalent to an alternative estimate
of the truth table shown in Figs. 7 and 9 in the main text. It
reasonably resembles the expected physical realization of the
unitary CNOT gate.
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