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ABSTRACT From a software evolution perspective, more actors are integrating the in-vehicle software de-
velopment cycle. In this process, software deployment mechanisms must include more complex techniques
to meet the software verification and traceability levels required by industry safety and security constraints.
In this context, we propose Fenrir, a public inter-automaker blockchain-based application store framework
in which each automaker retains software installability control. This application store also aims to ensure
traceability and security, while also keeping the solution light in terms of both energy consumption and
computing requirements, to be used in constrained environments. We implemented Fenrir in a heterogeneous
architecture composed of both on-board (bearing an ARM Cortex-A53 chipset, already deployed in cars)
and off-board (Amazon EC2) nodes for a realistic automotive use-case scenario, in which we evaluated
its performance and energy consumption. We demonstrate that the overheads added by our solution for an
entire software deployment pipeline—comprising both deployment and usage of already deployed software
packages—depends mainly on the verification mechanism, whose impact is not significant, i.e., 3.8% for
the worst-case scenario and 0.3% for a typical scenario.

INDEX TERMS Automotive, Application Store, Blockchain, Distributed Systems, Multi-provider, Soft-
ware Dependency Management, Software Deployment.

I. INTRODUCTION

IN recent decades, Information and Communication Tech-
nologies (ICT) have dominated the transformation of the

automotive world, progressively integrating it into Smart City
ecosystems. This transformation has considerably increased
vehicles’ connectivity, allowing new services such as au-
tonomous driving services, connected mobile applications,
and stolen vehicle tracking software to reach the market.
As a result of this trend, increasingly disruptive innovations
from many new actors will continue to appear even more
rapidly in the coming years, thus making embedded software
increasingly dynamic and varied. This trend also motivates
the progressive transformation of vehicles into mobile and
interconnected cloud nodes, allowing passengers’ services
and data to follow them everywhere [1], [2], [3].

However, such a rapid pace of innovation pace has dan-
gerously increased system and software complexity, meaning
software development and integration errors are responsible
for 50% of all vehicle recalls [4]. These errors are mostly
caused by inter-services’ undetected incompatibilities, thus,

software version management, traceability, and maintenance
are now critical issues for the automotive sector [5], [6].

If these errors were patchable through simple software or
configuration modifications, this would enable remote Over-
the-Air (OTA) diagnosis and updates instead of traditional
manual garage updates, thereby saving millions of dollars,
minimizing repair delays, and reducing the environmental
impact of update campaigns [7]. Besides software patches,
this mechanism also provides new business opportunities,
making flexible software service pay-as-you-go subscriptions
a reality for the automotive sector. Nevertheless, the security
and safety vulnerabilities of these fully autonomous software
deployment systems also pose significant risks to vehicle
safety and performance, potentially endangering their pas-
sengers’. For example, the 2002 Volkswagen and 2015 FCA
[8] cases could have been easily prevented through more
exhaustive software integrity verification mechanisms. Sim-
ilarly, the 2005 BMW and 2020 Ford [9] issues could have
been resolved with fewer casualties with a proper software
delivery pipeline. These risks will be even greater consider-
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ing the near-future evolution toward more decentralized and
collaborative development environments with the constant
inclusion of new actors.

Although the scientific challenges of remotely updating or
installing software have been widely addressed in existing
literature [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], to the best of our knowledge, no studies have com-
bined remote software deployment, automotive constraints,
and the multi-provider characteristics of a multi-automaker
application store, nor have software inter-dependencies in
been considered in this context. In addition, the contributions
above have evaluated only the security and performance of
the proposed mechanisms, ignoring energy, computational,
and storage demands, which currently represent some of the
most challenging on-board constraints.

In this paper, we present Fenrir, a novel and highly secure
application store framework for vehicles. To the best of our
knowledge, while other state-of-the-art proposals focus on
updating on-board services in a mono-automaker environ-
ment, Fenrir is the first to address not only updates but also
distributing new applications in a highly-collaborative multi-
automaker application store. Our work enhances the security
of existing solutions via a hybrid public/private blockchain-
based mechanism to ensure software integrity and authentica-
tion through the software deployment process, either in stan-
dard Vehicle-to-Cloud(V2C) or Vehicle-to-Vehicle(V2V) ap-
proaches. Thus, in this framework, all new suppliers can
publish their new applications, however, control over which
applications can be installed for a specific vehicle model is
preserved by the vehicle’s manufacturer who, at least for now,
remains accountable for problems that software may cause
in their vehicle’s fleet. Finally, Fenrir also contains a newly
proposed mechanism to handle inter-software dependencies
before downloading them into each vehicle to optimize the
distribution pipeline and reduce energy and computation
costs. In summary, in this paper, we exhaustively present
Fenrir, a blockchain-based multi-automaker application store
framework with cloud-offloaded dependency management,
which includes the following scientific contributions:

• A new model for privately managed public blockchains
for software storage and distribution for multiple com-
panies with heterogeneous hardware and software con-
straints (§V-A).

• Energy, computation, and storage optimization for
proofs, verification, and pruning mechanisms in highly
participative private blockchains for safety-critical soft-
ware storage in highly constrained systems (§V-B, §V-C
& §V-E).

• A cloud-assisted distributed software dependency
management mechanism directly integrated into the
blockchain to optimize storage needs and maintain an
in-vehicle backup and up-to-date global software image
(§V-D).

• A realistic system implementation and an industry-
inspired testbed to measure the solution’s performance

and viability for current OTA update traffic and future
V2V update campaigns (§III & §VI).

The remainder of this paper is organized as follows: Sec-
tion II presents the study’s automotive sector context and
technological background. Subsequently, Section III details
the use case upon which the development of Fenrir was
based. After that, Section IV describes all the contributions
noted above through a detailed description of Fenrir, Section
V evaluates its performance and Section VI gives an exten-
sive discussion. Finally, Section VII surveys the existing state
of the art and Section VIII presents the conclusions of our
results and proposed future work.

II. THEORETICAL BACKGROUND
A. AUTOMOTIVE SOFTWARE ARCHITECTURE
Electric and Electronic (E/E) architecture has evolved signifi-
cantly in recent years, marking a transition from a previously
fully distributed architecture that was almost wholly com-
posed of mono-functional micro-controllers. These micro-
controllers were connected through methods such as Con-
troller Area Network (CAN), Local Interconnect Network
(LIN), FlexRay, and Universal Serial Bus (USB). Newer ap-
proaches use actual domain vehicle architecture, comprising
fewer, more powerful microprocessors connected primarily
via Ethernet. Thus, considering recent technology evolution,
there is a clear tendency toward E/E architecture [7] recon-
figuring the older, highly constrained electronic control units
(ECUs) into new, higher-end devices with greater compu-
tational and storage capabilities. This tendency has helped
to reduce the price, weight, space, and complexity of these
systems. On this basis, systems will most likely evolve to
Central Computer Architectures (CCA) or Zonal Architec-
ture (ZoA), in which, respectively, one or few higher-end
ECUs encompass all the functions running in each sub-
cluster or even the whole vehicle. These new architectures,
linked to virtualization and advances in networking, will
yield many possibilities for dynamically allocated software,
performant OTA update mechanisms, and Service-Oriented
Architecture conceptions [7], [20], [21], [22]. Thus, we used
these near-future architectures as a basis for developing our
proposed solution in this study.

B. AUTOMOTIVE SOFTWARE DEVELOPMENT CYCLE
The automotive industry is a highly heterogeneous and par-
ticipative environment in which automakers act as integra-
tors of different pieces of software developed by differ-
ent suppliers. To facilitate software update delivery by all
the relevant actors, the automakers maintain an application
repository that hosts update packages. These updates can
then be downloaded by dealerships and installed through
OBD2 in a garage setting or exclusively through telematics
and infotainment ECUs. Such updates can, either be directly
installed by cars remotely or installed by users via the USB
port. Furthermore, as shown in Fig. 1, Tier 1, 2, and 3
suppliers often sell their solutions to other suppliers and
multiple automakers, who can then also deploy this software
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to some vehicles in their fleets. Note that Tier 1 suppliers
are direct suppliers of automakers, Tier 2 are suppliers or
subcontractors for Tier 1 suppliers and Tier 3 are suppliers
or subcontractors for Tier 2 suppliers. Furthermore, it is
common for Tier 3 suppliers to work closer to the hardware
than Tier 2s and so on. Thus, sharing a common distributed
software hub between all automakers and actors will help
standardize and secure both the software packages and the
associated delivery process.

Tier 1 supplier A

Tier 3 supplier

Tier 2 supplier

Tier 1 supplier A Tier 1 supplier B

Automaker 1 Automaker 2

Vehicle 1 Vehicle 2Vehicle 1

FIGURE 1: Automotive Software Ecosystem: Suppliers and Relationships.

C. AUTOMOTIVE OTA UPDATE FRAMEWORKS
As the first OTA update frameworks reach the market, we can
identify the design patterns most automakers apply. These
frameworks are usually composed of four different services
distributed through the different high-end ECUs of the archi-
tecture. Fig. 2 shows an example of OTA update framework
mapping over ZoA reference architectures. These services
are: (1) the Downloader, responsible for retrieving the Ve-
hicle Software Package (VSP) containing the update from
the Cloud software storage platform, (2) the Orchestrator, in
charge of distributing updates to the node that will perform
the installation, (3) the Installer, responsible for installing and
testing each software component, and (4) the Authorization
Manager, in charge of verifying the authenticity of the re-
ceived package.

HPC / Gateway HPC / Gateway 

Downloader InstallerOrchestrator Authorization
manager

Vehicle

Telematic
control unit HPC / Gateway 

ZCU ZCU ZCU Zonal  ECU

Standard
ECU

Actuators
and Sensors

C
lo

ud

FIGURE 2: OTA Update Framework service mapping over ZOA.

Furthermore, Fig. 2 shows the different kinds of in-vehicle
node profiles (i.e., Zonal ECUs, Standard ECUs, Actuators
and Sensors) and their network locations, with the Zonal

ECUs more central in the network and in charge of man-
aging a cluster of Standard ECUs, Actuators and Sensors.
These three node profiles do not only differ in their network
location, but also in the quantity of resources they bear.
While Zonal and Standard ECUs are normally deployed
using MPUs, since Zonal ECUs are more resourceful than
Standard ECUs, Actuators and Sensors are normally con-
ceived using highly restrained MCUs. Thus, updates can take
many forms depending on their final target node and purpose.
Here, we highlight four. (1) Considering lighter updates, the
Application Configuration Updates Over-The-Air (AOTA)
are composed of, as indicated by their name, a set of run-
time/post-install parameter changes. These parameters in-
clude examples such as driver profile changes, deep learning
algorithm optimizations, or parameter updates for regulatory
compliance. These updates strongly condition the vehicle’s
behavior without requiring any software change; thus, these
update types do not require the relevant software components
to shut down, only the vehicle to stop. Another key update
type is (2) Firmware updates Over-The-Air (FOTA), which
involves installing or updating the main system software that
controls the underlying hardware. Thus, to achieve these up-
dates, a complete restart and re-flash of the ECU are required.
After the update, the software must be tested entirely and, if
there are any errors, switched back to the previous firmware
version through techniques such as dual banking. This form
of updates will be used for the Actuators and Sensors. A third
update type is (3) Software updates Over-The-Air (SOTA),
involving the installation of application components. These
updates can be whole (e.g., a full software install) or partial,
also known as � software updates (�SOTA). Note that the
size of the partial updates is typically close to the aforemen-
tioned FOTA packages. For both SOTA and �SOTA, the
software install process must be performed with the vehicle
shut down; the process must also be tested afterward and
allowed to roll back if the system does not operate properly
following the update. SOTA usually take place over Unix-
like systems, typically in infotainment or telematics ECUs.
Finally, update type (4) comprises Media file updates Over-
The-Air (MOTA) packages, which include some multi-media
files such as Global Navigation Satellite Systems (GNSS)
maps, custom images, sounds, or videos for the In-Vehicle
Infotainment (IVI). These updates are considerably heavier
than those described above, thus, they are presently not pos-
sible as OTA updates. In this paper, we divide these files into
chunks that can then be reconstructed on board to preserve
homogeneity through the data structures. Note that these last
three forms will be used for updating the Zonal and Standard
ECUs but not for the Actuators and Sensors.

D. BLOCKCHAIN BASIC CONCEPTS AND OBJECTIVES
The essential concept behind blockchain technology emerged
in the late 1980s [23] with the introduction of Paxos [24],
which enabled an agreement to be reached over a result/the
state of a machine in a network of computers where the
computers or network itself may be unreliable. However,
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the blockchain concept was not invented until 2008 when
Satoshi Nakamoto, alias of the anonymous creator, published
Bitcoin: A Peer-to-Peer Electronic Cash System [25]. In
that paper, Nakamoto describes an alternative to the exist-
ing banking system, proposing a calculus-based consensus
model allowing storage and distribution of a global transac-
tion book without requiring a centralized, corruptible man-
agement authority. Thus, blockchain is built over Nakamoto’s
three pillars: (1) Decentralization—the blockchain shall be
distributed between all the involved actors and act au-
tonomously, without a central governing unit, (2) Trans-
parency—the blockchain shall keep all anonymized transac-
tions public and accessible by anyone on the network, and (3)
Immutability—once a transaction has been published to the
blockchain, it can never be altered.

Block index: 1

Prev. Hash: None 

Hash: aaa...

Block data
payload

Block index: 2

Prev. Hash: aaa...

Hash: bbb...

Block data
payload

Block index: 3

Prev. Hash: bbb...

Hash: ccc...

Block data
payload

H
ea

de
r

Block
FIGURE 3: Blockchain concept scheme.

In terms of the technical details of the blockchain’s stor-
age structure, as shown in Fig. 3, a blockchain is a type
of linked list including an extra mechanism to ensure its
immutability. Thus, the data structure of the list elements
comprises: (1) the block index, i.e., a number indicating the
block’s position in the chain, (2) the hash of the previous
block’s information, (3) the block data payload, and (4) the
hash of the current block. Note that the hashing mechanism,
which is a mathematical function allowing the mapping of
data of arbitrary size to unique fixed-size values, is the most
crucial part of the blockchain and allows the existence of an
incorruptible chain of unmodifiable data, since modifying the
input used to calculate the hash would not produce the same
hash result. Although the blockchain was originally invented
to eliminate the use of a central infrastructure manager, over
time, blockchain technology has also been applied to private
networks to increase the security of their storage layers. In
addition, the hashing and integrity mechanisms, also known
as authentication proofs, have evolved to decrease their com-
putational and energy costs, with new options available to
replace the classic computational Proofs-of-Work such as the
Proof-of-Stake (based on the participants’ interest) or the
Proof-of-Authority (based on the trustworthiness of a set of
nodes).

III. USE CASE SCENARIO
For the studied use case scenario, we base our design on a
realistic micro-service partitioning and inter-service depen-
dency use case for active driving monitoring and profiling,
as presented in [26]. Furthermore, we add a lower-level
mapping to this previously presented model through the au-

tomotive software development cycle (§II-B) to illustrate the
complexity of the interactions between actors. Fig. 4 depicts
then the inter-software dependencies presented on this study
and the supplier ownership for each of the different services.

Mirror
adjustment

Mirror
joystick

Raw
Picture

1

Raw
Picture

2

Image
preprocessing

Detect
eye

Gaze
direction

Eye Gaze
HMI control

Driver
Monitoring

Eye open /
close

Detect
driver

Driver
ID

Personalisa-
tion

Vehicle
leasing

Brightness
provider

Insurance
tracking

Interior
light

actuator

Interior light
handler

Operating
hours

Detect
face

Automaker Tier 3s
Tier 2s Tier 1s

FIGURE 4: Micro-service partitioning, software inter-dependencies and sup-
plier ecosystem mapping scenario.

Thus, to fully illustrate all the different possibilities, we
provide four software ownership examples:

1) Raw pictures 1 & 2: An example of a software compo-
nent implemented close to the hardware and thus prob-
ably developed by the hardware manufacturer, which,
in this case, is the camera’s manufacturing company.

2) Insurance tracking: A high-level software application
developed by an upcoming actor through the applica-
tion store to add a new scenario of interest; in this
case, this scenario is real-time management of insur-
ance policies. This application must be proposed by
multiple insurance company competitors, thus offering
a wide selection of options for users, and be potentially
common to all automobile brands and software archi-
tectures.

3) Image pre-processing: An example of software devel-
oped by different suppliers offering potentially dif-
ferent functionalities. These services must ensure full
compatibility with different vehicles and their under-
lying software to widen their selling possibilities over
the same service platform proposed by concurrent sup-
pliers. Thus, users and automakers can select which
services they wish to install based on criteria other than
the technical specifications, e.g., the service’s pricing,
preferences, or the quality of its interface.

4) Mirror adjustment: A software type mainly provided
by each of the different vehicle manufacturers due
to its close relationship with the vehicle’s design and
unsuitability for reuse by other automakers. Within a
manufacturer’s range, these applications may also be
model specific.

In our opinion, these examples illustrate the different
development profiles likely to be found in a new multi-
automaker application store. These use-cases also help to
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underline the increasing diversity of applications and the
difficulty of ensuring compatibility between services without
implementing dependency management mechanisms. Ad-
ditionally, these examples illustrate the need to develop a
mechanism allowing the integrity and authenticity of soft-
ware originating from different developers to be preserved,
as well as a mechanism allowing automakers to protect their
vehicles from malicious, corrupted, or even incompatible
applications, despite user requests.

Note that, all these services were conceived in collabora-
tion with our industrial partner at STELLANTIS and follow
the example proposed in [26] at the 2022 Automotive Com-
puting Conference (ACC). For industrial property reasons,
we cant provide the legacy source codes. However, despite
the lack of details on the service implementations, all the
services meta-data (inter-dependencies, sizes, etc.) needed
by the different Fenrir sub-mechanisms are widely described
when necessary on the paper central section (cf., §V) and the
appendix (cf., IX-A), and discussed in the evaluation section
(cf., §VI).

IV. RELATED WORKS
A. A STUDY OF SECURITY AND DATA AUTHENTICITY
ON THE OTA UPDATE FRAMEWORK PROPOSITIONS
In this subsection, we discuss different OTA update mecha-
nisms and classify them according to the tools used to ensure
update package security and authenticity.

The first group of solutions is those that guarantee the
authenticity of data using symmetric encryption, asymmetric
encryption, or both. In these solutions, the integrity of the
data is reliant upon decryption. Representative examples of
only-symmetric key-based OTA frameworks include Mah-
mud et al. [10] and Mansour et al. [11]. In both studies, a se-
cure software update framework is described based on shar-
ing an initial set of link keys among automakers, vehicles,
and software suppliers, which is then used for encrypting
both software and communications. In addition, they propose
other mechanisms to enhance security and complex trans-
mission traceability, such as time-hopping randomization
[10], or detecting potential errors and malicious behavior,
such as remote diagnostic tooling [11]. However, even if the
computing requirements needed to perform the encryption
are low, as the set of keys is directly included in the vehicle by
the automakers, the impact of a key being compromised, thus
making it impossible to link a message to its sender directly,
poses a significant potential threat that does not match the
requirements of safety- and security-critical frameworks. In
addition, neither implements a content integrity verification
mechanism, thus making it impossible to detect maliciously
modified packages if an authorized key is compromised.

Thus, to solve the problems linked to the risk of compro-
mising a static set of symmetric keys and to improve message
traceability, Steger et al. [12] propose a solution in which an
asymmetric key is used to secure unicast communication, in
addition to a symmetric multicast key from the service center
to several cars, thus enabling parallel updates. In this case,

the only keys that will be shared are the public keys, making
identity faking difficult. However, this solution is again at
potential risk of key compromise since action triggering is
centralized and there is no distributed network to ensure the
software package’s authenticity.

Similarly, the approach proposed by Mayilsamy et al.
[15] involves combining asymmetric encryption and a well-
known cryptography field, steganography. Their study pro-
poses a solution to integrate software files encrypted by an
asymmetric encryption algorithm (RSA in this case) hidden
along the edge region of the update’s cover image using
steganography. This self-verifiable stego-image would then
be adequate for safe storage and transmission. However, even
though the compromise of long RSA keys (2048 bit in this
case) remains an open challenge, and the costs and storage
needs associated with using stego-images are also unsuitable
for the highly restrained nodes of the automotive industry.

Further considering the integrity of package content in-
stead of heuristic solutions for security during the trans-
mission, we now discuss hash-based solutions. Based on
this technique, Nilsson et al. [13] propose a secure OTA
firmware update protocol for connected vehicles based on
dividing software and then hashing and encrypting each
chunk. However, this division and hashing process appears
inefficient in terms of computing and energy consumption
compared to using software packages as a whole. Oka et al.
[14] propose an alternative infrastructure in which a trusted
portal calculates the hash of the whole software package and
places it at the end of the message so the receiver can check
the message’s veracity. However, in both of these approaches,
having a centralized authority in charge of distributing keys
is highly vulnerable to targeted, single point of failure, and
identity usurpation attacks. Within the same scope as [14],
we can consider the proposed approach of Karthik et al.
[16]. This solution secures key storage at a lower level by
using Secure Hardware Module technology to handle key
management. Their study also proposes an OTA framework
that distributes updated software to ECUs in the form of
images (containing collections of code and data) and meta-
data (containing image-related files such as the size of the
file, the image hash, creation date, author, etc.). In addition,
Karthik et al. suggest introducing different keys introduced
in the hardware to verify the encryption of different files.
However, this solution is vulnerable to rollback attacks due
to a lack of proper verification mechanisms during software
update installation. This system also suffers from the same
issue as those in the previously discussed approaches of being
centralized rather than distributed.

Through optimizing hashing solutions by adding dis-
tributed middleware and some new optimization mecha-
nisms, some studies propose blockchain-based solutions. In
the blockchain, software packages are linked to each other
immutably (cf. Fig. 3) and spread through the different nodes
integrating the system; in this case, it is always possible to
use a simple majority vote approach to detect malicious or
erratic introductions. Thus, this technology guarantees data
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integrity, complete traceability, and higher consistency and
security than the aforementioned techniques. However, there
are also some drawbacks—for example, blockchain-based
solutions do not allow, or barely allow, modification of past
data, rely on the secrecy of the private user keys, require large
amounts of storage and significant computational resources
(for the Proof of Work and other cryptographic mechanisms),
and remain uncertain with relation to future legislation and
regulations. Nonetheless, in recent years, increasing efforts
have been expended to develop new techniques to reduce
the resource consumption of this solution and allow its
deployment in the IoT world, such as pruning and new,
less resource-consuming proofs. In the automotive sector,
multiple papers have proposed blockchain-based OTA update
frameworks. However, most of these, such as Steger et al.
[17], are based on the Proof-of-Work mechanism, while
others such as Witanto et al. [19] and Mtetwa et al. [27] focus
on other parts of the implementation such as peer-to-peer ex-
change or the transmission details, respectively. However, the
resource consumption constraints of the embedded vehicle
architecture suggest that Proof-Of-Work algorithms are un-
suitable for such systems, thus indicating a key limitation of
these propositions. Additionally, all the cited blockchain so-
lutions follow the classic public blockchain schemes, which
we consider unpractical in our software development context
(cf. §II-B), in which the blockchain publishers are companies
that need to use this chain as a means to sell their software.

Consequently, and as shown in Table 1, blockchains appear
to be the most appropriate solutions in terms of security
and data integrity preservation, for both distributed and cen-
tralized systems, despite the resource consumption increase.
This is mainly due to all the mechanisms added to ensure
the traceability and the immutability of the data. To the best

of our knowledge, no previous study has proposed hybrid
public/private blockchain networks, inter-automaker collabo-
rative stores, low-power-consumption authentication proofs,
or software versioning or dependency management tools,
which, in our view, would improve the resource efficiency
and security of the OTA update frameworks. Therefore,
the background study presented in this section justifies the
choices proposed in our study (cf., V), which we believe to
offer an improved collaborative software deployment frame-
work for the automotive context. Furthermore, note that this
migration through blockchain-based solutions to enhance the
system traceability and data integrity has also started in other
related sectors such as eHealth [28], [29] and Industry 4.0
[30].

B. A WALKTHROUGH OF THE DEPENDENCY
MANAGEMENT MECHANISMS
As software philosophy evolves from application-based to
service-based, software reuse and sharing will be enhanced.
However, as the volume of software in vehicles increases,
so too does the number of developers in the ecosystem.
Thus, managing the dependencies between these new soft-
ware packages is becoming increasingly complex and re-
quires careful attention. In this subsection, we will provide
an overview of different dependency management solutions
and classify them into two categories: (1) those focused on
service-library dependencies and (2) those aiming to deal
with inter-service dependencies.

The solutions dealing with software library dependencies
include [31] and [32]. The proposal in [31] aims to develop
a highly granular dependency network that goes beyond
library packages and generates a versioned ecosystem-level
call graph to maintain an actualized network and set of de-

TABLE 1: Comparison of the Over-The-Air frameworks found in the state-of-the-art.

Integrity &
authenticity

For trust-less dynamic
environments Secure Resource

consumption Traceability On-board
storage needs

Symmetric or
Asymmetric key
based (CA-like)

S. Mahmud et al. [10] Very low No Very low Low No Very Low

K. Mansour et al. [11] Very low No Very low Low ⇠ Very Low

M. Steger et al. [12] Very low No Low Low No Very Low

K. Mayilsamy et al. [15] Medium ⇠ Medium High ⇠ High

Hash-based

D. K. Nilsson et al. [13] Medium No Medium High ⇠ Medium

D. Oka et al. [14] Medium No Medium Medium ⇠ Medium

T. K. Kuppusamy et al. [16] Medium ⇠ High Medium No Medium

Blockchain-based

M. Steger et al. [17] High Yes High Very High Yes Very High

E. N. Witanto et al. [19] High Yes Very High Very High Yes High

N. S. Mtetwa et al. [27] High Yes High Very High Yes High

Fenrir Very High Yes High Medium Yes Medium

⇠ : More or less compliant.
Note that this comparison is theoretical and done analyzing the papers and claims.
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pendencies. In contrast, the approach in [32] describes the de-
pendency management mechanism of Gradle, a well-known
build automation tool that works in a declarative fashion in
which the developer sets its dependencies and versioning; as
a result, there is no need to calculate dependencies between
libraries for higher compatible versions. These solutions are
not precisely focused on the same scope as that of the present
study as we aim to handle dependencies between pre-built
services and, thus, do not require an external library.

However, studies [33], [34], [35], [36] seek solutions to
the same problem presented in our study. Among these solu-
tions, [36] is notable for containing a fundamental definition
of software components, in which a component is equivalent
to a mono-functional service with a set of dependencies on
other components. In this solution, the dependency calcula-
tion mechanism requires a description of the system software
architecture, the resources of the system, and the software
components to generate a dependency set. This dependency
set comprises mandatory dependencies, firm requirements
without which installation is impossible, optional depen-
dencies, and negative dependencies, indicating a conflict
forbidding the software installation. In this solution, the
dependency calculation process comprises two phases, as
follows. (1) The installability phase: before authorizing the
installation of a component, checks are performed to ensure
it is not forbidden, the services it requires are available, and
it does not provide forbidden services. (2) The installation
phase: once the component is proved to be installable, the
effects of its installation on the system are calculated. These
effects comprise newly available services, new forbidden
services, new forbidden components, and new dependencies
(represented by a dependency graph).

Considering a similar scope, study [33] presents a four-
phase process composed of: (1) collecting historical service
network flow data set and pre-processing it, (2) comput-
ing dependencies and constructing dependency matrices, (3)
compiling the constructed matrices into a graph database, and
(4) mining this graph database to identify service dependen-
cies. In study [34], the authors use declarative contracts to
calculate the dependency graphs in a controlled environment,
while in [35], an implementation is proposed for a depen-
dency management mechanism for fully private blockchains
to track service logs and collaboratively calculate unknown
service dependencies. However, while these solutions are
close to our aims, the system constraints and challenges they
try to solve differ markedly. In our case, the installation
environment is managed by the different automakers; there is
no need to guess the dependencies between software because
the automakers must declare these for the risk assessment
analysis. Thus, our approach would be closest to the one
described in [36] but with a design adapted to blockchain
properties and additional cloud reinforcement for the depen-
dency calculation in pruned blockchains (cf. §V-D & V-E).

V. FENRIR FRAMEWORK DESCRIPTION
Fenrir is a multi-automaker application store framework
built on a hybrid public/private blockchain-based application
storage layer. This framework focuses on software pack-
age authenticity and integrity throughout the entire update
pipeline (i.e., software transmission, storage, installation, and
configuration steps) and manages inter-service dependen-
cies between software packages before they are downloaded
to the on-board architecture via V2C or V2V approaches,
with constant consideration of the energy consumption and
computing and storage constraints of the embedded vehicle
systems.

Fenrir implements the public/private characteristics of the
blockchain model by first defining roles for the different
mode types in the network. Different permissions levels are
then assigned to each role (§V-B). This approach ensures
that the application store is public-to-publish, however, the
software eligibility control for each vehicle model remains
with its manufacturer since these manufacturers are legally
accountable for failures on their devices. The automaker’s
central node network contains a complementary distributed
application green-list layer that holds the authorizations
for each vehicle model (§V-C). In addition, to reduce the
blockchain storage model’s energy consumption impacts,
Fenrir proposes a key-management layer and multi-stage
Proof-of-Authority mechanism to ensure software authentic-
ity. This can be achieved given that the system’s control is
based on a defined set of trusted nodes. This key-management
layer (§V-B & V-E) is distributed among the different au-
tomakers and manages the addition of new automakers and
actors following a democratic vote model that we describe
below.

In the remainder of this paper, we decompose the Fenrir
framework into four largely independent sub-features, as
discussed in the following subsections:

• Identity/Role management: a service managing key dis-
tribution, role management, permissions, and the intro-
duction of new nodes in the system (§V-B).

• Software package authentication: this mechanism is key
to ensuring software integrity and traceability through
the update process. This mechanism details the rela-
tionships between data structures and their behavior
throughout the software delivery process (§V-C).

• Distributed inter-service dependency mgmt.: before
downloading software packages to the vehicle, either via
V2V or V2C, application version control is performed
to minimize redundant data transmission (§V-D).

• Light and resilient Software Package Storage: consid-
ering automotive systems’ storage limitations, Fenrir
proposes a new three-level pruning and backup model to
ensure data recomposition at low energy/computational
cost (§V-E).

Finally, we conclude this section by describing a typical
end-to-end software deployment cycle (§V-F).
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FIGURE 5: Fenrir high-level system architecture.

A. FENRIR BASICS
In Fenrir, we define the Software Application Package,
(SAPckg) as an ensemble of a Software Package Structure
(SPS) and its associated Software Transaction Block (STB)
published into the blockchain, whose formal definition is
illustrated in Fig. 8. This SAPckg is first submitted to the
Pending Submission Repository (PSR), a distributed tem-
porary repository in which application proposals are stored
until at least one automaker is interested. Once the tempo-
rary SAPckg has sufficient endorsers, it will be pushed into
the Main Storage Chain (MSC), its endorsements will be
assigned to the Distributed Green List Ledger (DGL), and the
software block can then be distributed to authorized vehicles.
More details about this process are presented in §V-C. As our
framework is initially conceived for an SOA/Micro-service
architecture, each SAPckg shall contain exactly one service
identified by a tuple (service identifier, version) and the list
of dependency relationships with the other services in the
infrastructure described in the Requirements field of the STB.
Thus, each service will preserve its unique identifier irrespec-
tive of its version and, once a tuple has been published, only
tuples with higher versions can be published so the system
will never contain two identical tuples.

Considering the definition of inter-service compatibility in
Fenrir, two services are deemed compatible when they do

not have any declared mismatching dependencies between
them or any of their sub-dependencies, thus allowing them
to safely cohabitate in the same environment. Two versions
of the same software are always considered incompatible;
in addition, Fenrir’s STB-Req. field may contain not only
the definition of a given service’s dependencies but also the
list of service incompatibilities. The management of inter-
service compatibility conflicts and prioritization when calcu-
lating the Global Software Image (GSI) and Backup Software
Image (BSI) is described by the Distributed Inter-Service
Dependency Management Mechanism detailed in §V-D.

Having defined the software package structures and inter-
dependency model, we further expand on the architecture
definition. Fig. 5 shows the different actors participating
in the Fenrir software deployment cycle based on the role
profile definition in §V-B. Note that all the aforementioned
control structures (i.e., the PSR, DGL, and MSC) are fully
hosted and synchronized among the central nodes, which will
guarantee the access and propagation of different blocks to
other nodes depending on their roles and needs.

B. IDENTITY / ROLE MANAGEMENT
As shown in Fig. 5, Fenrir comprises three layers: (a) the
content providers, (b) the content consumers, and (c) the
central nodes. Each layer has different rights and interests;
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FIGURE 6: Summary of Fenrir’s roles and permissions.
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Fig. 6 summarizes the rights of each role.

(a) Content providers. This first layer is the only one com-
posed simultaneously of workers from both the automakers
and suppliers (cf. §III). Thus, it is necessary to split it into two
different roles, as follows. (1) Internal Developers, whose
principal role is to integrate and test the incoming suppliers’
proposed software and manage software installability (i.e.,
the software authorization green list described in §V-C).
However, as there is also potentially an internal software
development department within each automaker, this role
also allows new software proposals to be produced and
published in the chain. (2) External Developers, whose role is
exclusively to develop new software products for sale either
to automakers or to end users. While those from the first role
can access the source code of any software published, the
second role type will only have access rights to applications
developed by their company unless authorized by the other
concerned company.

(b) Content Consumers. This layer comprises all the vehicles
of the different automakers. As vehicles are the target of the
software deployment process, they will maintain a partial
copy of the blockchain, which is generated by the central
nodes per the dependency management mechanism described
in §V-D and the pruning mechanism in §V-E. However, while
new software applications must be always retrieved from the
blockchain’s central nodes for subscription control, updates
for already-installed software can be retrieved directly from
other vehicles to accelerate update campaigns.

(c) Central nodes. This layer orchestrates the interactions
between all the previous roles. Additionally, it is responsible
for maintaining a distributed and synchronized copy of the
main chain, SPS repository, software submission queue, au-
thorization management key repository, and the distributed
green list. These nodes also help to correct other corrupted
nodes, handle the distribution of different automakers’ green
lists, consider the dependencies between software blocks and
automakers’ preferences to generate the GSI and BSI, store
and propagate key-related requests, and control the update
submission process.

Henceforth, the ensemble of Internal Developers, Con-
tent Consumers, and Central nodes will be referred to as
automaker nodes. Thus, being the digital identity of all the
automaker nodes that can be matched to their real identity,
Fenrir bases their proof of authenticity on this, proposing an
identity and time-based key management mechanism. Fig. 7
illustrates the detailed key object structure description. The
key authorization manager service ensures these keys’ addi-
tion, verification, and replication; these steps are complete
on the central nodes and partial on those of the content
consumers. As these three processes are independent, we will
detail them separately in the following paragraphs.

First, we highlight the cases in which a new key may need
to be added to the distributed key management service hosted
by the central nodes. For the automaker staff keys, there are

Key object definition

A key must be given to anyone wishing to participate in the Fenrir
network, whichever their role is. Keys are used for the proof of authority
that allows the software integrity to be verified.

Time-related fields 

Creation date The administrative date upon which this key was
introduced in the system. Used to verify the
validity of the endorsers when adding the key.

Start date Start effective date from which time the key
can be used.

End date Effective end date from which the key will no
longer be valid.

Identity-related fields 

 Company ID The company   ID   to   whom   this 
developer belongs. This attribute is null for any
non- automaker developer, since Fenrir aims to
maintain the free-to-submit philosophy.
However, the company ID must be valid for any
non-external developer.

Role ID This field can take a value from the four described
before; however, if the desired key does not have a
non-null correct Company ID, it cannot take any
role other than External Developer. 

Real life data In this field, real life data are placed to allow
the real identity of the developer to be identified
and traced for legal purposes.

Application authentication fields 

Key authentication fields 

Public Key The key allowing to decryption of user signatures.

Key ID Reference number for administrative purposes.

Key Object Hash Hash of all the aforementioned parameters.

Endorser
signature list 

List containing the Key IDs of the request
validators and signature of the Key Object Hash
to ensure their veracity. 

FIGURE 7: Key object formal definition.

two distinct scenarios. Scenario (1) is when an automaker,
having already joined Fenrir, wants to add a new key or
set of keys for its workers, and scenario (2) is when a new
Automaker wants to join Fenrir for the first time. For the
common use case, i.e., scenario (1), a key object must be gen-
erated. This request must then be endorsed by a set of workers
who have a registered key within the same company—five
such endorsers are required by default. However, whenever
a new automaker wishes to join the network, most of the
network must agree to this request. Therefore, the first key
generated for a new automaker must be endorsed by at least
half of the existing automakers in the network. Subsequently,
adding the first keys of this automaker (until it reaches
the five keys threshold) will exceptionally only require the
endorsement of its first key. However, this mechanism relies
on collaboration between automakers, thus, some automakers
may potentially deliberately not approve or slow down new
joiners to maintain exclusivity or prevent competitors from
gaining an advantage. To mitigate this problem, contractual
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measures may need to be established from the outset of
the system. On the other hand, keys for external developers
will not be added to the key management service until an
automaker endorses their application. Note that Fenrir does
not require specific vehicle keys and will instead use those
assigned during the vehicle’s construction.

Whenever a new key is added to a central node or a
vehicle’s local storage, complete verification of the key object
structure is required. To do so, the authorization manager will
check the key’s chain-of-trust recursively until arriving at an
already-verified set of keys. To verify each key, it will then
match the creation dates, authorizations, and company IDs
and check the integrity of the signature match. Notably, the
key verification is not necessary for external developers, but
the verification of the endorsements lists, since their keys will
only be stored once an automaker endorses their application.
The full endorsement process is detailed in §V-C.

Finally, as Fenrir is conceived as a distributed system,
once a key is added to any central node, and before the
addition is made fully effective, the request will spread the
key to the other central nodes on a two-phase Paxos-like
consensus basis, comprising first a promise phase, in which
the key object is verified by all the nodes, and a commit
phase, in which the nodes agree to add the given key to their
internal key storage repository. It is only at this point that the
key addition is effective. Note that the spreading process is
the same for SAPckg addition, key addition, and green list
endorsement additions.

C. SOFTWARE PACKAGE AUTHENTICATION
In this subsection, we complete the SAPckg definition and
expand on its authenticity and integrity verification, which
are key aspects of using blockchain-based solutions to build
a software distribution framework (§IV).

1) SAPckg format and verification mechanisms
As noted above, Fenrir’s SAPckg is formed from an SPS
and its associated STB, mostly like a smart contract, which
is stored in the MSC. Fig. 8 provides a detailed definition
of these structures. Note that the temporary SAPckg data
structure stored in the PSR waiting to be approved by an Au-
tomaker is highly structurally similar to the classic SAPCkg,
changing only the STB ID to a temporary one and removing
the Authenticity and smart contract verification fields. Thus,
to verify the SAPckg authenticity and integrity, Fenrir pro-
poses a simple three-step verification process: (1) STB vali-
dation, performed by comparing the hashes and the validity
of the signatures and green-list endorsements (§V-C2) from
the precedent, actual and posterior STBs, (2) ensuring that
the SAPCkg ID link matches both the STB and SPS and (3)
verifying the SAPCkg ID signature consistency. However,
to prevent truncated chain attacks, the SAPckg will not be
considered final and, thus, will not be used unless its STB is
at least six blocks deep, as in other classic Blockchains, with
at least three different additional publishers between these

last six blocks (i.e., the one from the block being verified and
at least three other publishers).

SAPckg Structure

A SAPckg (or Temp SAPckg) is composed by a Software Package
Structure (SPS) containing the code and the install and testing
instructions and a Software Transaction Block (STB) that ensures its
traceability, authenticity and integrity verification over the blockchain.

Software Package Structure definition:  

Code folder A folder containing all the needed execution
binaries.

Application ID Unique application identifier formed by the
concatenation of the  Creator ID  (which is
unique) and the Application name. This limits
each creator to make their application name's
unique. If the Application ID is not unique the
submission will be rejected directly.

Version Versioning number (Major.Minor.Hotfix).

Publish date The date in which the submission was done.

Install folder A folder containing all the needed installation
instructions and scripts.

Test folder A folder containing all the needed post-install
test scripts.

Main SPS files: 

SPS metadata: 

Requirements List of the inter-service incompatibilities and
needs.

Verification and linking data:  
SAPckg ID The SAPckg ID is the link between SPS and

STB. It is formed by the concatenation of the
aforementioned 4 fields and the hashes of the
code, install and test folder, which are then
hashed all together and signed with the creator
private key.

Software Transaction Block definition: 

Inherited to SPS:  

Authenticity and smart contract verification fields: 

Application ID, Version, Publish date, Requirements, SAPckg ID 

(to fasten the chain queries) 

STB ID Place of the block in the blockchain.

STB hash Hash of all the STB parameters concatenated
except for the signatures.

STB Previous
hash 

Link to the previous block to ensure the chain
consistency.

Endorser
automaker &
car version 

List of endorsers and referencce to their
endorsment blocks that act as a link to the DGL
and the key management mechanism.

Other fields: 
Pruning status Status of the block with regards to the pruning

mechanism.

Usage status Tracking if the software is a part of  either the
GSI and BSI.

FIGURE 8: SAPckg formal definition.

Fenrir also adds different verification levels (critical,
medium, or, none) to improve performance by reducing the
verification’s security level as required. Thus, critical verifi-
cation would check the whole ensemble of hashes, medium
verification all the hashes but the file hashes, and “none”
would verify only the links between the SPS and STB. Thus,
the first time a block is added, the verification level will be
critical, however, once inside the secure vault, the verification
level is reduced to medium to improve performance unless
the system suspects malicious behavior, in which case it will
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switch back to critical verification.

2) The Distributed Green List Ledger (DGL)
As a means to preserve automakers’ authorization control
over what can and cannot be installed in the vehicles indi-
vidually, Fenrir benefits from the aforementioned identity-
based and role-based authority proofs to build an auxiliary
software authorization chain, the DGL. The DGL comprises
an authorization transaction graph in which the details of
the endorsements (whose structure is defined in Fig. 9) for
a given software package are stored. To keep the MSC clean,
Fenrir also uses the DGL and endorsements to regulate the
addition of SAPckgs to the definitive chain, from which
they will never be erased, requiring a temporary SAPckg
endorsed by at least one automaker to be added to the MSC.
Endorsements from other companies can also occur after
adding the block to the chain. However, even though these
two options appear to be the same process, their behavioral
mechanisms differ.

DGL Endorsement Structure

A DLG endorsement structure has all the needed data to classify it and
identify the automaker, vehicle model and application to whom it
applies.

Application ID, Version, SAPckg ID, STB ID, STB hash 

Endorsement
date 

The date in which the DGL Endorsment was
done. Needed to verify the signature, this
parameter is inchangeable and fulfilled by the
central node when receiving an endorsement
request.

SAPckg linking fields: 

Verification fields: 

Company ID Company ID to which the endorser belongs. This
ID has to be the same to the one in the
aforedetailed key object.

Model ID Vehicle model for whom the endorsement is
valid.

Endroser ID Endorser ID to be linked to its public key, which
allows to verify the certificate.

Endorsement
hash 

Hash of all the aforementioned fields. 

Endorsement
certificate 

Fignature of the hash with the endorser private
key.

FIGURE 9: Endorsements formal definition.
While endorsing a SAPckg already in the network only

requires generating some endorsements (five by default),
endorsing and adding an STB off the chain to the MSC
is slightly more complex. An automaker seeking to add a
temporary application proposition to the MSC must endorse
it (in addition to five further endorsements by default); they
must then prepare the final SAPckg including the missing
information and, once this is done, ask the development com-
pany to re-sign the final block. Even though this mechanism
might appear tedious, by including it, Fenrir can considerably
reduce the MSC size and decorrelate the installability of a

given service from its STB, which can then change with hot-
fixes, contract evolutions, or legislative changes, revoking
the previous endorsement if the automaker no longer wishes
to install this application. Note that if all endorsers stop
supporting a certain SAPckg, it will not be removed from
the final chain. A global overview of the entire pipeline is
presented in §V-F.

Finally, as shown in Fig. 10, given the previously described
secure key-authorization and block verification mechanisms,
the integrity of the endorsement can be readily traced without
needing to link the endorsements. Thus, when verifying and
retrieving the software certificates, our approach is based on
the indexing patterns of the databases, with the DGL orga-
nized as a four-leveled graph instead of a classical list [37].
Furthermore, we simplified the indexing model by picking
a classic automotive semantic classification—automaker, car
model, and software block ID (cf. Fig. 10).
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FIGURE 10: DGL interactions with the MSC.

D. DISTRIBUTED INTER-SERVICE DEPENDENCY
MANAGEMENT
To prevent software incompatibilities and given the high
computational, storage, and energy costs of transmitting an
update, Fenrir implements an inter-dependency calculation
mechanism. This mechanism is distributed through the Cen-
tral Nodes (or the updater vehicle in the case of V2V up-
dates), referred to hereafter as updater nodes. These nodes
pre-calculate the software dependencies before sending the
global software image to the vehicles to be updated, which
are hereafter referred to as receiver nodes.

To prevent software incompatibilities and considering the
high computational, storage, and energy costs of transmitting
an update, Fenrir implements an inter-dependency calcula-
tion mechanism distributed through the Central Nodes (or
the updater vehicle in the case of V2V updates), referred to
hereafter as updater nodes, which pre-calculate the software
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dependencies before sending the global software image to the
vehicles to be updated, hereafter referred to as receiver nodes.

This process takes place once the SAPckg is already
in the MSC and represents one of the last phases of the
software deployment process. Whenever a vehicle wishes to
check for new software availability, it will send its vehicle
manifest, i.e., a file containing the vehicle’s identity and a
list of currently installed software, to check for updates and
new desired software. After receiving this manifest, the up-
dater node will then check inter-software dependencies and
incompatibilities and generate a global dependency graph
to determine the order to preserve when determining the
different software versions. Note that this first step is only
performed whenever the graph in the updater cache does not
contain all the requested software.
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FIGURE 11: Dependency calculation example based on the previously pre-
sented use case figure.

As shown in Fig. 11, the global dependency graph algo-
rithm will consider all the inter-software dependencies on
the graph and generate a tuple < X,Y > for each of the
applications, in which X is the number of software packages
for which this software is a dependency and Y is the number
of dependencies of this software (e.g., < 2, 1 > for Gaze
Direction or < 0, 2 > for Mirror Adjustment in Fig. 11).
The algorithm will then calculate the global software image
to send to the vehicle with this list of tuples. This algorithm
is iterative and is performed as follows:

1) The algorithm selects the node (between those not
already selected before) with the lower X and higher
Y and selects the most possibly updated version, given
that one version cannot be selected if it creates depen-
dency problems with other software in the graph or if
it contains a dependency to other software not included
in the graph.

2) The algorithm will select the most up-to-date version,
in case it is compatible with more than one, for all the
different dependencies, starting for thus with higher Y,
then X and, ultimately, alphabetic order. This process
will continue iteratively for the dependencies of the
dependencies until a point is reached at which there
are no further dependencies.

However, consider a scenario in which the process does not
allow for the creation of a fully compatible set that contains
all the software in the list. In that case, the algorithm will then
mark the software that has a compatibility issue and treat it

at the end. It will then continue the process with the most
updated version of the next package with lower X and higher
Y. If the algorithm reaches a point where all the software
packages have been tested unsuccessfully, it will restart the
process and select the second most up-to-date version in-
stead. This process will then be repeated until either a stable
version is found or all the software blocks are marked, in
which case the request will be impossible to resolve and no
global image will be sent to the vehicle. Instead, a message
will be provided in this case detailing the services creating
the incompatibilities. This process accompanies the software
compatibility definition described in §V-A.

E. LIGHT AND RESILIENT SOFTWARE PACKAGE
STORAGE
Considering that vehicles have intermittent network access
and long inactivity periods and given that, most of the time,
vehicles are parked in underground facilities without network
access, being able to correctly boot from a previous soft-
ware version without needing to interact with the Cloud or
other Vehicles is mandatory. Thus, vehicles need to possess
a software image backup to boot without requesting extra
information in case of corruption. To generate this backup,
Fenrir first cleans up the chain and keeps the strictly neces-
sary information to verify and install the GSI and BSI; this
process is classically known as pruning.
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FIGURE 12: Pruning example.

Fenrir’s pruning mechanism begins by classifying all the
software in the chain into three categories: not pruned, soft-
pruned, and hard-pruned. As shown in Fig 12, not pruned
blocks are the software applications that the vehicle will use
for the GSI and BSI, soft-pruned are those used to verify the
usable blocks, and hard-pruned are those used to maintain
the chain consistency. Then, to tag the chain blocks, Fenrir
starts defining those directly used, which will not be pruned.
Afterward, it will tag any block next to a not pruned block
as soft-pruned and the remainder as hard- pruned. §VI shows
the advantages of pruning blocks to reduce the chain storage
needs, which is essential for the vehicles’ operation. After
pruning, Fenrir proceeds by compressing and saving the
backup over the previous backup. However, this process has a
considerable impact and thus cannot be performed each time
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a software package is added. A detailed study of the overhead
and optimal frequency of this process is presented in §VI.

F. SOFTWARE AUTHENTICITY & TRACEABILITY
DISCUSSION
At this point, we have presented all the different mech-
anisms that allow authenticity to be preserved throughout
the software distribution pipeline, however, these must now
be connected. This process begins when an application’s
development is complete and a company wants to publish this
application to Fenrir. The developer will start by generating
their application proposal, in which they create a temporary
SAPckg (as detailed in §V-C). As noted above, this SAPckg
is like the final SAPckg but without the STB ID, hashes, or
relation with the DGL. This package is then submitted to the
PSR. Once in the PSR, as presented in §V-C2, the automaker
can then endorse their submission request, generate the final
SAPckg, and push it to the MSC. Once in the MSC, other
automakers can endorse the SAPckg and authorize its instal-
lation into their vehicles. Subsequently, whenever a vehicle
requests new updates and software packages, this block will
form the vehicle’s GSI and BSI (cf. §V-D). Once the software
and set of keys allowing the package to be verified are
downloaded to the vehicle, it will store them safely, update
its backup, and prune redundant information from its local
chain (§V-E).

Typically, blockchain-based solutions provide a high level
of anonymity for both users and their transactions, which
strengthens the traceability of malicious behaviors [38], [39],
[40]. However, in Fenrir, the migration from proof-of-work
to an identity-based proof-of-authority, allows us to link a
software block to the identity of its producer and the identity
of its acceptors within each of the Automakers, as suggested
previously in the literature [41], [42]. In this way, we can
easily provide a method for tracing the accountability when-
ever a malicious behavior occurs. Furthermore, thanks to the
dependency-management mechanism, we can easily trace the
software subset installed, thereby helping debug teams to find
and correct threats.

VI. EVALUATION
A. EXPERIMENTAL SETUP
To ensure that the simulations were as realistic as possi-
ble, we implemented the central nodes in three automo-
tive cloud-like nodes in Amazon EC2 instances (t2.micro
– Ubuntu20.04) and the vehicles using two Raspberry Pi
3b v1.2 units in order to be able to test both V2C and
V2V interactions. Note that we chose to use Raspberry
Pi 3b because of its proximity to the automotive solutions
deployed (such as NXP S32 G) with regards to its chipset
ARM Cortex-A53. However, since the network between the
nodes was not representative of the vehicle characteristics,
we elected to remove the ping time between nodes from
the results. Thus, the results presented in this section purely
evaluate the performance of the mechanism itself rather than
the communication channel.

Furthermore, to improve the readability of the data, as
shown in Fig. 13a, we do not illustrate the whole data set
but only the best-fit second-degree polynomial trend lines.
Each data point was measured until its distribution followed
a normal law with a standard deviation lower than 5%,
allowing the mean for each to be considered a representative
summary.

B. ENERGY CONSUMPTION MODEL DESCRIPTION
As energy consumption is crucial in the automotive sector,
particularly for non-electric vehicles, we studied the energy
consumption of the Raspberry Pi 3b for the different mecha-
nisms in our proposed system. We started by measuring the
real consumption associated; however, given the proximity of
the first tests energy consumption measures to the consump-
tion model proposed by PowerPC [43], we chose to simplify
the test set-up by basing our work directly on this model. In
this model, the energy consumption is estimated as:

Pu,d,if (W ) = Pidle + PCPU (u)

+
X

if

PNw,idle + PNw,dl/ul,d(r) (1)

Where u is the RPI %CPU, d is the data sent or received
(in MB/s), and if is the interface (Wi-Fi, Bluetooth, Ethernet,
etc.). In our case, all scenarios were tested with LTE-M
(which can be taken as 1.54 times the energy consump-
tion of Wi-Fi [44]), thus Pidle = 1.5778W , PCPU (u) =
0.181W · u, PLtem,idle = 1.45068W , PLtem,download,d =
1.54 · (0.057W +4.813e�3 ⇤d) and PLtem,upload,d = 1.54⇤
(0.064W + 4.813e�3 ⇤ d). Note that for the data volumes
handled in this work, we can neglect the variable part of
the data transmission and approximate PLtem,download,d =
0, 08778W and PLtem,upload,d = 0, 09856W . However, in
this test session, we assume that the connection between on-
and off-board components (or V2V) is direct and through
LTE-M. Thus, we do not consider all gateway to cloud ener-
getic communication costs as these may change considerably
depending on the company’s implementation choices.

C. BENCHMARK SPECIFICATION JUSTIFICATION
The data set used in our experiments consist of a realistic
ensemble of keys (RSA-2048-based) and SAPckgs following
the inter-software dependenciesand characteristics described
in §III and detailed in appendix A (cf., §IX-A). We test all
the different SAPckg profiles described (i.e., AOTA, FOTA,
SOTA, and MOTA), which limits the number of simultaneous
SAPCkgs to 200 the (limit imposed by the MOTA tests).
The size of these packages is around 1 kB for configu-
ration updates (AOTA), 1.133 MB for firmware or delta
software updates (FOTA or �SOTA), 10.531 MB for full
software package updates (SOTA), and 33.5 MB for media
updates (MOTA). However, to be able to explore the limits
of the solution and its behavior in unexpected situations
more unnatural dispositions (i.e., if all the packages in the
chain haveare from the same size), we add - when needed -
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unnecessary mock files to enlarge the package size. Note that,
even though nowadays some update packages are commonly
GB-scale, with the emergence of OTA update frame-works,
we assume that huge media update packages such as GPS
updates will be adapted to the system constraints with more
periodic, smaller OTA updates. Consequently, we do not
exceed 500 simultaneous keys as this number is sufficient to
verify 200 packages. These packages and keys allow us to
test the authenticity of the full software deployment pipeline
and evaluate the behavior and overheads of each of the
aforementioned mechanisms.

D. EVALUATION OF THE KEY MANAGEMENT
MECHANISM
In this section, we investigate the performance of the key
management mechanisms to prove their adequacy for both
on-board vehicle systems and vehicular Cloud platforms, i.e.,
the off-board systems.

Fig. 13a and 14 show the result of the function execution
performance while adding and deleting keys, in addition to
its evolution with the number of keys already present in
the vehicle. The displayed performance values may appear
slow given current computational power (i.e., the time to
add/delete a key oscillates between 1.1 to 1.5 seconds on-
board and between 0.75 to 0.875 seconds off-board). How-
ever, as noted above, the key management mechanism is the
layer that the security of our Proof-of-Authority mechanism
relies upon. Modification of the key set will only occur when
a passenger chooses to install a new application originating
from an unknown developer, the impact is minimal given
the security and traceability advantages that it brings to our
solution.

However, a comparison between block addition with and
without backup highlights that backups have a marked im-
pact. As shown in Fig. 13b and 13c, the backup update
increases the CPU load of the OTA master node to almost
75%, significantly impacting the node energy consumption.
However, the backup has less impact on the execution per-
formance, with an execution time increase consumption.
However, the backup has less impact on the execution per-
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FIGURE 14: Performance of the off-board key management mechanisms.

formance, with an execution time increase of 25% recorded
for 500 keys. As this layer is the center of the integrity
and authenticity control and, as noted in §V-F, this mecha-
nism will occur only when adding new updates and pieces
of software with previously unknown keys, which will not
occur frequently, the impact of this mechanism is negligible
compared to the run time of the full install mechanism, which
typically takes nowadays around 30 minutes in most of the
constructors. Thus, despite the performance overhead, the
key backup update will always be performed after adding a
set of keys in a software deployment cycle. However, in terms
of backup generation in the off-board nodes, this mechanism
must be activated and performed each time a new key is
added as these resources are even more negligible at the
computational scale of cloud computing nodes.

E. EVALUATION OF THE SOFTWARE MANAGEMENT
LAYER.
1) On-board software verification mechanism evaluation
Before investigating the addition of blocks to the chain, we
first focus on the performance of the software verification
mechanism described in §V-C. Fig. 16 depicts the impact of
the update package size on the verification execution time.
As anticipated, increasing the package size also increases
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FIGURE 13: Evaluation of the On-board key management mechanisms.
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the time to calculate the hashes and signatures needed to
verify the SAPckg. However, as shown in Fig. 16, the number
of blocks already inside the MSC does not influence the
verification mechanism performance.
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FIGURE 16: Evaluation of the critical verification mechanism when adding more
blocks to the MSC.

We now consider the performance of the verification
mechanism in response to changing its verification level (i.e.,
Critical, Medium, and none) as presented in §V-C, Fig. 17
shows that the size of the SPS only impacts the critical
verification as this level is the only one in which the hash
of the code files is calculated. It illustrates once again that
the impact of the blockchain mechanism itself is negligible;
all of the overhead is due to the hashing verification itself,
which is mandatory to preserve package integrity irrespective
of the underlying storage structure. In addition, from Fig.
17, we can also confirm the system’s suitability for real-
time applications given the different verification levels and
package sizes. Thus, in a fully dynamic SOA embedded
architecture, AOTA, FOTA, SOTA, and MOTA verification
can be performed in real-time, with the services chosen at
will to match the user’s needs. However, for the addition of
new FOTA, SOTA, and MOTA packages to the MSC for the
first time, the vehicle will require a certain calculation time,
adding a delay between the vehicle receiving the package and
when it will use it. This could potentially limit future shared
driving possibilities, as the services must be pre-submitted to
the MSC before using them. However, since Fenrir is based

on the concept of global software compatible images that give
the orchestrator a range of software applications that it can
use, any desired application will already be in the GSI and,
thus, already within the vehicle’s local MSC.
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FIGURE 17: Evolution of the software verification mechanism with different
critical levels.
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FIGURE 18: Performance of the off-board block addition mechanisms.

2) Software addition mechanism performance evaluation
In terms of the performance of the software addition mecha-
nism, as shown in Fig. 15a and 18, the time to add a block of
any kind is within acceptable levels for any package type for
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FIGURE 15: Performance of the on-board block addition mechanisms. SMALL = 956 Bytes, MED = 1.133 MegaBytes, BIG = 10 MegaBytes, HUGE = 33.5 MegaBytes.
(WBU = with backup update and NBU = No backup update)
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both off-board and on-board scenarios and does not increase
with the number of blocks already inside, as long as the block
backup is not updated after the addition. Thus, once again, the
backup will be generated once all the GSI software is stored
in the MSC rather than when the software is added to keep the
overhead low. However, in the central nodes, the backup will
be performed each time a new block is added to the MSC, as
the resources on the Cloud side are readily scalable, and the
MSC of the central nodes is the reference for all other nodes
in the infrastructure. Other techniques, such as creating the
backup from sub- backups, could be implemented to reduce
the impact of creating a full backup each time.

3) Blockchain pruning mechanism evaluation
Blockchain pruning mechanism evaluation: In this subsec-
tion, we study the impact of the pruning mechanism on
system performance depending on the number of nodes to
be preserved. Fig. 19 illustrates the impact of the number
of blocks to be saved on the backup generation. This study
also includes the pruning calculus, whose impact is negligi-
ble compared to the whole backup generation mechanism.
Fig. 19 shows that the impact on the backup generation is
significant (over 75% performance improvement on the 80%
pruned example). This mechanism will only become more
effective as the number of blocks in the chain increases. The
pruning mechanism also greatly impacts the package size,
reducing the SAPckg size to almost the size of the STBs
(a few kB) for the pruned blocks, representing an enormous
reduction for SOTA, MOTA, and even FOTA SAPckgs.
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FIGURE 19: Impact of pruning mechanism with 20% of AOTA, 70% of FOTA or
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4) Block retrieval mechanism evaluation
Finally, as the last block management-related mechanism,
we consider the time required to retrieve a block from the
blockchain. Specifically, this is the time that another ECU,
usually the OTA orchestrator, will take to safely retrieve a
block from the MSC and for it to be ready to install. As
shown in Fig. 20, the time for this operation is low because
the verification level used whenever retrieving a block from
the local MSC is only medium instead of critical. In addition,

the communication impact is negligible as this action occurs
between two ECUs connected directly via Ethernet.
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FIGURE 20: Influence of the SUP size when retrieving a block.
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software image.

F. EVALUATION OF THE DEPENDENCY CALCULATION
MECHANISM
Fig. 21 presents the results of calculating a global software
image both on- and off-board. Vehicle or automaker software
limitations do not influence the generation time or the CPU
load (not presented in this paper but 0–5% for off-board
and 20–30% for on-board). However, while 1.7 seconds is
a relatively short time for executing a vehicle dependency
management algorithm, this time might be too high for V2V
updates on the road. Thus, to avoid overloading nearby
vehicles, this mechanism will only be performed when the
vehicle is stopped (traffic lights, traffic jams, parking lots,
etc.); in other cases, communication will occur directly to the
Cloud. However, even after updating from another vehicle, a
verification request is sent to the Cloud as soon as possible to
verify the hashes in the chain.
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G. EVALUATION OF THE SYSTEM OVERHEAD

As described above, the Fenrir framework overhead can be
divided into two phases: a first phase involving adding the
incoming software blocks to the vehicle’s local chain and
a second phase whenever these blocks are used. However,
even though these two phases are entirely independent, their
performance depends mainly on the integrity verification
mechanism, which is described in detail in §VI-E1. From
this section, and considering the typical automotive indus-
try update cycle of around a dozen minutes per service
update (value given on the discussion with industrial ex-
perts), the overhead added by this verification mechanism
can be estimated as 0.579% both in terms of performance
and energy consumed for the worst-case verification scenario
(i.e. MOTA package verification); thus, this overhead can be
considered negligible. Combining the definition of the block
addition mechanism presented in V-C, the results shown in
§VI-E2, and the key addition mechanism results in §VI-D,
the overhead of this mechanism can be estimated as 2.911%
in a worst-case scenario in a MOTA SAPckg must be added

to a whole MOTA SAPckg chain and all the keys are needed
to verify this software. However, despite the increased over-
head, this value is still not significant in terms of the whole
system performance given the low frequency.

H. THREAT TO VALIDITY ANALYSIS
This section, focuses on the threat-to-validity approach pre-
sented in [45], [46] and, in particular, [47], which devel-
opfocuses on the verification of the validity of empirical
software-based experiments. In these papers, the authors
propose four main threats on which to focus when conducting
a threat-to-validity analysis: threat to conclusion validity,
which leads to an incorrect conclusion about a relationship
in an observation; threat to internal validity, which increases
the difficulty of finding causal links between variables and
events; threat to construct validity, which focuses on how
well a test measures the concept it is designed to evaluate;
and, threats to external validity, which refers to the gener-
alization of the results. However, from the sub-properties of
each type we will not focus on those that are not applicable

TABLE 2: Threat to validity analysis.

Threat Sub-property Analysis

Conclusion

Statistical Validity
The tests were repeated until a standard deviation of less than 2% was achieved. The test results followed a normal distribution
N(µ,�2), with µ being the mean and � being the standard deviation, which allowed us to make use of the mean and trend lines as
good representatives of the functional behavior.

Statistical assumptions The test sessions were planned to test each isolated mechanism of Fenrir. This way, we could easily set aside the potential correlations
between the test sessions/experiments.

Lack of expert evaluation The design and evaluation of Fenrir were iteratively discussed with experts from both our industrial partner and laboratory members,
taking their concerns into consideration to re-adjust some aspects of the design and test sessions.

Reliability of the measures The system was tested in multiple test sessions over several months, consistently achieving similar results.

Reliability of the test-sessions The test set-up was the same for all the experiments (except for the times when we tested V2V instead of V2C).

Lack of data pre-processing Once we analyzed the data from the first test sessions, we planned precise sessions to complete the missing data spots that could have
influenced our conclusions.

Internal

Deficiency of the set-up The set-up was isolated from other machines and only turned on for the experiments. We did not observe any abnormal signs of
network or hardware under-performance.

History The system was tested in multiple test sessions over several months, consistently achieving similar results. The results were
normalized to decrease the influence of unrelated events.

Maturation
The time-scale over which we conducted the experiments was too short to appreciate its influence on the hardware life-cycle.
Furthermore, the test set-up was re-flashed for each test; this way the environment, was completely clean and isolated from past
and future experiments.

Testing The system was re-flashed before each experiment. In this way, there was no test correlation despite conducting it several times in a
row.

Treatment design The material chosen was selected to match the actual automotive–cloud environment, as stated in §VI-A.

Subject / Sample selection The data set (cf. §VI-C) was chosen based in the literature and discussions with our industrial partner to cover future automotive
use-cases.

Incompleteness of data Further discussions with other automotive groups would be of interest to complete our data set with their specific use-cases.

Construct

Monooperation bias The study includes more than one independent variable and evaluates more than one mechanism.

Monomethod bias The different mechanisms were evaluated according to multiple metrics (i.e., energy & network cons., CPU% , performance, etc.).

Measurement metrics The measurement metrics were completely objective, measuring the CPU consumption and the end-to-end time directly from the
board. We also measured the energy footprint directly with a multimeter.

External

Representation of the
population

The data set was chosen based on the literature and the discussion with our industrial partner to cover the future automotive OTA
update use-cases.

Context of the study The experiments were conducted over several months, between January and June, and at different times and locations, which
enhanced the generalizability of the findings.
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to our experiment (i.e., mortality, limitation of treatment,
motivation, appropriateness of data, interaction with different
treatments, treatment testing, hypothesis guessing, evaluation
apprehension, and representation of the setting) and others
that we are not in a position to objectively analyze (i.e., fish-
ing for the result, ignoring relevant factors, theory definition,
experimenter bias, and experimenter expectations). However,
the goal of this experiment was to study how to strengthen
the data integrity of the current OTA software-deployment
mechanisms without elevating the system overhead; neither
we - nor our partners - had a special interest in basing
our solution on the blockchain, which helped us to remain
objective about the advantages and flaws of our solution.
Table 2 details the precise analysis for each sub-property.
Each sub-property is extensively defined in [47].

VII. DISCUSSION
Despite the encouraging results, considerable progress is still
required in the automotive industry before being able to move
to Fenrir’s application store framework. Marked changes in
the development process need to occur, including addressing
the granularity of SAPckg packages [48], [49], which is
currently at an application level and not at a service level,
and the frequency of updates, which remains relatively low
compared to IT systems. Additionally, significant effort must
be put into the entire standardization and software reuse
process [50] between different companies to reduce software
development and maintenance costs, thereby paving the way
for new innovative services. In addition, to improve the
software installation process, hardware and software should
be decoupled , moving towards a higher-level business-
oriented top-down software conception. This way, the service
behavior correctness could be ensured since the development
phase thanks to tools such as sandboxing or shadow mode
deployment, thereby easing current on-board deployment
constraints [51].

In addition to the changes required in the automotive
industry, the development of Fenrir also requires some open
issues to be addressed that we did not discuss in this study.
First, the complete transformation of automotive software
is challenging to achieve in the short term, so we must
study how to integrate legacy software into the proposed new
deployment pipelines during the transition stage. A promis-
ing approach would be automatic parsing and wrapping
mechanisms allowing for adapting and standardizing legacy
packages, such as in [52]. Second, developer-declarative
inter-software dependency potentially poses a threat when
increasing the number of authorized services; thus, Fenrir
will require some statistical model allowing potential failures
that might be unnoticed in the development phase to be
traced and detected [33]. Finally, we still need to work on
adapting Fenrir for shared driving services and collaborative
fleet management services, whose dynamicity may represent
a problem for the system security, as well as for large
multimedia files that could slow down system performance
considerably, effectively blocking the blockchain agent.

VIII. CONCLUSION
Software is becoming increasingly important for the au-
tomotive industry; thus, solving the ever-present software-
related problems remotely has become a critical aspect and
a great vulnerability threat for vehicles. In this paper, we
presented Fernir: an inter-automaker blockchain-based ap-
plication store framework where the instability control is
preserved by the automakers. Fenrir’s mechanisms allow
protection from critical security attacks in the most likely
scenario, in which the attackers can perform man-in-the-
middle attacks but have not compromised at least a certain
number of signing keys (which can vary depending on the
final implementation). To our knowledge, Fenrir is the first
proposed software deployment framework for automobiles
that addresses inter-service dependency management to op-
timize resource and energy consumption through the deploy-
ment pipeline. Fenrir is also the only solution of its type to
address the challenge of the heterogeneity of the automo-
tive industry’s software development cycle by conceiving a
hybrid public/private approach in which multiple roles with
multiple permissions can handle the interactions between ac-
tors and automakers without exposing the chain to malicious
publishers. Furthermore, Fenrir offers multiple verification
levels to address safety legislation while also keeping energy
consumption as low as possible. Finally, we also present an
evaluation of both the performance, computational demand,
and energy consumption of each of the mechanisms form-
ing Fenrir and demonstrate that the overhead added by our
solution for an entire software deployment pipeline (§VI-G)
consisting of both deploying and using previously deployed
software depends mainly on the verification mechanism and
is not significant, i.e., 3.725% for a worst-case scenario and
0.2819% for a typical scenario.

In subsequent stages of the project, further work is re-
quired on the user experience to identify the use cases and
business models in which Fenrir could be used. In addition,
it is also necessary to clearly state when and how V2V or
V2C should be chosen to retrieve software blocks. From a
more technical perspective, now that Fenrir presents a wholly
safe and secure end-to-end software delivery pipeline, further
work is required in the service deployment phases (i.e., the
application orchestration and efficient installing) as well as
on the software architecture to allow dynamic adaption to
deployment requirements, control of all relevant services,
and life-cycle management. Finally, setting up dynamic data-
centered communication reconfiguration between highly dy-
namic services in this set of applications remains an exciting
topic for future research.

IX. APPENDIXES
A. APPENDIX A: USE-CASE SCENARIO DETAILED
SOFTWARE PROFILES
In this first appendix, we describegive further details on the
test-bench services developed based in close collaboration
with STELLANTIS’ partners and based on in [26] with
collaboration of STELLANTIS. Thus, Table 3 expose de-
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TABLE 3: Use case scenario: software profile description.

Service profile Communication
pattern

Hardware
coupling Size Depends on Update frequency Reusability Supplier

Interior light actuator Low complexity service for
passenger comfort Streaming Yes AOTA - FOTA None Yearly Medium

(mono-company) Automaker

Raw picture 1 & 2 Real-time, critical, low com-
plexity service for ADAS Streaming Yes AOTA - FOTA None Half Yearly Reduced

(mono-hardware) Tier 3

Mirror joystick Low complexity service for
passenger comfort

Discrete / passenger
interaction Yes AOTA - FOTA None Yearly Medium

(mono-company) Automaker

Brightness provider Low complexity service for
passenger comfort Event-based No AOTA - (�)SOTA Raw Picture 1 Yearly High (multi-company) Automaker

Image preprocessing Real-time, critical, high com-
plexity service for ADAS Streaming No AOTA - (�)SOTA Raw Picture 1 & 2 Half Yearly High (multi-company) Tier 2

Operating hours Low complexity service for
specific use case Periodic ⇠ AOTA - (�)SOTA None Yearly Medium

(mono-company) Automaker

Interior light handler Low complexity service for
passenger confort

Periodic /
Event-based Yes AOTA - FOTA Interior light actuator &

Brightness provider Yearly Medium
(mono-company) Automaker

Detect driver High complexity for specific
use case Streaming No AOTA - (�)SOTA Image pre-processing Quarterly High (multi-company) Tier 1

Detect face Real-time, critical, medium
complexity service for ADAS Streaming No AOTA - (�)SOTA Image pre-processing Quarterly High (multi-company) Tier 2

Detect eye Real-time, critical, medium
complexity service for ADAS Streaming No AOTA - (�)SOTA Detect face Quarterly High (multi-company) Tier 2

Driver ID Medium / High complexity for
specific use case Periodic No AOTA - (�)SOTA Detect driver Quarterly High (multi-company) Automaker

Eye open / close Real-time, critical, medium
complexity service for ADAS Streaming No AOTA - (�)SOTA Detect Eye Quarterly High (multi-company) Tier 2

Gaze direction Real-time, critical, medium
complexity service for ADAS Streaming No AOTA - (�)SOTA Detect Eye Quarterly High (multi-company) Tier 2

Insurance tracking Low/Medium complexity ser-
vice for specific use case Event-based No AOTA - (�)SOTA Operating hours &

Driving ID Monthly High (multi-company) Tier 1

Vehicle leasing Low/Medium complexity ser-
vice for specific use case Event-based No AOTA - (�)SOTA Driving ID Monthly High (multi-company) Tier 1

Personalisation Medium complexity service
for passenger comfort Sporadic ⇠ AOTA - (�)SOTA -

MOTA Driver ID Monthly High (multi-company) Automaker

Driver monitoring Real-time, critical, medium
complexity service for ADAS Event-based No AOTA - (�)SOTA Eye open / close Quarterly High (multi-company) Tier 1

Eye Gaze HMI Control High complexity for specific
use case Event-based No AOTA - (�)SOTA -

MOTA Gaze direction Quarterly High (multi-company) Tier 1

Mirror adjustment Low complexity service for
passenger comfort

Discrete / passenger
interaction Yes AOTA - (�)SOTA Gaze direction & Mirror

joystick Yearly Medium (Within
company) Automaker

tails with regards to, in one hand, their, profile, hardware
coupling and communication pattern, and, in the other hand,
the service size, dependencies, update dynamicity, targeted
reusability and developer accountability.
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